
Comprehension strategies and difficulties in
maintaining object-oriented systems: an explorative study

Amela Karahasanović 1, Annette Kristin Levine 1, Richard Thomas 2

amela@simula.no, annettel@simula.no
richard@csse.uwa.edu.au

1 Simula Research Laboratory

P.O. Box 134,
NO-1325 Lysaker, Norway

2 School of Computer Science & Software Engineering,

M002, The University of Western Australia,
Crawley, Western Australia 6009, Australia

Abstract. Program comprehension is a major time-consuming activity in
software maintenance. Understanding the underlying mechanisms of program
comprehension is therefore necessary for improving software maintenance. It
has been argued that acquiring knowledge of how a program works before
modifying it (the systematic strategy) is unrealistic in larger programs. The goal
of the experiment presented in this paper is to explore this claim. The
experiment examines strategies for program comprehension and cognitive
difficulties of developers who maintain an unfamiliar object-oriented system.
The subjects were 38 students in their third or fourth year of study in computer
science. They used a professional Java tool to perform several maintenance
tasks on a medium-size Java application system in a six-hour long experiment.
The results showed that the subjects who applied the systematic strategy were
more likely to produce correct solutions. Two major groups of difficulties were
related to the comprehension of the application structure, namely to the
understanding of GUI implementation and OO comprehension and
programming. Acquisition of strategic knowledge might improve program
comprehension in software maintenance.

Keywords: Maintenance; Program comprehension; Experiment; Object-oriented

1. Introduction

It is widely accepted that software maintenance absorbs a significant amount of the
effort expended in software development. Although the reported figures differ, most
researchers on software maintenance agree that more than 50% of programming effort
is constituted by changes made to the system after the implementation (Coleman et
al., 1994; Holgeid et al., 2000; Lehman and Belady, 1985; Lientz, 1983; Nosek and
Prashant, 1990; Pfleeger, 1987; Zelkowitz, 1978). Program comprehension has been

2

recognised as a major time-consuming process in software maintenance (Storey et al.,
1999) taking up to 60% of the total time devoted to maintenance (De Lucia et al.,
1996; Dunsmore et al., 2000).

Object-oriented (OO) programming has become a de facto standard and therefore
we need to understand the problems of maintaining such systems, including
comprehension strategies. Object-oriented programming is increasingly being taught
in computer science courses. A survey conducted by Dale (2005a; 2005b) shows that
65% of the participating educational institutions teach object-oriented programming
as a part of introductory courses in computer science education. Some of these
students are going to have to maintain object-oriented systems when they start work.
It is therefore important to understand the comprehension strategies they use while
maintaining such systems. It is a prerequisite for the development of tools,
documentation and maintenance guidelines that support their cognitive processes in
an appropriate manner and thus improve maintenance. Furthermore, understanding
the cognitive difficulties of students can enable educators to improve their teaching.

Numerous studies have been performed in the area of program comprehension over
the last few decades (Détienne, 1997; Détienne, 2002; Storey, 2005; Upchurch, 2002).
Research has been conducted in the contexts of general strategies (Burkhardt et al.,
1998; Mosemann and Wiedenbeck, 2001; O’Brien and Buckley, 2001; Von
Mayrhauser and Vans, 1996; Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al.,
1999), software maintenance and enhancement (Corritore and Wiedenbeck, 2001;
Parkin, 2004; Pennington, 1987a; Von Mayrhauser and Vans, 1997), reuse and
documentation (Burkhardt et al., 2002), and debugging (Ko and Uttl, 2003).

Although much research has been done, Corritore and Wiedenbeck (2001) point
out that our understanding of program comprehension remains incomplete and that
there is a need for deeper knowledge of the comprehension strategies employed
during software maintenance tasks. Research has been done on characterising the
strategies employed by different kinds of programmers, but little is known about why
these particular strategies emerge (Davies, 1993). Furthermore, experiments on
program comprehension have been criticised for their lack of realism. Programs used
in these experiments are typically small; the largest reported program is about 822
lines of code (LOC) (Corritore and Wiedenbeck, 1999; Corritore and Wiedenbeck,
2001). Only one observational study of large-scale program comprehension in the
industrial context has been reported (Von Mayrhauser and Vans, 1996; Von
Mayrhauser and Vans, 1997). Furthermore, the participants in experiments have been
given the program to study for a period of time, followed by maintenance tasks or
questionnaires (Pennington, 1987a; Corritore and Wiedenbeck, 2001). However, in
practice, the required maintenance tasks are usually known before starting
comprehension, and so comprehension is driven by the maintenance tasks. Most
experimental designs do not reflect this. Furthermore, rather less attention has been
paid to interactions between the strategies that programmers use and the difficulties
they have while comprehending object-oriented programs.

The study reported in this paper aims to add to the body of knowledge on program
comprehension by exploring strategies and difficulties of programmers when
conducting maintenance tasks in a more realistic context. The program used in this
study was a 3600 LOC large library application system written in Java. The
participants were 38 students in their third or fourth year of study in computer science

 3

at either the University of Oslo or Oslo University College, Norway. The experiment
lasted six hours and the participants conducted two maintenance tasks on the given
application system, using JBuilder. The participants were provided with
documentation that describes the application system and the JBuilder documentation.
They had access to the Java online documentation and could use their Java books. In
addition, both the program and the tasks were presented at the same time, leaving it
up to the participants whether or not they wanted to familiarise themselves with the
program before proceeding with performing the tasks.

The remainder of this paper is organised as follows. Section 2 describes related
work. Section 3 describes the methodology. Section 4 presents the results. Section 5
discusses threats to validity. Section 6 concludes and suggests avenues for further
work.

2. Strategies for comprehension of object-oriented systems

Much research has been conducted in the area of program comprehension over the
last few decades. Détienne reviews cognitive models and experiments conducted in
this area (Détienne, 2002) and provides a survey of empirical studies on object-
oriented design (Détienne, 1997). Storey (2005) reviews some of the key theories of
program comprehension and discusses how these theories are related to tools that
support it. Upchurch (2002) gives an extensive bibliography of the field.

Section 2.1 describes the concepts underlying our research. Section 2.2 surveys
related empirical studies. Section 2.3 states our research questions.

2.1. Comprehension strategies

Program comprehension concerns an individual programmer’s understanding of
“what a program does and how it does it in order to make functional modifications
and extensions to a program without introducing errors” (Corritore and Wiedenbeck,
2001).

During the program comprehension, developers build their own mental
representation of the program to be understood; a mental model. The cognitive
processes of developers and temporary information structures they use to develop
their mental model are described by a cognitive model of program comprehension.

Existing cognitive models can be classified as top-down, bottom-up or a
combination of these two. According to the top-down (domain) model of program
comprehension (Brooks, 1983; Soloway et al., 1988) programmers start with a
general hypothesis about the overall purpose of the program. Each component is then
viewed in the light of this hypothesis. In the bottom-up model (Pennington, 1987a;
Pennington, 1987b; Shneiderman and Mayer, 1979) programmers start by reading
code statements and group these statements until a high-level mental representation of
the program is constructed. Pennington (1987a; 1987b) describes two program
abstractions that are formed by the programmer during comprehension; the program
model, which is a low-level abstraction, and the domain model, which is a higher level
of abstraction. She also described four basic categories of program information

4

making up the programmer’s mental representation: elementary operations in the
code, control flow, data flow and program goals. Von Mayrhauser and Vans have
proposed the Integrated Metamodel of program comprehension (Von Mayerhauser
and Vans, 1993; Von Mayerhauser and Vans, 1995) based on the above-described
models. It consists of four components: the top-down, situation and program models,
and the knowledge base. The program, situation and domain models describe
comprehension processes used to create mental representations of the program. The
knowledge base describes the knowledge needed to perform these processes.

A comprehension strategy is a high-level approach to comprehension (Von
Mayrhauser and Vans, 1996). It is a method applied by developers to understand a
given program. The direction of the comprehension strategy concerns the
programmer’s approach to program comprehension regarding abstraction levels (top-
down, bottom-up and combined). The breadth of the comprehension strategy concerns
the programmer’s approach regarding the scope of comprehension. Littman and his
colleagues (1986a) observed two strategies regarding breadth of comprehension:
systematic and as-needed. The systematic strategy involves an attempt to gain
knowledge and understanding about a program before carrying out modifications,
whereas the as-needed strategy is used by programmers who minimize the amount of
code to be understood before modifying the program. They observed that
programmers who used the systematic approach carried out modifications more
successfully than those with an as-needed approach. The reason, they argue, is that
systematic study of the program increases the ability to detect interactions among its
components. Koenemann and Robertson (1991) argue that the systematic approach is
unrealistic in larger programs. The program used in the Littman experiment was only
200 LOC. Koenemann and Robertson conducted an experiment in which a group of
expert programmers carried out modifications on a 600 LOC program. None of the
programmers attempted to use a truly systematic strategy. The scope was directed by
the modification task they performed, and they did not try to comprehend parts that
did not have a direct bearing on this task. One instance of the systematic strategy
during the comprehension of a large-scale program has been reported by Von
Mayrhauser and Vans (1996). All these studies were conducted in the procedural
paradigm.

2.2. Empirical studies of comprehension in the object-oriented paradigm

Studies on object-oriented comprehension have explored different aspects of
cognitive models. One line of research focuses on the effects on information
structures that the developers use in understanding object-oriented programs of the
following factors: paradigm (Corritore and Wiedenbeck, 1999; Corritore and
Wiedenbeck, 2001; Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al., 1999;
Khazaei and Jackson, 2002), expertise (Burkhardt et al., 2002; Corritore and
Wiedenbeck, 1999; Corritore and Wiedenbeck, 2001), view, such as, data flow,
sequential, control (Mosemann and Wiedenbeck, 2001), tasks (Burkhardt et al., 2002)
and phase (Burkhardt et al., 2002; Corritore and Wiedenbeck, 1999; Corritore and
Wiedenbeck, 2001).

 5

The second line of research focuses on the comprehension strategies of developers.
Table 1 summarises studies of comprehension strategies in the object-oriented
paradigm regarding participants, applications (language and size), tasks (type of task
and duration), environments (e.g. pen and paper or computer) and method of data
collection.

Table 1
Empirical studies of comprehension strategies in the object-oriented paradigm

Study Participants Application

Tasks
Environment

Data collection method

(Burkhardt et al.,
1998)

49 professionals
(28 OO experts,
21 procedural
experts)

C++ 550 LOC
Comprehension for
later documentation
or reuse
35 min. program
study

Verbal protocols

(Corritore and
Wiedenbeck,
1999; Corritore
and Wiedenbeck,
2001)

30 professionals
(15 OO experts,
15 procedural
experts)

C and C++
783 and 822 LOC
Maintenance tasks
Two 2-hour sessions
(a week between
them)
Code and
documentation
available on-line;
only one document
visible at a time

Screen capture software,
Comprehension
questionnaire (used for
research on information
strategies)

(Torchiano, 2004) Explorative study
28 4th year
students

Java 628 LOC
Duration not
reported
Maintenance tasks
Code and
documentation
available on-line

User action capture
software

Numbers of participants in these studies ranged from 28 to 49. The participants were
both students and professional developers. The size of applications (programs the
participants needed to comprehend) used in these studies ranged from 550 to 822
LOC and the applications were written in C, C++ or Java. The participants were asked
to study the given applications (general comprehension) or to perform some
maintenance, documentation or reuse tasks. The time the participants were given to
perform given tasks ranged from about 35 minutes to two two-hour sessions with a
week between them. The participants were either given a hard copy of the program to
study (pen and paper exercises) or had the code and documentation available on-line
on their computers. The data were collected by means of verbal protocols, screen
capture software, comprehension questionnaires, and user action capture programs.
Their comprehension strategies were identified by the following measures:

• the number of different files they visited (obtained from the verbal
protocols or screen capture software)

6

• the number of documentation pages they visited and the time they spent
on those pages (obtained from the user actions capture software)

Burkhardt et al. (1998) studied the effects of experts’ comprehension strategies in the
object-oriented paradigm. They found evidence of top-down behaviour in expert
comprehension. By contrast, novices used a more bottom-up strategy and their
comprehension was execution-based. They also found that the experts tended to
consult more files.

A study conducted by Corritore and Wiedenbeck (2000; 2001) examined
comprehension strategies of experts in two paradigms while conducting maintenance
tasks. Their results suggest that during the early phase of program comprehension the
object-oriented programmers used a strong top-down approach, but that during the
maintenance tasks they used a bottom-up approach. The procedural programmers
started with a bottom-up approach and used it even more during the maintenance
tasks. The breadth of comprehension, i.e. the extent to which the programmer
becomes familiar with all or most parts of program during comprehension, was found
to be greater for the procedural than for the object-oriented programmers. However,
results suggest that expert programmers build a broad and systematic, rather than a
localized, view of a program after conducting several maintenance tasks. The authors
argue that object-oriented programmers focus on documentation early in
comprehension, as the most pertinent information sought, namely domain objects and
their relationships, is clearly presented in object-oriented documentation. The results
of Torchiano (2004) suggest that pattern-specific documentation supports both top-
down and bottom-up comprehension.

The applications used in these studies are small by industry standards and it is
possible that the results are not applicable to situations in which the developers
comprehend and maintain larger applications. It is also possible that the results are not
applicable to situations in which the developers work with professional development
tools.

The third line of the research focuses on cognitive consequences of the object-
oriented approach. Object-oriented systems are claimed to have several advantages:
naturalness (Meyer, 1988), ease of use (Rosson and Alpert, 1990), reusability
(Johnson and Foote, 1988) and maintainability (Henry and Humphrey, 1993; Daly et
al., 1996). It has been argued that the world can be naturally structured in terms of
objects, and that mapping between the problem domain and the programming domain
is thus more straightforward in object-oriented paradigm (Meyer, 1988). Object-
oriented systems might be particularly valuable in new domains or for experienced
designers (Rosson and Alpert, 1990). Furthermore, reuse of software is easy in object-
oriented systems as class hierarchies are well suited for reuse (Johnson and Foote,
1988).

Détienne (1997) surveyed empirical studies validating these claims in the context
of object-oriented software design. The literature on experts supports the claims about
naturalness and ease of OOD for experts. The literature on novice OO designers
shows that they had difficulties in process of class creation and with declarative and
procedural aspects of their solutions. Studies in this survey support the claim that OO
paradigm promotes reuse by inheritance, but also identify problems the novice
designers have with reuse.

 7

Henry and Humphrey (1993) found that the modifications to object-oriented
systems were more local, i.e., involved editing of fewer modules. Brian et al. (1997)
found that adhering to good object-oriented design practices provides ease of
understanding and modification.

Studies have also been conducted to identify what the programmers find difficult in
object-oriented development. A study conducted with graduate students (Tegarden
and Sheetz, 2001) revealed that decomposition was the most important contributor to
the complexity of object oriented development. This includes class design
(encapsulation, intra- and inter-class complexity, proper placement of methods and
attributes) and structure (relationship between classes, objects and instances). A study
conducted with professional developers (Sheetz, 2002) revealed that novices were
overwhelmed with implementation issues, whereas experts were more focused on
project management issues.

The above described studies validated claims on advantages of object-oriented
paradigm and identify some of its difficulties. However, little has been known about
difficulties during the maintenance. Furthermore, there are no studies that explore
interactions between the strategies for comprehension that programmers use and the
difficulties they have while attempting to comprehend object-oriented programs. In
order to improve program maintenance practice, a deeper understanding of these
interactions is needed.

2.3. Research questions

The goal of the research reported here was to add to the existing body of knowledge
regarding object-oriented program comprehension by exploring strategies used by
advanced beginners when conducting maintenance tasks on medium-sized
applications. We had the following research questions:
RQ1 Do advanced beginners perform better if they use the as-needed strategy,

rather than the systematic strategy? It is expected that the systematic strategy
scales badly and is therefore not appropriate for maintaining medium-size
object-oriented programs. If so, we should expect the participants using this
strategy to perform worse in terms of time and correctness.

RQ2 Is there any relationship between strategies the advanced beginners use and
the difficulties they have while maintaining medium-size object-oriented
programs? As the systematic strategy provides an overview of the application,
we would expect the programmers using this strategy to have fewer problems
in understanding the structure of the application.

RQ3 Why do advanced beginners choose the particular strategy that they use? As
they have some programming experience, we would expect them to choose a
strategy that is appropriate for the given tasks, application and environment.

8

3. Design of the experiment

We conducted a controlled experiment with two goals:
• evaluating an experience sampling method, called feedback collection

method, regarding its usefulness in comprehension studies
• exploring the participant’s strategies and problems while they were

conducting maintenance tasks on an object-oriented application.

The results regarding the first goal are reported in Karahasanovic et al. (2004). The
feedback-collection method (FCM) was compared with concurrent think-aloud (CTA)
and retrospective think-aloud (RTA) regarding type and usefulness of the collected
information, costs related to analysis of the collected information, and effects of the
data collection methods on the subjects’ performance. The results showed that FCM
allowed us to identify a greater number of comprehension problems that prevented
progress or caused significant delay. It was less precise in identifying strategies for
comprehension than CTA. FCM was less expensive in analysis (transcription and
coding) than the other two methods. The results indicate that all three methods of data
collection were intrusive and affected the performance of the subjects with respect to
time and correctness (small to medium effect size).

This paper reports the results regarding the second goal.

3.1. Participants and setting

The participants were 38 students in their third or fourth year of study in computer
science at either the University of Oslo or Oslo University College, Norway. They
were asked to volunteer for a day during a vacation and were paid. The mean age was
24, range 20-38, with one female. All of the participants had been taught object-
oriented programming and the Java programming language throughout their
university courses. They had taken between four to 30 credits of such courses, the
median being 10 (one course corresponds to three or four credits; a full school year is
20 credits). The participants reported they that had produced between 1000 and 50000
(median 7000) lines of Java code throughout their university courses or while
working in industry. The participants’ self-reported knowledge of JBuilder was
medium (median 3, on a five-point scale: 1 means no experience with JBuilder, 5
means expert). Nineteen participants had industrial experience with Java
programming, ranging from 2.5 months to 3.5 years, the median being one year.
Thirty-nine participants started with experiment. However, one person dropped out
towards the end of testing due to major technical problems, which left 38 participants
for the main experiment. His background was average.

These participants attended an experimental session at Simula Research
Laboratory, outside their educational institutions. They started in either the morning
or afternoon and stayed for about six hours. The experiment was conducted on six
separate days, due to restrictions pertaining to the use of required resources
(individual rooms and observers). There were from four to 10 participants per day.

 9

3.2. Treatments

The experiment was conducted in terms of four approaches: concurrent think-aloud
(CTA), immediate retrospective think-aloud (RTA), feedback-collection method
(FCM) and a control silent group (CS).

• The participants in the concurrent think-aloud group were instructed to
verbalise their thoughts while performing the tasks. When a participant fell
silent for about 30 seconds the observer used a reminder “keep talking”. The
observer was allowed to answer practical questions or questions related to a
technical problem (not directly contributing to the task-solving process).
Observers were instructed to have no other interaction with participants.

• The participants in the immediate retrospective think-aloud group were
asked to provide an immediate retrospective report after each of the main
tasks. The observers were instructed to ask open-ended questions with
minimum prompting.

• For the feedback-collection group, a screen appeared every 15 minutes with
the text “What are you thinking now?” The participants were instructed to
describe what they were thinking just before the screen appeared. The time
available for writing feedback was limited to two minutes. For the feedback-
collection and control silent groups, an observer was present to help with
technical problems. He was instructed to have no other interaction with the
participants.

Each subject using think-aloud method (CTA or RTA groups) was located in an
individual room and accompanied by an observer. Subjects working silently and using
the feedback-collection method were accommodated in a laboratory of up to eight
people with one observer. The participants were not allowed to talk with each other.

3.3. Data collection and supporting tools

Each participant used a PC running Windows. A remote connection was established
to a Windows Server using Terminal Services Client. Thus, each participant saw a
normal desktop, and could access Borland JBuilder for Java development.

A Web-based tool, the Simula Experiment Support Environment (SESE)
(Arisholm et al., 2002) was used for logistical support. The participants used this tool
to answer the background questionnaire, to download the documents and code, to
upload their solutions, and to provide feedback (FCM group only). The tool recorded
the start-time and end-time for each task. Keystrokes, mouse-clicks and window focus
events were logged with timestamps in milliseconds by the GRUMPS-Lite software
(Thomas et al., 2003). Each think-aloud session (concurrent and retrospective) was
audio-recorded. Observers also made notes during the experiment.

10

3.4. Experimental procedure

Every participant first completed a training task. The next stage was to undertake a
pretest task for up to an hour. A training session followed, in which participants in the
feedback-collection method treatment practised it. After this initial training, the
participants were asked to conduct three change tasks on a medium-size Java
application, each intended to be more complicated and complex than its predecessor.
The main session lasted from three to four hours. Each participant uploaded amended
source code after each task, once he was satisfied with their performance. The
participants were accommodated in a laboratory of up to eight people plus an
observer.

Two weeks after the experiment, open-ended group interviews were conducted for
about one hour with the participants, to provide additional information on their
perception of the experiment. The participants were divided into eight groups. One
interviewer and one observer conducted the interviews.

After several months, a presentation of the results was given to the teachers and
students at the Oslo University College. They, in turn, presented their views on
processes and problems regarding the comprehension of object-oriented methods.

3.5. Tasks

The participants were asked to complete a small training task and a pretest task. The
purpose of the training task was to render subjects familiar with SESE and the
experimental situation. The participants were to download the task, develop a Java
program that writes a string in the reverse order, and upload their solutions. The
pretask was to extend the functionality of a bank teller machine program. This
application was a small Java program consisting of seven Java classes and about 400
lines of code (LOC). It was to be extended to provide a printout of all successfully
performed transactions (deposits and withdrawals) for a given bank account. The
purpose of the pretest task was to provide a basis for comparing the programming
skill of the four treatment groups. These tasks were taken from (Arisholm et al.,
2001).

The tasks of the experiment pertained to the modification of a library application
system given in (Eriksson and Penker, 1998). A library lends books and magazines.
The books and the magazines are registered in the system. A library handles the
purchase of new titles for the library. Popular titles are bought in multiple copies. Old
books and magazines are removed when they are out of date or in poor condition. The
librarians can easily create, update, delete and browse information about the titles in
the system. The borrowers can browse information about the titles. They can reserve a
title if it is not available. The application consists of four packages with a total of
3600 LOC in 26 Java classes. This application system was used because we assumed
that the application domain would be very familiar to the participants. The application
system (UML diagrams and Java code) has been used as a case study in a UML
textbook and can be considered as a good example of object-oriented practice. The
participants were asked to conduct the following changes on the library application
system:

 11

Task1 Delete functionality related to ISBN number.
Until now the ISBN-numbers have been stored in the system. A new
international system for categorisation has been accepted, so this
information is no longer needed. ISBN information should be removed from
all the places where it has been used including the user interface.

Task2 Extend the system to handle borrowers’ e-mail addresses.
The system should be extended to handle (read, store, change, display)
borrowers’ e-mail addresses. The window for inserting borrowers should be
changed so that E-mail can be entered. The window for updating borrower
should be also changed so that E-mail can be shown and updated. All other
windows that show borrower’s information should also be changed.

The tasks were ordered by complexity. The participants were provided with
documentation describing the functionality and structure of the library application
system and the JBuilder documentation. They also had access to the Java online
documentation. Those subjects who managed to complete both change tasks on the
library application within the allocated time were given an extra change task. This
was to ensure that none of the subjects finished before the end of the allocated time
for the experiment. We did not want any subject to disturb the other subjects by
leaving early. This task was not included in the analysis. The participants were told
clearly that they are expected to implement all specified functionality. The
documentation given to the participants included test examples and figures (screen
dumps) of the correct solutions.

3.6. Analysis model

To answer the above-stated research questions, we analysed quantitative data on
performance and qualitative data from verbal protocols and interviews.

3.6.1 Breadth of comprehension
For the purpose of this analysis, we make the following definitions:

• A systematic strategy is one in which a participant tries to get an overview
of the program by reading the documentation, reading the source code or
running the application before he starts to make the required changes.

• An as-needed strategy is one in which a participant starts to perform the
maintenance tasks without first trying to understand the system.

To identify comprehension strategies, two authors analysed the data collected by the
user actions capture program (GRUMPS). The third author analysed verbal protocols
and identified strategies from them. We then compared the findings. In 75% of cases
the strategies identified from these two data sources were the same. The rest of the
cases were resolved through more detailed analysis of the collected data and
discussion between the authors.

Identification of strategies from user action logs
A class profile of a participant consists of an overview of classes visited by a
participant, and the time spent in each class, ordered chronologically. This

12

information was extracted from the GRUMPS database. GRUMPS gave us the list of
all the windows opened, identified the one that had the current focus and gave us the
list of the actions performed by the participants in each window. If the participants
performed some editing, their typing was recorded and could be traced back to the
window.

The number of different files visited by the participants was used in the previous
work (Koenemann and Robertson, 1991; Corritore and Wiedenbeck, 2001) to identify
comprehension strategies. However, if a participant spent a very short period of time
(only a few seconds) in a class, it is not possible to say that he was studying it. The
class profiles showed two trends: either (i) the participants spent a longer time on the
majority of classes they visited in the beginning, or (ii) they opened many classes
quickly and then spent a longer time working with a class that needed to be edited.
We assumed that the first group applied the systematic strategy, whereas the second
applied the as-needed strategy. We consider that for the given application, 60 seconds
is the minimum time that a participant would need to comprehend a class. Therefore
we categorised the class profiles as follows: if a participant spent more than 60
seconds per visit for the majority of the classes visited during the first third of the
time spent on the Task 1 they applied the systematic strategy, otherwise they applied
the as-needed strategy. This categorisation was justified later on by the results from
the verbal protocols.

Identification of strategies form verbal protocols
The verbal protocol data (concurrent think-aloud, retrospective think-aloud, and
feedback-collection) was analysed to explore processes of program comprehension.

Information provided in the collected protocols was categorised according to a
coding schema that we used in our previous research (Appendix A; Karahasanovic et
al., 2005). To identify strategies, we used information about the task-performing
actions that the participants conducted (category 3.1 in the coding schema) or planned
(category 3.3). We observed two different behaviours amongst the participants. The
first group started by reading the documentation, reading the code or running the
application before they conducted any changes. The other group started to change the
code immediately. Based on this, the systematic strategy was identified by statements
that indicated that a participant started by reading the documentation, reading the code
or running the library applications. The as-needed strategy was identified by
statements that indicated that a participant did not read the documentation, or that the
participant quickly opened many classes and used the search function of JBuilder to
find the places he should change. None of the participants explicitly reported that he
opened many classes and started to edit without using the search function of JBuilder.

Data preparation and analysis were as follows. First, the audio-recorded data was
transcribed verbatim. Following that, the collected data was analysed by one
researcher to determine the general type of problem-solving strategy the participants
had applied (explorative or systematic). Following the procedure given by (Ericsson
and Simon, 1993), two transcripts for each treatment/strategy combination (12 in
total) were chosen randomly to test a coding schema. The transcripts and collected
feedback were coded by two researchers independently. We used semantic
segmentation as recommended by Chi (1997). The protocols were divided in smaller
units based on semantic features, such as ideas and topics, and then encoded. We

 13

made no common segmentation of the protocols before coding. Encoded files were
inspected for differences and questionable statements. Any problems identified were
then resolved through discussion and analysis of their context. On the basis of an
overall agreement of 91,4% between coders, the coding schema was judged to be
reliable (Hughes and Parkes, 2003; Van Someren et al., 1994) and applied to all
transcripts and collected feedback (28 files in total 1). The transcription and coding
process took about 258 hours (about 168 hours for transcription of 28 hours of audio-
recorded material; about 90 hours for coding and testing of the coding schema). In the
examples presented in the following subsections, […] indicates an explanatory
comment added by the authors. The examples were originally written in Norwegian
and have been translated by the authors for this paper.

Examples of comprehension strategies
Tables 2 and 3 give examples of class profiles and the corresponding verbal protocols.
The first class profile (Table 2) is representative of those participants who applied the
systematic strategy. Such participants visited a relatively small number of classes and
spent a relatively long time working on them early in the task-solving process. The
verbal report confirmed that the participant tried to understand the application before
he began to make the required changes. He ran the application to understand its
functionality. He read the documentation, and tried to understand the structure. After
having done all this, he started to modify the program.

1 Three concurrent think-aloud protocols and one retrospective think-aloud protocol were not

transcribed because the participants spoke very quietly and indistinctly.

14

Table 2
Example of the systematic strategy (Participant 20)

 Class profile

Participant 20, task 2

0
50

100
150
200
250
300

2 17 48

Minutes into task

Se
co

nd
s

57

Excerpt from the verbal protocol (retrospective think-aloud)
So when I got the task, I thought – okay, this I have to try to understand, so I started to read the
documentation, to the part... I read which classes were included. Then I thought, okay, this is a
library system, a standard set up. Okay, I’ll try. I tried to initiate a borrower and a book. I tried
to lend the book. Okay, it worked well. Then I looked through the class diagrams, okay. … Then
I understood better how it worked. But, okay, after that I looked at the task. And I saw what I
was supposed to do. Just make changes in... remove the ISBN numbers, and then I thought that
I should begin with the data part, on the data application layer.

The second class profile (Table 3) is representative of the as-needed strategy. This
participant quickly opened many classes and then spent a longer time working on the
classes that needed to be edited. The verbal report confirmed that the participant did
not attempt to understand the application before he began to make the changes.
Instead, he used JBuilder’s functionality to perform the task.

 15

Table 3
Example of the as-needed strategy (Participant 47)

 Class profile

Participant 47, task 2

0

100

200

300

400

500

4 7 16 17 37 57

Minutes into task

S
ec

on
ds

Excerpt from the verbal protocol (retrospective think-aloud)
My first thought, because I’m working on a tool like JBuilder which checks the dependencies in
the code, I thought that it would be intelligent to find where these ISBN-fields were defined and
then find the references from there. I went into the application to get an overview to where I
might find these, and found out that it was the object Title which had the ISBN-field defined.
And I deleted the field that defined the ISBN-field there, and got some error messages, and got
a few references through that. And by doing this I managed to delete most of them. And then I
went through the application and went through all the dialogues and found the last ones. That
was the way I solved the task. I used the functionality of the program. I did not use the
documentation.

3.6.2. Time
This is the time taken, in minutes, to complete (understand, code and test) the change
tasks. It was calculated as end_time – start_time, where start_time is the time when a
participant downloaded the task description and end_time is the time when the
participant uploaded his/her solution, as recorded by the SESE tool.

These times were reconciled by the first and the last author against user action logs
produced by GRUMPS. Lunch breaks or other breaks longer than 10 minutes were
subtracted from task times. Thus, the variable time is the time that participants spent
on the change tasks, excluding major nonproductive breaks.

3.6.3. Correctness
This is the assessment of the quality of the solution, which was marked on the basis of
completeness. A solution was marked ‘correct’ if it worked and delivered all

16

functionality described in the given specification. Otherwise a solution was marked
‘incorrect’.

The correctness of the solutions was assessed by two independent consultants from
another research institute. They were provided with task specifications, correct
solutions and guidelines for assessment. They were not involved in the experiment or
teaching of the participants. All solutions were compiled, executed and tested
thoroughly for functionality. The source code was also inspected manually. To avoid
inconsistencies, the solutions were analysed by both consultants independently and
differences were resolved through discussion. The consultants also provided a
detailed list of errors for each participant. A web-based tool (Arisholm and Sjøberg,
2004) was used to grade the solutions. This took about 80 working hours.

4. Results

We first analysed the raw data to see whether there were any errors due to technical
problems or misunderstandings during the experiment. It transpired that one
participant had major technical problems (with the network connection) and was not
able to follow the experimental procedure. His data was excluded from the analysis.
His background was average. This left 38 participants for the analysis.

We then identified the strategies applied by the participants as described in Section
3.6.1. Twenty-two participants applied the systematic strategy and 16 participants
applied the as-needed strategy. We have analysed the background data for the
participants to check if there were some significant differences between these two
groups. Eight of 38 participants (21%) had more knowledge than average. Among the
participants who applied the systematic strategy were four of them (18% of all the
participants who applied the systematic strategy). Among the participants who applied
the as-needed strategy were another four of them (25% of all the participants who
applied the as-needed strategy). Thirteen of 22 participants (59%) who applied the
systematic strategy and 8 of 16 participants (50%) who applied the as-needed strategy
were from the same institution. We thus believe that there were no significant
differences between these two groups.

Section 4.1 presents results on performance. Section 4.2 describes difficulties the
participants experienced while performing maintenance tasks. Section 4.3 describes
interactions between these difficulties and the strategy applied by the participants.
Section 4.4 describes the participants’ choice of strategy. Section 4.5 summarises and
discusses the results.

4.1. Correctness and solution time

Table 4 presents the descriptive statistics for Task 1, Task 2 and both tasks related to
the research question RQ1. The column Correct shows the percentage of the
participants that delivered a correct solution. The columns from Mean to Q3 present
the descriptive statistics of the solution times in minutes. The Total row shows that
74% of the participants delivered correct solutions for Task 1, 82% for Task 2 and
63% for both tasks. Furthermore, the median time that the participants spent on Task

 17

1 was 47 minutes; the median time for Task 2 was 69 minutes; the median time for
both tasks was 109 minutes. The differences between the strategies are highlighted in
Figure 1.

0

10

20

30

40

50

60

70

80

90

100

Task 1 Task 2 Task 1 and 2

%
Co

rr
ec

t s
ol

ut
io

ns

Systematic
As-needed
Total

0

20

40

60

80

100

120

Task 1 Task 2 Task 1 and 2

M
ed

ia
n

tim
e

(m
in

ut
es

)

Systematic
As-needed
Total

Fig. 1. Percentage of correct solutions and median of time participants spent to solve the tasks

18

The participants were more likely to produce correct solutions when applying the
systematic strategy (82% versus 62% for Task 1; 86% versus 75% for Task 2; 73%
versus 50% for both tasks).

Due to our definition of the systematic strategy, the participants who applied it
were expected to spend a longer time on Task 1 than those who applied the as-needed
strategy. This turned out to be correct, with users of the systematic strategy spending
a median time of 53 minutes to complete Task 1 and those of the as-needed strategy
spending a median time of 39 minutes. For the second, more complex, task the
situation was reversed. Those participants who applied the systematic strategy spent a
shorter time than did those who applied the as-needed strategy (59 versus 70
minutes). It would seem that the time participants spent on acquiring an overview of
the systems at the beginning in Task 1 paid off later in Task 2. However, all
participants spent approximately the same time to complete both tasks (112 minutes
for the systematic strategy; 107 minutes for the as-needed strategy).

Table 4
Descriptive statistics of correctness and time

 Correct Time (minutes)
 Strategy N (percent) Mean Median StD Min Max Q1 Q3
Task1 Systematic 22 82% 55 53 27 27 147 39 57
 As-needed 16 62% 46 39 27 18 129 27 62
 Total 38 74% 52 47 27 18 147 31 57
Task2 Systematic 22 86% 64 59 20 20 99 52 82
 As-needed 16 75% 83 70 33 47 179 66 93
 Total 38 82% 72 69 27 20 179 53 83
Tasks 1 and 2 Systematic 22 73% 119 112 28 76 197 104 134
 As-needed 16 50% 129 107 50 77 245 93 163
 Total 38 63% 123 109 39 76 245 96 141

Fig. 1. Percentage of correct solutions and median of time participants spent to solve the tasks

 19

We also analysed user action logs collected by GRUMPS to find the most visited
classes and to check whether there were any differences between the participants who
applied the systematic strategy and those who applied the as-needed strategy. A
solution prepared in advance by the authors was used for this comparison.

The most visited classes for each task were, in fact, those that needed to be edited
in order to complete the tasks successfully. Table 5 shows the time the participants
spent in the ten most visited classes and the time they spent in the classes that needed
to be edited. These times are given in minutes per participant. The time the
participants spent on reading the documentation, and on compiling and running the
application, is not included here. During the first task the participants that applied the
systematic strategy spent a larger proportion of their time on the classes that required
editing (44% of the mean time) than the participants that applied the as-needed
strategy (35% of the mean time). For the second task this difference was smaller: 80%
of the mean time for the systematic strategy; 77% of the mean time for the as-needed
strategy. An overview of the ten most visited classes for each task is presented in
Appendix B.

Table 5
Distribution of time spent in classes per strategies

 Task 1 Task2
Strategy Time % of mean Time % of mean
Systematic 10 most visited classes 33 60% 55 86%
 Needed editing 24 44% 51 80%
As-needed 10 most visited classes 22 48% 72 87%
 Needed editing 16 35% 64 77%

As described in Section 3.2, the participants of the experiment worked in different
conditions, namely concurrent think-aloud, immediate retrospective think-aloud,
feedback-collection method and control silent condition. To check whether the
performance of the participants is influenced by the data collection method instead of,
or in addition to, their strategy, we calculated the same descriptive statistics for each
of the groups (Appendix C).

We found no evidence of exclusive use of the as-needed strategy among four
groups. Furthermore, the participants were more likely to produce correct solutions
when applying the systematic strategy with the exception of the RTA group for Task
1 and CTA group for Task2. For both tasks the percentage of correct solutions was
higher or same for all four groups (CTA: 85% for systematic versus 0% for as-
needed; RTA: 50% for both strategies; FCM: 83% for systematic versus 66% for as-
needed; CS 66% for systematic versus 50% for as needed).

Whereas all the participants spent approximately the same time to complete both
tasks (112 minutes for systematic; 107 minutes for as-needed), there were differences
among four groups. The participants who worked in CTA condition and applied
systematic strategy spent shorter time to solve both tasks than those who applied as-
needed strategy (CTA: 108 minutes for systematic and 127 minutes for as needed).
The participants who worked in RTA condition spent the same time to solve both
tasks (127 minutes for both strategies) and the participants who worked in FCM and
CS condition spent longer time to solve both tasks when applying the systematic

20

strategy (FCM: 113 minutes for systematic; 94 minutes for as-needed; CS: 120
minutes for systematic; 108 minutes for as-needed).

Based on the above described results, we conclude that the results on distributions
of the strategies among participants and correctness indicated the same trends for all
treatments. Trends regarding time were different for different treatments and we thus
cannot draw any conclusions on time.

4.2. Difficulties in program comprehension

The participants experienced different difficulties while conducting change tasks. We
first give an overview of the difficulties identified as a result of examining the
participants’ solutions, verbal protocols and the time spent by the participants in each
class (Section 4.2.1). We then describe these difficulties in greater detail (Sections
4.2.2 and 4.2.3).

4.2.1. Overview of the difficulties
To identify the difficulties participants had, we first analysed reports made by the
consultants and made a detailed list of errors for each participant. We then extended
this list with the difficulties we found in the verbal protocols within the
comprehension and problems category (category 3.3 in Appendix A).

The difficulties were then categorised within our refinement of the model of Von
Mayrhauser and Vans (1995). Von Mayrhauser and Vans describe two types of
knowledge: (i) general knowledge, which is independent of the specific software
application that the programmers are trying to understand, and (ii) software-specific
knowledge, which represents their level of understanding of the software application.
They suggest that difficulties and errors in comprehension arise from a lack of either
general, or specific knowledge, or both. Among the difficulties caused by the lack of
general knowledge, we identified the following sub-categories: difficulties concerning
general knowledge of graphical user interface (GUI), reuse of methods, and
programming environment. Among the difficulties caused by the lack of the specific
knowledge, we identified the following three sub-categories: difficulties concerning
program logic, the given implementation of GUI, object-oriented comprehension and
programming and testing procedure. Some of the difficulties resulted in delivering
solutions with faults, whereas the others slowed the participants down but were
eventually surmounted. If a difficulty belongs to the second group, we stated it
explicitly in the description given below.

Table 6 gives an overview of the difficulties. A difficulty is presented only once

per participant per task.

 21

Table 6
Number and type of difficulties per tasks
 Task1 Task2
1 General
 1.1 General GUI knowledge
 1.1.1 Forgot to expand the window 11
 1.1.2 No experience with GUI programming 1 1
 1.2 Reuse of methods 1
 1.3 Programming environment 1
2 Specific
 2.1 Program logic 15
 2.2 GUI implementation
 2.2.1 Changing interface 7
 2.2.2 Adding or removing GUI components 1 1
 2.2.3 Removing label declarations 22
 2.3 OO comprehension and programming
 2.3.1 Overall program structure 1
 2.3.2 Impacts on classes
 2.3.2.1 Self-reported problems 3
 2.3.2.2 Attributes in the wrong class 12
 2.3.3 Impacts within classes
 2.3.3.1 Removing variables and methods 10
 2.3.3.2 Placing new attributes at the wrong place 2
 2.3.4 Inherited functionality 3 7
 2.4 Testing procedure 2 2

4.2.2. General difficulties
The participants reported problems related to the general knowledge of the graphical
user interface (category 1.1). Eleven participants reported that they forgot to expand
the window needed to allow extra fields in Task 2. They discovered this error when
they tested their solutions and they managed to overcome this difficulty. This error
might be due to their lack of experience with GUI programming. Two participants
stated explicitly they had never done any interface programming before.

One participant copied and pasted the body of a method in order to reuse it and
never subsequently conducted any changes of this method in Task 2 (category 1.2). It
is possible that the participant was not sufficiently careful, but the action may also
indicate a lack of knowledge of reuse in object-oriented programming.

One participant reported that he had problems with JBuilder, because he had no
experience with this tool (category 1.3). From his solutions we have seen that he used
this tool. However, the lack of the experience might have slowed him down.

4.2.3. Specific difficulties
A difficulty that was reported quite often (15 occurrences for Task 1) was related to
an if-then-else statement and was presented in category 2.1. This statement
implements a book search on title, author or ISBN. The participants removed either
too much or too little from this statement, and as a result, the library application did
not work properly. It might be that the participants interpreted this task as a pure text
editing task (finding all ISBN occurrences and deleting them) and did not try to

22

understand the logic of the program. However, it is also possible that the participants
felt time pressure and were not sufficiently careful.

The participants had difficulty in understanding the implementation of the
graphical user interface of the library application (category 2.2). They made different
errors when changing the interface, such as reading the wrong attribute into a textbox,
and not initialising a text field after saving it (seven occurrences in Task2; category
2.2.1). Two participants forgot to add or remove different components of the GUI,
like radio buttons and text fields (one occurrence in Task 1, one occurrence in Task 2;
category 2.2.2). The most common error related to the user interface was a failure to
remove all label declarations of ISBN in Task 1 (22 occurrences; category 2.2.3). It
was clearly stated in the task description that all references to ISBN should be
removed. However, leaving some of these ISBN declarations had no effect on the
functionality of the application. Some participants explained their decision in the
verbal protocols. This is illustrated by the following comment written on the
feedback-collection screen:

“I was wondering whether to go through all the code and remove everything that had to do with

ISBN. I have asked about this. I will only remove what is visible in the GUI, or else it will be too much
work!”

The participants had different difficulties in understanding the structure and
functionality of the library application. The majority of these difficulties were related
to the object-oriented structure of this application. One participant reported having
problems in understanding the overall structure of the library application in Task 1
(category 2.3.1). Many participants had problems finding classes affected by a change
(category 2.3.2). Three participants reported in verbal protocols that this was difficult
in Task 2 (category 2.3.2.1). Twelve participants placed attributes in the wrong class
in Task 2 (category 2.3.2.2). Identifying the effects of changes within a class was also
difficult for the participants. Ten participants failed to remove all variables and
methods affected by a change after identifying a class affected by the change in Task
1 (category 2.3.3.1). Two participants placed new attributes at the wrong place in
Task 2 (category 2.3.3.2).

Some participants had problems with inheritance of the functionality. Classes in
the library application that needed to be persistent had to inherit an abstract class
called Persistent. The subclasses of the Persistent class had to implement the methods
read() and write(), which reads/writes from/to a file. The failure to make data
persistent occurred relatively often (category 2.3.4; three occurrences for Task 1,
seven occurrences for Task 2).

The testing procedure was described in the documentation. The participants should
test their library applications by inserting new records in the library database. They
should check if these records were stored in the database by reading a text file. Some
participants had problems with finding and removing these files (category 2.4; two
occurrences in Task 1, two occurrences in Task 2). As this was described in the
documentation, this might be because they did not read it carefully. The participants
managed to overcome these difficulties.

 23

4.3. Difficulties and strategies

Table 7 gives an overview of the difficulties per strategy. An ‘S’ means that the
participants applied the systematic strategy, an ‘A’ means that the participants applied
the as-needed strategy. One should be aware that the number of participants who
applied the systematic strategy is larger than the number of participants who applied
as-needed strategy (22 participants applied systematic strategy; 16 participants
applied as-needed strategy). We thus also give a number of difficulties per participant.
The numbers of difficulties per strategy are relatively small and the results should
therefore be treated cautiously. A more detailed survey of the difficulties per strategy
is given in Appendix D.

Table 7
Number and type of difficulties per task and strategy. Number of difficulties per
participant is given in parentheses.
 Task 1 Task 2
 S

N=22
A
N=16

S
N=22

A
N=16

1 General
 1.1 General GUI knowledge 1 (0.04) 6 (0.27) 6 (0.37)
 1.2 Reuse of methods 1 (0.06)
 1.3 Programming environment 1 (0.04)
Total - General 2 (0.09) 6 (0.27) 7 (0.31)
2 Specific
 2.1 Program logic 8 (0.36) 7 (0.43)
 2.2 GUI implementation 12 (0.54) 11 (0.68) 3 (0.14) 5 (0.31)
 2.3 OO comprehension and programming 9 (0.4) 5 (0.31) 11 (0.5) 13 (0.81)
 2.4 Testing procedure 2 (0.12) 2 (0.12)
Total - Specific 29 (1.31) 25 (1.56) 14 (0.64) 20 (1.25)
Total 31 (1.4) 25 (1.56) 20 (0.9) 27 (1.68)

The total number of difficulties was slightly smaller for the systematic strategy (51
difficulties in total for systematic versus 52 for as-needed; 2.3 difficulties per
participant for systematic versus 3.25 for as-needed). As the participants that applied
the systematic strategy spent their time during Task 1 on getting an overview of the
application, we expected that they would have a smaller number of difficulties related
to the knowledge of the program structure in Task 2. The number of difficulties
related to understanding of the GUI implementation and to the understanding of the
object-oriented structure of the application was indeed slightly smaller for the
systematic strategy. GUI-implementation related difficulties occurred less frequently
for the systematic strategy than for the as-needed strategy in Task 2 (category 2.2;
three occurrences for systematic versus five occurrences for as-needed; 0.14
difficulties per participant for systematic versus 0.31 difficulties per participant for as-
needed). Difficulties related to object-oriented comprehension and programming also
occurred less frequently for the systematic strategy than for the as-needed strategy
(category 2.3; 11 occurrences for systematic versus 13 occurrences for as-needed; 0.5
difficulties per participant for systematic versus 0.81 difficulties per participant for as-
needed).

It is interesting that in Task 1, the number of difficulties related to removing
variables and methods was much larger for the participants who applied the

24

systematic strategy (Appendix D, category 2.3.3.1; eight occurrences for the
systematic strategy versus two occurrences for the as-needed strategy). We have no
explanation for this.

As explained above, the testing procedure was described in the documentation.
Only the participants who applied the as-needed strategy and who, as a result,
probably did not pay enough attention to the documentation, had difficulties with
doing this. They reported that they had problems in finding out the text files with
database records (two occurrences in Task 1, two occurrences in Task 2).

4.4. Choice of strategy

To understand the reasons for selecting a particular strategy we conducted group
interviews with the participants. They were asked to describe how they were working
and whether they worked differently from normal.

The participants who applied the systematic strategy stated that they first wanted to
get an overview of the program by reading the documentation, reading the source
code and running the program. Some of them started with reading the documentation
(UML diagrams), while others began by reading the code or running the program. The
following examples illustrate this.

“I started with the UML diagrams. Looked at them to gain an overview
of the classes and where I thought I should do changes. Then I went
into the code, and looked there.”

“I ran the application a couple of times first to see how it worked. Then
I looked at the UML diagrams to see what was what.”

“I have to admit that I didn’t use the UML diagrams. I went straight to
the code to see what I should find instead. I used them a little bit after a
while, but at first I looked at the code and understood how the system
was built with packages and stuff. Then I started the program and saw
where the functions we should use were, and then I went in where I
thought I would find them.”

The participants were aware that this strategy was time consuming. They put it in this
way:

“I spent too much time looking at the UML diagrams. I spent an
enormous amount of time trying to understand the relationships.”

“I like to work in a way where I try to understand as much as possible
before I start, so I used quite a lot of time reading the documentation. I
like to get an overview, what is the purpose of the program and things
like that. In the beginning I read the documentation line by line, but I
found out that I wouldn’t get anything done if I continued in that
manner. I looked at the UML diagrams, and I looked in the code to try
to find the things from the diagrams, to understand the structure.”

 25

The participants explained that they were used to working in that way. This is
illustrated by the following explanation:

“I am used to gaining a broad understanding of an application before I
start to work on it. That’s why I was working in this way.”

One participant explained that he read the documentation thoroughly because he
thought that the tasks would be very difficult.

Several participants who applied the as-needed strategy explained that the
functionality of JBuilder helped them to identify the code affected by a change
without using the documentation. They also said that their choice of strategy was
influenced by the properties of the given code (tidy, easy to understand, self-
explaining class names) and the properties of the first task (subtractive change). One
participant claimed that he started to change the code immediately because reading
the documentation was too time-consuming. The following examples illustrate the
participants’ explanations.

“I didn’t use the diagrams much, because you have a good overview [of
the places where ISBN occurs] to the left in the JBuilder window.”

“I thought that there would be ISBN almost everywhere. So I just used
CTRL-F, or whatever it was to find ISBN. And I just searched through.
In JBuilder I got a list of the ISBN occurrences, and I just commented
them out. I didn’t bother to look at the UML diagrams, because I
thought this was a much easier way to do it.”

“I looked at the class diagram once. I had a look at it. Then I looked at
the file names. They were self-explanatory, so because of that I thought
OK, it has to work like this. And it did.

One participant regretted his strategy choice.
“I didn’t use the documentation much, but I probably should have.
Especially on the last task.”

The majority of the participants claimed that they worked as they usually did.
However, a few participants said that they were influenced by the experimental
situation (time pressure and the experimental procedure). For instance, one participant
said:

 “I used the documentation because it was handed to me.”

4.5. Summary and discussion

The participants of the experiment applied two strategies: systematic and as-needed,
the first one being the more prominent. Twenty-two participants started by reading the
documentation, reading the source code or running the application in order to get an

26

overview of the application and their initial strategy was classified as the systematic
strategy. Sixteen participants started to conduct changes without trying to understand
the system first and their initial strategy was classified as the as-needed strategy.

To provide a more realistic environment, we handed the documentation to the
participants both electronically and on paper. Therefore, we used the user profiles
(accessed files/documents/executions and time) and verbal protocols to identify
strategies, instead of the access rates to files and functions as in (Koenemann and
Robertson, 1991; Corritore and Wiedenbeck, 2001). Hence, we compare our results
with the previous results in terms of the identified strategies instead of the access
rates. Koenemann and Robertson (1991) reported that none of professional
programmers that participated in their study followed systematic strategy when
modifying 636 LOC large Pascal program. They spent a major part of their time
searching for code segments relevant to the modification task and no time
understanding the rest of the application. We find no support for the exclusive use of
a highly localised strategy. Corritore and Wiedenbeck (2001) reported that both
procedural and object-oriented programmers employed a wide breadth of
comprehension when modifying given programs (783 LOC large C program for
procedural programmers and 822 LOC large C++ program for object-oriented
programmers). Our results accord with the results of Corritore and Wiedenbeck
(2001), even though our application was much larger and the participants had less
programming experience.

The participants in our experiment were more likely to perform better in terms of
correctness when applying the systematic strategy (73% solved both tasks correctly
for the systematic strategy, versus 50% for the as-needed strategy). Our results
regarding correctness agree with those of Littman et al. (1986b), which showed that
programmers who applied the systematic strategy were more successful in making
changes to a small (200 LOC) procedural application.

Our analysis of difficulties revealed that the participants had difficulties due to a
lack of general and specific knowledge. The major general difficulty was related to
the general knowledge of GUI (category 1.1). Specific difficulties that occurred 10 or
more times were related to the programming logic (category 2.1), identifying GUI
components affected by a change (category 2.2.3), identifying classes affected by a
change (category 2.3.2.2), identifying impacts of a change within a class (category
2.3.3.1) and using the inheritance of the functionality (category 2.3.4).

Tegarden and Sheetz (2001) reported that graduate students experienced the proper
placement of functionality during the design of classes as a one of the difficulties of
the object-oriented approach. Our results showed that the students not only found it to
be difficult, but also failed to do it correctly. Détienne (1997) observed that novices
had difficulties in using the inheritance of functionality during object-oriented design.
Our results showed that using inheritance of the functionality was difficult during
maintenance, for both additive and subtractive changes.

Littman et al. (1986b) explained the better performance of the programmers who
applied the systematic strategy by citing the ability of this strategy to detect
interactions of the code being modified with the code in other parts of the program.
Our results showed that some difficulties related to the understanding of the GUI
implementation and OO comprehension and programming occurred less frequently
when the participants applied the systematic strategy. This partly provided evidential

 27

support for the claim of (Littman et al., 1986b). Nevertheless, these results should be
treated cautiously, due to the small number of difficulties per type.

Previous studies in the procedural paradigm showed that the acquisition of strategy
skills may play a significant role in the development of expertise (Davies, 1993). The
participants in our experiment (advanced beginners) explained their choice of strategy
by their preferences, the functionality of JBuilder, the properties of the given
application and tasks. It seemed that some of them had the necessary tactical skills
and were able to choose the strategy that is appropriate for the given application, tasks
and tool.

5. Validity

This section discusses the most important threats to the validity of this study and what
we have done to reduce them.

5.1. Measuring breadth of the comprehension

In order to make the experimental environments as close to everyday working
practice as possible, we did not impose any restrictions regarding the use of
documentation and other remedies. The documentation was given to the participants
both electronically and on paper. The participants were also allowed to use books and
the internet for help. However, we were thus not able to record exactly which
documents they used and how much time they spent reading them. For example, if a
longer period without activity was identified in log files, we assumed that the
participants were reading the documentation on paper, but they might have been
doing something else. To reduce this threat to validity, the data from log files was
verified against the verbal reports. As some participants might be less talkative, or
have forgotten to report usage of the paper documentation, we also used observers’
notes.

5.2. Measuring time

The time measured as a difference between end_time and start_time might be affected
by different breaks and disruptions during the experiment. To reduce this threat to
validity, we reconciled the times recorded by the SESE tool against user action logs
produced by GRUMPS and subtracted major nonproductive breaks from the task
times. Reasons for breaks have been identified from the verbal protocols and observer
notes.

5.3. Measuring correctness

The solutions were marked ‘correct’ if they worked and delivered all functionality
described the given specification. Otherwise they were marked ‘incorrect’. To ensure

28

the quality of the marking it was done by two independent consultants independently.
The consultants were provided with all necessary experimental material and
guidelines. All solutions were tested thoroughly for functionality and the source code
was also inspected manually. The consultants compared their scores and resolved the
differences through discussion. This, we believe, ensures the correctness of this
measure.

5.4. Data collection methods

Due to the first goal of our experiment (evaluating usefulness of the feedback-
collection method) the participants worked in four different conditions concurrent
think-aloud, retrospective think-aloud, feedback-collection and control silent. Data
collection methods could affect their choice of comprehension strategy.

The participants in our study were not aware that the study focuses, among other
issues, on comprehension strategies. The participants were presented the tasks, the
documentation and the application code in the same time. They could choose
themselves whether or not they wanted to familiarise themselves with the program
before proceeding with the performing the task. The majority of the participants said
in the interviews that they worked as they are used to do, so we believe that the data
collection method had no influence on the participants’ choice of the strategy.

Data collection methods might also affect the performance of the participants. To
reduce this threat to validity, we analysed the data on performance for each of the
groups. The results indicated similar trends regarding correctness, but different trends
regarding time. The next studies should eliminate this threat by using the same data
collection methods for all of the participants.

5.5. Identifying difficulties

The data on difficulties experienced by the participants are partly qualitative and
subjective. A detailed list of errors for each participant made by two independent
consultants (difficulties that the participants did not overcome) was combined with
the difficulties identified in the verbal protocols (both the difficulties that the
participants did and did not overcome). These verbal protocols were coded by two
independent coders to ensure correctness. However, one should be aware that there
might be differences among participants. Some might be less talkative, or have
forgotten to report their difficulties. Hence, some of the difficulties the participants
had during the experiment that they managed to overcome might be missing from our
list. To reduce this threat to validity, we also checked the time spent by the
participants in each class. No new difficulties were identified.

5.6. Application and tasks

The library application we used consists of four packages, 26 classes with 3600 LOC
in total. The size of the classes varied from 24 to 311 LOC with an average of 166

 29

LOC and median of 189 LOC. According to the classification given by Von
Mayrhauser and Vans (1995), the application can be considered to be a medium-size
application. It is possible that comprehension strategies, their effects on participants’
performance, and the difficulties of the participants would be different for larger
application systems and for more complex tasks. It is also possible that the results
would be different if the experiment had lasted longer, i.e. if the participants had been
given more time to become familiar with the application. Our results are, therefore,
limited to situations in which developers had to comprehend and maintain a medium-
size system, previously unknown to them and developed by others.

5.7. Participants

All the participants in this experiment were third or fourth year students in computer
science and can be considered as novices according to the classification of Von
Mayrhauser and Vans (1995), or as advanced beginners according to the classification
of Dreyfus and Dreyfus (1986). We might expect similar results for programmers
with a similar background. However, the results should be treated with caution, due to
the relatively small sample size of this study; 38 participants completed the main
experiment successfully. The participants’ performance might vary not only because
their strategy choice, but also because of personal differences. To address this
problem, we analysed background data on the participants to check whether there
were significant differences in programming skills among the groups of participants
that chose different strategies to comprehend the library application. No significant
differences were found. This, we believe, reduced this threat to validity.

6. Conclusions and future work

This paper provides empirical evidence regarding the comprehension strategies used
by programmers while conducting maintenance tasks on an object-oriented
application, and the difficulties they had. Our results showed that advanced beginners
applied both the systematic and as-needed strategy while comprehending a medium-
size Java application. The participants who applied the systematic strategy were more
successful in producing correct solutions. The results revealed the difficulties the
participants had due to a lack of knowledge that is independent of the specific
application (general knowledge) and a lack of knowledge of the specific application
(specific knowledge). The major specific difficulties were related to the
comprehension of the application structure and to the inheritance of the functionality.

Two major difficulties (with more than 30 occurrences) were related to the
understanding of GUI implementation and OO comprehension and programming. Our
results indicated that these two groups of difficulties occurred less frequently in Task
2 when the participants applied the systematic strategy. The results of the interviews
showed that the participants’ choice of comprehension strategy was partly influenced
by the functionality of the development tool and the properties of the given
application and tasks.

30

Based on our results, we recommend that the programmers receive training in the
advantages and disadvantages of different comprehension strategies for different
maintenance tasks and applications. Furthermore, more attention should be paid in
training to the areas in which the participants failed to apply their declarative
knowledge of object-oriented concepts, such as inheritance of functionality.

Our goal was to ensure realism by using a professional development tool,
providing participants with both on-line and paper documentation, and by allowing
the participants to choose whether on not they wanted to familiarize themselves with
the program before proceeding with the maintenance tasks. Nevertheless, there are
several threats to the validity of our results, which threats we intend to address. We
are going to replicate the experiment with different categories of professional
developer. Further experiments also need to focus on larger applications and a variety
of maintenance tasks.

The results regarding general and specific difficulties and their interactions with
strategy choice are interesting in several ways. There are indications that the
acquisition of application-specific knowledge can be improved by choosing the
systematic strategy. However, it is unclear why this effect was not identified for all
difficulties related to comprehension of the program structure. Furthermore, it is
surprising that a relatively large number of difficulties arose due to relying on the
development tool and avoiding comprehension of the program logic. We intend to
further explore interactions among strategic, programming and tool knowledge, and
the effects of these interactions on program comprehension.

Acknowledgements

This research was supported by the Comprehensive Object Oriented Learning project
(COOL). Richard Thomas acknowledges support from the Simula Research
Laboratory Guest Researcher programme and Amela Karahasanović acknowledges
support from the University of Western Australia Gledden Visiting Senior
Fellowship.

The authors are grateful to Unni Nyhamar Hinkel, Ray Welland and Chris Wright
for valuable contributions to this paper. We thank Gunnar Carelius for his technical
assistance; Per Thomas Jahr and Bent Østebø Johansen from the Norwegian
Computing Centre for assessing the quality of the solutions; Kirsten Ribu for her
contribution to the organisation and conducting of the experiment. We are grateful to
Jo Hannay, Vigdis Kampenes By and Nils-Kristian Liborg for testing the
experimental material and to Thorbjørn Hermansen for providing a Java program for
data analysis. We acknowledge Phil Gray and Iain McLeod from the University of
Glasgow for adapting the GRUMPS software to our needs. We thank the members of
the COOL project Annita Fjuk, Arne-Kristian Groven, Christian Holmboe, Jens
Kaasbøll, Anders Mørch and Terje Samuelsen for their contributions to the
conducting of the experiment. We thank the students of Oslo University College and
the University of Oslo for their participation in this experiment and Naci Akkøk,
Kjetil Grønning and Eva Vihovde for motivating the students to participate.

 31

References

Arisholm, E. and Sjøberg, D. 2004. Evaluating the Effect of a Delegated versus Centralized
Control Style on the Maintainability of Object-Oriented Software. IEEE Transactions on
Software Engineering, 30(8), 521–534.

Arisholm, E., Sjøberg, D.I.K., Carelius, G. and Lindsjørn, Y. 2002. A Web-based Support
Environment for Software Engineering Experiments. Nordic Journal of Computing, 9, No.
4, 231–247.

Arisholm, E., Sjøberg, D.I.K. and Jørgensen, M. 2001. Assessing the Changeability of two
Object-Oriented Design Alternatives – a Controlled Experiment. Empirical Software
Engineering, 6, No. 3, 231–277.

Briand, L.C., Bunse, C., Daly, J.W. and Differding, C. 1997. An experimental comparison of
the maintenability of object-oriented and structured design documents. Empirical Software
Engineering, 2, 291–312.

Brooks, R.E. 1983. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 543–554.

Burkhardt, J.-M., Détienne, F. and Wiedenbeck, S. 1998. The Effect of Object-Oriented
Programming Expertise in Several Dimensions of Comprehension Strategies. 6th
International Workshop on Program Comprehension (IWPC'98), 82–89.

Burkhardt, J.M., Detienee, F. and Wiedenbeck, S. 2002. Object-Oriented Program
Comprehension: Effect of Expertise, Task and Phase. Empirical Software Engineering, 7,
115–156.

Chi, M.T. 1997. Quantifying Qualitative Analyses of Verbal Data: a Practical Guide. The
Journal of the Learning Sciences, 6(3), 271–315.

Coleman, D., Ash, D., Lowther, B. and Oman, P. 1994. Using Metrics to Evaluate Software
System Maintainability. IEEE Computer, August 1994, 44–49.

Corritore, C.L. and Wiedenbeck, S. 1999. Mental representations of expert procedural and
object-oriented programmers in a software maintenance task. Int. J. Human-Computer
Studies, 61–83.

Corritore, C.L. and Wiedenbeck, S. 2000. Direction and scope of comprehension-related
activities by procedural and object-oriented programmers: An empirical study. 8th
International Workshop on Program Comprehension,

Corritore, C.L. and Wiedenbeck, S. 2001. An exploratory study of program comprehension
strategies of procedural and object-oriented programmers. Int. J. Human-Computer Studies,
54, 1–23.

Dale, N. 2005a. SIGCSE members survey.
http://www.cs.utexas.edu/users/ndale/ContentResults.html, accessed September 2006.

Dale, N. 2005b. Non SIGCSE members survey.
http://www.cs.utexas.edu/users/ndale/ContentResults2.html, accessed September 2006.

Daly, J., Brooks, A., Miller, J., Roper, M. and Wood, M. 1996. Evaluating inheritance depth on
the maintenability of object-oriented software. Empirical Software Engineering, 1, 31–48.

Davies, S.P. 1993. Int. J. Man-Machine Studies. 39, 237–267.
De Lucia, A., Fasolino, A.R. and Munro, M. 1996. Understanding Function Behaviours through

Program Slicing. 4th Workshop on Program Comprehension (IWPC'96), 9–18.
Détienne, F. 1997. Assessing the cognitive consequences of the object-oriented approach: A

survey of empirical research on object-oriented design by individuals and teams. Interacting
with Computers, 9, 47–72.

Détienne, F. 2002. Software Design - Cognitive Aspects. London: Springer.
Dreyfus, H.L. and Dreyfus, S.E. 1986. Mind over Machine. New York: The Free Press.
Dunsmore, A., Roper, M. and Wood, M. 2000. The role of comprehension in software

inspection. Journal of Systems and Software, 52, 121–129.

32

Ericsson, K.A. and Simon, H.A. 1993. Protocol Analysis: Verbal Reports as Data. Cambridge,
Massachusetts: A Bradford Book, MIT Press.

Eriksson, H.E. and Penker, M. (1998). “Case Study”. In: UML Toolkit. (editors), New York,
John Wiley & Sons, Inc.,

Henry, S. and Humphrey, M. 1993. Object-oriented vs. procedural programming languages:
effectiveness in program maintenance. Journal of Object-Oriented Programming, 6(3), 41 –
49.

Holgeid, K.K., Krogstie, J. and Sjøberg, D.I.K. 2000. A Study of Development and
Maintenance in Norway: Assessing the Efficiency of Information Systems Support Using
Functional Maintenance. Information and Software Technology, 42, No. 10, 687–700.

Hughes, J. and Parkes, S. 2003. Trends in the use of verbal protocol analysis in software
engineering research. Behaviour & Information Technology, 22(2), 127–140.

Johnson, R. and Foote, B. 1988. Designing reusable classes. Journal of Object-Oriented
Programming, 1–2, 22–35.

Karahasanovic, A., Anda, B., Arisholm, E., Hove, S.E., Jørgensen, M., Sjøberg, D.I.K. and
Welland, R. 2005. Collecting Feedback during Software Engineering Experiments.
Empirical Software Engineering, 10, No. 2, 113–147.

Karahasanovic, A., Hinkel, U.N., Sjøberg, D.I.K. and Thomas, R. 2004. Feedback Collection
versus Think-Aloud in Software Engineering Research: A Controlled Experiment. submitted
to Behaviour & IT, available as Technical Report 2004-8, Simula Research Laboratory,

Khazaei, B. and Jackson, M. 2002. Is there any difference in novice comprehension of a small
program written in the event-driven and object-oriented styles? IEEE 2002 Symposia on
Human Centric Computing Languages and Environments, 19–26.

Ko, A.J. and Uttl, B. 2003. Individual differences in program comprehension strategies in
unfamiliar programming systems. 11th IEEE International Workshop on Program
Comprehension, 175–184.

Koenemann, J. and Robertson, S.P. 1991. Expert problem solving strategies for program
comprehension. SIGCHI conference on Human factors in computing systems: Reaching
through technology, New Orleans, Louisiana, ACM Press New York, NY, USA, 125–130.

Lehman, M. and Belady, L.A. 1985. Program Evolution – Processes of Software Change.
Academic Press, London.

Lientz, B.P. 1983. Issues in Software Maintenance. Computing Surveys, 15 (3), 271–278.
Littman, D.C., Pinto, J., Letovski, S. and Soloway, E. 1986a. Mental models and software

maintenance. First Workshop on Empirical Studies of Programmers, Norwood, NJ, Ablex,
80–98.

Littman, D.C., Pinto, J., Letovski, S. and Soloway, E. (1986b). “Mental models and software
maintenance”. In: Empirical Studies of Programmers. Soloway, E. and Iyengar, S. (editors),
Norwood, NJ, Ablex, 80–98.

Mayer, B. 1988. Object-Oriented Software Construction. Englewood Cliffs, NJ: Prentice-Hall.
Mosemann, R. and Wiedenbeck, S. 2001. Navigation and Comprehension of Programs by

Novice Programmers. IEEE 9th Int. Workshop on Program Comprehension (IWPC 2001),
79–88.

Nosek, J.T. and Prashant, P. 1990. Software Maintenance Management: Change in the Last
Decade. Journal of Software Maintenance Research and Practice, 2, No. 3, 157–174.

O’Brien, M.P. and Buckley, J. 2001. Inference-based and Expectation-based Processing in
Program Comprehension. 9th International Workshop on Program Comprehension, 2001.
IWPC 2001, 71–78.

Parkin, P. 2004. An exploratory study of code and document interaction during task-directed
program comprehension. Australian Software Engineering Conference, 221–231.

Pennington, N. 1987a. Comprehension strategies in programming. Empirical studies of
programmers, Second Workshop, Ablex Publishing Corporation, 100–113.

 33

Pennington, N. 1987b. Stimulus structures and mental representations in experts
comprehension of computer programs. Cognitive Psychology, 19, 295–341.

Pfleeger, S.L. 1987. Software Engineering – The Production of Quality Software. Macmillan.
Rosson, M.B. and Alpert, S.R. 1990. The cognitive consequences of object-oriented design.

Human-Computer Interaction, 5, 345–379.
Sheetz, S.D. 2002. Identifying the difficulties of object-oriented development. The Journal of

Systems and Software, 64, 23–36.
Shneiderman, B. and Mayer, R. 1979. Syntactic/semantic interactions in program behaviour: A

model and experimental results. International Journal of Computer and Information
Sciences, 8, No. 3, 219–238.

Soloway, E., Adelson, B. and Ehrlich, B. (1988). “Knowledge and Processes in the
Comprehension of Computer Programs”. In: The Nature of Expertise. Chi, M. et al.
(editors), 129–152.

Storey, M.A. 2005. Theories, Models and Tools in Program Comprehension: Past, Present and
Future. 13th International Workshop on Program Comprehension, 181–191.

Storey, M.A., Fracchia, F.D. and Muller, H.A. 1999. Cognitive design elements to support the
construction of a mental model during software exploration. Journal of Systems and
Software, 44, 171–185.

Tegarden, D.P. and Sheetz, S.D. 2001. Cognitive activities in OO development. Int. J. Human-
Computer Studies, 54, 779–798.

Thomas, R., Kennedy, G., Draper, S., Mancy, R., Crease, M., Evans, H. and Gray, P. 2003.
Generic Usage Monitoring of Programming Students. ASCILITE 2003 Conference,
University of Adelaide, Australia, Adelaide, Australia, ASCILITE, 715–719.

Torchiano, M. 2004. Empirical investigation of a non-intrusive approach to study
comprehension cognitive models. Eighth European Conference on Software Maintenance
and Reengineering, 184-192.

Upchurch, R. 2002. Code reading and program comprehension: annotated bibliography.
http://www2.umassd.edu/SWPI/ProcessBibliography/bib-coderading2.html, accessed
September 2006.

Van Someren, M.W., Barnard, Y.F. and Sandberg, J.A.C. 1994. The thinking aloud method: A
practical guide to model cognitive processes. London: Academic Press.

Von Mayerhauser, A. and Vans, A.M. 1993. From Code Understanding Needs to Reverse
Engineering Tool Capabilities. Sixth Int. Workshop on Computer-Aided Software
Engineering CASE'93, Singapore, 230–239.

Von Mayerhauser, A. and Vans, A.M. 1995. Industrial Experience with an Integrated
Comprehension Model. Software Engineering Journal, 171–182.

Von Mayrhauser, A. and Vans, A.M. 1995. Program Comprehension During Software
Maintenance and Evolution. Computer, 28(8), 44–55.

Von Mayrhauser, A. and Vans, A.M. 1996. Identification of dynamic comprehension processes
during large scale maintenance. IEEE Transactions on Software Engineering, 22 No. 6,
424–437.

Von Mayrhauser, A. and Vans, A.M. 1997. Hypothesis-driven understanding processes during
corrective maintenance of large scale software. Int. Conf. on Software Maintenance, 12–20.

Wiedenbeck, S. and Ramalingam, V. 1999. Novice Comprehension of small programs written
in the procedural and object-oriented styles. Int. J. Human-Computer Studies, 51, 71–87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. and Corritore, C.L. 1999. A comparison of
the comprehension of object-oriented and procedural programs by novice programmers.
Interacting with Computers, 11, 255–282.

Zelkowitz, M.V. 1978. Perspectives on Software Engineering. ACM Computing Surveys, 10,
No. 2, 197–216.

34

Appendix A

Table A.1. Coding schema. In practice, one segment may belong to more than one
category. More details on the coding schema can be found in (Karahasanovic et al.,
2005).

 Code Example
1 Experimental context
1.1 Breaks and disruptions “Coffee break.”
1.2 Background knowledge “I have never used JBuilder before.”
1.3 Experimental material “Should I delete the ISBN field or

write it as a comment?”
1.4 Supporting tools “Problems with SESE.”
1.5 Physical environment “I don’t have enough space to work.”
2 Participants’ perceptions
2.1 Stress “I am tired and have problems to

concentrate.”
2.2 External disturbance “I am being disturbed by my

neighbour.”
2.3 General reflections “Everything fine.”
3 Experimental conduct
3.1
3.1.1
3.1.2
3.1.3

 Task-performing actions
 Actions on code (read, edit, search,
 compile)
 Reading the documentation

 Running the library application

“I removed all ISBN fields from the
Business Objects classes.”
“I have started by reading the UML
diagrams.”
“I’ll run the library application to test
my changes.”

3.2 Planning, strategy and reflection “If I had more time I would rewrite
the class BorrowerInformation to be
more general.”

3.3 Comprehension and problems “I have problems seeing the big
picture.”

 35

Appendix B

Table B.1. Time the participants spent in a class. The time is given in minutes per
participant. The classes that had to be altered in order to complete the task are marked
by a ‘٧’ sign in front of the class name.

Task Needed editing Class name Time
1 ٧ Title.java 5.0
 ٧ FindTitleDialog.java 4.9
 ٧ TitleInfoWindow.java 4.2
 ٧ TitleFrame.java 3.6
 ٧ UpdateTitleFrame.java 2.8
 StartClass.java 2.2
 Persistent.java 1.3
 ObjId.java 1.1
 LendItemFrame.java 1.1
 BrowseWindow.java 1.0
2 ٧ BorrowerFrame.java 18.7
 ٧ BorrowerInformation.java 12.2
 ٧ UpdateBorrowerFrame.java 11.8
 ٧ BorrowerInfoWindow.java 8.2
 ٧ FindBorrowerDialog.java 5.4
 MainWindow.java 1.7
 Persistent.java 1.3
 Loan.java 0.9
 StartClass.java 0.7
 ObjId.java 0.5

36

Appendix C

Table C.1. Descriptive statistics of correctness and time per treatments. The analysis
of the effects of data collection methods on correctness and solution time, and
discussion of its practical importance are given in Karahasanovic et al. (2004).

 Correct Time (minutes)
 Strategy N (percent) Mean Median StD Min Max
CTA Task1 Systematic 7 85 67.1 56 37 40 147
 As-needed 2 0 53 53 18.4 40 66
 Total 9 67 64 56 33 40 147
 Task2 Systematic 7 100 59.7 54 18.9 35 87
 As-needed 2 50 124.5 124.5 77.1 70 179
 Total 9 89 74 56 43 35 179
 both Systematic 7 85 117.9 108 40 77 197
 As-needed 2 0 127.5 127.5 24.7 110 145
 Total 9 67 138 111 51 95 245
RTA Task1 Systematic 6 50 48.1 45.5 21.9 26 81
 As-needed 4 75 47.7 46 14.5 32 67
 Total 10 60 48 46 18 27 81
 Task2 Systematic 6 83 88 92 27.1 50 118
 As-needed 4 75 78.7 76 13 66 97
 Total 10 80 80 79 23 47 125
 both Systematic 6 50 138.5 127 41.7 88 194
 As-needed 4 50 126.5 127 20.8 107 145
 Total 10 50 132 127 31 88 182
FCM Task1 Systematic 6 100 55.7 54 24 29 100
 As-needed 6 66 42.7 28 42.5 18 129
 Total 12 83 49 35 24 18 129
 Task2 Systematic 6 83 54.5 52.5 22.9 20 90
 As-needed 6 83 67 68 11.1 48 83
 Total 12 83 62 66 19 20 90
 both Systematic 6 83 110.1 113 23.3 76 143
 As-needed 6 66 112 94 56.3 77 226
 Total 12 75 110 96 38 76 212
CS Task1 Systematic 3 100 51.7 52 4.5 47 56
 As-needed 4 75 39.5 38.5 12.7 25 56
 Total 7 86 45 47 12 25 56
 Task2 Systematic 3 66 68.3 73 10.8 56 76
 As-needed 4 75 80.5 73 22.3 63 113
 Total 7 71 75 71 18 56 113
 both Systematic 3 66 120 120 12 108 132
 As-needed 4 50 123.5 108 40.4 95 183
 Total 7 63 120 114 25 95 169

 37

Appendix D

Table D.1.
Number and type of difficulties per tasks and strategies. Number of difficulties per
participant is given in parentheses.
 Task 1 Task 2
 S

N=22
A
N=16

S
N=22

A
N=16

1 General
 1.1 General GUI knowledge
 1.1.1 Forgot to expand the window 5 (0.22) 6 (0.37)
 1.1.2 No experience with GUI programming 1 (0.04) 1 (0.04)
 1.2 Reuse of methods 1 (0.06)
 1.3 Programming environment 1 (0.04)
2 Specific
 2.1 Program logic 8 (0.36) 7 (0.43)
 2.2 GUI implementation
 2.2.1 Changing interface 3 (0.14) 4 (0.25)
 2.2.2 Adding or removing GUI components 1 (0.06) 1 (0.06)
 2.2.3 Removing label declarations 12 (0.54) 10 (0.62)
 2.3 OO comprehension and programming
 2.3.1 Overall program structure 1 (0.06)
 2.3.2 Impacts on classes
 2.3.2.1 Self-reported problems 1 (0.04) 2 (0.12)
 2.3.2.2 Attributes in the wrong class 7 (0.31) 5 (0.31)
 2.3.3 Impacts within class
 2.3.3.1 Removing variables and methods 8 0.36) 2 (0.12)
 2.3.3.2 Placing new attributes at the wrong place 2 (0.12)
 2.3.4 Inherited functionality 1 (0.04) 2 (0.12) 3 (0.14) 4 (0.25)
 2.4 Testing procedure 2 (0.12) 2 (0.12)
 Total 31 (1.4) 25 (1.56) 20 (0.9) 27 (1.68)

