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ABSTRACT. In this paper we show that standard preconditioners for parabolic
PDEs discretized by implicit Euler or Crank—Nicolson schemes can be reused
for higher—order fully implicit Runge-Kutta time discretization schemes. We
prove that the suggested block diagonal preconditioners are order—optimal for
A—stable and irreducible Runge—-Kutta schemes with invertible coefficient ma-
trices. The theoretical investigations are confirmed by numerical experiments.

1. INTRODUCTION

Let © be a bounded polygonal domain in R?, with d=2 or 3, and boundary 5.
In this paper we will consider a parabolic PDE on the form

(1) % = Au+f, inQ t>0,
(2) u = 0, ondQ, t>0
(3) v = u’, inQ, t=0.

The equations (1)—(3) are discretized in space, by a finite element method, which
gives a system of ODEs to be solved,

d
(4) M% = —Kup+ fn, t>0,
(5) up, = u%, t=0,

where M is the mass matrix and K is the stiffness matrix. Higher-order time
discretization schemes based on fully implicit Runge-Kutta schemes are rarely used
when discretizing (4)—(5), due to the additional cost of solving a larger and more
complicated system of equations. The lack of efficient solution algorithms for such
systems has prevented these algorithms from widespread use for PDEs, despite the
many appealing properties of such schemes. However, the lack of efficient algorithms
does not only apply to PDEs, it applies to ODEs in general. A fact we emphasize
by quoting some standard ODE textbooks:
1) ” An efficient solution of this system is the main problem in the implementation
of an implicit Runge—Kutta method” [8, p. 118].
2) ” One of the challenges for implicit Runge—Kutta methods is the development of
efficient implementations.... Thus, it is important to look for ways to make the
iterations process less expensive” [2, p. 103].
In this paper we will see how one can reuse fast solution algorithms developed for
low order time-discretizations, in the case of a parabolic PDE.

When the equations (4)—(5) are discretized by lower order time discretization
schemes such as implicit Euler, we arrive at the following sequence of linear systems
to be solved at each time step,

(6) (M + 6tK)ul! = Mu™' + 6tf,
where 0t is the time stepping parameter. Order optimal solution algorithms for this

system have been found for most spatial discretization methods. The goal in this
1
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paper is to reuse such preconditioners for fully implicit Runge-Kutta schemes. In
that way the method will have implementational similarities with BDF and DIRK
methods, but the stability and convergence of the chosen fully implicit Runge—
Kutta method. Furthermore, we will prove that these preconditioners are order—
optimal with respect to ¢t and h and demonstrate their efficiency by several nu-
merical experiments. Order-optimality in s, where s is the number of stage values
in the Runge-Kutta schemes, is not obtained. However, we demonstrate that the
s-dependency is weak compared to the accuracy gained. Furthermore, we have in
[19] numerically demonstrated that this s-dependency can be reduced by generalis-
ing a Gauss-Seidel preconditioner with certain coefficients determined by a simple
optimization principle.

Except for BDF and DIRK methods, which only require the solution of systems
on the form (6), the authors only know of a few other works on solution algorithms
for higher—order time discretization schemes in the context of PDEs [5], [7], [11],
[12], [13], [14], and [15]. In [12] and [13] they present an inexact block LU precon-
ditioners when using the W-transformation on the Runge-Kutta schemes. Block
Jacobi and Gauss-Seidel preconditioners for generalized Adams methods are stud-
ied in [11]. In [15], we discussed preconditioners for higher—order Padé formulations
of parabolic PDEs where the matrix was a polynomial of (M + §tK)-like matrices,
on the form I ; (M + a;6tK)*. In this work, we instead consider linear systems of
(M + §tK)-like matrices.

In the recent work [14], multigrid methods for Runge-Kutta methods was stud-
ied. A key idea in this work was to employ block smoothers, simultaneously updat-
ing all unknowns related to a spatial grid point. Convergence rate independent of
the number of quadrature nodes of the Runge-Kutta scheme, s, was obtained, but
the smoothers require the solution of s x s systems at each spatial grid point. Our
approach is different in the sense that we employ standard preconditioners (e.g.,
multigrid with pointwise smoothers or domain decomposition) for (6) on each of
the blocks in the block matrix arising from the Runge-Kutta discretization.

The order-optimality of the method proposed here is proven by viewing the
differential operator as an isomorphism in appropriate spaces. This gives an upper
bound on the condition number of the preconditioned system, and therefore an
upper bound on the number of iterations. Other works taking the same approach
are [1], [9], and [17].

The preconditioners discussed in this paper can be (and have been) implemented
as a block diagonal matrix of standard preconditioners. Practical details concerning
the implementation of block preconditioners (in the C++ library Diffpack) can be
found in [16]. More numerical experiments can be found in [19]. Here, numerical
experiments also in 3D verify the order-optimality. Furthermore, it is shown nu-
merically that block Gauss-Seidel preconditioners can improve the efficiency of the
preconditioner.

The remaining part of the paper is organized as follows: In Section 2 we review
some useful concepts. In Section 3 we prove that the continuous version of the time
stepping operator for Runge-Kutta methods is an isomorphism bounded indepen-
dent of §t, when using the proper interpolation spaces. This enables us to construct
order—optimal preconditioners in the discrete case in Section 4. Section 5 presents
some numerical experiments.

2. PRELIMINARIES

Let H' = H'(2) be the Sobolev space with first order derivatives in L? = L?(1Q),
with norm ||-||;. The space Hy is the closure of C§° in H', with norm ||-|| g1 = |-|1,
which is the Ls norm of the first order derivatives. The |- |; norm is equivalent
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with the standard H! norm on H}. The space H ! is the dual space of H{. Vector
valued functions and spaces are denoted by bold face symbols. The inner product
of both scalars, vectors, and matrices, as well as the duality pairing of H} and H !
and their corresponding vector spaces, are denoted by (-, -), and the corresponding
norm is denoted by || - ||. The operators A and V are applied to both scalars and
vectors, the scalar versions are standard and the vector versions are defined,

O
(Au); = Au;, and (Vu);; = a—uz, for1<i<s, 1<j<d,
Ly
where u; is the i’th component of u. Notice that Vu is a s X d matrix. The spaces
involving time are defined by

T
lull 2o = ( / () |2 de) V2,

where || - ||x is the spatial norm in the space X (which is either, H}, H=! or L?).
The weak form of (1)—(3) is:
Find w € L*(0,T; H}) with 2% € L2(0,T; H~!) such that

(7) (%,U)+(VU,VU) = (f,v), VvGH&,t>O,

(8) u = wug, t=0.

Similarly, the finite element formulation is defined by seeking an approximation
up(t) in a finite element subspace Vj, C H{ by:
Find uy, € L*(0,T;V},) with %% € L2(0,T;V},) such that
0
(G )+ (Vun, Vo) = (f0), Vo eVit>0,
u = ug, t=0.
This can be written as a linear system of ODEs,

auh
=L — Apuy, =
h ot hURp fha

where T}, is the identity operator (the mass matrix M) and Ay, is the A operator (the
negative stiffness matrix, —K) on V}. The right-hand side fj, is the Lo-projection
of f on V}, (often approximated by the mass matrix times a vector with the values
of f evaluated at nodal points). We may write this system as

8uh
ot
and the eigenvalues of —1, 1A}, are real and positive.
The unknown uy(t) is approximated by a Runge-Kutta method,

— L Apuy = 1, fa,

S
up = uZ_l + ot g biuﬁ7i,
i=1
where

S
(9) Inup s = Ap(up ™ 406 aigup ;) + faltno1 +cidt), 1<i<s,
j=1
where uj, ; is the intermediate stage value approximating the time derivative of u
at a given quadrature node (we use the slightly confusing variable name up, ; for the
time derivatives of u, since uj, ; is the unknown that appears in our linear system).
This system can be written as,

(I @ T — StA® Ap)ul = —I°° @ Ajul ™ + f7,
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where fi' = (fit 1, [ )" fits = fa(tno1 4 cidt), up is the vector of intermediate
stage values wj = (uj ,,. .. ,uZ)S)T, I%* is the identity matrix in R%*, A, b and ¢

are the Runge-Kutta coefficients, weights and nodes, and ® is the Kronecker tensor
product,

annB ... aip,B

A®B= : . :
amB ... ap,B

A Runge—Kutta scheme is A—stable if the stability function,
R(z) =1+ 20" (I —24)""1

satisfies |[R(z)| < 1 when Re(z) < 0, where 1 € R® is a vector of ones. In this paper
we will assume that the Runge-Kutta methods are A—stable, irreducible and has
invertible A, such as Gauss, LobattoIIIC, RadaulA, and RadaullA, cf. e.g. [8]. We
will also assume that the diagonal entries of A are positive. We refer to [6] for a
description of parabolic PDEs and [20] for corresponding discretization methods.

We use the common definition of an order optimal preconditioner, which is that
By, is an order optimal preconditioner for Ay, with respect to the parameter k, given
that the condition number of By Ay is bounded independently of the parameter k,
and that the evaluation and storage of By is similar to that of Ag. In this paper we
will show that the considered preconditioners are order-optimal both with respect
to the parameter h and §t.

Finally, we will need the intersection and sum of Hilbert spaces. If X and Y
are Hilbert spaces, both continuously contained in some larger Hilbert space, then
the intersection X N'Y and the sum X + Y are Hilbert spaces, and the norms are
defined,

Izllxey = (z1% + 1215)"?
and
lellxey = _inf | (lalfe + )2
zeX,yeY

Furthermore, if X NY is dense in both X and Y, then (X NY)* = X* +Y*. We
refer to [4, Chapter 2] for these results. The spaces we will use are L? N §tHg and
its dual space L? + %Hil, and the vector space of these spaces, L? N §tH} and
L? + $H™', with dimension s. We remark that for 6t > 0, L? N §tH] is equal
to H! as a set, but as 6t — 0, the norm degenerates to L2. Since the spaces will
appear many times we have adopted the short-hand notation:

V = L?’NdtHS,
1
VY = L2+ —H!
+5t ’
V = L*nétHY,
1
vV = L>+ -—H'.
t o

3. AN EXISTENCE RESULT

The purpose of this paper is to introduce preconditioners for Runge-Kutta
schemes applied to parabolic PDEs that are uniform in both space and time (but
not the number of stages). To do this we will employ the spaces introduced in the
previous section to describe the spatial problem to be solved at each time step.

We start with an implicit Euler time discretization of (1) to explain the problem:
Find u™ € V, such that

af(u",v) = b"(v), YweV,



PRECONDITIONERS FOR RUNGE-KUTTA SCHEMES 5

where

Ewr v) = (u™v)+0t(Vu", Vo),
bi(v) = (u"hv) +6t(f",v).

It then follows that

a®(u,v) < of fullv|vlv,
1

a®(u,u) > —llullf.
5]

From the Lax-Milgram theorem (or the Riez representation theorem since a® is

symmetric) we know that there exists a unique solution in V', depending continu-
ously on b™ in V*. Hence, if we let A¥ be defined by

(AFu,v) = af(u,v)
where,
AE =T — 5tA,
then AP is an isomorphism mapping V to V* bounded independently of 6t, i.e.,
||J4E||c(v7v*) <cf and \|(«4E)71|\L(V*7V) <l

In contrast, if we had considered A¥ as a mapping from Hg to H~!, then ¢ and

c¥ would depend on dt.

Similarly, the implicit Runge-Kutta method (i.e. the continuous version of (9))
can be written on the form:
Find u™ € V, such that

(10) (u", ) + 0t(A ® Au™,v) = (—I**Au""1 v) + 5t(f",v), YwecV.

The solution u™ is obtain by
S
u™ =" 4 6t Z buy.
i=1

Equation (10) may be written as
Au = f,
where
A=1-tA® A.
In this section we will show that A : V — V* is an isomorphism,
(11) [Allzovvey <a and AT zve vy < o,
where both ¢y and ¢; are independent of §t. The associated bilinear form is
a(u,v) = (Au,v) = (I — itA® A)u,v)

= (u,v) — §t(AAu,v)

= (u,v) + §t(AVu, Vo).
We remark that a(-,-) is neither positive nor symmetric, for a general A arising
from a Runge—Kutta scheme. We can therefore not use the theorems of Riez or

Lax—Milgram. To be able to prove that A is an isomorphism we need the theorem
of Babuska and Aziz [3], which in our setting reads as follows.

Theorem 3.1. A is an isomorphism mapping V to V* given that the following
conditions are satisfied:
There exists a ¢y independent of 6t such that (boundedness)

(12) la(u, v)| < crflulvvllv, Vu,veV.



6 K.-A. MARDAL, T. K. NILSSEN, AND G. A. STAFF

There exists a co independent of 6t such that (inf-sup)
(13) sup a(u, v)

vev [lvllv
Forv € V there exist u € V' such that

(14) a(u,v) # 0.
Proof. See [3]. O

1
> —|lully, VueV.
C2

Hence, it remains to prove (12)—(14). The first two properties are proven in the
following lemmas.

Lemma 3.1. There exists a constant c¢1 independent of §t such that
la(u,v)| < crl|lulvlv]lv.
Proof. To show (12) we see that
a(u,v) = ((I — 0tA® A)u,v)
= (u,v) — ot Z aij (Aug,vj)

i,j<s
= (u,v) + ot Z a;j (Vui, Vvj)
1,7<s
(15) < amaa | ullllof + 6t [IVul|[| Vo]
i,j<s
(16) < a1 (lullllo]] + 6t | Vull[[ Vo)

1 1
< ex ([lull® + 6t Vul?) (lvl* + 6t Vo) ®
= caillullv|v[lv,

where (15) follows by the Cauchy—Schwarz inequality and the definition

Amaz = MAX (max lai;, 1)
ij

and (16) comes from the fact that

Y IVl Vol = Vil Y Vo]

4,J<s i<s J<s

(17) < s|[Vul|[Vol,

where (17) follows from the equivalence ¢! and ¢? norms on R®.
O

To prove the inf-sup condition we introduce a family of matrices which we will
refer to as weakly positive definite. These matrices are defined as follows.

Definition 3.1. A matriz A € R** is weakly positive definite given that there exists
a C € R%® such that

(18) zTCx >0, VreR,
(19) tTCAz >0, VaeR®.

Lemma 3.2. A real square matriz is weakly positive definite if and only if the real
eigenvalues are positive.
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The proof of this lemma can be found in [18]. Weakly positive matrices can be seen
as a generalization of the diagonally stable matrices discussed in e.g. [10].

In the following calculations we need that there exists a positive number « such
that

(20) 2TCx > al|z)|?, VreRe,
(21) tTCAx > aljz||?, Vz RS,

This follows since C' and C'A are positive definite (not necessarily symmetric). To
see that (18) leads to (20), let x = ﬁ and use linearity to obtain the equivalent

statement that 27Cxz > « for ||z|| = 1. Furthermore, since 7 Cz is a continuous
function of z and the set defined by ||z|| = 1 is compact, 27 Cz will have a lower
bound and therefore (20) follows from (18). Similarly, (21) follows from (19).

In the next lemma we use that the Runge-Kutta coefficient matrix A is weakly
positive definite, i.e., there exists a positive definite matrix C' such that C'A is
positive definite. By Lemma 3.2 this is true as long as the arguments of the eigen-
values of A differ from w. However, for A—stable irreducible Runge-Kutta methods
with an invertible A a stronger result is known, namely that the real parts of the
eigenvalues of A are positive. To see this notice that the stability function of a
Runge-Kutta method is given by
R(z) = det(I — zA + 21bT)

det(I — zA)
Irreducibility gives that the fraction can not be reduced. Assume that there exists
an eigenvalue p of A with Re(u) < 0. Then the stability function will have a pole in
z = 1/p, which also lies in the left half plane. This contradicts with the A—stability,
which requires that |R(z)| < 1 for all z in the left half plane. Furthermore, A is
invertible, therefore zero is not an eigenvalue. We therefore conclude that the real
part of the eigenvalues must be positive.

Lemma 3.3. There exists a constant co independent of §t such that

a(u,v)

sup

1
> —u|ly, YueV.
vev [vllv T e

Proof. Define
« = min (lmlin1 =T Cz, Hrrhin1 xTCAx) .
Given u € V, let v = CTu, where C is constructed such that we have (20)-(21)
with A being the Runge-Kutta coefficient matrix. Then,
sup (Au,v)r2 > (Au7C’T;1,)L2
vev [[ufvivlv — [lullv|CTully
(CAu,u)2
[ullv[|CTulv
(Cu,u)p2 — 0t((CA® A)u,u)p2
[ullv]|CTully
1 (Cu,u)p2 + 6t(CAVu,Vu):

— el [w]lvllullv
a_|lulz: + 0t Vulli,

— el I3

- (0%

~licl

>0,
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where ||C]| is the L? matrix norm. Hence, cp = “%l in (13).
O

Finally, (14) follows by an argument similar to the proof of (13) in Lemma (3.3).
First, we notice that A7 and A share the same set of eigenvalues, and therefore A7
is also weakly positive definite. By Lemma 3.2 we now have that there exists a D
such that both D and DAT are positive definite. Further let v be given and let
u = DTv. Then we have

a(u,v) = a(DTv,v) = (I — A® A)DTv,v) = (DT — ADT ® A)v,v)
= (v, Dv) + (Vv, DATVv) > 0.

We therefore conclude that A is an isomorphism (11).

4. THE PRECONDITIONER

The preconditioner for the continuous operator is constructed based on the
weighted Sobolev spaces. The discrete preconditioner can be viewed as an op-
erator acting on discrete subspaces. Other works taking the same approach are [1],
[9], and [17].

Let B:V*—V be
(22) B = (I - étdiag(A) @ A)~ 1,

where we assume that the diagonal of A is always strictly positive. It follows from
the definition of V' and V* that

(23) 1Blleeve vy <di and  [IB7Y zov,ve) < do,
where d; and ds are independent of §t. Hence,
BA:V -V
and
(24) IBAll v, vy < crdr and  [[(BA)lzv vy < cads.
This means that the condition number of the continuous operator is bounded, i.e.,
(25) K(BA) = | BA| v vy[(BA) " 2v.v) < crdicada.

In the following we study the condition number in the discrete case. Let 2} be
a triangulation of Q. Furthermore, let V}, be a finite element space Vj, C H{, while
Vi, = (V3,)® € H} is the corresponding vector finite element space. The discrete
counterpart of A and B are defined by

(26) (Ahuh, vh) = (uh, ’Uh) + 5t(AVuh, Vvh), Yup, v, € Vy,
(27) (B;lum'vh) = (up,vy) + ot diag(A4)(Vuy, Vo), Yup,vn € V.
Since V}, is a subspace of V' we get that

(28) k(BrAp) < k(BA).

Let B; be a cheap approximation of B; = (I — 6ta;;Ap)~! constructed by, e.g.,
multigrid or domain decomposition. This is the standard preconditioner which is
used for the implicit Euler step. It is then well known that B; may be constructed
such that it is symmetric and spectrally equivalent to B;, i.e.,

(29) e3(B; M, v) < (I = tayAp)v,v) < ca(By 'v,v), Yo € Vi,

K2
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Let c¢3 and ¢4 be chosen such that (29) is valid for all i. Let further the full
preconditioner be denoted

B, 0 0
Bi=1 o 0
0 0 B

We have that the condition number fulfills the Cauchy-Schwartz like property
k(CD) < k(C)k(D) for two matrices C and D, since

#(CD) = [CD|[(CD)~H| < [CIIDINICTHID™H| = K(C)K(D).
Therefore we get

#(BrAp) < k(BuBy )k (BrAp)

By using (25) and (29), we get,

(30) k(B < %
3

5. NUMERICAL EXPERIMENTS

In this section we test our preconditioner in a series of numerical experiments.
We test three families of fully implicit Runge—Kutta schemes, Gauss, Radau, and
Lobatto. The different families have different properties when it comes to the order
of the approximation and the stability. We will only give a brief description here,
and refer to [8] for a more thorough description.

By using Gauss quadrature rules, we get the implicit Runge-Kutta Gauss meth-
ods. They have a global error estimate of O(§t%¢), where s is the number of quad-
rature points. Notice that the singlenode Gauss method is the implicit midpoint
method and it is equal to the Crank—Nicolson scheme in our example.

Using Radau quadrature, which requires one end-point among the quadrature
nodes, the global error estimate is O(6t2*~1). These methods will be named
RadaulA and RadaullA, where the start or the endpoint is among the quadrature
nodes, respectively. Notice that implicit Euler is the single-node method where the
endpoint is the quadrature node.

Finally, one can require that both the start and end points are quadrature nodes,
which is called Lobatto quadrature. There exist three different sub families of the
Lobatto scheme, where the coefficient matrix A differs among them. They have
different properties regarding, e.g., stability, but they all have a global error estimate
of O(6t**=2). Two of the sub families have one explicit step. These methods are
not studied here since they have a singular A-matrix. We will only consider the so
called LobattollIC methods.

All the methods are A—stable, but only the Radau methods and the LobattolIIC
methods are L—stable, which is an attractive property for stiff problems, like a
semidiscretized heat equation. In addition, the RadaullA and the LobattollIC
methods are stiffly accurate.

It is well-known from standard ODE theory that in the case of very stiff prob-
lems, where 0t — 0, while z = Adt — oo where A is an eigenvalue of Ih_lAh,
the order of the implicit Runge-Kutta schemes is reduced. This is known as B-
convergence, and is more thoroughly described in [8]. This does however only affect
the order of convergence for the Runge—Kutta scheme, and not the performance of
our preconditioner. In our numerical tests, we did not experience order reduction.
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5.1. The condition number. First we want to verify numerically the order—
optimality of the preconditioner with respect to the spatial discretization parameter
h and the timestep dt. This is done for a three node RadaullA method. We solve
a 1D problem, where linear finite elements are used in space. The preconditioner is
the inverse of the submatrices on the diagonal. The results are presented in Table 1
and Figure 1.

gt/h [ 272 2% 2% 20 26 97 ¥ 3
0.1 [8.23 1340 1493 1532 1542 1544 1545 15.45
0.05 [5.49 11.79 14.44 1519 1538 1543 1544 15.45
0.02 [2.90 855 13.14 14.82 1529 1541 1544 15.45
0.01 [1.91 579 11.37 14.23 1513 1537 1543 1544
0.005 [ 1.43  3.58 889 13.18 14.82 1529 1541 1544
0.002 [1.16 1.99 528 10.72 13.96 15.05 1535 15.42
0.001 [ 1.08 147 324 808 1271 14.67 1525 1540

TABLE 1. The condition number x(B.A) for the 1D problem (1)-
(3) using linear finite elements in space, and three node RadaullA
method in time. The preconditioner is constructed by inverting
the diagonal blocks exactly.

no of elements

FIGURE 1. The condition number x(B.A) for the 1D problem (1)-
(3) using linear finite elements in space, and three node RadaullA
method in time. The preconditioner is inverted exactly.

If the timestep dt is sufficiently small compared to the spatial discretization
parameter h, the Helmholtz operator is close to the mass matrix, and the condi-
tion number is small. For sufficiently small spatial discretization compared to the
timestep, the condition number x(B.A) of the preconditioned system seems to reach
an asymptotic value of about 15.4. The next section concerns the asymptotic value
for this and other schemes in both 1D and 2D using multigrid preconditioners. In
[19] we have also shown experiments in 3D.

The results clearly confirm that the preconditioner is order—optimal with respect
to both the spatial discretization parameter h and the timestep Jt.

5.2. Multigrid preconditioning. We will use multigrid to approximate the pre-
conditioner. All computations will be done on a domain Q = (0,1)%, where d is
the number of spatial dimensions. A sequence of meshes is constructed by uniform
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Method ‘ Exact 1D MG 1D MG 2D
Gauss 1 node (Implicit midpoint) 1.0 1.9 1.1
Gauss 2 nodes 4.8 9.1 5.2
Gauss 3 nodes 11.8 22.0 12.8
Gauss 4 nodes 22.4 41.2 24.2
Gauss 5 nodes 37.2 67.8 40.0
Gauss 6 nodes 56.6 102.0 60.4
RadaulA 1 node 1.0 1.9 1.1
RadaulA 2 nodes 1.5 2.6 1.5
RadaulA 3 nodes 7.2 13.6 7.8
RadaulIA 1 node (Implicit Euler) 1.0 1.9 1.1
RadaullA 2 nodes 6.8 12.9 7.4
RadaullA 3 nodes 15.4 29.0 16.8
RadaulIA 4 nodes 27.1 50.1 29.3
RadaullA 5 nodes 41.2 75.2 44.3
RadaulIA 6 nodes 57.5 104 61.5
LobattolIIC 2 nodes 1.3 1.9 1.4
LobattolIIC 3 nodes 11.2 21.4 12.2
LobattolIIC 4 nodes 21.6 40.6 23.5

TABLE 2. Estimates of the condition number x(B.A) for various
implicit Runge-Kutta schemes.

refinement of a 2 or 2 x 2 partition of the domain . The preconditioner B is com-
puted using a standard V-cycle with a symmetric Gauss-Seidel smoother. Gaussian
elimination is used as the coarse grid solver.

We estimate the condition number using one multigrid V-cycle as the precondi-
tioner. The results are shown in Table 2 for both 1D and 2D. The discretization
parameters dt and h are chosen such that the condition number is close to the
asymptotic value. In our case 6t = 0.1 and h = 279 have been appropriate. The
results for multigrid in 2D are better than the results for multigrid in 1D, and this
seems a bit strange. We have tested this multigrid method also in the case of a
Poisson equation and similar results were obtained here. However, it is probably
possible to tune the parameters in the 1D multgrid method such that it performs
better, but we have not done this, since the results anyway are good.

The single stage methods are included as a point of reference. In 2D, the multi-
grid preconditioner is much better than in 1D, and the condition numbers are
roughly 10% higher than the exact 1D case.

Clearly our preconditioner is not optimal with respect to the number of quad-
rature nodes in the Runge-Kutta scheme. In fact, it seems that the growth in the
condition number with respect to s is slightly above quadratic. But remember that
an increase in the number of nodes by one, implies an increase in the order of two.
So an increase in the number of iterations, may be subordinate to the decrease
in the number of required timesteps. This is what we will investigate in the next
example. Notice also that we in [19] studied Gauss-Seidel preconditioners which
have far better performance with respect to s.

5.3. Iteration count for a test problem. Finally, we compare the actual CPU
time for a given test problem. We solve (1)—(3), with a source term f such that the
exact solution is

Ty
b

u(x,y,t) = sin (wyx) sin (wyy) sin (wemt)e (We, wy,wy) = (m,7,20.57).
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With MG prec No prec
Method ot wct ‘ iter ‘ Ist wct iter Ist

Gauss 1 node 1/5000 | 87.4 | 2.9 | 22.7 | 92.8 | 184 | 27.50
Gauss 2 nodes 1/142 | 11.0 | 14.7| 64 | 169 | 1184 | 163.6
Gauss 3 nodes 1/47 85 | 244 | 5.7 | 280 | 3565 | 623
Gauss 4 nodes 1/26 8.8 |348| 63 | — | >5000| —
RadaullA 1 node 5.0e-7 | 3ed 3 | 9085 | 2e4 2 1607
RadaullA 2 nodes | 1/440 | 34.5 | 15 | 20.2 | 277 | 607 262
RadaullA 3 nodes 1/68 | 14.0 | 30 | 10.0 | 488 | 3684 | 817
RadaulIA 4 nodes 1/30 | 12,5 | 46.8 | 9.8 — | >5000 | —
LobattoIIIC 2 nodes | 1/5000 | 387.5 | 14.7 | 227.5 | 530 105 515
LobattoIIIC 3 nodes | 1/140 | 33.5 | 37.1 | 25.5 | 953 | 2902 | 938
LobattoIIIC 4 nodes | 1/43 | 23.4 |64.5| 19.5 | — | >5000 | —
TABLE 3. The total computational time measured in minutes
(wct), the time spent to solve the linear system (Ist), and the
average number of iterations (for all time steps) for solving the
heat equation (1)—(3) for schemes with various number of stages.
The discretization parameters are chosen such that the error from
the discretizations are approximately 107°. The preconditioner is
approximated using one multigrid V—cycle. For comparison, the
same simulations are also done without precondtioner.

The high number of oscillations in time is to generate a certain degree of complexity
in time. We solve the problem from T = 0.0 to 7' = 1.0 on the unit square. In space
we discretize using linear finite elements. Both the element size h and the time—step
§t is chosen such that the error is of order 10~°, measured in the following discrete
L?(0,T; L?) norm,

n

lellzz(o,7,22) = (Z e(t)” Me(ty,) t)'/2,
k=0

where e(ty) is the error vector at nodal points at time tg, M is the mass matrix
and n is the number of time steps. In space we discretized using 2'¢ bilinear finite
elements over the entire domain.

The preconditioner is one geometric multigrid V—cycle, and the linear system is
solved using GMRES with restart after 5 search vectors (for RadaulTA and Gauss
with 1 node we used conjugated gradients) with the stopping criterion that ||r|| <
10~7. The result is displayed in Table 3. Notice that the residual is only evaluated
before the restart. This means that the system is possibly over—iterated, but the
computational time is in general smaller due to the high cost of evaluating the
residual every iteration.

The results are computed on a Linux machine with an AMD Athlon 64 2.2GHz
processor with 2GB RAM using the C++ library Diffpack.

The number of iterations stated is an average over all the iterations. The three-
node Gauss scheme is the fastest, while the four-node Gauss is almost equally fast.
In general, the higer-order schemes is more efficient the lower-order schemes for all
the three classes of Runge-Kutta schemes.

The cost of doing a preconditioned GMRES iteration is approximately 2.5 the
cost of doing an unpreconditioned iteration. The cost of evaluating the right hand
side for each timestep is equal to several preconditioned iterations due to the com-
plexity of the function f. This is noticable for the schemes where the number of
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required iterations is low, where the time to solve the linear systems (Ist) is much
smaller then the total solution time (wct).

Note that this is only an indication that high order Runge-Kutta methods may
be efficient compared to low order methods. But which solver is the most effi-
cient depends on several properties like the regularity of the solution, the required
accuracy, the implementation, and other properties.

6. FINAL REMARKS

In this paper we have shown that the systems arising from fully implicit Runge—
Kutta schemes applied to parabolic equations can be efficiently preconditioned with
a block preconditioner. The block preconditioner is block diagonal and has blocks
that are standard elliptic preconditioners. Such preconditioner are well known to be
order—optimal when constructed by, e.g., multigrid or domain decomposition meth-
ods. The proposed preconditioner is proven to be order—optimal when constructed
from order—optimal preconditioner for backward Euler scheme.

In several numerical experiments we have demonstrated that the condition num-
ber for the preconditioned systems are bounded. We have also seen that higher—
order methods are beneficial, when using efficient preconditioners, even for problems
with relatively fast dynamics and modest accuracy requirements.
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