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The reduced basis element method is a new approach for approximating the solution
of problems described by partial differential equations. The method takes its roots in
domain decomposition methods and reduced basis discretizations (Fink & Rheinboldt
(1983), Noor & Peters (1980), Prud’homme et al. (2002)), and its applications extend
to, for example, control and optimization problems. The basic idea is to first decompose
the computational domain into a series of subdomains that are similar to a few
reference domains (or generic computational parts). Associated with each reference
domain are precomputed solutions corresponding to the same governing partial differ-
ential equation, but solved for different choices of some underlying parameter. In this
work, the parameters are representing the geometric shape associated with a computa-
tional part. The approximation corresponding to a new shape is then taken to be a linear
combination of the precomputed solutions, mapped from the reference domain for the
part to the actual domain. We extend earlier work (Maday & Rønquist (2002), Maday
& Rønquist (2004)) in this direction to solve incompressible fluid flow problems
governed by the steady Stokes equations. Particular focus is given to constructing the
basis functions, to the mapping of the velocity fields, to satisfying the inf-sup condition,
and to “gluing” the local solutions together in the multidomain case (Belgacem et al.
(2000)). We also demonstrate an algorithm for choosing the most efficient precomputed
solutions. Two-dimensional examples are presented for pipes, bifurcations, and
couplings of pipes and bifurcations in order to simulate hierarchical flow systems.

1. Introduction

The reduced basis element method is a new approach for approximating the solution
of problems described by partial differential equations. The method takes its roots in
domain decomposition methods and in reduced basis discretizations.

For a given parameter dependent problem: Find u � X such that

F(u; �) � 0, (1.1)

the computational effort needed to find an approximate discrete solution often makes the
problem unsuitable for repetitive solves or real time control. Similarily, if (1.1)
represents a very complex system, the resolution requirements may be so severe that
even a single approximative solution may be hard to obtain.

The idea behind reduced basis methods is to precompute several solutions of (1.1),
{ui}

N
i � 1, corresponding to a preselected set of parameter values, SN � {�i}

N
i � 1. If the

resolution of each ui is represented by N , then N �� N . These precomputed solutions
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(or “snapshots”) are then used as a basis for the solution space of (1.1) to find the
reduced basis solution for a generic �

uN(�) � �N
i � 1

�i(�)ui, (1.2)

where the coefficients �i(�) are determined through a Galerkin method. The error
between the reduced basis solution uN and the high resolution solution uN depends on the
quality of the reduced basis space

V � span{ui, i � 1, … , N}, (1.3)

and on the underlying regularity of uN with respect to �. As long as N is small, the work
needed to find uN is negligible. Examples of reduced basis methods following this
computational approach include the Proper Orthogonal Decomposition (Berkooz et al.
(1993)), Centroidal Voronoi Tessellations (Burkhardt et al. (2005)), and Output Bound
methods (Machiels et al. (2000)).

In the reduced basis element method we consider the geometry of the computational
domain as the generic parameter. The domain is decomposed into smaller blocks, all of
which can be considered to be deformations of a few reference shapes. Associated with
each reference shape are precomputed solutions for different deformations of the shapes.
The precomputed solutions are mapped from the reference shapes to the different blocks
of the decomposed domain, and the solution on each block is found as a linear
combination of the mapped precomputed solutions. The solutions on the different blocks
are glued together using Lagrange multipliers.

We will in this work focus on hierarchical flow systems, which can be decomposed
into pipes and bifurcations. We limit ourselves to the steady Stokes equations in the
modeling of the flow through such systems, and in the next section we describe how
the geometry enters the equations as a parameter. We use spectral elements in the
modeling, but the method applies to other discretization techniques as well.

2. The steady Stokes problem

We consider here the two-dimensional steady Stokes equations

� ��u � �p � f in �,
(2.1)

� · u � 0 in �,
where u � (u1, u2) is the velocity field, p is the pressure, f � ( f1, f2) is a prescribed
volumetric body force, and � is the fluid viscosity; see Aris (1989). For all the problems
studied in this paper, this model will suffice.

The domain � has an inflow boundary �in, an outflow boundary �out, and wall
boundaries �w. On this domain we introduce the velocity space

X(�) � {v � (H 1(�))2, v |�w � 0, vt |�in
� vt |�out

� 0}, (2.2)

where vt is the tangential velocity component. In addition, we have the Neumann type
boundary conditions given by specifying

�n � �
�un

�n
� p

to be �in
n � � 1 along �in and �out

n � 0 along �out ; here, un is the normal velocity
component and �/�n denotes the derivative in the outward normal direction. For all the
problems solved in this study, the exact solution of (2.1) satisfies

�un

�n
� 0



A reduced basis element method for the steady Stokes problem 3

along �in and �out , which implies that the Neumann conditions correspond to specifying
the pressure along the inflow and outflow boundaries (in a weak sense).

With the given boundary conditions, we define the pressure space to be

M(�) � L2(�). (2.3)

In order to solve the steady Stokes equations we define the bilinear forms

a(v, w) � � �
�

�v · �w d�, (2.4)

b(v, q) � ��
�

q� · v d�, (2.5)

and consider the weak form: Find u � X(�) and p � M(�) such that

a(u, v) � b(v, p) � l(v) ∀v � X (�)
(2.6)

b(u, q) � 0 ∀q � M (�),

where

l(v) � ( f, v) ��
�in

�in
n v · n ds ��

�out

�out
n v · n ds. (2.7)

For all the problems considered in this work, the body force f will be zero.
To ensure a unique solution of the steady Stokes problem (2.6), the coercivity

condition

a(w, w) � ��w�2
H1(�), ∀w � X (�), � � 0, (2.8)

and the inf-sup condition

inf
q � M(�)

sup
v � X(�)

b(v, q)

�q�L2(�)�v�H1(�)
� � � 0, (2.9)

must be satisfied; see Babuska (1971) and Brezzi (1974). These conditions are fulfilled
for our particular Stokes problem.

2.1. Discretization

We consider here a two dimensional computational domain �, which represents a
flow system as depicted in Figure 1. We assume that the domain can be decomposed as
a union of E non-overlapping subdomains �e, e � 1, … , E, with each subdomain
representing a deformed square. Each deformed square is again a regular one-to-one
deformation, �e, of the reference square �̂ � ( � 1, 1)2, i.e.,

�̄ � �
E

e � 1
�e � �

E

e � 1
�e(�̂) � �(�̂). (2.10)

In our case, each subdomain will be considered to be a single spectral element; see
Maday & Patera (1989). Let Pn(�̂) be the space of all functions which are polynomials
of degree less than or equal to n in each spatial direction on �̂. For ve � v ��e , the discrete
space for the velocity is then taken to be

XN (�) � {v � X (�), ve � �e � (PN (�̂))2, e � 1, … , E}, (2.11)
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Figure 1. A hierarchical flow system with one pipe-block and three bifurcation-blocks.

while the discrete space for the pressure is

MN (�) � {q � M (�), qe � �e �PN � 2(�̂), e � 1, … , E}. (2.12)

The bases for XN (�) and MN (�) are conveniently expressed in terms of the reference
variables � and 	. As a basis for XN (�) we use a nodal basis through the tensor-product
Gauss-Lobatto Legendre (GLL) points, while the basis for MN (�) is a nodal basis
through the tensor-product Gauss-Legendre (GL) points; see Maday & Patera (1989) and
Maday et al. (1992). Specifically, we write

(ue � �e)(�, 	) � �N
i, j � 0

ue
ij li(�)lj(	) (2.13)

where li(�) refers to a one-dimensional N-th order Lagrangian interpolant through the
GLL points �m, m � 0, … , N ; here, li(�m)lj(�n) � 
im
jn for a given point (�m, �n) in the
underlying tensor-product GLL grid.

In a similar fashion, we write

(pe � �e)(�, 	) � �N � 2

i, j � 0
pe

ij l̃i(�) l̃j(	), (2.14)

where l̃i(�) refers to a one-dimensional (N � 2)-th order Lagrangian interpolant through
the (interior) GL points �m, m � 0, … , N � 2; here, l̃i(�m)l̃j(�n) � 
im
jn for a given point
in the tensor-product GL grid.

Based on (2.10), where we have defined the global mapping � � �(�̂), we express
the bilinear forms (2.4) and (2.5) in terms of the reference variables � and 	 as

a(v, w; �) � �E
e � 1

a(v, w; �e), (2.15)

b(v, p, �) � �E
e � 1

b(v, p, �e). (2.16)



A reduced basis element method for the steady Stokes problem 5

The elemental contributions to these sums are

a(v, w; �e) � � �
�̂

J � T
e �̂(ve � �e) · J � T

e �̂(we � �e) |Je | d�̂ (2.17)

b(v, p; �e) � ��
�̂

(pe � �e)�̂ · [J � 1
e (ve � �e)] |Je | d�̂, (2.18)

where Je is the Jacobian of �e , and Je its determinant. The operator

�̂ �� �

��
,

�

�	�
T

.

This gives us the following discrete system: Find uN � XN (�) and pN � MN (�) such that

aN (uN , v; �) � bN (v, pN ; �) � lN (v; �) ∀v � XN (�)
(2.19)

bN (uN , q; �) � 0 ∀q � MN (�),

where aN , bN and lN refer to integration of the bilinear and linear forms using
Gauss-type quadrature. We thus see that the geometry enters the equations as a
parameter via the mapping �, or more specifically, through the elemental mappings �e,
e � 1, … , E.

3. The reduced basis

We now define the reduced basis solution spaces XN (�) � XN (�) and
MN (�) � MN (�). Our objective is to find a unique reduced basis solution uN � XN (�)
and pN � MN (�) satisfying

aN (uN , v; �) � bN (v, pN ; �) � lN (v; �) ∀v � XN (�)
(3.1)

bN (uN , q; �) � 0 ∀q � MN (�).

As before the coercivity of a(·, ·; �) holds for all v � XN (�), since it is a subset of
XN (�). The inf-sup condition (2.9), however, depends strongly on XN (�) and MN (�).

In a hierarchical flow system we differ between building blocks with pipe structure,
and building blocks with bifurcation structure. The precomputation of basis functions is
done separately for the two types of building blocks. By grouping the spectral elements
of � into building blocks, B k � �k(�̂), each comprising E k spectral elements, we may
write

� �� �
K1

k � 1
B k	�� �

K1 � K2

k � K1 � 1
B k	, (3.2)

where k � 1, … , K1 indicates the pipe blocks, and k � K1 � 1, … , K1 � K2 indicates the
bifurcation blocks. Each building block can again be expressed as

B k � �
E k

e � 1
�k

e(�̂) � �k(�̂) (3.3)

for k � 1, … , K1 � K2, and with �k
e(�̂) denoting the mapping of the reference square to

each individual spectral element in the building block. Since each block B k may consist
of several spectral elements, we have, in general, K1 � K2 � E. We will also denote the
restriction of a field v to a block B k as vk.
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In this work, a pipe building block consists of a single spectral element, i.e., E k � 1,
k � 1, … , K1. In order to generate the basis functions to be used on a pipe, we solve the
steady Stokes problem (2.19) with the same possible boundary conditions as on {B k}K1

k � 1

for a preselected set of deformations of the reference domain, {�i��̂ → �i}
N1
i � 1. This is

achieved by solving the steady Stokes problem on a deformed pipe comprising three
spectral elements. The restriction of the solution to each of these three elements will thus
take care of the three possible types of pipe segments (inflow, interior, outflow) in
the hierarchical flow system. The resulting velocity fields, {ui}

3N1
i � 1, are then mapped to

the reference domain �̂ by the Piola transformation

ûi � �i(ui) � J � 1
i (ui � �i) |Ji |. (3.4)

In this way, the direction of the velocity relative to the geometry is preserved, and by
construction b(ui, q; �i) � b(ûi, q � �i ; I), where I is the identity mapping. Hence, each
precomputed velocity field ûi is also incompressible on �̂. A similar result holds when
the inverse Piola transformation is applied in order to map the velocity from the
reference domain to the generic pipe block B k,

ũk
i � (�k)� 1(ûi) � J k(ûi � (�k)� 1) | (J k)� 1 |. (3.5)

The pressure is a scalar field, and is mapped from �i to B k through p̃ k
i � pi � �i � (�k)� 1.

Only the N1 fields with the proper boundary conditions are used as basis functions on
each B k.

A building block which represents a bifurcation must necessarily comprise several
spectral elements. In this work, we use six elements to build each bifurcation; see
Figure 2. Hence, E k � 6 for k � K1 � 1, … , K1 � K2 in (3.3). The basis functions
associated with bifurcations are constructed by solving the steady Stokes equations on
a preselected set of deformed bifurcations {Bi � Fi(B̂)}N2

i � 1, where B̂ is a reference
bifurcation and Fi is a regular mapping. To take care of the different boundary conditions
needed in the hierarchical flow system, basis functions are constructed with pipes added
to either the inflow boundary, or the outflow boundaries of the bifurcations, or both.
Only the restriction of the solutions to the bifurcation blocks are used as basis functions.

Figure 2. The reference bifurcation B̂ constructed from six elements.
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The resulting velocity solutions, {ui}
3N2
i � 1, are again mapped to the reference domain �̂

by the Piola transformation. In contrast to the solutions found on pipes, all velocity (and
pressure) solutions comprise six segments, ui � {uie}

6
e � 1, and they are mapped to the

reference domain one element at a time. On each {B k}K1 � K2
K1 � 1 we use the N2 basis

functions found on deformed bifurcations with the right boundary conditions, mapped to
the generic domain by the inverse Piola transformation,

ũ k
i � {ũ k

ie}
6
e � 1 � {(�k

e)
� 1(ûie)}

6
e � 1. (3.6)

Now, on each of the six elements of a bifurcation the Jacobian is smooth and continuous,
but across internal interfaces in a bifurcation it is not. To ensure that ũ k

i is a continuous
function we must define both the preselected bifurcations {Bi}

N2
i � 1, and the actual

bifurcations in the hierarchical system {B k}K2
k � 1, as C1 deformations of the same

reference bifurcation B̂. A method for achieving this is presented in Løvgren et al.
(2005).

The pressure solutions on the deformed bifurcations also comprise six elemental
contributions, and on the generic bifurcation B k, these are evaluated as
p̃ k

i � { p̃ k
ie}

6
e � 1 � {pie � �ie � (�k

e)� 1}6
e � 1.

We define the spaces

Y 0
N (�) �
span{ũ k

i }
N1
i � 1,

span{ũ k
i }

N2
i � 1,

k � 1, … , K1

k � K1 � 1, … , K1 � K2
(3.7)

MN (�) �
span{p̃ k
i }

N1
i � 1,

span{p̃ k
i }

N2
i � 1,

k � 1, … , K1

k � K1 � 1, … , K1 � K2,

for which we know that the inf-sup condition is not fulfilled since the velocity fields in
Y 0

N(�) are all divergence free. The index N denotes the dimension of Y 0
N(�) and MN (�),

and may be expressed as

N � N1K1 � N2K2. (3.8)

Recall that N1 is the number of precomputed basis functions for the K1 pipe blocks, and
N2 is the number of precomputed basis functions for the K2 bifurcation blocks. We have
that N1�� N and N2�� N , and both are independent of the number of spatial dimensions.

We also need to enforce a continuity condition across the block interfaces in �,
�̄kl � B̄ k � B̄ l. We try to minimize the jump across these block interfaces by introducing
the constraints

�
�kl

(v k � v l) · n� ds � 0, ∀� � W n
k, l , ∀k, l, (3.9)

and

�
�kl

(v k � v l) · t� ds � 0, ∀� � W t
k, l , ∀k, l, (3.10)

where n is the unit normal vector of �kl, t is the unit tangential vector, and W n
k, l and W t

k, l

are spaces of low order polynomials defined on �kl. In Løvgren et al. (2004) it is shown
that the order of these polynomial spaces can be used to control the jump across the
interfaces for multi-element pipes. We thus define the reduced basis velocity space

X 0
N(�) � {v � Y 0

N(�), (3.9) and (3.10) hold}, (3.11)

and remark that X 0
N(�) � XN (�) due to the jump across the block interfaces.
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If we are not interested in the pressure on the generic domain, we may solve the
problem: Find uN in X 0

N(�) such that

aN (uN , v; �) � lN (v; �), ∀v � X 0
N (�). (3.12)

In this case the inf-sup condition is insignificant. If we also want to find the pressure
however, the reduced basis velocity space XN (�) must be enriched. This is due to the
fact that the space X 0

N is spanned by divergence free basis functions. We define the
enriched space as X N (�) � X 0

N (�) � X e
N (�), where X e

N consists of velocity fields
constructed in order to guarantee the inf-sup condition, together with the constraints in
(3.9) and (3.10); see Løvgren et al. (2004) and Løvgren et al. (2005) for details on how
to construct these velocity fields.

The inf-sup condition (2.9) is then fulfilled for the spaces MN (�) and XN (�), and we
may solve (3.1) to find both the velocity and the pressure simultaneously involving a
system of size 3N. Alternatively, we could solve the two separate N-sized problems
(3.12) and

bN (v, pN ; �) � � aN (uN , v; �) � lN (v; �), ∀v � X e
N (�), (3.13)

for the velocity and pressure, respectively. Note that neither X 0
N (�) nor X e

N (�) is a
subset of XN (�), and that both methods are non-conforming.

4. A posteriori error estimation

Since the approximation abilities of the reduced basis method strongly depends on
the quality of the precomputed basis functions, we have no a priori knowledge of how
well the reduced basis solution for a generic parameter will approximate the actual
solution. To get an estimate of how good our solution is we need a posteriori error
estimation. Based on the theory developed in Prud’homme et al. (2002), and following
the strategy of Rovas (2002), the lower and upper output bounds, s�(uN ) and s�(uN ),
for the compliant output

s(u) � l(u), (4.1)

was constructed in Løvgren et al. (2004) in the single block case, where XN (�) � XN (�).
For a diffusion operator on the reference domain �̂,

â(v, w; �) ��
�̂

g(�)�̂(v � �) · �̂(w � �) d�̂, (4.2)

where v and w are functions on B, and g(�) is a positive function depending on the
mapping ���̂ → �, g(�) is chosen such that

�0�v�2
XN

	 â(v, v) 	 a(v, v) ∀v � XN (�), (4.3)

for some positive real constant �0. The reconstructed error e is then defined as the field
that satisfies

â(e, v; �) � l(v; �) � a(uN , v; �) � b(v, pN ; �) ∀v � X̃N (�), (4.4)

where X̃N (�) � {v � � � (PN (�̂))2, v��w � 0}. For the bounds defined by

s�(uN ) � l(uN ), (4.5)
and

s�(uN ) � l(uN ) � â(e, e), (4.6)
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we then get

s�(uN ) 	 s(uN ) 	 s�(uN ). (4.7)

In the non-conforming setting when � consists of several blocks, the work is
on-going.

4.1. Output driven reduction

When we generate the reduced basis, the number of basis functions quickly increases
when more parameters are introduced. Potentially we could end up with more than
thousand basis functions, which would make the method rather costly and impractical.
Fortunately, the basis functions typically contain much redundant information. Different
post-processing techniques (Berkooz et al. (1993), Burkhardt et al. (2005), Machiels
et al. (2000)) may be applied to reduce the number of basis functions needed, while
preserving the approximation capabilities of the generated basis.

We follow the method presented in Veroy et al. (2003), where the output bound gap
developed in Section 4 is used to reorder the basis functions, such that the error in the
output of interest, s(u), is minimized. We also recall that SN is the set of preselected
parameter values. Adapted to geometric parameters, we proceed as follows, separately
for the different block structures, i.e., pipe and bifurcation.

Offline we choose an arbitrary parameter �
1 � �i � SN , with corresponding geometry
Bi and basis functions ui, u e

i , and pi. These basis functions are saved as v1, v e
1, and q1,

and they span the spaces XN
1 � {v1, v e
1} and MN
1 � {q1}. For all �j � SN \�
1 we now solve

aN (uN
1, v; �j ) � bN (v, pN
1; �j ) � lN (v; �j ) v � XN
1(Bj )
(4.8)

bN (uN
1, q; �) � 0 q � MN
1(Bj ).

and calculate

�
2 � max
�j � SN \�
1

|s�(uN
1) � s�(uN
1) |, (4.9)

where uN
1 is the resulting reduced basis velocity. The basis functions corresponding to
�
2 are saved as v2, v e

2, and q2, and together with v1, v e
1, and q1 they span the spaces XN
2

and MN
2. We denote SN
2 � {�
1, �
2} and repeat the process above for all �j � SN \SN
2. In
a recursive manner we thus choose �
i with corresponding velocity and pressure basis
functions until the maximum bound gap reaches a predefined level.

In the online computation of generic solutions, we then start with �
1 and its
corresponding basis functions. We solve for the reduced basis solution, and calculate the
bound gap. If the bound gap is larger than a specified limit, we include the basis
functions corresponding to the next parameter in SN 
. The bound gap limit in the online
case has to be larger than the bound gap limit used to sort the basis functions. If the
number of basis functions in SN 
 is not too large we may also include all of them to find
the reduced basis solution in a non-adaptive fashion. Since the a posteriori analysis for
the multi-block case is missing, this is what is done when solving the hierarchical flow
system in Figure 1.

5. Parameterizing the geometries

In (2.17) and (2.18) we see how the geometric mapping � enters the steady Stokes
equations in a natural way. To control different instantiations of this mapping we define
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�(�̂; �), where � � D �RP. The P elements in � are parameters which describe, for
example, the length, thickness and opening angle of a bifurcation block. Given �, a pipe
or bifurcation block is constructed by defining its outer edges according to �, and then
the internal nodes are found using a Gordon-Hall algorithm. Finally, for multi-element
blocks, all the internal nodes are adjusted according to the smoothing process described
above. After all the points are found, the blocks may be rotated to any desired
orientation. We note that all corners in the blocks are right angles.

Once the final values of all the nodal points have been computed, the Jacobian, J, of
the mapping �(�̂; �) and its determinant, J, are calculated and stored for each node. If
we again study (2.17) and (2.18), we see that these quantities appear nonlinearly in the
equations. Thus we have nonlinear parameter dependence, which is fundamentally
different from most reduced basis applications. The equations are not affine in their
parameter dependence either; see Prud’homme et al. (2002) for affine, linear parameter
dependence, and Barrault et al. (2004) for non-affine parameter dependence.

Since we are only interested in giving a proof of concept, we choose P � 2 for the
bifurcations, and let � � (�1, �2). We let the first parameter, �1, define the difference in
length between the upper leg of the bifurcation and the lower leg, i.e., �1 � Ll � Lu; see
Figure 3. The second parameter, �2, is taken to be the difference in the opening angle
of two legs of the bifurcation, i.e., �2 � 1 � 0.

The outline of the bifurcation is defined through its corner points and the length of
the body relative to the length of the legs. The opening angle is adjusted by a rigid body
rotation of the two cornerpoints of the upper leg around the centerpoint of the inflow
boundary. Before any rotation, the difference in length between the two legs is defined
by setting the x-coordinates of the corner points of the upper leg, (both are the same
before the rotation). The non-linear edges of the bifurcation are constructed such that
they pass through the corner points and the common edge point of the two elements
sharing an edge, and such that they are perpendicular to the inflow and outflow
boundaries. The upper and lower edges are fourth order polynomials, while the edge
connecting the two legs is, for optimal flexibility, constructed by the use of cubic splines.

Figure 3. The parameters used to define the bifurcations.
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Figure 4. The deformed pipes used to construct the basis functions for the pipe blocks.

For the pipes we choose P � 4, and let � � (�1, … , �4). We let the first parameter
denote the rotation of the outflow boundary relative to the inflow boundary, see
Figure 4 for �1 � 0 and �1 � �

�
2 . The second and third parameters are used to define the

length of the inflow and outflow boundaries, and the fourth parameter defines the
fluctuation of the wall boundaries.

6. Numerical examples

We now present some examples of the method applied to different geometric
structures. The first is a pipe consisting of three elements, where the solution is found
as a linear combination on each element, glued together with Lagrange multipliers. The
second is a six-element bifurcation, where the solution is found as a linear combination
of global basis functions. The third structure is a hierarchical system consisting of one
pipe and three bifurcations. The solution is now found as a linear combination on each
block structure, i.e. pipe or six-element bifurcation, and glued together with Lagrange
multipliers across the block interfaces. The final structure is a “bypass” system with three
pipe blocks and two bifurcation blocks.

6.1. Pipes

We consider the eight geometries in Figure 4 to be pipes with inflow boundary along
the left vertical edge, and outflow boundary along the opposite edge. Each pipe is
decomposed into three sub-domains, all of which are regular one-to-one deformations of
the reference square �̂ � ( � 1, 1)2, and the restriction to each sub-domain of the steady
Stokes solutions found on these geometries are stored on �̂. In addition we store the
reflection of the solutions across the �-axis in �̂. This accounts to solving the steady
Stokes equations on the reflection of the geometries across the x-axis. Since the first
geometry is symmetric, we thus end up with 15 precomputed solutions for each
sub-domain. We compute the associated enriched velocity solutions, and solve (3.1)
when � is taken to be a generic deformed pipe, decomposed into three sub-domains.
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Table 1. The reduced basis error on a generic multi-block
pipe with three blocks. N � 3N1 is the total number of
degrees-of-freedom in the reduced basis spaces X 0

N, X e
N, and

MN. N1 is the number of basis geometries used to generate the
basis functions.

N N1 �uN � uN �H1 �pN � pN �L2

27 9 2.3 · 10� 3 3.6 · 10� 1

33 11 1.2 · 10� 3 5.8 · 10� 2

39 13 9.7 · 10� 4 4.4 · 10� 3

45 15 8.4 · 10� 4 3.6 · 10� 3

Table 2. The reduced basis error on a single
bifurcation. N is the total number of degrees-of-
freedom in the reduced basis spaces X 0

N, X e
N, and MN.

N �uN � uN �H1 �pN � pN �L2

1 1.4 · 10� 2 8.8 · 10� 2

5 5.0 · 10� 4 4.8 · 10� 3

10 9.9 · 10� 6 7.2 · 10� 5

15 4.0 · 10� 6 7.3 · 10� 6

Since we only have N1 � 15 basis functions in this case, we do not apply the selection
algorithm described in Section 4.1.

When we use cubic Lagrange multipliers in both the normal and tangential direction
to glue the solution together across the block interfaces, the error of the reduced basis
solution for an increasing number of basis functions is as presented in Table 1.

6.2. Bifurcations

We consider bifurcations characterized by the length and angle of the upper leg
relative to the length and angle of the lower leg. In the tensor product parameter space
generated by eight relative lengths and eight relative angles, we generate 64 bifurcations.
We precompute the steady Stokes solutions on these bifurcations, and store them on �̂.
Again we compute the associated enriched velocity solutions, but before we find the
reduced basis solution we apply the selection algorithm described earlier.

The resulting errors in velocity and pressure are presented in Table 2, and we see that
the convergence is very good. It is better than the convergence seen for a multi-element
pipe in Table 1, both because we don’t have any consistency error from the element
interfaces, and because the basis bifurcations span the generic bifurcation better than the
deformed pipes represent the generic pipe in the previous example.

In this single-block case we may apply the a posteriori error analysis described in
Section 4, and we compute both the upper and the lower bound gaps. We do this without
using the selection algorithm, and the bound gaps converge as shown in Figure 5. Even
without the selection algorithm the convergence is exponential.
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Figure 5. The bound gaps when varying two geometric parameters on a single bifurcation.

6.3. Hierarchical flow system

An example of a multi-block domain comprising both pipe blocks and bifurcation
blocks, is the complex flow system shown in Figure 1. To precompute the basis
solutions, we use the same geometries for both pipes and bifurcations as described
above. For the pipes we only use the restrictions to the inflow element, while we for the
bifurcations precompute the solutions by adding pipe elements to the inflow and outflow
boundaries in order to get the right boundary conditions. Only the restrictions of the
solutions to the bifurcation block are stored and used as basis solutions. For the pipe
block we use all 15 precomputed solutions, while we for the bifurcation blocks again use
the selection process to limit the number of precomputed solutions to 30. To glue the
blocks together across block interfaces, we again use Lagrange multipliers. Since each
bifurcation block consists of two elements on the interface to an adjacent block, we now
use linear Lagrange multipliers defined on one half of the interface. In Table 3 we see
how the errors in velocity and pressure behave as the number of basis functions
increases.

Table 3. The error in the reduced basis steady Stokes solution
on a multiblock system corresponding to Figure 1. N � N1 � 3N2

is the total number of degrees-of-freedom in the reduced basis
spaces X0

N, Xe
N, and MN. N1 is the number of basis geometries used

to generate the basis functions on the pipe block, N2 is the
number of basis functions used on the bifurcation blocks.

N N1 N2 �uN � uN �H1 �pN � pN �L2

36 9 9 2.6 · 10� 3 4.0 · 10� 1

44 11 11 1.7 · 10� 3 6.6 · 10� 2

52 13 13 1.2 · 10� 3 4.9 · 10� 2

65 15 15 1.1 · 10� 3 3.7 · 10� 2

105 15 30 4.2 · 10� 4 6.3 · 10� 3
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6.4. A “bypass”

As the final example we combine both block structures in the bypass system shown
in Figure 6. Here the upper branch illustrates the effect of a clogged vein, while the
lower branch is the bypass-vein. To model this domain with the reduced basis element
method, we use snapshot solutions computed on three-domain pipes to generate the basis
functions for the pipe blocks. The restriction of the snapshot solutions to each of the
three sub-domains are now used as basis functions on their respective pipe block in the
bypass system. As basis functions for the bifurcation blocks we use the same basis
functions that were used on the hierarchical flow system in the previous example.

In this case we have two more block-interfaces compared to the hierarchical flow
system, each contributing eight constraints on the reduced basis velocity solution uN

(2 constraints in each spatial direction for each half of one interface). We see in

Table 4. The error in the reduced basis steady Stokes solution
on a multiblock bypass with three pipe blocks and two
bifurcation blocks. N � 3N1 � 2N2 is the total number of
degrees-of-freedom in each of the reduced basis spaces X0

N, Xe
N,

and MN. N1 is the number of basis geometries used to generate
the basis functions on the pipe block, N2 is the number of basis

functions used on the bifurcation blocks.

N N1 N2 �uN � uN �H1 �pN � pN �L2

45 9 9 9.3 · 10� 3 3.3 · 10
55 11 11 3.1 · 10� 3 5.3 · 10� 1

65 13 13 2.3 · 10� 3 9.0 · 10� 2

75 15 15 1.4 · 10� 3 5.3 · 10� 2

105 15 30 5.4 · 10� 4 3.0 · 10� 2

Figure 6. The bypass with three pipe blocks and two bifurcation blocks.

Figure 7. The contour of the error in the reduced basis pressure solution pN when N1 � 15 and
N2 � 30.
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Table 4 that the error convergence is good, but if too few basis functions are used we
get spurious pressure modes due to the severe constraints on the reduced basis velocity
space XN (�).

In Figure 6 we present a contour plot of the error in the reduced basis pressure
solution pN when N1 � 15 and N2 � 30. Most of the error is located around the pipe block
modeling the clogged vein. Compared to the deformed pipes in Figure 4, used to
generate the basis functions for the pipe blocks, this pipe block differs significantly.

7. Future work

We have seen how the reduced basis element method works on the steady Stokes
problem when the geometry is considered to be a parameter. In a forthcoming paper we
will consider the steady Navier-Stokes equations, and theory for the a posteriori error
estimation in the multi-block case. In addition we will incorporate the non-affine theory
of Barrault et al. (2004) in order to do more of the necessary computations in the
precomputation stage. Other issues to investigate include the extension to time-depen-
dent problems, possibly with moving boundaries, and extension to three dimensional
domains.
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