
Modelling Data Interaction Requirements
A Position Paper

Sagar Sen, Jose Luis de la Vara, Arnaud Gotlieb
Certus V&V Center

Simula Research Laboratory
Lysaker, Norway

Email: {sagar,jdelavara,arnaud}@simula.no

Arnab Sarkar
Institute Of Engineering And Management

West Bengal University Of Technology
Kolkata, India

Email: ArnabSarkarCalcutta@gmail.com

Abstract—Data-intensive information systems constitute the
backbone of e-commerce and e-governance services running
worldwide. Structured data is a central artefact in these infor-
mation systems. Requirements for structure in data are typically
modelled in a database schema. However, information system
behaviour is often a function of interactions that cross-cut
database features such as field values in different tables. For
instance, consultants at the Norwegian Customs and Excise reveal
that taxation rules are triggered due to data interactions between
10,000 items, 88 country groups, and 934 tax codes. There
are about 12.9 trillion possible three-wise interactions of which
only about 220,000 interactions are used in reality as customs
rules. Therefore, we ask, how can we model data interaction
requirements to further bound the input domain of an information
system? In this position paper, we address this question by
modelling data interaction requirements using classification tree
models. We also present different applications of data interaction
requirements in the development of information systems.

Index Terms—data requirements; data interactions; modelling
the data perspective; classification tree model;

I. INTRODUCTION

Data-intensive software systems are increasingly prominent
in driving global processes such as scientific and medical
research, e-governance, and social networking. Large amounts
of data is collected, processed, and stored by these systems in
databases. Requirements for developing these specific types of
information systems have three principal perspectives: data,
functional and behavioural according to Pohl and Rupp [1].
Modelling requirements for the data perspective is the overall
area of this paper. In the data perspective, input and output data
is usually modelled using conceptual models such as entity-
relationship diagrams, database schemas, and class diagrams.
These models can later be used for creation of a database. Nev-
ertheless, these modelling languages do not support modelling
of interactions between data elements that cross-cut several
database tables and their fields.

We define the term data interaction as a set of values for
fields in a database schema. These fields can be from any table
of the schema. In this paper, we aim to show the importance
of modelling data interaction requirements and how we have
started to deal with their modelling. We will illustrate this
with an industrial case study at the Norwegian Customs and
Excise (NCE) department. The NCE uses the TVINN system
to processes about 30,000 customs declarations a day. The

Database Name

Table Names

Field Names

Field Values

Data Interaction
Requirement

[]

Whiskies Vodka Rum Beer

Fig. 1. Model of Data Interaction Requirements

TVINN system at the NCE has been in operation since
1988 and is a massive database application that processes
declarations sent as standard EDIFACT messages 1. These
messages are encoded from information in an user interface
for customs officers and companies concerned with import
and export in Norway. A sophisticated batch application called
EMIL processes about 30,000 declarations per day to notify
customs officers about the correctness of the declarations. The
correctness is verified based on a large set of well-formedness
rules and customs laws and regulations. The customs laws and
regulations are typically a three-wise function of interaction
between fields values (from different tables) such as 10,000
items, 88 country groups, and 934 tax codes. This gives rise to
about 12.9 trillion three-wise interactions of which only around
220,000 interactions are used in customs rules. Consequently,
more than 99.99% of all three-wise interactions are irrelevant
to the TVINN information system.

Reducing the unrealistic possibilities in inputs is an essential
requirement for a critical information system such as TVINN.
A single error in the computation of tax due to incorrect
choice of rules could lead to catastrophic consequences in
terms of public image. Therefore, it is necessary to model
data interactions to bound the data processed by the system.

We propose the use of Classification Tree Models or di-
agrams to model data interaction requirements. These re-
quirements are specified on an existing data model such as

1http://www.unece.org/trade/untdid/welcome.html

a database schema. A classification tree model presents a
high-level visual and structured presentation of set of choices
in field values from different tables of a database. A set
of chosen values for the different fields represents a data
interaction requirement. We use the tool CTE-XL [2] to
specify classification tree models that show data interactions.
We illustrate an example classification tree model in Figure
1. The example model is used to model all two-wise or
pairwise interactions between four imported alcohol types and
the declaration categories MA (manual intervention) and FU
(finalized declaration). The first data interaction requirement
states that the information system rules database must contain
an interaction between alcohol type vodka (22086000) and
manual (MU) verification of a declaration. The paper presents
several applications of modelling data interaction requirements
with classification tree models.

The paper is organized as follows. In Section II, we present
a detailed overview of the case study at the NCE. We use
the case study to explain the general approach of modelling
data interactions. In Section III, we present the data interaction
modelling approach and its potential applications. Section IV
discusses the related work, while we conclude in Section V.

II. INDUSTRIAL CASE STUDY: NORWEGIAN CUSTOMS
AND EXCISE DEPARTMENT

We describe our industrial case study from the NCE as
illustrated in Figure 2(a). As mentioned above, the system
under study is TVINN. An overview of TVINN process flow is
presented in Figure 2(a) and an official description is available
on its website2.

Customs officers and industries associated with import and
export create declarations at Norwegian ports of entry. These
declarations are encapsulated in the EDIFACT standard for
business communication. A declaration is encapsulated as an
EDIFACT CUSDEC message. These messages are sent to
TVINN’s central server where they are processed by a sophis-
ticated batch application called EMIL. EMIL parses EDIFACT
messages and verifies them against well-formedness rules. It
then verifies if the declared amount is accurately computed
based on a statistical value for an item. These rules depend on
numerous factors such as (a) 260 countries of origin divided
in 88 country groups. (b) over 160 currencies. (c) around 900
tax code groups, and (d) a list of more than 10,000 items.
A declaration can be categorized into six different categories
based on EMIL’s computation, the simplest categories being
complete and reject. The response from TVINN is sent back as
an EDIFACT CUSRES message to customs officer or industry.

Rules in TVINN evolve on a regular basis (approximately,
every six months), depending on new governmental policies,
sanctions, and change in political parties. TVINN is also
affected with time-bounded rules created by customs officers.
These rules exist for a short period of time. For instance, a
customs officer could decide to thoroughly check 20 trucks
coming from a nation X in civil war and he/she would create

2https://fortolling.toll.no/Tvinn-Internett

a rule to check all the trucks from the nation for the following
three hours. These kinds of rules are called mask control and
will disappear after a fixed time limit. These rules can change
on an everyday basis without anticipation, making TVINN a
highly dynamic system.

TVINN is a complex and dynamic database application with
a high number of requirements. Modelling and validating data
interaction requirements in TVINN is the principal challenge
presented in this paper. This activity, will help address the
following challenges in the information system:
Data-processing Rule Validation Records obtained from
real-world transactions, such as customs declarations, can
validate a realistic subset of all possible data processing
rules, such as taxation rules. However, they often do not
cover combinations of values that are very rare or exceptional.
Modelling data interactions will help create data records with
specific combinations.
Very Large Set of Records: Accumulating information
from real-world transactions can easily give rise to an
ever-growing set of data records. Many of these records
share similarities and hence are redundant for the purpose
of validating requirements satisfaction in the information
system. This means that the same data interactions may occur
multiple times. Cost-effective system validation will require
a selection of a minimal set of records that precisely satisfy
all data interaction requirements. Models of data interactions
can help identify such a minimal set.
Constantly Changing Rules: Information systems such
as those in e-governance evolve on a regular basis. For
instance, in the NCE system, customs rules change when
sanctions are imposed on countries or significant changes
happen in currency exchange rates. Customs rules process
different combinations of data elements as the system evolves.
Modelling data interaction requirements alleviates the task of
setting new bounds to the input domain.

III. MODELLING OF DATA INTERACTION REQUIREMENTS

In this section, we present an approach to model data
interaction requirements and introduce the applications of the
approach. In Section III-A, we present foundational notions
of database schemas and classification tree models. In Section
III-B, we describe the modelling approach, and in Section
III-D we present applications of data interaction requirement
models.

A. Foundations

1) Database Schema: Data requirements are typically mod-
elled using a data model such as a database schema[1].
It specifies the input domain of a database in an informa-
tion system. We briefly describe the well-known concept of
database schema. More information on them can be found
in a standard database textbooks such as [3]. A database
schema typically contains one or more tables. A table contains
fields with a domain for each field. Typical examples for field
types/domains are integer, float, double, string, and date. The

FIRSTNAME
LASTNAME
ADDRESS

CUSTOMERID
(PK)

Customers

CATEGORY
EXCHANGERATE
CURRENCYCODE
DECLAREDAMOUNT
TAXAMOUNT
TRANSPORTCOST
DIRECTION
COUNTRYCODE

CUSTOMERID (PK FK)
DATE (PK)
SEQUENCE (PK)
VERSION (PK)

Declarations

ITEMCODE
STATISTICALVALUE
GROSSWEIGHT
DECLAREDAMOUNT
NETWEIGHT
ADJUSTMENT
ORIGINCOUNTRY

CUSTOMERID (PK FK)
DATE (PK FK)
SEQUENCE (PK FK)
VERSION (PK FK)
LINENUMBER (PK)

Items

TAXFEECODEGROUP
COUNTRYGROUP
KEYCODE
TAXRATE
BASIS
AMOUNT

CUSTOMERID (PK FK)
DATE (PK FK)
SEQUENCE (PK FK)
VERSION (PK FK)
LINENUMBER (PK FK)
SERIALNUMBER (PK)

Taxes

refers
refers

refers

EDIFACT CUSDEC
declarations from industries

TVINN
Database

EMIL
Script

Norwegian Toll Customs uses the TVINN system to handle about
30,000 declarations/day

EDIFACT CUSRES
responses to industries

(a) (b)

Fig. 2. (a) The TVINN System at Norwegian Customs and Excise (b) Subset of Database Schema of TVINN

value of each field must be in its domain hence maintaining
domain integrity in a database. A table contains zero or more
records, which is a set of values for all its fields within their
domain. A table may also contain one or more fields that are
referred to as primary keys, which identify each record. In
addition, each table may refer to primary keys of other tables
via foreign keys. The value of foreign keys must match the
value of a primary key in another table. This is known as
a referential integrity constraint. We refer to the combined
concepts of referential integrity and domain integrity as data
integrity. Records in a database must satisfy data integrity as
specified by its database schema. Databases can be queried
using Structured Query Language (SQL) queries. We use
queries to create views and to select and count number of
records. In this paper, we use the database schema, shown in
Figure 2(b) for the NCE case study.

2) Classification Tree Model: We use the classification tree
models to graphically represent data interaction requirements.
The models are created using the tool CTE-XL tool[2]. CTE-
XL is an editor based on the classification-tree method, as an
approach to category-partition validation that uses a descriptive
tree notation. This tool can scale up to the complexity of input
domains such as the one of the Norwegian Tax Department
[4]. CTE-XL has the notion of compositions, classifications
and classes to model variability in a database record. The
variability is typically modelled as a tree. CTE-XL also allows
the specification of dependency rules as boolean constraints
to constrain selection of classes across the tree. It provides all
features necessary to model a constrained domain. In Figure
1, the top-level composition is the name of the database,
the second-level compositions are table names, the third-level
classifications are field names and finally in the fourth-level
we have classes representing values that go into fields. Data

interaction requirements can be specified manually in CTE-XL
by clicking on a button for each field value in a requirement.
We specify data interaction requirements in CTE-XL as test
cases. CTE-XL can also be used to automatically generate
interaction requirements that cover all pair-wise or three-
wise interactions between classes of choice. For instance, in
Figure 1, we present all pair-wise interactions between two
declaration categories and four item codes.

B. Modelling Data Interactions

We assume that a modeller is knowledgeable about the
database schema of the information system for which data
interaction requirements are specified. The modeller specifies
data interaction requirements as a classification tree model.
An example is illustrated in Figure 1. The different elements
of the classification tree model for data interactions are as
follows:
Root Composition for Database: It is an identifier for a
database on a server. Software that analyzes the classification
tree model can identify a concrete database using this
identifier. In Figure 1, this is represented by the composition
TollCustomsDemo.
Compositions for Tables: The root composition can contain
several compositions representing identifiers for tables. In
Figure 1, this is represented by the compositions Declarations
and Items from the schema shown in Figure 2(b). All or only
a subset of tables maybe be specified depending on the use
of the model.
Classifications for Fields: Fields in tables are classifications
in the third level of the classification tree. For instance, in
Figure 1, we use the fields Category and ItemCode. All or
only a subset of fields for a table maybe be specified in the
model.
Classes for Field Values: The different values for fields are

classes in the model. For instance, in Figure 1, the fields
values MA and FU are associated with the classification for
the field Category. Field values are unique and an interaction
can have exactly one possible field value.
Interactions as Test Cases in Groups: Interactions between
field values across different tables are represented as test
cases in a classification tree model. For instance, in Figure 1,
pairwise.TestCase1 represents the interaction {MA,2208600}.
This is the interaction between the an ItemCode for alcohol
type Vodka and manual processing of a declaration. One may
envisage the use of such an interaction to generate customs
rules. Interactions in CTE-XL can either be generated
automatically such that all pairs or three-wise interactions
between two or three classes are covered. Requirements
engineers can also manually specify them. Test cases or
interactions can be divided into groups to represent data
interaction requirements for different facets of the information
system.

The tool CTE-XL also allows specification of additional
boolean constraints between classes, compositions, and clas-
sifications to limit the number of interactions or test cases.

C. Data Interaction Requirements to Software Artefacts

The data interaction requirements expressed as test cases
in a classification tree model can be transformed to different
types of software artefacts. We present some of the artefacts
that could be put to use.
Code Generation for Data Processing: Data interaction
requirements in a CTE-XL model can serve as input to gener-
ate boilerplate code for data processing in many imperative
languages including PL/SQL, Java. Generated code can be
in the form of condition-action expressions. Conditions are
data interaction requirements for fields cross-cutting a database
schema and actions could for instance be database updates. In
the Norwegian Customs case study a condition could amount
to a customs law between country group, and item code, tax
fee code to produce a taxation rate on goods. We may also
envisage generating code for data selection and filtration in
very large databases.
Test Case Generation: Interactions in a CTE-XL model can
be used to generate input test cases. For instance, they can
be used to generate SQL queries that verify the integrity of
data extracted from a variety of fields in a database. A create
view SQL query for instance can be used to extract data from
multiple interacting fields. A select count query in SQL can
count the frequency or absence of interactions in a database.
Questions such as, does my database contain an interaction
that is not valid may be answered with such queries.
Visualizing Requirements Coverage: Data in databases may
require to maintain certain properties. Such properties may be
specified by a data interaction requirements. We can imagine
extracting data interactions and visualizing them in concise
manner using graphing libraries such as Google charts. These
charts will help observe which interaction requirements are
satisfied and which are not. This is particularly a challenge

for Big Data where millions of records need to be analysed
for requirements coverage.

D. Applications

We list out some of the applications of modelling data
interactions requirements with our approach:
Modelling Bounds on Data: Information system data is
typically bound by a data model. The data model such as a
database schema specifies domains on fields and constraints
such as unique key to ensure data integrity. However, data
interactions that cross-cut a data model sometimes need
to be restricted or bounded. We illustrate this using the
customs rules. Some interactions never occur in reality.
A model of data interaction requirements can prevent
fields (in different tables) from taking on values that are
not valid. These models can be specified by a domain
expert. For instance, a custom rule that sets tax on an item
with currency code NOK and origin country China is unlikely.

Inputs for Data Processing Rules: We can use a classification
tree model to automatically generate code templates for rules
to process data in an information system. There is also the
need to maintain traceability between the model and the code.

Surgical Knowledge for Requirements Engineers:
Requirements engineers can use a data interaction model
to probe an information system’s database like a surgeon.
Requirements for different facets of an information system
can be specified in different models. The information in the
model can be used to both synthesize code and perform
different types of analysis on the information system.

Testing for Coverage and Robustness: All feasible T-wise
interactions between field values in a database can be used
to verify coverage in a large database. For instance, one may
wonder if a very large database exported from TVINN covers
all customs rules. The set of 220,000 three-wise interactions
between item codes, country groups, and tax types can be
modelled in a classification tree model and hence be used to
check database coverage.

Visualizing Interactions and their Coverage: We may
inverse the problem an use the classification tree model
to visualize interactions between field values present in
an existing database. Are all interactions in real-world
transactions valid given a set of boolean constraints? This
is one possible question we may address by visualizing
interactions extracted from a database.

IV. RELATED WORK

Although modelling of requirements in general and of data
requirements in particular have been important research topic
for the last two decades (see for instance [1]), modelling of
data interaction requirements has received very little attention.

Modelling such requirements can be essential for critical
information systems such as TVINN.

We present classification tree models as a visual language
to model data interactions. However, there are other languages
that could be used to model these interactions. Feature mod-
elling [5][6] could be a successful alternative to classification
tree models, and, tool support exists for automated analysis of
feature models [7][8]. These tools, can also be used to generate
configurations (or valid interactions) that satisfy constraints in
a feature model [9] [10] [11]. However, our principal reason
to use classification tree models for data interactions are: (a)
the rigid semantic of classification tree models ensures exactly
one class per classification, which is ideal to represent unique
variations in field values in a database; (b) convenient visual
interface to specify and observe data interaction requirements,
and; (c) past experience of using CTE-XL for large industrial
case study at the Norwegian Tax department [4]. CTE-XL
could visually represent contents of 4 million customer records
without crashing. In [12], the authors illustrate how annotated
graphs and entity-relationship diagrams can be used to merge
multiple views of database system. This mechanism can be
seen as a possible approach to merge interactions across views
in a database in future work.

Classification tree models have also been recently used in
the industrial context [4]. In [4], the authors used classification
trees to model functional requirements in a database appli-
cation. They look at the inverse problem of finding database
records that satisfy functional requirements specified at a high-
level. These database records were, used as test cases to
find regression faults in the Norwegian Taxation information
system SOFIE using their regression testing tool DART.

V. CONCLUSION

Requirements in data-intensive software systems have three
principal perspectives data, function, and behavior. The re-
quirements for the data perspective of information systems
specify the input/output domain, and, database schemas are
typically used to model them.

In this paper, we take modelling of the data perspective
a step further by modelling data interaction requirements:
interactions between field values across tables in a data
model. Our motivation emerges from importance of data
interactions in many critical informations systems, especially
for e-governance.

We have presented the use of the classification tree models
to specify data interaction requirements for a large, complex
system of the Norwegian Customs and Excise department.
Models of data interaction requirements can be transformed
to different kinds of software artefacts such as boilerplate
code for data-processing rules, test cases, and code to generate
visualizations. The models of data interaction requirements

have several potential applications in developing software
for information systems such as bounding input/output data
that cross-cut the database structure, generating combinatorial
interaction tests, and generating code for data processing
rules. These are open challenges for the software engineering
community in general. From a requirements engineering per-
spective, we believe that maintaining traceability between field
values in information system databases and the data interaction
models could be a direction for future research.

ACKNOWLEDGMENT

We thank the Norwegian Customs and Excise department
for their trustful interactions with us. In particular we would
like to thank Atle Sander, Astrid Grime and Katrine Langset
for their valuable inputs. We thank the Norwegian Research
Council for without their generous support it would not
have been possible to setup such a close Industry-Academia
collaboration for high impact software engineering research.

REFERENCES

[1] K. Pohl and C. Rupp, Requirements Engineering Fundamentals: A Study
Guide for the Certified Professional for Requirements Engineering Exam
- Foundation Level - IREB compliant, 1st ed. Rocky Nook, 2011.

[2] E. Lehmann and J. Wegener, “Test case design by means of the cte
xl,” in Proceedings of the 8th European International Conference on
Software Testing, Analysis & Review (EuroSTAR 2000), 2000, pp. 1–10.

[3] C. J. Date, An Introduction to Database Systems, 8th ed. Boston, MA:
Pearson Addison-Wesley, 2004.

[4] E. Rogstad, L. Briand, R. Dalberg, M. Rynning, and E. Arisholm,
“Industrial experiences with automated regression testing of a legacy
database application,” in Proceedings of the 2011 27th IEEE
International Conference on Software Maintenance, ser. ICSM ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 362–371.
[Online]. Available: http://dx.doi.org/10.1109/ICSM.2011.6080803

[5] D. Batory, “Feature models, grammars, and propositional formulas,” in
SPLC, 2005, pp. 7–20.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing Cardinality-
based Feature Models and their Specialization,” Software Process Im-
provement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[7] M. Antkiewicz and K. Czarnecki, “Featureplugin: feature modeling
plug-in for eclipse,” in OOPSLA workshop on eclipse technology eX-
change. New York, NY, USA: ACM, 2004, pp. 67–72.

[8] S. Segura, “Automated Analysis of Feature Models using Atomic Sets,”
in [13], 2008.

[9] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Le Traon,
“Pairwise Testing for Software Product Lines: Comparison of Two
Approaches,” Software Quality Journal, vol. 20, no. 3-4, pp. 605–643,
Apr. 2012. [Online]. Available: http://hal.inria.fr/hal-00805856

[10] A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in Software Relia-
bility Engineering (ISSRE), 2011 IEEE 22nd International Symposium,
2011, pp. 120–129.

[11] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon, “Automated
and scalable t-wise test case generation strategies for software product
lines,” in International Conference on Software Testing (ICST’10), Paris,
France, 2010.

[12] M. Sabetzadeh and S. Easterbrook, “View merging in the presence of
incompleteness and inconsistency,” Requir. Eng, pp. 174–193, 2006.

[13] D. Benavides, A. Ruiz-Cortés, D. Batory, and P. Heymans, “First
international workshop on analysis of software product lines (aspl’08),”
in SPLC. Washington, DC, USA: IEEE Computer Society, 2008, p.
385.

