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Abstract— As the Internet takes an increasingly central role
in our communications infrastructure, the slow convergence of
routing protocols after a network failure becomes a growing
problem. To assure fast recovery from link and node failures in
IP networks, we present a new recovery scheme called Multiple
Routing Configurations (MRC). MRC is based on keeping
additional routing information in the routers, and allows packet
forwarding to continue on an alternative output link immediately
after the detection of a failure. Our proposed scheme guarantees
recovery in all single failure scenarios, using a single mechanism
to handle both link and node failures, and without knowing the
root cause of the failure. MRC is strictly connectionless, and
assumes only destination based hop-by-hop forwarding. It can
be implemented with only minor changes to existing solutions.
In this paper we present MRC, and analyze its performance with
respect to scalability, backup path lengths, and load distribution
after a failure.

I. I NTRODUCTION

In recent years the Internet has been transformed from a
special purpose network to an ubiquitous platform for a wide
range of everyday communication services. The demands on
Internet reliability and availability have increased accordingly.
A disruption of a link in central parts of a network has the po-
tential to affect hundreds of thousands of phone conversations
or TCP connections, with obvious adverse effects.

The ability to recover from failures has always been a cen-
tral design goal in the Internet [1]. IP networks are intrinsically
robust, since IGP routing protocols like OSPF are designed
to update the forwarding information based on the changed
topology after a failure. This re-convergence assumes full
distribution of the new link state to all routers in the network
domain. When the new state information is distributed, each
router individually calculates new valid routing tables.

This network-wide IP re-convergence is a time consuming
process, and a link or node failure is typically followed by a
period of routing instability. During this period, packetsmay
be dropped due to invalid routes. This phenomenon has been
studied in both IGP [2] and BGP context [3], and has an
adverse effect on real-time applications [4]. Events leading
to a re-convergence have been shown to occur frequently, and
are often triggered by external routing protocols [5].

Much effort has been devoted to optimizing the different
steps of the convergence of IP routing, i.e., detection, dissem-
ination of information and shortest path calculation, but the
convergence time is still too large for applications with real
time demands [6]. A key problem is that since most network

failures are short lived [7], too rapid triggering of the re-
convergence process can cause route flapping and increased
network instability [2].

The IGP convergence process is slow because it isreactive
and global. It reacts to a failure after it has happened, and
it involves all the routers in the domain. In this paper we
present a new scheme for handling link and node failures
in IP networks. Multiple Routing Configurations (MRC) is
proactive and local, which allows recovery in the range of
milliseconds. MRC allows packet forwarding to continue over
pre-configured alternative next-hops immediately after the
detection of the failure. Using MRC as a first line of defense
against network failures, the normal IP convergence process
can be put on hold. This process is then initiated only as
a consequence of non-transient failures. Since no global re-
routing is performed, fast failure detection mechanisms like
fast hellos or hardware alerts can be used to trigger MRC
without compromising network stability [8]. MRC guarantees
recovery from any single link or node failure, which consti-
tutes a large majority of the failures experienced in a network
[7].

The main idea of MRC is to use the network graph and
the associated link weights to produce a small set of backup
network configurations. The link weights in these backup
configurations are manipulated so that for each link and
node failure, and regardless of whether it is a link or node
failure, the node that detects the failure can safely forward the
incoming packets towards the destination. MRC assumes that
the network uses shortest path routing and destination based
hop-by-hop forwarding.

In the literature, it is sometimes claimed that the node
failure recovery implicitly addresses link failures too, as the
adjacent links of the failed node can be avoided. This is true
for intermediate nodes, but the destination node in a network
path must be reachable if operative (“The last hop problem”,
[9]). MRC solves the last hop problem by strategic assignment
of link weights between the backup configurations.

MRC has a range of attractive features:

• It gives almost continuous forwarding of packets in the
case of a failure. The router that detects the failure
initiates a local rerouting immediately, without commu-
nicating with the surrounding neighbors.

• MRC helps improve network availability through sup-



pression of the re-convergence process. Delaying this
process is useful to address transient failures, and pays
off under many scenarios [8]. Suppression of the re-
convergence process is further actualized by the evidence
that a large proportion of network failures is short-lived,
often lasting less than a minute [7].

• MRC uses a single mechanism to handle both link
and node failures. Failures are handled locally by the
detecting node, and MRC always finds a route to the
destination (if operational).

• MRC makes no assumptions with respect to theroot
cause of failure, e.g., whether the packet forwarding is
disrupted due to a failed link or a failed router. Regardless
of this, MRC guarantees that there exists a valid, pre-
configured next-hop to the destination.

• An MRC implementation can be made without major
modifications to existing IGP routing standards. IETF
recently initiated specifications of multi-topology routing
for OSPF and IS-IS, and this approach seems well suited
to implement our proposed backup configurations [10],
[11], [12].

The concept of multiple routing configurations and its ap-
plication to network recovery is not new. Our main inspiration
has been a layer-based approach used to obtain deadlock-free
and fault-tolerant routing in irregular cluster networks based
on a routing strategy called Up*/Down* [13]. General packet
networks are not hampered by deadlock considerations nec-
essary in interconnection networks, and hence we generalized
the concept in a technology independent manner and named
it Resilient Routing Layers [14][15]. In the graph-theoretical
context, RRL is based on calculating spanning sub topologies
of the network, called layers. Each layer contains all nodes
but only a subset of the links in the network.

The work described in this paper differs substantially from
RRL in that we do not alter topologies by removing links,
but rather manipulate link weights to meet goals of handling
both node and link failures without needing to know the root
cause of the failure. In MRC, all links remain in the topology,
but in some configurations, some links will not be selected by
shortest path routing mechanisms due to high weights.

The rest of this paper is organized as follows. In Sec. II
we describe the basic concepts and functionality of MRC. An
algorithm used to create the needed backup configurations is
presented in Sec. III. Then, in Sec. IV, we explain how the
generated configurations can be used to forward the traffic
safely to its destination in case of a failure. In Sec. V, we
present performance evaluations of the proposed method, and
in Sec. VI, we discuss related work. Finally, in Sec. VII, we
conclude and give some prospects for future work.

II. MRC OVERVIEW

MRC is based on using a small set of backup routing
configurations, where each of them is resistant to failures of
certain nodes and links. Given the original network topology, a
configurationis defined as a set of associated link weights. In a
configuration that is resistant to the failure of a particular node

n, link weights are assigned so that traffic routed according to
this configuration is never routed through noden. The failure
of noden then only affects traffic that is sent from or destined
to n. Similarly, in a configuration that is resistant to failure
of a link l, traffic routed in this configuration is never routed
over this link, hence no traffic routed in this configuration is
lost if l fails. In MRC, noden and link l are calledisolated
in a configuration, when, as described above, no traffic routed
according to this configuration is routed throughn or l.

Our MRC approach is threefold. First, we create a set of
backup configurations, so that every network component is
isolated in one configuration. Second, for each configuration,
a standard routing algorithm like OSPF is used to calculate
configuration specific shortest path trees and create forwarding
tables in each router, based on the configurations. The use of
a standard routing algorithm guarantees loop free forwarding
within one configuration. Finally, we design a forwarding
process that takes advantage of the backup configurations to
provide fast recovery from a component failure.

Fig. 1a illustrates a configuration where node 5 is isolated.
In this configuration, the weight of the stapled links is set so
high that only traffic sourced by or destined for node 5 will
be routed over these links, which we denoterestricted links.

Node failures can be handled through blocking the node
from transiting traffic. This node-blocking will normally also
protect the attached links. But a link failure in the last hop
of a path can obviously not be recovered by blocking the
downstream node (ref. “the last hop problem”). Hence, we
must make sure that, in one of the backup configurations, there
exists a valid path to the last hop node, without using the failed
link. A link is isolated by setting the weight to infinity, so that
any other path would be selected before one including that
link. Fig. 1b shows the same configuration as before, except
now link 3-5 has been isolated (dotted). No traffic is routed
over the isolated link in this configuration; traffic to and from
node 5 can only use the restricted links.

In Fig. 1c, we see how several nodes and links can be
isolated in the same configuration. In a backup configuration
like this, packets willneverbe routed over the isolated (dotted)
links, andonly in the first or the last hopbe routed over the
restricted (dashed) links.

Some important properties of a backup configuration are
worth pointing out. First, all non-isolated nodes are internally
connected by a sub-graph that does not contain any isolated
or restricted links. We denote this sub-graph as thebackbone
of the configuration. In the backup configuration shown in
Fig. 1c, nodes 6, 2 and 3 with their connecting links consti-
tute this backbone. Second, all links attached to an isolated
node are either isolated or restricted, but an isolated nodeis
always directly connected to the backbone with at least one
restricted link. These are important properties of all backup
configurations, that are further discussed in Sec. III, where we
explain how backup configurations can be constructed.

Using a standard shortest path calculation, each router
creates a set of configuration-specific forwarding tables. For
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Fig. 1. a) Node 5 is isolated (shaded color) by setting a high weight on all
its connected links (stapled). Only traffic to and from the isolated node will
use these restricted links. b) The link from node 3 to node 5 isisolated by
setting its weight to infinity, so it is never used for traffic forwarding (dotted).
c) A configuration where nodes 1, 4 and 5, and the links 1-2, 3-5and 4-5 are
isolated.

simplicity, we say that a packet is forwarded according to a
configuration, meaning that it is forwarded using the forward-
ing table calculated based on that configuration.

When a router detects that a neighbor can no longer be
reached through one of its interfaces, it does not immediately
inform the rest of the network about the connectivity failure.
Instead, packets that would normally be forwarded over the
failed interface are marked as belonging to a backup config-
uration, and forwarded on an alternative interface towardsits
destination. The selection of the correct backup configuration,
and thus also the backup next-hop, is detailed in Sec. IV. The
packets must be marked with a configuration identifier, so the
routers along the path know which configuration to use. Packet
marking is most easily done by using the DSCP field in the IP
header. If this is not possible, other packet marking strategies
like IPv6 extension headers or using a private address space
and tunnelling (as proposed in [16]) can be imagined.

It is important to stress that MRC does not affect the failure-
free original routing, i.e. when there is no failure, all packets
are forwarded according to the original configuration, where
all link weights are normal. Upon detection of a failure, only
traffic reaching the failure will switch configuration. All other

traffic is forwarded according to the original configurationas
normal.

III. G ENERATING BACKUP CONFIGURATIONS

In this section, we will first detail the requirements that must
be put on the backup configurations used in MRC. Then, we
propose an algorithm that can be used to automatically create
such configurations. The algorithm will typically be run once
at the initial startup of the network, and each time a node or
link is permanently added or removed.

A. Configuration Constraints

To guarantee single-failure tolerance and consistent routing,
the backup configurations used in MRC must adhere to the
following requirements:

1) A node must not carry any transit traffic in the config-
uration where it is isolated. Still, traffic must be able to
depart from and reach an isolated node.

2) A link must not carry any traffic at all in the configura-
tion where it is isolated.

3) In each configuration, all node pairs must be connected
by a path that does not pass through an isolated node or
an isolated link.

4) Every node and every link must be isolated in at least
one backup configuration.

The first requirement decides what weights must be put on
the restricted links attached to an isolated node. To guarantee
that no path will go through an isolated node, it suffices that
the restricted links have a weightW of at least the sum of all
link weightsw in the original configuration:

W >
∑

ei,j∈E

wi,j (1)

This guarantees that any other path between two nodes
in the network will be chosen by a shortest path algorithm
before one passing through the isolated node. Only packets
sourced by or destined for the isolated node itself will traverse
a restricted link with weightW , as they have no shorter path.
With our current algorithm, restricted and isolated links are
given the same weight in both directions in the backup con-
figurations, i.e., we treat them as undirected links. However,
this does not prevent the use of independent link weights in
each direction in the default configuration.

The second requirement implies that the weight of an
isolated link must be set so that traffic willnever be routed
over it. Such links are given infinite weight.

Given these restrictions on the link weights, we now move
on to show how we can construct backup configurations that
adhere to the last two requirements stated above.

B. Algorithm

We now present an algorithm, designed to make all nodes
and links in a arbitrary biconnected graph isolated. Our algo-
rithm takes as input the undirected weighted graphG, and the
numbern of backup configurations that is intended created.



TABLE I

NOTATION

G(V, E) Graph with nodesV and undirected linksE
Gp The graph with link weights as in configuration p
Sp Isolated nodes in configuration p
Ei All links from node i
ei,j Undirected link from node i to node j (ei,j = ej,i)
w

p
i,j Weight of link ei,j in configuration p
n Number of configurations to generate (input)
W Weight of restricted links

It loops through all nodes in the topology, and tries to isolate
them one at a time. A link is isolated in the same iteration as
one of its attached nodes. With our algorithm, all nodes and
links in the network are isolated in exactly one configuration.

The third property above results in the following two
invariants for our algorithm, which must be evaluated each
time a new node and its connected links are isolated in a
configuration:

1) A configuration must contain a backbone
2) All isolated nodes in a configuration must be directly

connected to the backbone through at least one restricted
link.

The first invariant means that when a new node is isolated,
we must make sure that the sub-graph of non-isolated nodes
is not divided. If making a node isolated breaks any of these
two requirements, then the node cannot be isolated in that
configuration.

When isolating a node, we also isolate as many as possible
of the connected links, without breaking the second invariant
above. A link is always isolated in the same configuration as
one of its attached nodes. This is an important property of the
produced configurations, which is taken advantage of in the
forwarding process described in Sec. IV.

Now we specify the configuration generation algorithm in
detail, using the notation shown in Tab. I.

When a nodevi is attempted isolated in a backup config-
uration p, it is first tested that doing so will not break the
first invariant above. Thediv method (for “divide”) at line
11 decides this by testing that each ofvi’s neighbors can reach
each other without passing throughvi, an isolated node, or an
isolated link in configurationp.

Along with vi, as many as possible of its attached links
are isolated. We run through all the attached links (line 13).
The nodevj in the other end of the link may or may not be
isolated in some configuration already (line 15). If it is, we
must decide whether the link should be isolated along withvi

(line 20), or if it is already isolated in the configuration where
vj is isolated (line 27). A link must always be isolated in the
same configuration as one of its end nodes. Hence, if the link
was not isolated in the same configuration asvj , it must be
isolated along with nodevi.

Before we can isolate the link along withvi, we must test
(line 18) thatvi will still have an attached non-isolated link,
according to the second invariant above. If this is not the
case,vi can not be isolated in the present configuration (line

Algorithm 1 : Creating Backup Configurations

for p ∈ {0 . . . n − 1} do1
Gp ⇐ G2
Sp ⇐ ∅3

end4
p ⇐ 05
forall vi ∈ V do77

while vi /∈ Sp and not all configurations99
tried do

if !div(vi,Gp) then1111
forall ei,j ∈ Ei do1313

if ∃q : vj ∈ Sq then1515
if wq

i,j = W then16
if ∃ei,k ∈ EiÂei,j : wp

i,k 6= ∞ then1818
wp

i,j ⇐ ∞2020
else21

break 92323

else if wq
i,j = ∞ and p 6= q then2425

wp
i,j ⇐ W2727

2929
else30

if ∃ei,k ∈ EiÂei,j : wp

i,k 6= ∞ then3232
wp

i,j ⇐ ∞3434
else35

wp
i,j ⇐ W3737

firstInNodeQ(vj)3939
firstInLinkQ(vj, ej,i)4141

commit edge weight changes4343
Sp ⇐ Sp ∪ vi44

p + + mod n45

if vi /∈ Sp then46
Give up and abort4848

end49

23). Giving up the node in the present configuration means
restarting the outer loop (line 9). It is important to note that
this also involves resetting all changes that has been made in
configurationp trying to isolatevi.

In the case that the neighbor nodevj was not isolated in
any configuration (line 29), we isolate the link along withvi

if possible (line 34). If the link can not be isolated (due to the
second invariant), we leave it for nodevj to isolate it later.
To make sure that this link can be isolated along withvj , we
must processvj next (line 39, selected at line 7), and linkej,i

must be the first amongEj to be processed (line 41, selected
at line 13). This is discussed further in Sec. III-C below.

If vi was successfully isolated, we move on to the next node.
Otherwise, we keep trying to isolatevi in every configuration,
until all configurations are tried (line 9). Ifvi could not be
isolated in any configuration, requirement four in Sec. III-A
could not be fulfilled. The algorithm will then terminate with
an unsuccessful result (line 48). This means that our algorithm
could not isolate all network elements using the required num-
ber of configurations, and a higher number of configurations
must be tried. Note also that our heuristic algorithm does
not necessarily produce the theoretical minimum number of



backup configurations.

The complexity of the proposed algorithm is determined
by the loops and the complexity of thediv method.div
performs a procedure similar to determining whether a node
is an articulation point in a graph, bound to worst case
O(|V| + |E|). Additionally, for each node, we run through
all adjacent links, whose number has an upper bound in the
maximum node degree∆. In worst case, we must run through
all n configurations to find a configuration where a node can
be isolated. The worst case running time for the complete
algorithm is then bound byO(|V|n|E|∆).

C. Termination

The algorithm runs through all nodes trying to make them
isolated in one of the backup configurations. If a node cannot
be isolated in any of the configurations, the algorithm termi-
nates without success. However, the algorithm is designed so
that any biconnected topology will result in a successful termi-
nation, if the number of configurations allowed is sufficiently
high.

For an intuitive proof of this, look at a situation where
the number of configurations created is|V|. In this case,
the algorithm will only isolate one node in each backup
configuration. In biconnected topologies any node can be
removed, i.e. isolated, without disconnecting the network, and
hence invariant 1 above is not violated. Along with a nodevi,
all attached links except one (ei,j) can be isolated. By forcing
nodevj to be the next node processed (line 39), and the link
ej,i to be first amongEj (line 41), we guarantee thatej,i andvj

can be isolated in the next configuration. This can be repeated
until we have configurations so that every node and link is
isolated. This holds also for the last node processed, sinceits
last link will always lead to a node that is already isolated in
another configuration.

A ring topology is a worst-case example of a topology that
would need|V| backup configurations to isolate all network
elements.

IV. L OCAL FORWARDING PROCESS

The algorithm presented in Sec. III creates a set of backup
configurations. Based on these, a standard shortest path algo-
rithm is used in each configuration, to calculate configuration
specific forwarding tables. In this section, we describe how
these forwarding tables are used to avoid a failed component.

When a packet reaches a point of failure, the node adjacent
to the failure, called thedetecting node, is responsible for find-
ing the configuration where the failed component is isolated,
and to forward the packet according to this configuration.
With our proposal, the detecting node must find the correct
configuration without knowing the root cause of failure.

A node must know in which configuration the downstream
node of each of its network interfaces is isolated. Also, it
must know in which configuration it is isolated itself. This
information is distributed to the nodes in advance, during the
configuration generation process.
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Fig. 2. State diagram for a node’s packet forwarding.

The flow diagram in Fig. 2 shows the steps that are taken in
a node’s forwarding process. First, packets that are not affected
by the failure, are forwarded as normal (step 2). Special
measures are only taken for packets that would normally be
forwarded through a broken interface.

In step 3, packets that are already routed according to
a backup configuration, i.e., they have been marked with a
backup configuration identifier by another node, are discarded.
Reaching a point of failure for the second time, means either
that the egress node has failed, or the network contains multi-
ple failed elements. To avoid looping between configurations,
a packet is allowed to switch configuration only once. To
allow protection against multiple failures, we could imagine
a scheme where packets are allowed to switch configurations
more than once. A separate mechanism would then be needed
to keep packets from looping between two configurations, e.g.
only allowing packets to be switched to a configuration with
a higher ID.

We then make a next hop lookup in the configuration where
the neighbor is isolated, in step 4. If the same broken link
is not returned from this lookup, we mark the packet with
the correct configuration identifier, and forward the packetin
this configuration (step 5). The packet is then guaranteed to
reach its egress node, without being routed through the point
of failure again. Only if the neighbor is the egress node for
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Fig. 3. Isolated nodes are given a shaded color. When there is an error
in the last hop, a packet must be forwarded in the configurationwhere the
connecting link is isolated (the link is then dotted).

the packet, and the neighbor is indeed dead, will the packet
reach a dead interface for the second time (in a single failure
scenario). It will then be discarded in another node.

If, however, the dead linkis returned from the lookup in the
configuration where the neighbor is isolated, we know that the
neighbor node must be the egress node for the packet, since
packets are never routed through an isolated node. In this case,
a lookup in the configuration where the detecting node itself
is isolated must be made (step 6). Remember that a link is
always isolated in the same configuration as one of its attached
nodes. Hence, the dead link can never be returned from this
lookup. Again, if the neighbor (egress) node is indeed dead,
the packet will be discarded in another node upon reaching a
dead interface for the second time.

A. Last Hop Failure Example

For an example of how packet forwarding is done in the case
of a failure in the last hop, consider the situation depictedin
Fig. 3, where a packet reaches a dead interface in flight from
nodei to egress nodej.

In the last hop, packets will be forwarded in the configura-
tion where either nodei or nodej is isolated, depending on
where the link between them is isolated. In Fig. 3a, the link
is not isolated in the same configuration as nodej. A route
lookup in this configuration will return the same broken link.
Hence, a lookup must be made in the configuration where
nodei is isolated, shown in Fig. 3b.

Note that if nodesi and j are isolated in the same con-
figuration, the link connecting them is also isolated in that
configuration, as shown in Fig. 3c. Packets will then always
reach the egress in that configuration, even if it is the last
hop link that fails, unless, of course, the egress node itself has

failed.

B. Implementation issues

While the backup configurations can be generated off line,
and information can be represented in the network using
Multi Topology routing mechanisms [10], [11], the described
forwarding process needs additional software functionality
in the routers. The described forwarding process consists
however of simple tests and next-hop lookups only, and should
be easy to implement.

The routers will need a mapping between each interface and
a specific backup configuration. This mapping can be built
when the configurations are created.

V. PERFORMANCEEVALUATION

MRC is a local, proactive recovery scheme that resumes
packet forwarding immediately after the failure is detected,
and hence provides fast recovery. State requirements and the
influence on network traffic are other important metrics, which
will be evaluated in this section.

MRC requires the routers to store additional routing config-
urations. The amount of state required in the routers, is related
to the number of such backup configurations. Since routing in
a backup configuration is restricted, MRC will potentially give
backup paths that are longer than the optimal paths. Longer
backup paths will affect the total network load and also the
end-to-end delay. We use a routing simulator to evaluate these
metrics on a wide range of synthetic topologies. We also use a
packet simulator to study the effect of failures on the network
traffic in one selected topology.

Shortest path routing or “OSPF normal” in the full topol-
ogy is chosen as a benchmark for comparison throughout
the evaluation. The new routing resulting from full OSPF
re-convergence after a single component failure is denoted
“OSPF rerouting”. It must be noted that MRC yields the
shown performance immediately after a failure, while IP re-
convergence can take seconds to complete. Our goal is to see
how close MRC can approach the performance of global OSPF
re-convergence.

A. Method

1) Routing simulation:We have developed a Java software
model that is used to create configurations as described by
the algorithm in Sec. III-B. The configurations are created
for a wide range of topologies, obtained from the BRITE
topology generation tool [17] using the Waxman [18] and
the Generalized Linear Preference (GLP) [19] models. The
number of nodes is varied between 16 and 512 to demonstrate
the scalability. To explore the effect of network density, the
average node degree is 4 or 6 for Waxman topologies and 3.6
for GLP topologies. For all synthetic topologies, the linksare
given unit weight.

For each topology, we measure the minimum number of
backup configurations needed by our algorithm to isolate
every node and link in the network. Based on the created
configurations, we measure the backup path lengths (hop
count) achieved by our scheme after a node failure.



2) Traffic simulation:To test the effects our scheme has on
the load distribution after a failure, we have implemented our
scheme in a discrete-event packet simulator based on the J-Sim
framework [20]1. Simulations are performed on the European
COST239 network [21] shown in Fig. 4, connecting major
cities across Europe. All links have been given a common
base weight (dominant), plus an individual addition based on
their propagation delay.

Copenhagen

Berlin

Prague

Vienna

Milan

Zurich

Amsterdam

Luxembourg

Paris

London

Brussels

Fig. 4. The COST239 network

For our experiments, we use a traffic matrix where the
traffic between two destinations is based on the population
of the countries they represent [21]. For simplicity, we look
at constant packet streams between each node pair. Since the
purpose of the simulations is to measure how the traffic load
is distributed in the network, the link capacity is set so that
we never experience packet loss due to congestion. For all
simulations, three backup configurations were used with MRC.
We evaluate link loads before the failure, and after recovery
using OSPF or MRC.

B. Routing Results

1) Minimum number of backup configurations:Figure 5
shows the minimum number of backup configurations that are
needed to make all links and nodes isolated in a wide range
of synthetic topologies. Each bar in the figure represents 100
different topologies given by the type of generation model
used, the links-to-node ratio, and the number of nodes in the
topology.

Tab. II shows the minimum number of required backup
configurations needed for five real world topologies.

The results show that the number of backup configurations
needed is usually modest; 3 or 4 is typically enough to isolate
every element in a topology. The number of configurations
needed decreases with increasing network connectivity. We

1Our J-Sim extensions, together with our routing simulation software, is
available at http://www.simula.no
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Fig. 5. The number of backup configurations required for a widerange of
Brite generated topologies. As an example the bar name wax-2-16 denotes
that the Waxman model is used with a links-to-node ratio of 2, and with 16
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TABLE II

NUMBER OF BACKUP CONFIGURATIONS FOR SELECTED REAL WORLD

NETWORKS

Network Nodes Links Configurations
Sprint US 32 64 4
German Tel 10 29 3
DFN 13 64 2
Geant 19 30 5
Cost239 11 26 3

never needed more than six configurations in our experiments.
This modest number of backup configurations shows that
our method is implementable without requiring a significant
amount of state information.

2) Backup path lengths:Fig. 6 shows path length distribu-
tion for node failures. The numbers are based on 100 different
topologies with 32 nodes and 64 links. Results for link failures
and other network properties show the same tendency.

For reference, we show the path length distribution in the
failure-free case (“OSPF normal”), for all paths with at least
two hops. For an original path we let every intermediate
node fail, and calculate the resulting backup path lengths
using global OSPF rerouting, local rerouting based on the full
topology except the failed component (“Optimal local”), as
well as MRC with 3 and 7 backup configurations. We then
select the median from these samples, and repeat for all paths
in the network.

We see that MRC gives backup path lengths close to
those achieved after a full OSPF re-convergence, and that
the difference decreases further if we allow the use of more
configurations. This means that the affected traffic will not
suffer from unacceptably long backup paths in the period when
it is forwarded according to an MRC backup configuration.

C. Traffic Results

1) Total network load:This metric is related to the backup
path length and represents the total traffic load in the network
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Fig. 6. Backup path lengths in the case of a node failure.

after a failure. The sub-optimal backup paths given by MRC
should result in an increased load in the network. Fig. 7 shows
the aggregate throughput of all the links in the COST239
network after a link failure. The link index on the x-axis shows
which of the 26 bidirectional links has failed. The relative
increase in the load compared to the failure-free case is given
on the y-axis.
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Fig. 7. Network load after link failure.

The simulations show that the load in the network increases
about 5% on average after a failure when using MRC with
3 backup configurations, compared to a 2% increase with
OSPF rerouting. All traffic is recovered in this scenario, sothe
increased network load is solely caused by the longer paths
experienced by the rerouted traffic.

2) Link load distribution: Fig. 8 shows the link load
distribution in the COST239 network. Again, results for the
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Fig. 8. Distribution of link loads in the network in the normalcase, using
MRC, and after OSPF rerouting.

failure free situation and for OSPF rerouting are given. Results
for OSPF rerouting and MRC using 3 backup configurations
are averages for all 26 possible link failures.

The simulations suggest that the link load distribution in the
network is similar when using MRC and after complete OSPF
re-convergence.

3) Load on individual links:Fig. 9 shows the load on every
unidirectional link in the network in the failure-free case, and
after a link failure. The links are indexed from the least loaded
to the most loaded in the failure-free case. Results are shown
for MRC, and after the OSPF rerouting process has terminated.

We measure the throughput on each link for every possible
link failure. Fig. 9a shows the average for all link failures,
while Fig. 9b shows the worst case for each individual link.
The results show that both for the average and the worst case,
MRC gives a post-failure load on each link comparable to the
one achieved after a full OSPF re-convergence.

In our simulations, we have kept the link weights from
the original full topology in the backbone part of the backup
topologies. However, we believe there is a great potential for
improved load balancing after a failure by optimizing the link
weights in the backup topologies.

VI. RELATED WORK

Much work has lately been done to improve robustness
against component failures in IP networks [22]. In this section,
we focus on some important contributions aimed at restor-
ing connectivity without a global re-convergence. Tab. III
summarizes important features of the different approaches.
We indicate whether each mechanism guarantees one-fault
tolerance in an arbitrary biconnected network, for both link
and node failures, independent of the root cause of failure
(failure agnostic). We also indicate whether the approaches
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Fig. 9. Load on all unidirectional links before and after failure. a) Average
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guarantees shortest path routing in the failure-free case,and
whether they solve the ”last hop problem”.

IETF has recently drafted a framework called IP fast reroute
[23]. Within this framework, they propose the use of a
tunnelling approach based on so called “Not-via” addresses
to handle link and node failures [16]. To protect against the
failure of a component P, a special Not-via address is created
for this component at each of P’s neighbors. Forwarding
tables are then calculated for these addresses without using
the protected component. This way, all nodes get a path to
each of P’s neighbors, without passing through (“Not-via”)

P. The Not-via approach is similar to MRC in that loop free
backup next-hops are found by doing shortest path calculations
on a subset of the network. It also covers against link and
node failures using the same mechanism, and is strictly pre-
configured. However, the tunnelling approach may give less
optimal backup paths, and less flexibility with regards to post
failure load balancing.

Iselt et al. [24] emulate Equal Cost Multi-Path (ECMP) by
using MPLS to set up virtual links where needed to make
equal cost paths to a destination. This makes it possible to
use one ECMP path as backup when another fails. Their
method uses separate mechanisms to protect against link and
node failures. Their scheme is strictly pre-configured, andit
is not fully connectionless as it introduces connection-oriented
emulation. As a consequence of the ECMP emulation, one hop
as viewed from the routing function would often correspond to
several original hops, and hence this scheme can not guarantee
shortest path failure-free routing. Their scheme is not failure
agnostic, i.e., they specify separate methods for link and node
failures, and therefore the ”last hop problem” is avoided.

Narvaez et al. [25] propose a method relying on multi-hop
repair paths. They propose to do a local re-convergence upon
detection of a failure, i.e., notify and send updates only to
the nodes necessary to avoid loops. A similar approach also
considering dynamic traffic engineering is presented in [26].
We call these approacheslocal rerouting. They are designed
only for link failures, and therefore avoid the problems of root
cause of failure and the last hop. Their method does not guar-
antee one-fault-tolerance in arbitrary biconnected networks. It
is obviously connectionless. However, it is not strictly pre-
configured, and can hence not recover traffic in the same short
time-scale as a strictly pre-configured scheme.

Reichert et al. [27] propose a routing scheme named O2,
where all routers have at least two valid loop-free next hopsto
any destination. To obtain two valid next hops, the biconnected
network topology must fulfil certain requirements and the
normal failure-free routes may not be the shortest. Their
scheme is strictly pre-configured and connectionless. It covers
both node and link failures independent of the root cause of
failure, and it also solves the ”last hop problem”.

Lee et al. [8] propose using interface specific forwarding
to provide loop-free backup next hops to recover from link
failures. Their approach is called failure insensitive routing
(FIR). The idea behind FIR is to let a router infer link failures
based on the interface packets are coming from. When a
link fails, the attached nodes locally reroute packets to the
affected destinations, while all other nodes forward packets
according to their pre-computed interface specific forwarding
tables without being explicitly aware of the failure. Later,
they have also proposed a similar method, named failure
inferencing based fast rerouting (FIFR), for handling node
failures [28]. This method will also cover link failures, and
hence it operates independent of the root cause of failure.
However, their method will not guarantee this for the last
hop, i.e. they do not solve the ”last hop problem”. Regarding
other properties, FIFR guarantees one-fault-tolerance inany



biconnected network, it is connectionless, pre-configuredand
it does not affect the original failure-free routing.

Many of the approaches listed provide elegant and efficient
solutions to fast network recovery, however MRC and Not-
via tunneling seems to be the only two covering all evaluated
requirements. However, we argue that MRC offers the same
functionality with a simpler and more intuitive approach,
and leaves more room for optimization with respect to load
balancing.

VII. C ONCLUSION AND FUTURE WORK

We have presented Multiple Routing Configurations as an
approach to achieve fast recovery in IP networks. MRC is
based on providing the routers with additional routing config-
urations, allowing them to forward packets along routes that
avoid a failed component. MRC guarantees recovery from
any single node or link failure in an arbitrary biconnected
network. By calculating backup configurations in advance, and
operating based on locally available information only, MRC
can act promptly after failure discovery.

MRC operates without knowing the root cause of failure,
i.e., whether the forwarding disruption is caused by a node
or link failure. This is achieved by using careful link weight
assignment according to the rules we have described. The link
weight assignment rules also provide basis for specification of
a forwarding procedure that successfully solves the last hop
problem.

The performance of the algorithm and the forwarding mech-
anism has been evaluated using simulations. We have shown
that MRC scales well: 3 or 4 backup configurations is typically
enough to isolate all links and nodes in our test topologies.
MRC backup path lengths are comparable to the optimal
backup path lengths—MRC backup paths are typically zero to
two hops longer. In the selected COST239 network, this added
path length gives a network load that is marginally higher than
the load with optimal backup paths. MRC thus achieves fast
recovery with a very limited performance penalty.

There are several possible directions for future work. The
use of MRC gives a changed traffic pattern in the network
after a failure. We believe that the risk of congestion aftera
failure can be reduced by doing traffic engineering through
intelligent link weight assignment in each configuration.

Since MRC can isolate several nodes and links in a single
configuration, it can be successfully used in case of multiple
component failures. For instance, MRC might be well suited
for Shared Risk Groups by making sure that all elements in
such a group are isolated in the same configuration.

Keeping backup configurations in the network makes pro-
tection of multicast traffic much easier. Protecting multicast
traffic from node failures is a challenging task, since state
information for a whole multicast subtree is lost. By main-
taining a separate multicast tree in each backup configuration,
we believe that very fast recovery from both link and node
failures can be achieved.
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[14] A. F. Hansen, T.Čičić, S. Gjessing, A. Kvalbein, and O. Lysne, “Re-
silient routing layers for recovery in packet networks,” inProceedings of
International Conference on Dependable Systems and Networks (DSN),
June 2005.

[15] A. Kvalbein, A. F. Hansen, T.̌Cičić, S. Gjessing, and O. Lysne, “Fast
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