

Difficulties experienced by students in maintaining object-oriented
systems: an empirical study

Amela Karahasanović
Simula Research Laboratory

P.O. Box 134, NO-1325 Lysaker, Norway
amela@simula.no

Richard C. Thomas
Computer Science & Software Engineering,
M002, The University of Western Australia,
Crawley, Western Australia 6009, Australia

richard@csse.uwa.edu.au

Abstract

It is widely accepted that software maintenance absorbs a
significant amount of the effort expended in software
development. Proper training of both university students
and professional developers is required in order to
improve software maintenance. Understanding cognitive
difficulties the students have while maintaining object-
oriented systems is a prerequisite for improving their
university education and preparing them for jobs in
industry. The goal of the experiment reported in this paper
is to explore the difficulties of students who maintain an
unfamiliar object-oriented system. The subjects were 34
students in their third year of study in computer science.
They used a professional Java tool to perform several
maintenance tasks on a medium-size Java application
system in a seven-hour long experiment. The major
difficulties were related to understanding program logic,
algorithms, finding change impacts, and inheritance of the
functionality. Based on these results we suggest teaching
the basics of impact analysis and introducing examples of
modifying larger object-oriented programs in courses on
object-oriented programming.

1 Introduction
Software maintenance has been widely recognised as a
dominating cost factor in most software organisations.
Although the reported figures differ, most researchers on
software maintenance agree that more than 50% of
programming effort is constituted by changes made to the
system after the implementation (Coleman et al., 1994;
Holgeid et al., 2000; Lehman and Belady, 1985; Lientz,
1983; Nosek and Prashant, 1990; Pfleeger, 1987;
Zelkowitz, 1978).

Whereas difficulties the students have during the design
of object-oriented systems are relatively well understood,
rather less attention has been paid to their difficulties
during maintenance. The study reported in this paper
explores difficulties of programmers when conducting
maintenance tasks.

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the 9th Australasian Computing Education
Conference (ACE2007), Ballarat, Victoria, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 66. S. Mann, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

The program used in this study was a 3600 lines of code
(LOC) large library application system written in Java
and can be considered to be a medium-size application
according to the classification given by von Mayrhauser
and Vans (1995). The participants were 34 students in
their third year of study in computer science at the
University of Western Australia (UWA). The experiment
lasted seven hours and the participants conducted three
maintenance tasks on the given application system, using
JBuilder. The participants were provided with
documentation that describes the application system and
the JBuilder documentation. They had access to the Java
online documentation.

1.1 Background
In spite of their complexity, maintenance tasks are often
given to beginners and less experienced developers
(Gunderman, 1988). To improve maintenance proper
training of both university students and professional
developers is required (Kajko-Mattsson et al., 2002).
Furthermore, it requires the provision of meaningful
feedback to maintainers (Jørgensen and Sjøberg, 2002).

Object-oriented programming has become a de facto
standard and therefore we need to understand the
problems of maintaining such systems. Object-oriented
programming is increasingly being taught in computer
science courses. A survey conducted by Dale (2005a;
2005b) shows that 65% of the participating educational
institutions teach object-oriented programming as a part
of introductory courses in computer science education.
Some of these students are going to have to maintain
object-oriented systems when they start work.

It is therefore important to understand the cognitive
difficulties the students have while maintaining object-
oriented systems. It is a prerequisite for improving their
university education and preparing them to enter the
maintenance workforce.

Several studies have been conducted on the cognitive
consequences of the object-oriented approach in the
context of software design (Détienne, 1997). In her
survey of empirical research on object-oriented design,
Détienne (1997) gives a comprehensive list of difficulties
experienced by individuals (novices and experts) and
teams during the design of object-oriented systems.
Novice designers have been found to have problems with
class creation and with articulating the declarative and
procedural aspects of the solution. They also had

misconceptions about some fundamental object-oriented
concepts.

In a previous study Karahasanovic et al. (2006), explored
the strategies and difficulties of programmers when
conducting maintenance tasks. The participants were 38
students in their third or fourth year of study in computer
science at either the University of Oslo or Oslo
University College, and can be considered as advanced
beginners according to the classification of Dreyfus and
Dreyfus (1986). They conducted three maintenance tasks
on a Java library application system, using JBuilder. The
results showed that two major groups of difficulties were
the comprehension of the application structure
(identifying GUI components affected by a change,
identifying classes affected by a change, identifying
impacts of a change within a class) and using the
inheritance of functionality. Furthermore the subjects had
difficulties with the GUI, understanding and using a
given Java API class, and algorithms.

The ability to generalize these results to the target
population of advanced beginners, i.e., external validity
of this study can be questioned. It is recommended that a
way to identify potentially important factors that affect
the process under investigation is to replicate the study
with variations in the context variables (Basili et al.,
1999). Thus, our earlier findings need to be tested
through replications with subjects from a slightly
different educational background.

The present investigation is a replication of the study
conducted with students in Norway by Karahasanovic et
al. (2006) with a major difference that the subjects were
from a university in another country and had a slightly
different syllabus. It aims to identify the difficulties that
students have while conducting maintenance tasks on a
medium-size object-oriented application.

The remainder of this paper is organised as follows.
Section 2 describes the methodology. Section 3 presents
the results. Section 4 discusses the limitations of this
research. Section 5 concludes and suggests avenues for
further work.

2 Research Method
The main goals of the experiment were:

 To identify students’ difficulties in conducting
changes on a medium-size object-oriented
application,

 To conduct an analysis of students’
comprehension strategies on a medium-size
object-oriented application, and

 To replicate and extend the earlier investigation
by Thomas et al. (2005) into keystroke latency
metrics as an indicator of programming
performance.

This paper reports results regarding the first goal. The
results regarding other goals are outside the scope of this
paper.

The experimental material from the original experiment
conducted by Karahasanovic et al. (2006) was translated
from the Norwegian by the authors. This experiment had
two treatments (Feedback Collection and Control Silent),
whereas the original experiment had two more treatments
(Concurrent Think-Aloud and Retrospective Think-
Aloud) as it aimed to evaluate different think-aloud
methods. A short copy typing test was introduced in this
experiment to be used in the keystroke latency
investigation. Otherwise, the experimental design and the
material were the same in both experiments.

2.1 Experimental Design and Participants
A randomised design was employed: participants were
randomly assigned into one of two treatment groups.
There were 34 participants, half in each group.

All the participants were students at UWA. They were
mainly in their third year of study in the School of
Computer Science & Software Engineering and were
asked to volunteer via an email sent to everyone taking a
third or fourth level unit. The normal minimum
attainment was to have passed two second level units:
Data Structures and Algorithms and Object Oriented
Programming. They will also have passed Java
Programming from level one. About half the participants
were on double degrees, such as Bachelor of Computer
Science and Bachelor of Engineering; these have high cut
off grades for entry. The remainder were taking single
degrees, such as Bachelor of Computer Science.
Everyone was male, aged 19-47, mean 22.

The protocols reported in this paper were approved by the
university’s Human Research Ethics Committee prior to
the commencement of the recruitment of participants.

2.2 Treatment
The two treatments were Feedback Collection (FC) and
Control Silent (CS). In Feedback Collection the
participants were asked every 15 minutes “What are you
thinking now?” This was delivered through the feedback
collection screen that appeared for two minutes during the
change tasks (Karahasanovic et al., 2005). Participants
could write whatever they wanted in that period and if
they did not close the window it would automatically
disappear after two minutes. In Control Silent, the tasks
were the same but there was no feedback collection.

2.3 Procedure

Sessions were organised for 7 separate days, each testing
2-7 students, and held in the computer science
laboratories. Sessions would start at 09:15 with an
information meeting; continue through to lunch, provided
around 12:30-13:00, and finish about 16:15. Participants
were paid an honorarium of A$100. Two observers were
present in the laboratory during the experiments to
answer questions and to provide help if any technical
problems arose.

The first task was a short copy typing test, followed by a
background questionnaire administered over the web
using the Simula Experiment Support Environment
(SESE) (Arisholm et al., 2002). Next, everyone solved a
simple training task and then a calibration task. Following
this, those in the FC group were trained on providing
written feedback, while CS members started on the
change tasks. Everyone attempted three change tasks and
then an exit questionnaire. Lastly there were group
interviews.

2.4 Tasks

The subjects were asked to conduct a small training task
and a pre-test task. The purpose of the training task was
to make subjects familiar with SESE and the
experimental situation. The participants downloaded the
task, created a Java program to write a string in reverse
order and uploaded their solutions. The pre-task was to
extend the functionality of a bank teller machine
program. This application was a small Java program
consisting of seven Java classes and about 400 LOC. The
task was to extend the program to provide a printout of all
successfully performed transactions (deposits and
withdrawals) for a given bank account. The purpose of
the pre-test task was to provide a basis for comparing the
programming skill level of the subjects. These tasks were
taken from (Arisholm et al., 2001).

The tasks of the experiment were to modify a library
application system given in Eriksson and Penker, (1998).
A library lends books and magazines. The books and the
magazines are registered in the system. A library handles
the purchase of new titles for the library. Popular titles
are bought in multiple copies. Old books and magazines
are removed when they are out of date or in a poor
condition. The librarians can easily create, update, delete
and browse information about the titles in the system. The
borrowers can browse information about the titles. They
can reserve a title if it is not available. The application
consists of four packages with a total of 3600 LOC in 26
Java classes. This application system was used because
we assumed that the application domain is very familiar
to students. The subjects were asked to conduct the
following changes on the library application system:

Task1 Delete functionality related to ISBN number

Task2 Extend the system to handle customer e-mail
address

Task3 Introduce the functionality to inform a person
when a loan is due

The tasks were ordered by complexity. The subjects were
provided with documentation describing the library
application system in addition to the normal JBuilder
documentation. They also had access to the Java online
documentation. We emphasized that subjects should give
higher priority to the quality of solutions rather than to
shorter development time.

2.5 Data Collection and Supporting Tools

A Web-based tool, the Simula Experiment Support
Environment (SESE) (Arisholm et al., 2002) was used for
logistics support. The subjects used this tool to answer the
background questionnaire, to download the documents
and code, to upload their solutions and to provide
feedback (FCM group only). The tool recorded start-time
and end-time for each task. The typing test was
distributed by the observers. Keystrokes, mouse-clicks
and window focus events were logged with timestamps in
milliseconds by the GRUMPS-Lite software (Thomas et
al., 2003). The programming environment was Borland
JBuilder, chosen as it was used in prior experiments at
Simula. The pretest questionnaire confirmed that most
students had little or no prior experience with JBuilder.
Observers made notes during the experiment.

2.6 Data Preparation and Analysis

Cognitive difficulties the participants had while solving
the given tasks were identified from the collected
feedback and from their solutions.

2.6.1 Collected Feedback

Information collected by the feedback-collection tool was
first categorised in four broad categories: experimental
context, subjects’ perception, experimental conduct and
interaction. The feedback-collection data was then
analysed and the information about the comprehension
problems and background knowledge was used to make a
list of difficulties for each participant. The coding took
about 16 working hours.

2.6.2 Participants’ Solutions

The assessment of the participants’ solutions (correctness
and problems) was done by a PhD student who was not
involved in this research. She was provided with task
specifications, correct solutions and guidelines for giving
scores. All solutions were compiled, executed and
thoroughly tested for functionality. The source code was
also manually inspected. Questionable cases were
resolved through discussion with the researchers. Based
on this analysis we made a list of problems for each
participant. The assessment of the solutions took about 80
working hours.

3 Results

The participants experienced different difficulties while
conducting change tasks. We first give an overview of the
difficulties identified as a result of examining the
participants’ solutions and collected feedback. We then
describe the major difficulties in greater detail.

To identify the difficulties participants had, we first
analysed the assessor’s report and made a detailed list of

errors for each participant. We then extended this list with
the difficulties that we found in the collected feedback.

As in the original experiment conducted by
Karahasanovic et al. (2006), the difficulties were then
categorised within a refinement of the model of von
Mayrhauser and Vans (1995). Von Mayrhauser and Vans
describe two types of knowledge: (i) general knowledge,
which is independent of the specific software application
that the programmers are trying to understand, and (ii)
software-specific knowledge, which represents their level
of understanding of the software application. They
suggest that difficulties and errors in comprehension arise
from a lack of either general, or specific knowledge, or
both. Among the difficulties caused by the lack of general
knowledge, we identified the following sub-categories:
difficulties concerning program logic, graphical user
interface (GUI), object-oriented programming, algorithms
and programming environment. Among the difficulties
caused by the lack of the specific knowledge, we
identified the following three sub-categories: difficulties
concerning the GUI, object-oriented programming and
testing procedure.

Table 1 gives an overview of the difficulties. A difficulty
is presented only once per participant per task. As
described in Section 3, Task 3 was given as an extra
change task and the majority of participants did not
complete it. Consequently, the numbers of difficulties per
category reported for Task 3 will not give us a complete
picture. However, we present them here because they
provide additional information about the difficulties that
the participants experienced.

Two major general difficulties that prevented the
participants for completing the task or caused a
significant delay were related to program logic (23
occurrences) and algorithms (10 occurrences). The
participants had two types of problems related to program
logic (category 1.1). The first one was related to an if-
then-else statement. This statement implements a book
search on title, author or ISBN. The participants removed
either too much or too little from this statement and, as a
result, the library application did not work properly. It
might be that the participants interpreted this task as a
pure text editing task (finding all ISBN occurrences and
deleting them) and did not try to understand the logic of
the program. However, it is also possible that the
participants felt time pressure and were not sufficiently
careful. Another was related to finding a given title. Two
participants explicitly reported that they had problems
understanding the logic of this part of the application.

Another difficulty that was reported relatively frequently
concerned knowledge of algorithms or the application
domain (category 1.4). Ten participants failed to calculate
the expiry date correctly, or did not try to calculate it at
all. They also reported in the collected feedback that this
is difficult. One usually uses library classes for different
conversions and calculations. Therefore, it might be that
making their own calculations was difficult for these
students. Furthermore, the array index started from zero
in this library class, which might be unusual for the

students, who mostly programmed in the programming
language Java.

Two specific difficulties that frequently occurred were
related to adding or removing GUI components (category
2.1.2, 17 occurrences) and removing label declarations
(category 2.1.3, 19 occurrences). The participants either
forgot to add or remove different components of the GUI-
like radio buttons and text fields or failed to remove all
label declarations of ISBN in Task 1. It was clearly stated
in the task description that all references to ISBN should
be removed. However, leaving some of these ISBN
declarations had no effect on the functionality of the
application.

The participants in the present study appeared to have
particular difficulty with the GUI components (category
2.1.2). It should be noted that many of the present people
would not have studied the design and implementation of
GUIs by the time they participated in this experiment;
this is covered towards the end of the degree. The given
tasks required no special proficiency in GUI
programming, but they required basic understanding of
impact analysis. Familiarity with a domain (GUI in this
case) could make impact analysis easier for the students.

Two major specific difficulties that prevented the
participants from completing the task or caused a
significant delay were related to finding impacts on
classes (category 2.2.2, 14 occurrences) and inherited
functionality (category 2.2.4, 12 occurrences). To conduct
change tasks, the participants had to comprehend the
structure of a medium-sized application object-oriented
application. They had to comprehend relationships
between the classes and to find the classes affected by a
change. It seems that this was difficult for them.

Furthermore, the participants needed to understand
inheritance of the functionality to solve the tasks. Classes
in the library application that needed to be persistent had
to inherit an abstract class called Persistent. The
subclasses of the Persistent class had to implement the
methods read() and write(), which reads/writes from/to a
file. The failure to make data persistent occurred
relatively often thus indicating that this was difficult for
the participants.

Compared with the previous experiment, these students
were more challenged to understand impacts on classes
but performed better on inherited functionality. The latter
is a specific topic in the Object Oriented Programming
unit considered as a core attainment (section 2.1). In
contrast comprehending the structure of a medium-sized
object oriented system may not have been studied by
some students and this may have reduced their
comprehension of impacts.

The present cohort has relatively few problems with
attributes and methods in the wrong class (2.2.2.2-3) or
their removal (2.2.3.1). This may have been because of
the importance placed on understanding the fundamentals
of classes, objects and methods in the Java Programming

foundation unit. The BlueJ environment 1, used for this
unit, is especially good for illustrating these concepts,
perhaps at the expense of practice with larger programs.

 Task1 Task2 Task3

1 General

1.1 Program logic 20 3

1.2 GUI

1.2.1 Forgot to expand the
window

 6

1.2.2 Little experience with
GUI programming

2 1

1.3 Object-oriented
programming

1.3.1 Initialise objects 2

1.3.2 Instantiate a class 1

1.3.3 Understand and use a
Java API class

 2

1.3.4 Reuse of methods 2

1.4. Algorithms 10

1.5 Programming
environment

1 1

2 Specific

2.1 GUI

2.1.1 Changing interface 1

2.1.2 Adding or removing
GUI components

10 4 3

2.1.3 Removing label
declarations

19

2.2 OO comprehension and
programming

2.2.1 Overall program
structure

2 2

2.2.2 Impacts on classes 1 10 3

2.2.2.1 Self-reported
problems

2.2.2.2 Attributes in the
wrong class

 2

2.2.2.3 Methods in the
wrong class

2.2.3 Impacts within class 1

2.2.3.1 Removing variables
and methods

3

2.2.4 Inherited functionality 2 6 4

2.3 Testing procedure 1 1 1

Table 1: Number and type of difficulties per tasks

1 www.bluej.org

4 Limitations of this Study

The data on difficulties experienced by the participants
are partly qualitative and subjective. A detailed list of
errors for each participant made by the independent
assessor (difficulties that the participants did not
overcome) was combined with the difficulties identified
in the collected feedback. However, one should be aware
that there might be differences among participants. Some
might have forgotten to report their difficulties. Hence,
some of the difficulties the participants had during the
experiment that they managed to overcome might be
missing from our list.

One should also be aware that the majority of the
participants did not finish Task 3. Hence, the list of
difficulties for this task is not complete.

The experiment lasted only seven hours, which might be
too short a time to become familiar with the application.
Future work should therefore include case studies that last
longer.

5 Conclusions and future work

This paper provides further empirical evidence with
respect to the difficulties students had while conducting
maintenance tasks on a medium-sized Java application. It
allows generalisation of the results of the previous study
by Karahasanovic et al. (2006) to the population of
advanced beginners. The results revealed the difficulties
the participants had due to a lack of knowledge that is
independent of the specific application (general
knowledge) and a lack of knowledge of the specific
application (specific knowledge). The major general
difficulties that prevented the participants from
completing the tasks were related to program logic and
algorithms. These difficulties were also identified in the
previous experiment. These findings can be used for
improving courses on data algorithms.

The major specific difficulties that prevented the
participants from completing the tasks were related to
finding impacts of changes (removing label declarations
and impacts on classes) and inheritance of functionality.
The same difficulties were identified in the previous
experiment. However, there were some differences.
UWA students were more challenged to understand
impacts on classes than students in Norway. On the other
hand, UWA students performed better on inherited
functionality. This can be explained by a different
syllabus within a broadly similar degree. Findings on
differences between universities in different countries can
be used for further improvement of their syllabuses.

Based on these results we recommend introducing
examples of modifying larger object-oriented programs in
courses of object-orientation. Students should learn the
basics of impact analysis earlier in their computer science
education. However, this does not mean that the training
in understanding the fundamentals of classes, objects and

methods as provided at UWA should be reduced. The
BlueJ environment can be recommended for illustrating
the fundamentals of object-orientation.

What needs to be taught to improve effectiveness at
maintenance is a complex question. Efforts have been
made by the community to introduce the theory and
practice of maintenance in computer science education
(Austin and Samadzadeh, 2005; Postema et al., 2001).
Nevertheless, large number of students would leave their
universities without any maintenance experience.
Furthermore, their understanding of object-oriented
concepts gained through the introductory programming
courses affects their ability to maintain such systems later
on. We thus believe that students should obtain some
experience in understanding and modifying larger
programs earlier in their education. Identifying
difficulties the students had while conducting
maintenance tasks is only a first step towards improving
their education. We intend to further explore interactions
between programming and general problem-solving
knowledge, and the effects of these interactions on the
students’ ability to maintain larger object-oriented
applications.

Acknowledgements

Amela Karahasanovic acknowledges support from the
University of Western Australia for the Gledden Visiting
Senior Fellowship.
The authors are grateful to Kesaraporn Techapichetvanich
and Junisilver Taij for valuable contributions to this
paper. We thank Gunnar Carelius, Ashley Chew, Ryan
McConigley and Laurie McKeaig for their considerable
technical help, and Louise Bolitho and Jeff Pollard for
administrative help. We are grateful to Kaja Kværn and
Gøril Tømmerberg for preparing experimental materials.
We thank the students of UWA for participating in the
experiment.

References

Arisholm, E., Sjøberg, D.I.K., Carelius, G. and Lindsjørn,
Y. 2002. A Web-based Support Environment for
Software Engineering Experiments. Nordic Journal of
Computing, 9, No. 4, 231–247.

Arisholm, E., Sjøberg, D.I.K. and Jørgensen, M. 2001.
Assessing the Changeability of two Object-Oriented
Design Alternatives – a Controlled Experiment.
Empirical Software Engineering, 6, No. 3, 231–277.

Austin, M.A. and Samadzadeh, M.H. 2005. Software
comprehension/maintenance: an introductory cours.
18th Int. Conf. on Systems Engineering (ISCEng'05),
IEEE, 414–419.

Basili, V.R., Shull, F. and Lanubile, F. 1999. Building
Knowledge through Families of Experiments. IEEE

Transactions on Software Engineering, 25, No. 4
(July–Aug.), 456–73.

Coleman, D., Ash, D., Lowther, B. and Oman, P. 1994.
Using Metrics to Evaluate Software System
Maintainability. IEEE Computer, August 1994, 44–49.

Dale, N. 2005a. SIGCSE members survey.
http://www.cs.utexas.edu/users/ndale/ContentResults.h
tml

Dale, N. 2005b. Non SIGCSE members survey.
http://www.cs.utexas.edu/users/ndale/ContentResults2.
html

Détienne, F. 1997. Assessing the cognitive consequences
of the object-oriented approach: A survey of empirical
research on object-oriented design by individuals and
teams. Interacting with Computers, 9, 47–72.

Dreyfus, H.L. and Dreyfus, S.E. 1986. Mind over
Machine. New York: The Free Press.

Eriksson, H.E. and Penker, M. (1998). “Case Study”. In:
UML Toolkit. (editors), New York, John Wiley & Sons,
Inc.,

Gunderman, R.E. (1988). “A glimpse into program
maintenance”. In: Techniques of program and system
maintenance. Parikh, G. (editors), Wellesley, MA,
QED Information Sciences Inc., 55–59.

Holgeid, K.K., Krogstie, J. and Sjøberg, D.I.K. 2000. A
Study of Development and Maintenance in Norway:
Assessing the Efficiency of Information Systems
Support Using Functional Maintenance. Information
and Software Technology, 42, No. 10, 687–700.

Jørgensen, M. and Sjøberg, D.I.K. 2002. Impact of
experience on maintenance skills. Journal of Software
Maintenance and Evolution: Research and Practice,
14, 123–146.

Kajko-Mattsson, M., Forssander, S. and Andersson, G.
2002. Developing CM3: Maintainers' Education and
Training at ABB. Computer Science Education, 12,
No.1–2, 57–89.

Karahasanovic, A., Anda, B., Arisholm, E., Hove, S.E.,
Jørgensen, M., Sjøberg, D.I.K. and Welland, R. 2005.
Collecting Feedback during Software Engineering
Experiments. Empirical Software Engineering, 10, No.
2, 113–147.

Karahasanovic, A., Levine, A.K. and Thomas, R. 2006.
Comprehension strategies and difficulties in
maintaining object-oriented systems: an explorative
study, Journal of Systems and Software. Forthcoming.

Lehman, M. and Belady, L.A. 1985. Program Evolution –
Processes of Software Change. Academic Press,
London.

Lientz, B.P. 1983. Issues in Software Maintenance.
Computing Surveys, 15 (3), 271–278.

Nosek, J.T. and Prashant, P. 1990. Software Maintenance
Management: Change in the Last Decade. Journal of

Software Maintenance Research and Practice, 2, No.
3, 157–174.

Pfleeger, S.L. 1987. Software Engineering – The
Production of Quality Software. Macmillan.

Postema, M., Miller, J. and Dick, M. 2001. Including
practical software evolution in software engineering
education. 14th Conference on Software Engineering
Education and Training, IEEE, 127–135.

Thomas, R., A. Karahasanovic, and Kennedy, G. 2005.
An Investigation into Keystroke Metrics as an Indicator
of Programming Performance. Proc. of the 7th
Australasian Computing Education Conference 2005
(ACE 2005), Conference in Research and Practice in
Information Technology, Newcastle, Australia,
Australian Computer Society, Inc., 42, 127–134.

Thomas, R., Kennedy, G., Draper, S., Mancy, R., Crease,
M., Evans, H. and Gray, P. 2003. Generic Usage
Monitoring of Programming Students. ASCILITE 2003
Conference, University of Adelaide, Australia,
Adelaide, Australia, ASCILITE, 715–719.

Von Mayerhauser, A. and Vans, A.M. 1995. Industrial
Experience with an Integrated Comprehension Model.
Software Engineering Journal, 171–182.

Von Mayrhauser, A. and Vans, A.M. 1995. Program
Comprehension During Software Maintenance and
Evolution. Computer, 28(8), 44–55.

Zelkowitz, M.V. 1978. Perspectives on Software
Engineering. ACM Computing Surveys, 10, No. 2, 197–
216.

