
SyFi - An Element Matrix Factory, with

Emphasis on the Incompressible Navier-Stokes

Equations

Kent-Andre Mardal

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway,
kent-and@simula.no,

WWW home page: http://www.simula.no/portal memberdata/kent-and

Abstract. SyFi is an open source C++ library for defining and using
variational forms and finite elements based on symbolic representations
of polygonal domains, degrees of freedom and polynomial spaces. Once
the finite elements and variational forms are defined, they are used to
generate efficient C/C++ code.

1 Introduction

SyFi [11], which stands for Symbolic Finite Elements, is a C++ library for finite
element computations. It relies on the symbolic mathematics library GiNaC [8]
and the Python interface to GiNaC called Swiginac [13]. All the projects GiNaC,
Swiginac and SyFi are open source projects. Similar to GiNaC, SyFi has a
Python interface generated by using SWIG [12]. This paper is only a short
overview of the SyFi project in the context of finite element methods for the in-
compressible Navier-Stokes equations. A more comprehensive description of the
project can be found on its webpage http://syfi.sf.net, which contains a tutorial,
a complete reference and the source code. We will show various code snippets in
this paper, the complete code examples can be found in the subdirectory para06

in the SyFi source code tree.
There are quite a few other projects that are similar in various respects to

SyFi. Within the FEniCS [3] project there are two Python projects: FIAT [5]
and FFC [4]. FIAT is a Python module for defining finite elements while FFC
generates C++ code based on a high–level Python description of variational
forms. The DSEL project [2] is a project which employs high–level C++ pro-
gramming techniques such as expression templates and meta-programming for
defining variational forms, performing automatic differentiation, interpolation
and more. Sundance [10] is a C++ library with a powerful symbolic engine
which supports automatic generation of discrete system for a given variational
form. Analysa [1], GetDP [7], and FreeFem++ [6] define domain-specific lan-
guages for finite element computations. The main difference between SyFi and
the other projects is that it uses a high level symbolic framework in Python to
generate efficient C/C++ code.

2

A key point in the design of SyFi is, as already mentioned, that we want
to employ symbolic mathematics and code generation in place of the numerics.
The powerful symbolic engine GiNaC and the combination of the high–level
languages C++ and Python have so far proven to be a solid platform. Consider
for instance, the computation of, e.g., the mass element matrix:

Aij =

∫
T

NiNj dx, (1)

where T is a polygonal domain and Ni and Nj are finite element basis functions
that are standard polynomials. For instance, in the case of a linear element
defined on the reference triangle the basis functions are,

N0 = 1 − y − x, (2)

N1 = x, (3)

N2 = y (4)

Using SyFi, the computations of the integrals in (1) with, e.g., the basis functions
(2)-(4) are carried out symbolically prior to the code generation. Needless to say,
it is possible to generate more efficient code in this way than the traditional way
which involves a loop over quadrature points and numerical evaluation of the
finite element basis functions. As will be explained later, other advantages of this
approach include an easy way of defining finite elements, and straightforward
computation of the Jacobian in the case of nonlinear PDEs.

2 Using Finite Elements and Evaluating Variational

Forms

One main goal with SyFi has been that it should be a tool with strong support

for differentiation and integration of polynomials on polygonal domains, which
are basic ingredients both when defining finite elements and using finite ele-
ments to define variational forms. Many finite elements have been implemented
in SyFi. Of particular importance for the simulation of incompressible fluids are
the continuous and discontinuous Lagrangian elements of arbitrary order and the
Crouzeix-Raviart element. However, also the H(div)-Raviart-Thomas elements
and the H(curl)- Nedelec elements of arbitrary order have been implemented.
We will come back to the construction of finite elements in Section 4. In this
section we concentrate on the usage of already implemented elements.

We construct the commonly used Taylor–Hood element P
2
2 − P1 as follows

(see also div.py),

from swiginac import *
from SyFi import *

polygon = ReferenceTriangle()

v_element = VectorLagrangeFE(polygon,2)

3

v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The polygonal domain here is a reference triangle, but it may be a line, a triangle,
a square, a tetrahedron or a box. Furthermore, these geometries are not limited
to typical reference geometries. For instance, we may construct the elements
on a global triangle defined by the points (x0, y0), (x1, y1), and (x2, y2) where
x0, . . . , y2 might be both numbers and/or symbols. The following code shows the
Taylor–Hood element on a triangle defined in terms of the symbols x0, . . . , y2,
(see also div global.py),

x0 = symbol("x0"); y0 = symbol("y0")
x1 = symbol("x1"); y1 = symbol("y1")
x2 = symbol("x2"); y2 = symbol("y2")

p0 = [x0,y0]; p1 = [x1,y1]; p2 = [x2,y2]

polygon = Triangle(p0,p1,p2)
v_element = VectorLagrangeFE(polygon,2)
v_element.set_size(2)
v_element.compute_basis_functions()

p_element = LagrangeFE(polygon,1)
p_element.compute_basis_functions()

The computed basis functions are standard polynomials also in this case, al-
though they depend on x0, . . . , y2. These polynomials can be added, multiplied,
differentiated, integrated etc. in the standard way (within a symbolic frame-
work). Consider for example, the computation of the divergence constraint,

Bij =

∫
T

div Ni Lj dx,

where Ni and Lj are the basis functions for the velocity and pressure elements,
respectively, and T is a polygonal domain. This matrix can be computed as
follows (see also div global.py):

... construct the element

for i in range(0,v_element.nbf()):
for j in range(0,p_element.nbf()):

integrand = div(v_element.N(i))*p_element.N(j)
Bij = polygon.integrate(integrand)

Another example that demonstrates the power of this approach, in which we
utilize a symbolic mathematics engine, is the computation of the Jacobian of the
nonlinear convection-diffusion equations that typically appear in incompressible
flow simulations. Let

Fi =

∫
T

(u · ∇u) · Ni + ∇u : ∇Ni dx,

4

where u =
∑

k ukNk. Then,

Jij =
∂Fi

∂uj

=
∂

∂uj

∫
T

(u · ∇u) · Ni + ∇u : ∇Ni dx, (5)

The computation of such Jacobian matrices and the implementation of corre-
sponding simulations software are usually tedious and error-prone. It seems that
one main reason for this difficulty is the gap between the computations done by
hand and the corresponding numerical algorithm to be implemented. After all,
the computation of (5) only involves straightforward operations. SyFi aims at
closing this gap. We will now show the code for computing (5) with SyFi. The
complete source code is in conv-diffusion.py. First, we compute the finite
elements as shown in the previous example. Secondly, we compute the Fi and
differentiate to get the Jacobian:

u, ujs = sum("u", fe)

for i in range(0,fe.nbf()):

compute diffusion term
fi_diffusion = inner(grad(u), grad(fe.N(i)))

compute convection term
uxgradu = (u.transpose()*grad(u)).evalm()
fi_convection = inner(uxgradu, fe.N(i), True)

add together diffusion and convection
fi = fi_diffusion + fi_convection

compute the integral
Fi = polygon.integrate(fi)

for j in range(0,fe.nbf()):
differentiate to get the Jacobian
uj = ujs.op(j)
Jij = diff(Fi, uj)
#print out the Jacobian
print "J[%d,%d]=%s;\n"%(i,j,Jij)

The output when conv-diffusion.py is executed is:

J[0,0]=1+1/24*u2-1/12*u1-1/24*u5-1/6*u0-1/24*u4-1/24*u3;
J[0,1]=-1/12*u0+1/12*u4;
J[0,2]=-1/2+1/12*u2+1/24*u0+1/24*u4;
J[0,3]=-1/24*u0+1/24*u4;
J[0,4]=-1/2+1/24*u2+1/12*u1+1/24*u5-1/24*u0+1/24*u3;
...

We can now extend the above code such that it also can include power-law
viscosity models, i.e.,

F
p
i =

∫
T

(u · ∇u) · Ni + µ(u)∇u : ∇Ni dx,

5

where µ = µ0‖∇u‖n. The Jacobian matrix is then

J
p
ij =

∂F
p
i

∂uj

The only thing we need to change then in the above script is the diffusion
term (see also conv-diffusion-power-law.py):

nonlinear power-law diffusion term
mu = inner(grad(u), grad(u))
fi_diffusion = mu0*pow(mu,n)*inner(grad(u), grad(fe.N(i)))

In addition, we also need to declare n and µ0 to be either symbols or numbers.

3 Code Generation for Quadrature Based FEM systems

SyFi can also be used to generate C++ code for other FEM systems. We will here
consider code generation for finite element basis functions in a format specified by
the user. Other code generation examples can be found in the SyFi tutorial and
source code, where code for creating both PyCC and Epetra matrices for various
problems are generated. Furthermore, notice that one can print the expressions
out in either of the formats: ASCII, C, LATEX, and Python.

The following code demonstrates how C code for the basis functions is gen-
erated (see also code gen simple.py):

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,2)
fe.compute_basis_functions()

N_string = ""
for i in range(0,fe.nbf()):

N_string += " N[%d]=%s;\n"% (i, fe.N(i).printc())

c_code = """
void basis2D(double N[%d], double x, double y) {
%s
} """ % (fe.nbf(), N_string)

print c_code

Notice that C code for the expressions are generated with the function printc.
The output when code gen simple.py is runned is:

void basis2D(double N[6], double x, double y) {
N[0]=pow(-y-x+1.0,2.0)-(-y-x+1.0)*y-(-y-x+1.0)*x;
N[1]=4.0*(-y-x+1.0)*x;
N[2]=-y*x+(x*x)-(-y-x+1.0)*x;
N[3]=4.0*(-y-x+1.0)*y;
N[4]=4.0*y*x;
N[5]=-y*x+(y*y)-(-y-x+1.0)*y;

}

Finally, notice that to change the above code to produce code for, e.g., 5th order
elements all you need to do is change the degree of the element i.e.,

6

polygon = ReferenceTriangle()
fe = LagrangeFE(polygon,5)
fe.compute_basis_functions()

...

4 Defining a Finite Element in SyFi

Defining a finite element may of course be more technical than using it, in
particular for advanced elements. Furthermore, the implementation shown be-
low involves more of GiNaC and SyFi than the earlier examples, so the reader
should have access to both the SyFi and GiNaC tutorial. We will describe the
implementation of an element recently added to SyFi. The element was intro-
duced in [9]. The special feature of this element is that it works well for both
Darcy and Stokes types of flow.

The definition of the element is as follows,

V (T) = {v ∈ P
2

3 : div v ∈ P0, (v · ne)|e ∈ P1 ∀e ∈ E(T)},

where T is a given triangle, E(T) is the edges of T , ne is the normal vector on
edge e, and Pk is the space of polynomials of degree k and P

d
k the corresponding

vector space. The degrees of freedom are,

∫
e

(v · n)τk dτ, k = 0, 1, ∀e ∈ E(T),

∫
e

(v · t) dτ, ∀e ∈ E(T).

The definition of the element is more complicated than most of the common
elements. Still, we will show that it can be implemented in SyFi in about 100
lines of codes. We will compute this element in four steps:

1. Constructing the polynomial space V (T).
2. Spesifying the constraints.
3. Spesifying the degrees of freedom.
4. Solving the resulting linear system of equations.

Considering the first step, SyFi implements the Bernstein polynomials (in
barycentric coordinates) with the functions bernstein and bernsteinv, for
scalar and vector polynomials, respectively. The bernstein functions returns
a list (lst) with the items:

– The polynomial (a0x + a1y + a2(1 − x − y) + . . .).
– The variables (a0, a1, a2, . . .).
– The polynomial basis (x, y, 1 − x − y, . . .).

In the following we construct P
2
3:

7

Triangle triangle
ex V_space = bernsteinv(2, 3, triangle, "a");
ex V_polynomial = V_space.op(0);
ex V_variables = V_space.op(1);

Here V space is the above mentioned list, V polynomial contains the polyno-
mial, and V variables contains the variables.

In the second step we first specify the constraint div v ∈ P0:

lst equations;
ex divV = div(V);
ex_ex_map b2c = pol2basisandcoeff(divV);
ex_ex_it iter;
// div constraints:
for (iter = b2c.begin(); iter != b2c.end(); iter++) {

ex basis = (*iter).first;
ex coeff= (*iter).second;
if (coeff != 0 && (basis.degree(x) > 0

|| basis.degree(y) > 0)) {
equations.append(coeff == 0);

}
}

Here, the divergence is computed with the div function. The divergence of a
function in P

2
3 is in P2. Hence, it is on the form b0+b1x+b2y+b3xy+b4x

2+b5y
2.

In the above code we find the coefficients bi, as expressions involving the above
mentioned variables ai and the corresponding polynomial basis, with the function
pol2basisandcoeff. Then we ensure that the only coefficient which is not zero
is b0.

The next constraints (v ·ne)|e ∈ P1 are implemented in much of the same way
as the divergence constraint. We create a loop over each edge e of the triangle and
multiply v with the normal ne. Then we substitute the expression for the edge,
i.e., in mathematical notation |e, into v ·n. After substituting the expression for
these lines to get (v ·ne)|e , we check that the remaining polynomial is in P1 in
the same way as we did above.

// constraints on edges:
for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);
symbol s("s");
lst normal_vec = normal(triangle, i);
ex Vn = inner(V, normal_vec);
Vn = Vn.subs(line.repr(s).op(0)).subs(line.repr(s).op(1));
b2c = pol2basisandcoeff(Vn,s);
for (iter = b2c.begin(); iter != b2c.end(); iter++) {

ex basis = (*iter).first;
ex coeff= (*iter).second;
if (coeff != 0 && basis.degree(s) > 1)
{

equations.append(coeff == 0);
}

}
}

8

In the third step we specify the degrees of freedom. First, we specify the
equations coming from

∫
e
(v · n)τk, k = 0, 1 on all edges. To do this we need

to create a loop over all edges, and on each edge we create the space of linear
Bernstein polynomials in barycentric coordinates on e, i.e., P1(e). Then we create
a loop over the basis functions τk in P1(e) and compute the integral

∫
e
(v·n)τk dτ .

// dofs related to the normal on the edges
for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);
lst normal_vec = normal(triangle, i);
ex P1_space = bernstein(1, line, istr("a",i));
ex P1 = P1_space.op(2);
ex Vn = inner(V, normal_vec);

ex basis;
for (int j=0; j< P1.nops(); j++) {

basis = P1.op(j);
ex integrand = Vn*basis;
ex dofi = line.integrate(integrand);
dofs.insert(dofs.end(), lst(line.vertex(0),

line.vertex(1), j));
ex eq = dofi == numeric(0);
equations.append(eq);

}
}

Finally, the degrees of freedom
∫

e
(v · t)dτ , can be implemented in basically the

same fashion as the previously described degrees of freedom To summarize, we
have now specified 20 equations which is precisely the number of unknowns in
P

2
3. Hence, the space V (T) is uniquely defined, what remains is simply to solve

a linear system with 20 equations and 20 unknowns. The complete source code
is in Robust.cpp.

References

1. B. Bagheri, L. R. Scott, Analysa software package,
http://people.cs.uchicago.edu/r̃idg/al/aa.html

2. C. Prud’homme, DSEL software package,
http://www.hpc2n.umu.se/para06/papers/paper 147.pdf

3. T. Dupont, J. Hoffman, J. Jansson, C. Johnson R. C. Kirby, M. Knepley, M. Larson,
A. Logg, R. Scott, G. N. Wells, FEniCS software package, http://www.fenics.org

4. A. Logg, FFC software package, http://www.fenics.org/ffc/
5. R. C. Kirby, FIAT software package, http://www.fenics.org/fiat/
6. O. Pironneau, F. Hecht, A. L. Hyaric, FreeFEM software package,

http://www.freefem.org/ff++/index.htm
7. P. Dular, C. Geuzaine, GetDP software package,

http://www.geuz.org/getdp/
8. C. Bauer, C. Dams, A. Frink, V. V. Kisil, R. Kreckel, A. Sheplyakov, J. Vollinga,

GiNaC - is not a CAS, http://www.ginac.de

9

9. K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy–
Stokes flow, SIAM J. Numer. Anal. 40 (2002), pp. 1605–1631.

10. K. Long, Sundance software package, http://software.sandia.gov/sundance/
11. K.-A. Mardal, SyFi - Symbolic Finite Elements, http://syfi.sf.net
12. D. Beazley et. al., SWIG - Simplified Wrapper and Interface Generator,

http://www.swig.org
13. O. Skavhaug, O. Certik, Swiginac - Python interface to GiNaC

http://swiginac.berlios.de/
14. M. Heroux et. al., Trilinos,

http://software.sandia.gov/trilinos/

