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Abstract — In this work we study a preconditioned iterative method for some higher–order time dis-
cretizations of linear parabolic partial differential equations. We use the Padé approximations of the
exponential function to discretize in time and show that standard solution algorithms for lower–order
time discretization schemes, such as Crank–Nicolson and implicit Euler, can be reused as precondi-
tioners for the arising linear system. The proposed preconditioner is order optimal with respect to the
discretization parameters.

Keywords: preconditioning, higher–order time discretizations, parabolic PDEs

1. INTRODUCTION

In this paper we study preconditioners for higher–order time discretizations of linear
parabolic partial differential equations. Optimal solution algorithms for lower–order
discretizations such as the backward Euler or the Crank–Nicolson schemes are well
known, see e.g., [1,11,13], and the main point here is that these algorithms can be
reused as preconditioners for higher–order time discretizations.

The ”same” reasoning has been used with success for higher–order spatial dis-
cretizations. Already in 1985, preconditioners based on lower–order finite difference
or finite element discretizations were reused for the spectral element discretization
of the same equation, [3,5]. There are many later works on this subject. Although
higher–order time discretizations have been extensively studied cf. [13], precon-
ditioning methods for the arising linear systems have not been investigated much.
Only BDF and DIRK methods provide higher–order accuracy in time by solving a
linear system with the same matrix as in lower–order methods. The problem with
BDF methods is that they can not handle temporal adaptivity which is crusial in
many applications. DIRK methods are not stable enough for large time stepping in
parabolic equations. To our knowledge only a few authors have adressed solution
algorithms for other higher–order time discretizations [2,7,9,10].

The outline of the paper is as follows. The main idea is introduced in Section 2.
Then the needed properties of Padé approximation and preconditioning are briefly
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reviewed in Section 3 and Section 4, respectively. Section 5 describes the proposed
preconditioner in detail, and proves order optimality with respect to the discretiza-
tion parameters. In Section 6 we give a more precise bound on the condition number
of the preconditioned system.

2. PRELIMINARIES

In this paper we consider a solution algorithm for discretizations of linear parabolic
partial differential equations. For simplicity, but without loss of generality, we start
with the homogenous model problem

∂u
∂ t

= ∆u, in Ω, t ∈ (0,T),

u = 0, on ∂Ω, t ∈ (0,T),
u = u0, in Ω, t = 0.

This equation is discretized in space, resulting in the following ODE system to be
solved,

duh,p

dt
= Ah,puh,p, t ∈ (0,T), (2.1)

uh,p = u0, t = 0, (2.2)

whereAh,p is the discrete Laplacian (a matrix),uh,p is the unknown (a vector) andh
is characteristic for the mesh size andp is the polynomial degree. In the following
we will drop the subscriptsh andp.

It is known that the linear ODE system (2.1)-(2.2) can be solved with any order
of accuracy with the following time stepping scheme

Qk j(∆tA)un = Pk j(∆tA)un−1, (2.3)

where∆t is the time stepping parameter and the two polynomialsQk j andPk j are
the(k, j)− Pad́e approximation to the exponential function.

We will come back to the specific structure ofQk j andPk j later, but remark that
systems on the following form has to be solved at each time step,

(I −q1∆tA+q2∆t2A2−·· ·+(−1) jq j∆t jA j)un = b.

Here j is the order of the polynomial. Instead of considering a preconditioner based
on the polynomialQk j we want to reuse standard solution algorithms for lower–
order time discretizations of the equation,

(I −∆tA)u = b. (2.4)

Such algorithms have been studied extensively and order optimal algorithms have
been found for most spatial discretization methods. Hence, we do not assume any-
thing on the spatial discretization. LetB∆t be defined as

B∆t = (I −∆tA)−1,



Reuse of Preconditioners for Higher–Order Discretizations 3

and we assume that the evaluation ofB∆t on a vector is an order optimal process.
Then we will demonstrate that

B j
τ

is a good preconditioner for

(I −∆tq1A+q2∆t2A2−·· ·+(−1) jq j∆t jA j),

whereτ = j
√

q j∆t andqi are the coefficients in the Padé approximation described in
the next section.

The proposed preconditioner works just as well for the inhomogeneous parabolic
equations. In fact, c.f. [13], only the right–hand side of (2.3) needs to be altered to
account for the inhomogeneous case.

3. PADÉ APPROXIMATION

Here we briefly review the basics of the Padé approximation c.f. [13]. The polyno-
mials are given by:

Pk j(∆tA) =
k

∑
i=0

(
k
i

)
(k+ j − i)!

(k+ j)!
(∆tA)i ,

Qk j(∆tA) = Pjk(−∆tA).

Notice thatPk j and Qk j are polynomials of orderk and j respectively. It can be
shown that

e∆tA−Q−1
k j (∆tA)Pk j(∆tA) =

(−1) j j!k!
( j +k)!( j +k+1)!

(∆tA) j+k+1 +O
(
(∆tA) j+k+2

)
,

which means that (2.3) is locallyj + k+ 1 order accurate and globallyj + k order
accurate. For a givenk we need to choosej such thatk 6 j 6 k+2 for the method
to be A–stable. We will only consider A–stable Padé approximations in this work.
For more information about Padé approximations of the exponential function and
stability requirements, see [8,13].

4. PRECONDITIONING

Here we briefly review the basics of preconditioning adapted to the given model
problem (2.3). The matrixQk j(∆tA) is symmetric and positive definite (SPD), be-
cause−A is. We also make a SPD preconditioner,Rj . The method of choice for
SPD problems with SPD preconditioners is the preconditioned Conjugate Gradient
method (PCG). Given thatRj andQk j(∆tA) are spectrally equivalent, that is

c0(Rju,u) 6 (Qk j(∆tA)u,u) 6 c1(Rju,u), ∀u,
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then the condition number ofR− jQk j(∆tA), κ(R− jQk j(∆tA)) 6 c1
c0

. We will show
that c0 and c1 are independent of∆t and A. PCG will then converge to a fixed
convergence criterion in a number of iterations which is bounded independent of
∆t andA.

The number of floating point operations needed by the matrix–vector product
of a polynomial inA, P(A), is O( jN), whereN is the number of non zeroes in
the matrix andj is the order of the time discretization polynomial. To see this, let
P(A) = ∑ j

i=0qiAi , then

P(A)u =
k

∑
i=0

qiA
iu = (q0 +A(q1 +A(q2 +A(· · ·))))u.

The evaluation and storage of the preconditionerR−1 is assumed to beO(N), and
therefore the evaluation ofR− j is O( jN).

5. THE OPTIMAL PRECONDITIONER

In this section we will see that the reuse of lower–order (standard) solution algo-
rithms result in a preconditioner which is independent of∆t and A. The analy-
sis, when using certain lower–order preconditioners, reduces to the consideration
of polynomials. We will prove the desired properties analytically and supply with
numerical experiments.

As mentioned earlier, we will reuse solution algorithms for

R= (I −c∆tA).

In fact, the proposed preconditioner is of the form

Rj = (I −c∆tA) j ,

wherec is determined such that the highest order term ofRj(∆tA) equals the highest
order term ofQk j(∆tA). This is done by choosing

Rk j(∆tA) =

(
I − j

√
j!

( j +k)!
∆tA

) j

.

Notice also that the lowest order terms ofQk j(∆tA) andRk j(∆tA) are equal.
We introduce the notation

r i =
(

j
i

)(
k!

( j +k)!

) i
j

and qi =
(

j
i

)
( j +k− i)!

( j +k)!
,

which gives

Rk j(∆tA) =
j

∑
i=1

r i(−∆tA)i and Qk j(∆tA) =
j

∑
i=1

qi(−∆tA)i .
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We have dropped the subscriptsj andk in bothr i andqi for notational simplicity.
The preconditioned system then reads,

R−1
k j (∆tA)Qk j(∆tA)un = R−1

k j (∆tA)Pk j(∆tA)un−1,

whereR−1
k j (∆tA) = (Rk j(∆tA))−1. Our first lemma shows that the two operators

Rk j(∆tA) andQk j(∆tA) are spectrally equivalent independent ofA and∆t, but pos-
sibly dependent onk and j.

Lemma 5.1. The polynomials Rk j and Qk j are spectrally equivalent indepen-
dent of A and∆t,

c0(Qk j(∆tA)v,v) 6 (Rk j(∆tA)v,v) 6 c1(Qk j(∆tA)v,v), ∀v. (5.1)

Moreover,

c1 6 max
i∈[0, j]

r i

qi
and c0 = 1.

Proof. We start by using the fact thatA and the polynomials ofA have the same
eigenvectors. This leads to the following eigenvalues ofRk j andQk j,

Qk j(∆tA)v` =
j

∑
i=1

qi(−∆tA)iv` =

(
j

∑
i=1

qi(∆tλ`)i

)
v` = Qk j(−∆tλ`)v`,

Rk j(∆tA)v` =
j

∑
i=1

r i(−∆tA)iv` =

(
j

∑
i=1

r i(∆tλ`)i

)
v` = Rk j(−∆tλ`)v`,

whereλ` is the eigenvalue of−A that corresponds to the eigenvectorv`.
A straightforward calculation shows that the spectral equivalence (5.1) can be

stated in terms of the eigenvalues ofRk j andQk j

c0(Qk j(∆tA)v,v) 6 (Rk j(∆tA)v,v) 6 c1(Qk j(∆tA)v,v), ∀v,

m
c0(Qk j(∆tA)v`,v`) 6 (Rk j(∆tA)v`,v`) 6 c1(Qk j(∆tA)v`,v`), ∀`,

m
c0Qk j(−∆tλ`) 6 Rk j(−∆tλ`) 6 c1Qk j(−∆tλ`), ∀`,

where∆tλ` ∈ (0,∞).
Let x∈ (0,∞), then we need to consider

c0

j

∑
i=1

qix
i 6

j

∑
i=1

r ix
i 6 c1

j

∑
i=1

qix
i .
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Becausex, {r i} and{qi} are positive we can check each term separately,

c0,iqix
i 6 r ix

i 6 c1,iqix
i ,

and take the minimum and maximum ofc0,i andc1,i to find the estimates forc0 and
c1,

c0 = min
i∈[0, j]

c0,i = min
i∈[0, j]

r i

qi
and c1 = max

i∈[0, j]
c1,i = max

i∈[0, j]

r i

qi
.

In the following we show thatr i
qi

> 1. We have that

r i

qi
=

(
k!

( j+k)!

) i
j

( j+k−i)!
( j+k)!

=
( j +k)( j +k−1) · · ·( j +k− i +1)

(( j +k)( j +k−1) · · ·(k+1))
i
j

=
(

( j +k) j( j +k−1) j · · ·( j +k− i +1) j

( j +k)i( j +k−1)i · · ·(k+1)i

) 1
j

.

There arei times j terms in both the numerator and denominator and these are
ordered such that they decrease towards the right. The crucial point is that when
numbered in this way, thel ’th term in the numerator is always larger or equal to
the l ’th term in the denominator. Therefore,c0 > 1. Equality is obtained because
r0/q0 = 1 (andr j/q j = 1). Hence,c0 = 1 andc1 6 maxi

r i
qi

and the proof is complete.
�

Remark 5.1. Lemma 5.1 gives that the condition number of the preconditioned
system is bounded by

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
< max

i∈[0, j]

r i

qi
.

Remark 5.2. Note that there are two bounds in Lemma 5.1:

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
6 max

x<0

Rk j(x)
Qk j(x)

, (5.2)

max
x<0

Rk j(x)
Qk j(x)

< max
i∈[0, j]

r i

qi
. (5.3)

In (5.2) the inequality is sharp, but the inequality in (5.3) is not sharp. However, the
sharpness of (5.3) is increasing with increasing values ofj andk.
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j\k j j −1 j −2

2 1.07 1.10 1.17

3 1.16 1.20 1.28

4 1.26 1.31 1.40

5 1.37 1.43 1.52

6 1.49 1.56 1.66

7 1.62 1.70 1.81

8 1.76 1.85 1.97

9 1.92 2.02 2.14

10 2.08 2.20 2.34

Table 1. Upper bound on the condition number for various values ofj andk, based on the bound

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
6 maxx<0

Rk j(x)
Qk j(x)

.

5.1. Numerical results

In this subsection we show what Lemma 5.1 means in practice, and demonstrate the
sharpnes of the bounds. In Table 1 we have shown a bound on the condition number
of the preconditioned system based on

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
6 max

x<0

Rk j(x)
Qk j(x)

,

where the polynomial degrees range from 2 to 10. The condition number of the
preconditioned system seems to be increasing slightly, but even for the 10th order
polynomial the condition number seems acceptable.

To test the sharpness of the bound (5.2) we have made an 1D example with a
standard second order finite difference approximation of the Laplace operator, i.e.

A =
1
h2 tridiag(1,−2,1). (5.4)

In Table 2 we choosej = k = 4 and show

E44 = max
x<0

R44(x)
Q44(x)

−κ
(
R−1

44 (∆tA)Q44(∆tA)
)
,

for various values ofh and∆t. From Lemma 5.1 we know thatE44 is a non–negative
number. We observe thatE44 seems to approach zero ash and∆t approach zero.



8 Kent–Andre Mardal and Trygve Kastberg Nilssen

h = ∆t maxx<0
R44(x)
Q44(x)

κ E44

1/125 1.2584 1.2461 0.0123

1/250 1.2584 1.2523 0.0061

1/500 1.2584 1.2551 0.0033

1/1000 1.2584 1.2568 0.0015

Table 2. An illustration of the sharpness of the inequality in (5.2).

j\k j j −1 j −2

2 1.15 1.22 1.41

3 1.23 1.30 1.44

4 1.37 1.45 1.58

5 1.48 1.57 1.70

6 1.62 1.72 1.85

7 1.76 1.86. 2.01

8 1.92 2.03 2.18

9 2.09 2.22 2.38

10 2.27 2.41 2.58

Table 3. Upper bound on the condition number for various values ofj andk, based on the bound

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
< maxi∈[0, j]

r i
qi

.

In Table 3 we show a bound on the condition number of the preconditioned
system based on the bound

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
< max

i

r i

qi
,

where the polynomial degrees range from 2 to 10. These bounds are not sharp, but
the sharpness seems to increase with increased values ofj andk.

The numerical experiments motivate the following lemma, which will be proved
in the next section.

Lemma 5.2. An upper bound on the condition number of the preconditioned
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system is given by

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
< γ · (1.09) j , (5.5)

where

γ = 0.98 for j = k,

γ = 1.11 for j = k+1,

γ = 1.62 for j = k+2.

The constant 1.09 is an approximation of1
4e

4
e , which is the precise constant.

5.2. Numerical tests for the Pad́e approximation scheme

To see the benefit of using higher–order schemes we now show some numerical
experiments for the heat equation in one dimension with homogeneous Dirichlet
conditions. We solve

ut = uxx, x∈ (0,1), t ∈ (0,T) (5.6)
u(0, t) = u(1, t) = 0, t ∈ (0,T) (5.7)
u(x,0) = sin(πx), x∈ (0,1). (5.8)

with T = 0.2. We useM = T
∆t temporal discretization points andN = 1

h spatial
discretization points.

In Table 4 we show the relativeL2 error, i.e.

‖uM −u(T)‖L2

‖u(T)‖L2
,

when an implicit Euler scheme is used for the time stepping, i.e.

un = (I −∆tA)−1un−1.

HereA is a standard second order finite difference approximation of the Laplace
operator, see (5.4). The calculations for each time level cost about 5N floating
point operations for this scheme. The total work is therefore about 5NM multiplica-
tions/divisions.

In Table 5 we show the same as in Table 4 for the Crank–Nicolson scheme, i.e.

un =
(

I − ∆t
2

A

)−1(
I +

∆t
2

A

)
un−1.

The work load for one time step is here about 8N, and the total work for this method
is therefore about 8NM. We mention that the fact that the Crank–Nicolson scheme
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M\N 40 80 160 320 640

2 560 1.72e-3 1.00e-3 8.23e-4 7.76e-4 7.64e-4

5 120 1.34e-3 6.27e-4 4.43e-4 3.96e-4 3.84e-4

10 240 1.15e-3 4.37e-4 2.52e-4 2.06e-4 1.94e-4

20 480 1.06e-3 3.42e-4 1.56e-4 1.10e-4 9.90e-5

40 960 1.01e-3 2.95e-4 1.10e-4 6.33e-5 5.15e-5

81 920 9.89e-4 2.71e-4 8.64e-5 3.95e-5 2.77e-5

163 840 9.77e-4 2.59e-4 7.45e-5 2.76e-5 1.58e-5

327 680 9.72e-4 2.53e-4 6.85e-5 2.17e-5 9.89e-6

Table 4. RelativeL2 error for an implicit Euler scheme in time and second order finite difference
approximation in space.

M\N 160 320 640 1 280 2 560 5 120

80 3.75e-5 8.43e-5 9.61e-5 9.91e-5 9.99e-5 1.00e-4

160 3.75e-5 9.28e-6 2.10e-5 2.40e-5 2.47e-5 2.49e-5

320 5.63e-5 9.49e-6 2.30e-6 5.26e-6 6.01e-6 6.19e-6

640 6.10e-5 1.41e-5 2.38e-6 5.75e-7 1.31e-6 1.50e-6

1 280 6.22e-5 1.53e-5 3.56e-6 5.98e-7 1.43e-7 3.29e-7

2 560 6.25e-5 1.56e-5 3.85e-6 8.91e-7 1.49e-7 3.61e-8

Table 5. RelativeL2 error for a Crank–Nicolson scheme in time and second order finite difference
approximation in space.
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M\N 20 40 80 160 320

5 7.81e-5 6.79e-5 6.72e-5 6.72e-5 6.72e-5

10 1.51e-5 4.92e-6 4.22e-6 4.17e-6 4.16e-6

20 1.12e-5 1.01e-6 3.09e-7 2.63e-7 2.57e-7

40 1.09e-5 7.71e-7 6.58e-8 1.94e-8 1.63e-8

80 1.09e-5 7.56e-7 5.06e-8 4.22e-9 1.24e-9

Table 6. RelativeL2 error for the (2,2)–Pad́e approximation in time (fourth order accurate) and a
fourth order finite difference approximation in space.

is not stiffly accurate explains why the error some places increaces with increased
N while M is fixed.

In Table 6 we do the same for the (2,2)–Padé approximation in time, i.e.

un =
(

I − ∆t
2

A+
∆t2

12
A2
)−1(

I +
∆t
2

A+
∆t2

12
A2
)

un−1.

Here A is a fourth order finite difference approximation of the Laplace operator
based on the approximation

uxx(x)≈
1

12h2 (−u(x−2h)+16u(x−h)−30u(x)+16u(x+h)−u(x+2h)).

For each time level we must evaluate a 9–diagonal matrix and solve a linear sys-
tem with a 9–diagonal matrix. The workload for evaluating the 9–diagonal matrix is
about 9N. The linear system is solved with the preconditioned Conjugate Gradient
method, which in all our experiments used one iteration to reach discretization error.
Thus the CG method requires one evaluation of a 9–diagonal matrix (9N), inverting
the matrix(I − ∆t√

12
A) two times (22N), two vector inner–products (2N) plus two

scalar–vector products (2N). Before starting the time integration we form the sys-
temsI − ∆t

2 A+ ∆t2

12 A2 andI + ∆t
2 A+ ∆t2

12 A2 and this has a cost of 27N. The total cost
of this discretization method is therefore approximately 44NM+27N.

Example 5.1

Solve (5.6)–(5.8) with the accuracy requirement

‖uM −u(T)‖L2

‖u(T)‖L2
< 10−5

for the three methods. Considering the Tables above we see that the Euler method
requires a resolution withM = 327 680 time levels andN = 640 spatial discretiza-
tion points, which gives about 1.0·109 operations. Further Crank–Nicolson requires
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M = 160 andN = 320, which gives about 4.1 ·105 operations, and the (2,2)–Padé
approximation requiresM = 10 andN = 40, which gives about 1.9·104 operations.

Example 5.2

Solve (5.6)–(5.8) with the accuracy requirement

‖uM −u(T)‖L2

‖u(T)‖L2
< 10−7

for the three methods. The Euler scheme requires too many operations, Crank–
Nicolson requires about 1.0 ·108 operations, and the (2,2)–Padé approximation re-
quires about 1.4 ·105 operations. This means that the (2,2)–Padé approximation is
about 750 times faster than the Crank–Nicolson scheme.

5.3. Inexact preconditioners

In this paper, we have considered the case whereR was inverted exactly. In this
subsection we consider an inexact preconditionerR̂, which commutes withR, i.e.,
RR̂= R̂R. In this case, we have the following bound on the preconditioned system

κ
(
R̂− jQk j

)
= κ

(
R̂− jRjR− jQk j

)
= ‖R̂− jRjR− jQk j‖‖(R̂− jRjR− jQk j)−1‖ (5.9)

6 ‖R̂− jRj‖‖R− jQk j‖‖(R̂− jRj)−1‖‖(R− jQk j)−1‖ (5.10)

6 ‖R̂−1R‖ j‖R− jQk j‖‖(R̂−1R)−1‖ j‖(R− jQk j)−1‖ (5.11)

= κ
(
R̂−1R

) j κ
(
R− jQk j

)
. (5.12)

Here (5.9) follows by the definition of the condition number, (5.10) follows by a
standard inequality valid for the matrix norm, (5.11) follows by the same inequality
and the commutaion of̂RandRand (5.12) follows by the definition of the condition
number again.

This formula shows that the condition number of the preconditioned system
is bounded, independent of the spatial discretization method and∆t. As seen in
the previous subsections the last factor of (5.12) is relatively small, even for large
values of j. Further, ifR̂ is a good preconditioner,κ

(
R̂R
)

will be close to one, and
the condition number for the preconditioned system remains relatively small for
increasingj values.

6. PROOF OF LEMMA 5.2

This section deals with the proof of Lemma 5.2. The proof is rather long and tech-
nical. We have that

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
< max

i

r i

qi
.
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It is therefore enough to show that
r i

qi
6 γ ·1.09j , i ∈ [0, j],

with

γ = 0.98 for j = k,

γ = 1.11 for j = k+1,

γ = 1.62 for j = k+2.

This bound clearly apply for the values ofj andk in Table 3. Therefore it is
enough to prove Lemma 5.2 for values ofj andk larger than in Table 3.

6.1. Bounding r i
qi

with Stirling’s approximation

We have that

r i

qi
=

(
k!

( j+k)!

) i
j

( j+k−i)!
( j+k)!

.

Stirling’s approximation of the factorial function is given by

nn

en

√
2πne

1
12n+1 < n! <

nn

en

√
2πne

1
12n , ∀n > 1,

see [6,12], which enables us to bound

r i

qi
<

 kk

ek

√
2πke

1
12k

( j+k) j+k

ej+k

√
2π( j +k)e

1
12(k+ j)+1

 i
j ( j+k) j+k

ej+k

√
2π( j +k)e

1
12(k+ j)

( j+k−i) j+k−i

ej+k−i

√
2π( j +k− i)e

1
12(k+ j−i)+1

=
(

j +k
j +k− i

) j+k+ 1
2−i( k

j +k

) 2k+1
2 j i

e
i

12k j−
i

(12(k+ j)+1) j +
1

12(k+ j)−
1

12(k+ j−i)+1 (6.1)

=
(

1− i
j +k

)i− j−k− 1
2
(

k
j +k

) 2k+1
2 j i

e
i

12k j−
i

(12(k+ j)+1) j +
1

12(k+ j)−
1

12(k+ j−i)+1

= F(i, j,k)G(i, j,k),

where

F(i, j,k) =
(

1− i
j +k

)i− j−k− 1
2
(

k
j +k

) 2k+1
2 j i

, (6.2)

G(i, j,k) = e
i

12k j−
i

(12(k+ j)+1) j +
1

12(k+ j)−
1

12(k+ j−i)+1 .

(6.1) follows by reduction and collecting factors on the formj+k
j+k−i ,

k
j+k ande.

It is straightforward to show thatG(i, j,k)< 1.0011 fork> 8, and that limj,k→∞ G(i, j,k)=
1, ∀i ∈ [0, j]. The rest of this proof aims at boundingF(i, j,k). For notational sim-
plicity we writeF = F(i, j,k).
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6.2. Maximizing F

In order to maximize this function overi ∈ [0, j], we calculate

∂F
∂ i

=

ln

(
1− i

j +k

)
+1+

1

2( j +k)
(

1− i
j+k

) + ln

(
k

j +k

)
2k+1

2 j

F.

It can be seen from later calculations that the first factor has only one zero. Observ-
ing that ∂F

∂ i (i = 0) > 0 andF > 0, for i ∈ [0, j], we get thatF is maximized when
∂F
∂ i = 0. Thus we have to find the zero of the first term

ln

(
1− i

j +k

)
+1+

1

2( j +k)
(

1− i
j+k

) + ln

(
k

j +k

)
2k+1

2 j
= 0.

Make the substitution

x =
1

2( j +k)
(

1− i
j+k

) ,

which means that

i = j +k− 1
2x

. (6.3)

Note thati ∈ [0, j]⇒ x∈ (0,1).
With this substitution we have to solve

ln

(
1

2( j +k)x

)
+1+x = ln

(
j +k

k

)
2k+1

2 j
,

which implies

ex

x
=

1
h( j,k)

, (6.4)

where

h( j,k) =
e

2( j +k)

(
k

j +k

) 2k+1
2 j

. (6.5)

Note that (6.4) has only one solution forx∈ (0,1), sinceex

x is monotone. Notice also
thath( j,k) > 0 andh( j,k)→ 0 when j,k→∞. In the following we writeh= h( j,k)
for notational simplicity.



Reuse of Preconditioners for Higher–Order Discretizations 15

6.3. Lambert W–function

To solve (6.4) we introduce the Lambert W–function, see e.g. [4], because the so-
lution of a nonlinear equation on the forme

x

x = 1
h, h ∈ R, can generally not be

expressed with standard elementary functions. The Lambert W–function∗,

W : [−1
e
,∞)→ [−1,∞)

is defined to be the inverse function of the function

W 7→ eWW.

The series expansion ofW(x) is given by (see [4])

W(x) =
∞

∑
n=1

(−n)n−1

n!
xn, |x|< 1

e
. (6.6)

The solution ofe
x

x = 1
h can in fact be written

x =−W (−h) . (6.7)

To see this, notice thatW(x) is the inverse function ofeWW. Therefore,

eW(x)W(x) = x ⇒ W(x) = xe−W(x).

Using this property together with (6.7), we get

ex

x
=

e−W(−h)

−W(−h)

=
e−W(−h)

−(−h)e−W(−h)

=
1
h
,

which proves that (6.7) is the solution of (6.4).
In the following we show two properties ofW which will be useful later. The

first property is (
−W(−h)

h

)− 1
2W(−h)

= e
1
2 . (6.8)

This is proved by using the fact that

e=
(

W(x)
x

)− 1
W(x)

,

∗The Lambert W–function is available to any accuracy in Maple and Mathematica.
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which follows from the definition of W.
The second property is

− 1
W(−h)

<
1
h
−1. (6.9)

This property is proved in the following. Define the function

α(x) =
x

W(x)
= eW(x), x < 0.

A Taylor series expansion ofα(x) is

α(x) = α(0)+α
′(0)x+

1
2

α
′′(ξ )x2, ξ ∈ (x,0). (6.10)

Using (6.6) we see thatα(0) = eW(0) = 1. Further the first order derivative of
α(x) is

α
′(x) = eW(x)W′(x),

and we getα ′(0) = eW(0)W′(0) = 1. The second order derivative ofα(x) is

α
′′(x) = eW(x) [(W′(x))2 +W′′(x)

]
=−eW(x) (W(x))2

(1+W(x))3x2 < 0, for x < 0.

where we have used thatW′(x) = W(x)
(1+W(x))x and thatW(x) > −1 andeW(x) > 0.

Inserting into (6.10) we get

α(x) < 1+x, x < 0,

and the second property (6.9) follows by settingx =−h.

6.4. Maximizing F (continued)

With these properties of the Lambert function we continue to maximizeF . We sub-
stitute back by inserting (6.7) into (6.3), and find that the extreme value forF is
obtained when

i = j +k+
1

2W(−h)
.
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Therefore

F(i, j,k) 6 F( j +k+
1

2W(−h)
, j,k)

=
(

2( j +k)h
(

W(−h)
−h

)) 1
2

(2( j +k)h)−
1

2W(−h)

(
W(−h)
−h

)− 1
2W(−h)

(
k

j +k

) 2k+1
2 j ( j+k)( k

j +k

) 2k+1
2 j

1
2W(−h)

(6.11)

=

(
e

(
k

j +k

) 2k+1
2 j
(

W(−h)
−h

)) 1
2

e
− 1

2W(−h)

(
k

j +k

) 2k+1
2 j

−1
2W(−h)

e
1
2

(
k

j +k

) 2k+1
2 j ( j+k)( k

j +k

) 2k+1
2 j

1
2W(−h)

(6.12)

<

(
e

(
k

j +k

) 2k+1
2 j
(

W(−h)
−h

)) 1
2

e
1
2h−

1
2

(
k

j +k

) 2k+1
2 j ( j+k)

e
1
2 (6.13)

=

(
e

(
k

j +k

) 2k+1
2 j
(

W(−h)
−h

)) 1
2

e
1
2h

(
k

j +k

) 2k+1
2 j ( j+k)

, (6.14)

where (6.11) follows by simplifying and expandingF , (6.12) follows by the defini-
tion of h, (6.5), and the first property ofW, (6.8), and (6.13) follows by reduction
and the second property ofW, (6.9).

We have thatW(−h)
−h is bounded becauseW is bounded for negative arguments

andW′(0) = 1. Thus we see that the first factor of (6.14),

(
e
(

k
j+k

) 2k+1
2 j
(

W(−h)
−h

)) 1
2

,

is bounded independent ofj andk.

In the following we shall see that the last two factors of (6.14),e
1
2h

(
k

j+k

) 2k+1
2 j ( j+k)

,

are bounded by exponential functions inj (or equivalently ink). First we define
d = j −k. This leads to

e
1
2h = e

j+k
e ( j+k

k )
2k+1

2 j

= e
(2k+d)2

ek ( k
2k+d)

2d−1
2k+2d

(6.15)

= e
4
e je

d2
ek e

(2k+d)2
ek

(
( k

2k+d)
2d−1
2k+2d −1

)
, (6.16)

where (6.15) follows from2k+1
2 j = 1− 2d−1

2k+2d , and (6.16) follows by the trickexy =

exex(y−1) and the fact that( j+k)2

ek = 4 j
e + d2

ek.
Remember that, because of stability requirements, we are only interested in the

three casesj = k, j = k+1 and j = k+2, which means thatd = 0, d = 1 andd = 2
respectively.
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Now we study the last factor of (6.16). Note that

lim
k→∞

e
(2k+d)2

ek

(
( k

2k+d)
2d−1
2k+2d −1

)
= 2

2
e(1−2d). (6.17)

Consider the sign of the last factor of the exponent, i.e.(
k

2k+d

) 2d−1
2k+2d

−1.

This is positive ford = 0 and negative ford = 1,2. By this observation we can see
that the last factor of (6.16) is a decreasing function ofk for d = 0 and an increasing
function ofk for d = 1,2. Thus the limit (6.17) is an upper bound for (6.16) when
d = 1,2.

For the last factor of (6.14) we bound(
k

j +k

) 2k+1
2 j ( j+k)

=

(
1

2+ d
k

)2k−d+ 2k+d+d2
2k+2d

(6.18)

<

(
1

2+ d
k

)2k−d+1

(6.19)

=
(

1
2

)2 j−3d+1(
1+

d
2k

)−2 j+3d−1

, (6.20)

where (6.18) follows by expanding the exponent and the base, (6.19) follows by
2k+d+d2

2k+2d > 1, which is valid for all integersd and (6.20) is an expansion.
To summarize, we now get an upper bound onF by inserting (6.16) and (6.20)

into (6.14)

F(i, j,k) <

(
1
4

e
4
e

) j
(

e

(
k

j +k

) 2k+1
2 j
(

W(−h)
−h

)) 1
2

e
d2
ek

e
(2k+d)2

ek

(
( k

2k+d)
2d−1
2k+2d −1

)(
1
2

)−3d+1(
1+

d
2k

)−2 j+3d−1

, (6.21)

where all factors except the first is bounded independently fromj. The above result
shows thatF is bounded by a function on the form

F < γ̃

(
1
4

e
4
e

) j

, (6.22)

whereγ̃ is a constant independent ofj and 1
4e

4
e ≈ 1.088960317. SinceG(i, j,k) is

bounded independent ofj andk, the first part of Lemma 5.1, (5.5), is proved. In the
the following we determine the constantγ for the three casesj = k, j = k+ 1 and
j = k+2.
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6.5. Determining the constants

In order to determine the smallest possible value forγ we split up into the three
interesting cases, i.e.j = k, j = k+ 1 or j = k+ 2. We utilize that the lemma is
already proved fork 6 8, and that all factors are decreasing inj andk.

For j = k (d = 0) we get

r i

qi
< F(i,k,k)G(i,k,k)

<

(
1
4

e
4
e

) j
√

e
1
2

(
W(−h(11,11))
−h(11,11)

)
e

44
e (2

1
22−1)

1
2

max
i

G(i,11,11)

< 0.98· (1.09) j ,

where we have used that1
2

2k+1
2k is increasing function ofk with the limit 1

2, W(−h(k,k))
−h(k,k)

ande
4k
e

(
2

1
2k−1

)
are decreasing functions ofk and that the inequality is checked for

j,k 6 10.

For j = k+1 (d = 1) we get

r i

qi
< F(i,k+1,k)G(i,k+1,k)

<

(
1
4

e
4
e

) j
√

e
1
2

(
W(−h(11,10))
−h(11,10)

)

e
1

10e

(
1
2

) 2
e

22
(

1+
1
20

)−20

max
i

G(i,11,10)

< 1.11· (1.09) j ,

where we have used thatk2k+1

2k+1
2k+2 and e

(2k+1)2
ek

(
( k

2k+1)
1

2k+2−1

)
are increasing func-

tions of k with limits 1
2 and 2−

2
e respectively,W(−h(k+1,k))

−h(k+1,k) , e
1
ek,
(
1+ 1

2k

)−2k
and

maxi G(i,k+1,k) are decreasing functions ofk and that the inequality is valid up to
j = 10 andk = 9.
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For j = k+2 (d = 2) we get

r i

qi
< F(i,k+2,k)G(i,k+2,k)

<

(
1
4

e
4
e

) j
√

e

(
9
20

) 19
22
(

W(−h(11,9))
−h(11,9)

)
e

4
e9 2−

6
e 25
(

1+
2
18

)−17

max
i

G(i,11,9)

< 1.62· (1.09) j ,

where we have used thate
(2k+2)2

ek

(
( k

2k+2)
3

2k+4−1

)
is an increasing function ofk with

limit 2−
6
e , k

k+2

2k+1
2k+4 , W(−h(k+1,k))

−h(k+1,k) , e
4
ek,
(
1+ 2

2k

)−2k+1
and maxi G(i,k+ 2,k) are de-

creasing functions ofk and that the inequality is valid up toj = 10 andk = 8.

6.6. The bound whenj,k→ ∞

Above we have used thatk > 8. In this subsection we determine the constants when
j,k→ ∞. First we calculate the limits of the factors of (6.21)

lim
j,k→∞

(
k

j +k

) 2k+1
2 j

=
1
2
,

lim
j,k→∞

h( j,k) = 0,

lim
h→0

W(−h)
−h

= 1,

lim
j,k→∞

e
d2
ek = 1,

lim
j,k→∞

(
1+

d
2k

)−2k+d−1

= e−d.

Together with (6.17) we obtain from (6.21)

F <

(
1
4

e
4
e

) j

e
1
2−d23d− 3

2+ 2
e(1−2d), (6.23)
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when j,k→ ∞. Since limj,k→∞ G(i, j,k) = 1, we get

r i

qi
<

(
1
4

e
4
e

) j

e
1
2 2

2
e−

3
2 ≈ 0.9709

(
1
4

e
4
e

) j

, when j = k→ ∞,

r i

qi
<

(
1
4

e
4
e

) j

e−
1
2 2−

1
2−

2
e ≈ 1.0302

(
1
4

e
4
e

) j

, when j = k+1→ ∞,

r i

qi
<

(
1
4

e
4
e

) j

e−
3
2 2

1
2−

6
e ≈ 1.0933

(
1
4

e
4
e

) j

, when j = k+2→ ∞.

Finally, we mention that the upper bound onF given in (6.23) probably can be
extended to be valid for the condition number of the preconditioned system, i.e.

κ
(

R−1
k j (∆tA)Qk j(∆tA)

)
<

(
1
4

e
4
e

) j

e
1
2+k− j23 j−3k− 3

2+ 2
e(1+2k−2 j),

for all j ∈ [k,k+2]. This inequality is valid for the numbers in Table 1, and can be
chekced to be valid for larger values ofj andk by using the bound (5.2).

7. CONCLUDING REMARKS

In this paper we have proposed a preconditioner for the system arising when using
Pad́e approximation to obtain higher–order time discretization for the heat equation.
The method is applicable to linear inhomogeneous parabolic equations. We have
shown that our preconditioner will give a preconditioned system with a condition
number independent of the discretization parameters. Finally, we have proved that
the condition number will remain reasonably low even when the order of the time
discretization is very high.
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