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Abstract. The electrical activity in the heart is governed by the

Bidomain equations. In this paper we analyze an order optimal

method for the algebraic equations arising from the discretization

of this model. Our scheme is defined in terms of block Jacobi or

block symmetric Gauss-Seidel preconditioners. Furthermore, each

block in these methods is based on standard preconditioners for

scalar elliptic or parabolic partial differential equations (PDEs).

Such preconditioners can be realized in terms of multigrid or do-

main decomposition schemes, and are thus readily available by ap-

plying “off-the-shelves” software. Finally, our theoretical findings

are illuminated by a series of numerical experiments.

1. Introduction

In this work we analyze an order optimal solution algorithm for the

Bidomain model. This model describes the electrical activity in the

heart. The physiological relevance and background of the model is

discussed in the book [1]. The general equations are on the following
1
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form

∂s

∂t
= F (t, s, v, x), x ∈ H,(1.1)

∂v

∂t
= ∇ · (Mi∇v) + ∇ · (Mi∇ue) − I(v, s), x ∈ H,(1.2)

0 = ∇ · (Mi∇v) + ∇ · ((Mi +Me)∇ue), x ∈ H.(1.3)

Here, H denotes the domain occupied by the heart, the unknowns are

the transmembrane potential v and the extracellular potential ue. The

tensors Mi and Me describe the intra and extra -cellular conductivities

of the heart, and s denotes the state of the heart cells. In addition,

suitable boundary and initial conditions must be specified. Equation

(1.1) is a system of (nonlinear) ordinary differential equations (ODEs)

that model the behavior of a typical heart cell. Many such cell-models

exist, see [2] for an overview. The number of ODEs in (1.1) that must

be solved at each grid point typically ranges from 1 to 100 depending on

the complexity of the involved cell-model. Further details concerning

this topic can be found in [3]. Finally, the equations (1.2) and (1.3) are

PDEs of elliptic and parabolic type that are coupled.

The electrophysiology of the heart is characterized by steep gradients

in space and time. Thus, very fine scaled meshes and short time steps

must be applied, see [4] for a discussion. In 3D the number of nodes

needed within the heart is typically between 25 and 50 millions. This

implies that it is very important to apply order optimal methods. We
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introduced such a method for the Bidomain equations in [5], but there

we only provided numerical evidence of optimality.

Ideally, we would like to solve the system (1.1)-(1.3) simultaneously

using an implicit numerical scheme. Due to the complexity of the ODEs

involved, see e.g. [6], a fully implicit approach is not feasible, and it is

common to use some sort of operator splitting; see [4] or [7]. A second

order scheme (in time) can be formulated as successive solutions of the

two subsystems

(1.4)

∂s

∂t
= F (t, s, v, x),

∂v

∂t
= −I(v, s),

and

(1.5)

∂v

∂t
= ∇ · (Mi∇v) + ∇ · (Mi∇ue),

0 = ∇ · (Mi∇v) + ∇ · ((Mi +Me)∇ue).

The details of the splitting can be found in [7].

A complete simulator for cardiac electrophysiology consists of solving

the systems (1.4)-(1.5) above at each time step. Here, it is quite obvious

that solving (1.4) is an order N process, where N denotes the number

of computational cells within the heart; since (at least) one ODE is

to be solved at each cell. The CPU time needed for this process is

proportional to N . The latter system is much harder to solve and non-

optimal approaches may lead to very CPU-demanding computations.

It is the purpose of this paper to prove that also this system can be
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solved in order N operations - i.e., that this system can be solved in

an order optimal manner.

In Section 2 a discrete approximation of the Bidomain equations is

introduced, and Section 3 contains a discussion of block precondition-

ers, as well as our main result. Our analysis and numerical experiments

are presented in sections 4 and 5, respectively. Finally, a brief summary

of our findings is given in Section 6.

Note that computational results for the schemes discussed in this

text have been reported in [3] and [5], but that their general analysis

is presented for the first time in this paper. The basic building blocks

for our algorithms are order optimal preconditioners designed for scalar

elliptic and parabolic PDEs. For these scalar problems, such methods

are typically defined in terms of multigrid or domain decomposition

algorithms, see e.g. [8], [9], [10], [11] and [12].

Block preconditioners have been studied by many researchers, e.g.,

for saddle point problems arising from discretized PDEs [13], [14], [15]

and [16]. Rather general results for positive definite matrices are also

available; see [17], [18] and [19]. However, as far as the authors know,

this is the first paper that provides a theoretical discussion of order

optimal block preconditioners for the discretized Bidomain equations.

For a more general discussion of numerical methods for the Bidomain

equations, we would like to refer to [20].
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2. The discrete problem

In [5] the following set of equations was studied,

∂v

∂t
= ∇ · (Mi∇v) + ∇ · (Mi∇ue) in H,(2.1)

0 = ∇ · (Mi∇v) + ∇ · ((Mi +Me)∇ue) in H,(2.2)

which appear as one step in the operator splitting method for solving

the coupled system (1.1)-(1.3). As boundary conditions, we may assign

homogeneous Dirichlet conditions for both v and ue, i.e.

v = 0 and ue = 0, on ∂H,

or homogeneous Neumann conditions, i.e.

n · (Mi∇v +Mi∇ue) = 0 and n · (Mi∇v + (Mi +Me)∇ue) = 0 on ∂H,

where n is the outwards directed unit normal vector defined along the

boundary of the heart. Note that ue is only determined up to a constant

in the case of Neumann conditions. In an operator splitting approach,

the initial condition for v is typically defined by the solution of the

ODE system (1.4).

The weak form of (2.1)-(2.2), in the case of homogeneous Dirichlet

conditions, reads:

Find (v, ue) ∈ L2(0, T ; H1
0 )×L2(0, T ; H1

0 ), with ∂v/∂t ∈ L2(0, T ; H−1),
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such that v(x, 0) = v0(x) and

(
∂v

∂t
, l) + (Mi∇v,∇l) + (Mi∇ue,∇l) = 0, ∀l ∈ H1

0 and t ∈ (0, T ],

(Mi∇v,∇m) + ((Mi +Me)∇ue,∇m) = 0, ∀m ∈ H1
0 and t ∈ (0, T ],

where [0, T ] is the time interval under consideration, and v0 incorpo-

rates the initial condition for the transmembrane potential v. Here,

(·, ·) denotes the L2 inner product, as well as the duality pairing be-

tween H1
0 and H−1. Furthermore, H−1 represents the dual space of

H1
0 .

By applying the Crank-Nicolson method we derive the corresponding

semi-discrete problem:

For n = 1, 2, . . . , n̄, find vn and un
e in H1

0 such that

(vn − vn−1, l) +
∆t

2
(Mi∇vn,∇l) +

∆t

2
(Mi∇un

e ,∇l) = f1(l), ∀l ∈ H1
0 ,

∆t

2
(Mi∇vn,∇m) +

∆t

2
((Mi +Me)∇un

e ,∇m) = f2(m), ∀m ∈ H1
0 ,

where we have scaled the last equation with ∆t in order to obtain a

symmetric system, n̄ denotes the number of time steps and

v0 = v0,

f1(l) = −∆t

2
(Mi∇vn−1,∇l) − ∆t

2
(Mi∇un−1

e ,∇l),

f2(m) = −∆t

2
(Mi∇vn−1,∇m) − ∆t

2
((Mi +Me)∇un−1

e ,∇m).

This scheme also requires the extracellular potential at time t = 0, i.e.

u0
e is needed. This quantity may naturally be defined as the solution
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of the following elliptic equation

(2.3) ((Mi +Me)∇u0
e,∇m) = −(Mi∇v0,∇m), ∀m ∈ H1

0 ,

provided that v0 ∈ H1. If v0 is less regular, then a different time

stepping scheme must be used. Equation (2.3) is obtained by assuming

that (2.2) is valid also for t = 0.

A Finite Element (FE) approximation is derived by seeking (vn
h , u

n
e,h)

in Vh × Vh ⊂ H1
0 × H1

0 , for n = 1, 2, . . . , n̄, and using test functions

(lh, mh) in Vh × Vh. This gives the following linear system1

(2.4)



I + ∆t

2
Ai

∆t
2
Ai

∆t
2
Ai

∆t
2
Ai+e






vn

h

un
e,h


 =



bn

cn


 ,

where the matrices I, Ai, Ai+e ∈ IRk×k, k = dim(Vh), satisfy

(Iψ, φ) = (ψ, φ), ∀ψ, φ ∈ Vh,(2.5)

(Aiψ, φ) = (Mi∇ψ,∇φ), ∀ψ, φ ∈ Vh,(2.6)

(Ai+eψ, φ) = ((Mi +Me)∇ψ,∇φ), ∀ψ, φ ∈ Vh.(2.7)

In the following we will drop the superscript n, as well as the subscript

h, and focus on how to solve (2.4) at each time step n. Furthermore,

1We introduced (vn
h , un

e,h) to denote approximations of (v, ue) at time step n.

That is, vn
h and un

e,h are functions in the finite element space Vh. In (2.4), however,

vn
h and un

e,h represent the vectors associated with these finite element approxima-

tions, rather than the functions. Throughout this paper, we will, for the sake of

simplicity, allow this sort of mild abuse of notation.
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throughout this text bn and cn, or simply b and c, are used to denote

generic right-hand sides, and ue will be abbreviated u.

Above, we applied Dirichlet boundary conditions, and (2.1)-(2.2) was

discretized by the Crank-Nicolson method. For the sake of simplicity,

our analysis will be presented for this problem. However, by using

straightforward techniques, the results derived below can be modified

to also cover cases involving Neumann boundary conditions and/or

implicit Euler schemes.

3. Preconditioners

As we will show below, equation (2.4) defines a symmetric and pos-

itive definite (SPD) linear system. For SPD matrices, the Precon-

ditioned Conjugate-Gradient method (PCG) is the standard method,

provided that a suitable SPD preconditioner can be constructed - see

[9] for further details.

Two SPD matrices B−1, A ∈ IRp×p, where p represents some positive

integer, are spectrally equivalent, denoted by B−1 ∼ A, if

(3.1) c0(B−1w,w) ≤ (Aw,w) ≤ c1(B−1w,w), ∀w ∈ IRp,

or equivalently

(3.2) c−1
1 (Bw,w) ≤ (A−1w,w) ≤ c−1

0 (Bw,w), ∀w ∈ IRp,
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where c0 and c1 must be independent of the discretization parameters2

h and ∆t. It is well known that if B−1 ∼ A, then the condition number

of the preconditioned operator BA satisfies

(3.3) κ = κ(BA) ≤ c1
c0
.

Furthermore, the maximum number of PCG-iterations needed to reach

a given convergence criterion is proportional to
√
κ, cf. e.g. [21]. The

solution process is thus order optimal, provided that the storage and

evaluation of B is similar to that of A, i.e. O(N) where N is the number

of unknowns.

The system (2.4) can be written on the form

(3.4) A



v

u


 =



A B

B C






v

u


 =



b

c


 ,

where

A = I +
∆t

2
Ai,(3.5)

B =
∆t

2
Ai,(3.6)

C =
∆t

2
Ai+e,(3.7)

v = vn
h ,

u = un
e,h.

2We are considering families of matrices Ah,∆t and B−1

h,∆t, and the constants c0

and c1 must be independent of both h and ∆t.
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Throughout this paper we will assume that the conductivity tensors

Mi and Me are symmetric, uniformly positive definite and bounded,

i.e. we assume that the matrix entries of Mi and Me are L∞ functions

and that there exist positive constants mi
0, m

i
1, m

e
0 and me

1 such that

0 < mi
0(∇u,∇u) ≤ (Mi∇u,∇u) ≤ mi

1(∇u,∇u), ∀u ∈ H1
0 ,(3.8)

0 < me
0(∇u,∇u) ≤ (Me∇u,∇u) ≤ me

1(∇u,∇u), ∀u ∈ H1
0 .(3.9)

Therefore, the matrices A, B and C are symmetric and positive def-

inite. For all these submatrices, efficient preconditioners can be con-

structed in terms of multigrid or domain decomposition algorithms. As

we will see below, the use of block structured preconditioners enables

us to reuse these “off-the-shelves” preconditioners in a straightforward

manner.

We will investigate the efficiency of the following two block precon-

ditioners applied to (3.4).

• Block Jacobi:

(3.10) B−1

J =



A 0

0 C


 .

• Symmetric block Gauss-Seidel:

(3.11) B−1

SGS =



A 0

B C






A−1 0

0 C−1






A B

0 C


 .
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Our goal is to prove that B−1

J and B−1

SGS are spectrally equivalent to A,

i.e. to show that

B−1

J ∼ A and B−1

SGS ∼ A.

We will refer to the preconditioners BJ and BSGS in (3.10)-(3.11) as

exact preconditioners (BJ and BSGS are defined in terms of the exact

inverses of A and C). These preconditioners are of course not interest-

ing to use in practice. However, as will explained below, it is easy to

construct approximations B̂J ≈ BJ and B̂SGS ≈ BSGS that are spec-

trally equivalent to BJ and BSGS. Furthermore, spectral equivalence is

associative in the sense that, if A−1 ∼ B and B ∼ B̂, then A−1 ∼ B̂.

Therefore, these approximate preconditioners will be spectrally equiv-

alent to A−1, provided that A−1 ∼ BJ and A−1 ∼ BSGS.

Recall that the operators BJ and BSGS are defined in terms of the

matrices A, B and C, cf. (3.10) and (3.11). Furthermore, A, B and C

coincide with matrices that arise in connection with FEM discretiza-

tion procedures of scalar elliptic and parabolic PDEs. For such scalar

operators, as mentioned earlier, efficient approximate preconditioners

can be constructed by multigrid or domain decomposition methods3,

3The coefficients Mi and Me in (2.1)-(2.2) are ”well-behaved”; they are symmet-

ric, uniformly positive definite and contain no large jumps. Multigrid and domain

decomposition algorithms handle such small variations very well.
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see e.g. [8], [9], [10], [11] and [12]. Consequently, approximate precon-

ditioners B̂J and B̂SGS, that are spectrally equivalent to BJ and BSGS,

are readily available.

Let us now focus on the properties of the operators BJ and BSGS.

Our main result, which we will prove in Section 4, can be formulated

as follows:

Theorem 3.1. The preconditioners BJ and BSGS, defined in (3.10)

and (3.11), are spectrally equivalent to the matrix A−1 in (3.4)-(3.7).

This means that the PCG method, applying either4 BJ or BSGS

as preconditioner, defines an order optimal algorithm for the discrete

Bidomain equations (2.4).

4. Theoretical Considerations

In this section we will, for the sake of generality, start by formulating

the algebraic properties that lead to efficient block preconditioners for

abstract linear systems on the form

(4.1) A



v

u


 =



b

c


 ,

where

(4.2) A =



A B

B C


 .

4In practise, we would of course apply approximations B̂J ≈ BJ or B̂SGS ≈ BSGS .
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Thereafter these properties are considered for the system generated by

applying the Crank-Nicolson scheme to the Bidomain equations (2.1)-

(2.2), i.e. to the system arising by defining the submatrices A, B and

C according to formulas (3.5), (3.6) and (3.7).

Block preconditioners for positive definite matrices are also consid-

ered in [17], [18], and [19]. Our derivation of the result for the block

symmetric Gauss-Seidel preconditioner in the abstract setting, pre-

sented below, is similar to the theory discussed in [17]. However, we

end up with suitable bounds expressed in terms of different constants.

Our constants, as shown in Section 4.2, are easy to estimate for the

discretized Bidomain equations.

4.1. Results in an abstract setting. First, we consider the block

Jacobi preconditioner BJ in (3.10). Recall the definition (3.1) of spec-

tral equivalence. For the matrices (4.2) and (3.10) this means that

there must exist constants c0 and c1, independent of ∆t and h, such

that

(4.3)

c0((Av, v) + (Cu, u)) ≤

(Av, v) + 2(Bv, u) + (Cu, u) ≤

c1((Av, v) + (Cu, u)), ∀v, u ∈ IRk

provided that B is symmetric. Here, k represents the dimension of the

finite element space Vh.
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Assume that

(4.4) 2|(Bv, u)| ≤ α((Av, v) + (Cu, u)), ∀v, u ∈ IRk,

where 0 < α < 1 is a constant. Please note that this property is closely

linked to the coercivity of (4.1) and it turns out to play an important

role in our analysis. One might also consider (4.4) to be a sort of

”diagonal dominance property” for this block system. We will prove

that the linear system associated with the discrete bidomain equations

satisfy (4.4) in Section 4.2. The upper bound of (4.3) follows from

(4.4):

(Av, v) + 2(Bv, u) + (Cu, u)

≤ (Av, v) + 2|(Bv, u)|+ (Cu, u)

≤ (1 + α)((Av, v) + (Cu, u)), ∀v, u ∈ IRk.

The lower bound of (4.3) also holds:

(Av, v) + 2(Bv, u) + (Cu, u)

≥ (Av, v) − 2|(Bv, u)| + (Cu, u)

≥ (1 − α)((Av, v) + (Cu, u)), ∀v, u ∈ IRk.

In other words, B−1

J ∼ A and κ(BJA) ≤ 1+α
1−α

.

Lemma 4.1. Let A and BJ be the block matrices defined in (4.2) and

(3.10), respectively. If the submatrices A and C are invertible, B is
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symmetric and (4.4) holds, then B−1

J ∼ A and the spectral condition

number of the preconditioned operator BJA satisfies

κ(BJA) ≤ 1 + α

1 − α
.

Let us now turn our attention to the symmetric block Gauss-Seidel

preconditioner BSGS defined in (3.11). In this case, assuming that

BT = B, the condition (3.1) for spectral equivalence between A and

B−1

SGS reads:

(4.5)

c0((Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)) ≤

(Av, v) + 2(Bv, u) + (Cu, u) ≤

c1((Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)), ∀v, u ∈ IRk.

Here, and in the following, c0 and c1 are used to denote generic con-

stants (that are independent of the discretization parameters h and

∆t). Assume that (4.4) is satisfied and that

(4.6) 0 ≤ (BA−1Bu, u) ≤ β(Cu, u), ∀u ∈ IRk,

where β > 0 is a constant independent of both ∆t and h.

If (4.6) holds, then

(Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)

≤ (Av, v) + 2(Bv, u) + (1 + β)(Cu, u), ∀v, u ∈ IRk.(4.7)
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In addition, since α ∈ (0, 1), assumption (4.4) implies that

0 ≤ α(Av, v) + 2(Bv, u) + α(Cu, u)

≤ (Av, v) + 2(Bv, u) + α(Cu, u),

and consequently

0 ≤ β

1 − α
[(Av, v) + 2(Bv, u) + α(Cu, u)].

Adding the right hand side of this inequality to the right hand side of

(4.7) yields

(Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)

≤
(

1 +
β

1 − α

)
(Av, v) + 2

(
1 +

β

1 − α

)
(Bv, u)

+

(
1 + β +

βα

1 − α

)
(Cu, u), ∀v, u ∈ IRk,

or

(Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)

≤ 1 − α+ β

1 − α
[(Av, v) + 2(Bv, u) + (Cu, u)], ∀v, u ∈ IRk.

This shows that the lower bound of (4.5) holds with

c0 =
1 − α

1 − α+ β
.

The upper bound of (4.5) follows directly from (4.6):

(Av, v) + 2(Bv, u) + (Cu, u) + (BA−1Bu, u)

≥ (Av, v) + 2(Bv, u) + (Cu, u) ∀v, u ∈ IRk.
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In other words, B−1

SGS ∼ A and κ(BSGSA) ≤ 1−α+β
1−α

, see (3.3).

Lemma 4.2. Let A and BSGS be the block matrices defined in (4.2) and

(3.11), respectively, and assume that the submatrices A and C of A are

invertible. If (4.4) and (4.6) hold and B is symmetric, then B−1

SGS ∼ A

and the spectral condition number of the preconditioned operator BSGSA

satisfies

κ(BSGSA) ≤ 1 − α + β

1 − α
.

On Assumption (4.6). Above we established Lemma 4.2 by assum-

ing that inequalities (4.4) and (4.6) hold. We have already mentioned

that (4.4) is closely linked to the coercivity of (4.1). Let us now have

a closer look at the latter assumption, i.e. at (4.6). It turns out that

this inequality can be established by showing that A ∼ B and B ∼ C.

More precisely, if A ∼ B and B ∼ C then BA−1B ∼ C, which in turn

implies that (4.6) must hold. The details are as follows: The following

inequalities

(4.8) c0(Bu, u) ≤ (BA−1Bu, u) ≤ c1(Bu, u), ∀u ∈ IRk,

and

(4.9)
1

c1
(Bu, u) ≤ (Au, u) ≤ 1

c0
(Bu, u), ∀u ∈ IRk,

are equivalent cf. e.g. [22]. Furthermore, by combining (4.8) with

(4.10) d0(Cu, u) ≤ (Bu, u) ≤ d1(Cu, u), ∀u ∈ IRk,
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we find that

(4.11) c0d0(Cu, u) ≤ (BA−1Bu, u) ≤ c1d1(Cu, u), ∀u ∈ IRk.

That is, if A ∼ B and B ∼ C then BA−1B ∼ C. In particular

(4.12) 0 ≤ (BA−1Bu, u) ≤ c1d1(Cu, u), ∀u ∈ IRk,

provided that C is positive semidefinite. Finally, we note that only the

constants c1 and d1 in this argument need to be independent of the h

and ∆t in order for (4.12), and consequently (4.6), to hold. Note that

β = c1d1 in (4.6).

4.2. Results for the discretized Bidomain equations. We will

now use the general conditions stated above to prove Theorem 3.1.

From the assumed properties of the intra and extra -cellular conduc-

tivities Mi and Me, we know that there exist positive constants mi
0,

mi
1, m

e
0 and me

1 such that (3.8) and (3.9) hold. That is, the operators

Liu = ∇ · (Mi∇u) and Leu = ∇ · (Me∇u) are uniformly elliptic. We

will use these properties to prove Theorem 3.1.

Proof of B−1

J ∼ A. Consider the system (3.4)-(3.7), arising at every

time step in connection with the discretization procedure of the Bido-

main equations (2.1)-(2.2) described in Section 2. In this framework,

the matrices I, Ai and Ai+e satisfy (2.5)-(2.7).

Since the intra-cellular conductivity Mi is a symmetric tensor, it

follows that the matrix B, defined in (3.6), is symmetric - see also
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(2.6). Consequently, according to Lemma 4.1, it is sufficient to verify

condition (4.4) in order to prove that B−1

J ∼ A, where BJ denotes the

Jacobi preconditioner given in (3.10).

More concretely, we have to show that there exists a constant α,

independent of h and ∆t, such that (4.4) is satisfied. For the system

(3.4), this condition reads,

∆t|(Mi∇v,∇u)| ≤

α

(
(v, v) +

∆t

2
(Mi∇v,∇v) +

∆t

2
((Mi +Me)∇u,∇u)

)
(4.13)

for all u, v ∈ H1
0 . In order to prove that there is a constant α, 0 < α < 1,

such that (4.13) holds, we start by observing that, for any ε > 0, we

have

0 ≤
(
Mi(ε∇v −

1

ε
∇u), ε∇v − 1

ε
∇u

)
, ∀u, v ∈ H1

0 ,

and

0 ≤
(
Mi(ε∇v +

1

ε
∇u), ε∇v +

1

ε
∇u

)
, ∀u, v ∈ H1

0 ,

from which we conclude that

2|(Mi∇v,∇u)| ≤ ε2(Mi∇v,∇v) +
1

ε2
(Mi∇u,∇u), ∀u, v ∈ H1

0 .

Consequently

∆t|(Mi∇v,∇u)| ≤

ε2
(

(v, v) +
∆t

2
(Mi∇v,∇v) +

1

ε4
∆t

2
(Mi∇u,∇u)

)
(4.14)
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for all u, v ∈ H1
0 . Note that (3.8) and (3.9) imply that

(Mi∇u,∇u) ≤
mi

1

me
0

(Me∇u,∇u), ∀u ∈ H1
0

and thus

(Mi∇u,∇u) =
mi

1

mi
1 +me

0

(Mi∇u,∇u) +
me

0

mi
1 +me

0

(Mi∇u,∇u)

≤ mi
1

mi
1 +me

0

(Mi∇u,∇u) +
mi

1

mi
1 +me

0

(Me∇u,∇u)

=
mi

1

mi
1 +me

0

((Mi +Me)∇u,∇u), ∀u ∈ H1
0 .

By choosing

ε2 =

(
mi

1

mi
1 +me

0

)1/2

it follows from (4.14) that

∆t|(Mi∇v,∇u)| ≤
(

mi
1

mi
1 +me

0

)1/2 (
(v, v) +

∆t

2
(Mi∇v,∇v)

+
∆t

2
((Mi +Me)∇u,∇u)

)

for all u, v ∈ H1
0 , which is (4.13) with

α =

(
mi

1

mi
1 +me

0

)1/2

∈ (0, 1).

Obviously, this α is independent of h.

The assumption (4.4) needed in Lemma 4.1 thus holds, and we con-

clude that B−1

J ∼ A.
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Proof of B−1

SGS ∼ A. Recall the definition (3.11) of the Gauss-Seidel

preconditioner BSGS. As explained above, the matrix B, defined in

(3.6) is symmetric, and the submatrices A, B and C in (3.5)-(3.7)

satisfy the condition (4.4). Thus, according to Lemma 4.2, it only

remains to verify that inequality (4.6) holds in order to show that

B−1

SGS ∼ A for the discretized Bidomain equations.

As explained in the discussion of inequalities (4.8)-(4.12), (4.6) is

valid if A ∼ B, B ∼ C and C is positive semidefinite. Recall the

definition (3.7) of C, where Ai+e is given in (2.7). Thus, by applying

the properties (3.8) and (3.9) of Mi and Me and standard techniques,

we indeed conclude that C is positive definite. Let us therefore focus

on the task of establishing inequalities (4.9) and (4.10) for the matrices

A, B and C defined in (3.5)-(3.7).

For the matrices defined in (3.5)-(3.7) and (2.5)-(2.7), the condition

(4.9) can be written on the form:

1

c1

∆t

2
(Mi∇u,∇u) ≤ (u, u) +

∆t

2
(Mi∇u,∇u)(4.15)

≤ 1

c0

∆t

2
(Mi∇u,∇u), ∀u ∈ H1

0 .

The lower bound obviously holds for c1 = 1, and the upper bound

follows from Poincaré’s inequality and (3.8),

(u, u) ≤ C(∇u,∇u) ≤ C

mi
0

(Mi∇u,∇u) ≤
C

mi
0

∆t
2

∆t

2
(Mi∇u,∇u), ∀u ∈ H1

0 ,
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where the constant C only depends on the domain H (where H denotes

the domain occupied by the heart). Consequently, the upper bound in

(4.15) holds.

Next, we turn our attention towards condition (4.10). In the present

situation, this inequality may be written on the form

d0((Mi +Me)∇u,∇u) ≤ (Mi∇u,∇u)

≤ d1((Mi +Me)∇u,∇u), ∀u ∈ H1
0 ,(4.16)

cf. (3.6)-(3.7) and (2.6)-(2.7). From (3.8) and (3.9) it follows that

((Mi +Me)∇u,∇u) = (Mi∇u,∇u) + (Me∇u,∇u)

≤ (Mi∇u,∇u) +me
1(∇u,∇u)

≤ (Mi∇u,∇u) +
me

1

mi
0

(Mi∇u,∇u)

=

(
1 +

me
1

mi
0

)
(Mi∇u,∇u), ∀u ∈ H1

0 ,

and we conclude that the lower bound in (4.16) is fulfilled. The upper

bound is true for d1 = 1.

From these considerations, it thus follows that inequalities (4.9) and

(4.10) hold with c1 = d1 = 1. Note that c0 depends on ∆t. However,

as explained in the derivation of (4.12), (4.6) will follow from (4.9)

and (4.10) even if c0 = c0(∆t). More specifically, (4.6) holds with

β = c1d1 = 1.
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The submatrices appearing in the discretized Bidomain equations

(3.4) thus satisfy all the assumptions needed in Lemma 4.2, and there-

fore B−1

SGS ∼ A. This completes the proof of Theorem 3.1.

5. Numerical experiments

For all the experiments to be reported in Tables 5.1 and 5.2, we have

partitioned the unit square into bilinear elements and used the standard

Galerkin FE method in space and the Crank-Nicolson scheme in time.

The 2D conductivity tensors used in these experiments are as follows:

(5.1) Mi =




3.0 0

0 0.3


 and Me =




2.0 0

0 1.3


 .

We will first focus on the condition numbers of the linear systems,

intending to shed some light onto the consequences of Theorem 3.1.

Moreover, cases involving approximate preconditioners B̂J ≈ BJ and

B̂SGS ≈ BSGS, as briefly discussed in Section 3, and Neumann boundary

conditions will also be studied.

Table 5.1 shows the condition numbers of the preconditioned oper-

ators BJA and BSGSA for various values of the discretization param-

eters ∆t and h. These results are clearly in accordance with Theorem

3.1, i.e., the condition numbers are bounded independently of both h

and ∆t. Note that these numbers were generated with homogeneous

Dirichlet boundary conditions.
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Prec BJA BSGSA

h\∆t 20 2−1 2−2 2−3 2−4 20 2−1 2−2 2−3 2−4

2−1 5.9 5.4 4.8 4.0 3.2 2.1 2.0 1.8 1.6 1.4

2−2 7.9 7.9 7.7 7.4 6.9 2.8 2.7 2.7 2.6 2.5

2−3 8.2 8.2 8.2 8.1 8.0 2.9 2.8 2.8 2.8 2.8

2−4 8.3 8.3 8.3 8.2 8.2 2.9 2.9 2.9 2.9 2.9

2−5 8.3 8.3 8.3 8.3 8.3 2.9 2.9 2.9 2.9 2.9

Table 5.1. Condition numbers obtained with the exact

preconditioners BJ and BSGS.

In Table 5.2 we investigate this issue further. More precisely, the

multigrid preconditioner B̂J was applied instead of the exact precondi-

tioner BJ . Furthermore, homogeneous Neumann boundary conditions

were used. The multigrid preconditioner consisted of a V-cycle with

one pre- and post-smoothing sweep with the symmetric Gauss-Seidel

method. As a coarse grid solver, we applied 30 Gauss-Seidel sweeps.

(The Neumann boundary conditions make the submatrix C singular, it

can thus can not be inverted exactly.) The coarsest grid was defined in

terms of a 2×2 partition of the unit square, and the grid hierarchy was

constructed by applying a successive 2 × 2 refinement procedure. The

condition numbers were estimated as a by-product of the CG method;

see Chapter 6 of [23]. The CG solver was stopped when the Euclidean

norm of the relative residual was less than 10−18.
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Again, we observe that the condition numbers are bounded inde-

pendently of both h and ∆t. Therefore, at least in this case, also B̂J

provides an order optimal preconditioner for the discretized Bidomain

equations.

h\∆t 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7

2−1 7.7 7.5 7.1 6.5 5.7 4.6 3.6 2.7

2−2 8.1 8.0 7.9 7.6 7.2 6.6 5.7 4.6

2−3 8.3 8.2 8.1 8.0 7.8 7.6 7.2 6.6

2−4 8.5 8.4 8.3 8.2 8.1 8.0 7.8 7.6

2−5 8.5 8.5 8.4 8.4 8.3 8.2 8.1 8.0

2−6 8.5 8.5 8.5 8.4 8.4 8.3 8.2 8.2

2−7 8.5 8.5 8.5 8.5 8.5 8.4 8.4 8.3

2−8 8.5 8.5 8.5 8.5 8.5 8.5 8.4 8.4

Table 5.2. Condition numbers obtained with the multi-

grid preconditioner B̂J , i.e. the condition number of B̂JA

for various values of h and ∆t.

As a set of more challenging cases, we studied the performance of

the PCG solver, using the approximate block Jacobi preconditioner

B̂J , for a series of electro-cardiac simulations. In these experiments, a

realistic 3D heart domain was discretized by four consecutively refined

unstructured meshes, which contained between 11,306 and 4,942,624

mesh points, and a fixed time step ∆t = 0.125 was applied. Linear
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tetrahedral elements were used in the standard Galerkin method, and

the conductivity tensors Mi and Me were dependent on the spatial

position. That is, the conductivities incorporate the fibrous structure

of the heart, see also [3, Chapters 2 and 6]. All the experiments were

carried out in the case of homogeneous Neumann boundary conditions.

Four numerical experiments were performed on the four consecu-

tively refined meshes. For approximately inverting the submatrices A

and C, which are needed in the approximate preconditioner B̂J , one

multigrid V-cycle was used to treat each of the two submatrices. The

grid hierarchy associated with each numerical experiment consisted of

the chosen mesh and its preceding coarser meshes. That is, the small-

est experiment used only one grid level, whereas the largest experiment

applied all four levels. On the coarsest grid level, which had 11,306

mesh points, 10 SSOR iterations were used as a coarse grid solver. On

the finer levels, two SSOR sweeps were applied as both pre- and post-

smoothers. The PCG solver was stopped whenever the Euclidean norm

of the relative residual was less than 10−4.

Table 5.3 contains the results obtained in these 3D experiments. The

average number of PCG iterations, reported in the table, is based on

ten time steps. All of the simulations were performed on a 600 MHz

R14000 processor. In particular, we observe that the fraction CPU/N ,

where N denotes the number of mesh points, does not grow as N
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N Average Iterations Average CPU CPU/N

11,306 12.7 4.85 4.2906e-04

82,768 12.4 20.64 2.4937e-04

632,432 12.4 369.06 5.8356e-04

4,942,624 13.3 2394.33 4.8443e-04

Table 5.3. The results obtained in a series of realistic

3D experiments; the average numbers of PCG iterations

needed (using the approximate block Jacobi precondi-

tioner B̂J) and the CPU usage (measured in seconds)

per time step. In this table, N denotes the number of

mesh points in the domain H occupied by the heart.

increases. This is in accordance with Theorem 3.1, i.e. B̂J defines an

order optimal preconditioner for the discretized Bidomain equations.

For further information about electro-cardiac experiments, including

several case studies, we would like to refer to [3].

6. Summary

The purpose of this paper has been to analyze block Jacobi and block

Gauss-Seidel preconditioners for the discretized Bidomain equations.

We have studied this problem as it typically appears in an operator

splitting approach for simulating the electrical activity in the human

heart. Due to the presence of steep gradients in the involved poten-

tials, this model must be solved on very fine meshes. The number of
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unknowns used in this kind of computations, therefore tend to be very

large, typically between 25 and 50 million unknowns in 3D.

Our main result, Theorem 3.1, shows that the preconditioned conju-

gate gradient method defines an order optimal method for solving the

discretized Bidomain equations, provided that either the block Jacobi

or the block Gauss-Seidel preconditioner is used. Consequently, the

CPU time needed by these algorithms will only grow linearly with the

number of unknowns used in the computations - leading to very efficient

methods. Finally, our theoretical findings were illuminated through a

series of numerical experiments, including examples involving realistic

geometries and model data.

This paper also contains some rather general results regarding Ja-

cobi and Gauss-Seidel preconditioners for 2× 2 block systems of linear

equations. More precisely, for symmetric and positive definite prob-

lems, we have derived suitable conditions that lead to order optimal

conjugate gradient schemes for systems of this kind.
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