
Effort Estimation of Use Cases for Incremental Large-Scale Software
Development

Parastoo Mohagheghi1, Bente Anda2, Reidar Conradi1, 2

1Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway
2Simula Research Laboratory, P.O.Box 134, NO-1325 Lysaker, Norway

parastoo@idi.ntnu.no, bentea@simula.no, conradi@idi.ntnu.no

Abstract

This paper describes an empirical study on effort

estimation in incremental development of a large
industrial system with modification of software from a
previous release.. An estimation method based on use
cases, the Use case Points method, was modified in
several aspects: use cases were broken down into
smaller ones, classification rules were modified, both
total and the modified steps of the use cases were
counted, the technical and environmental factors were
omitted, and a maximum person-hour per UCP was
used. While use cases use cases can be used as a
measure of changes in functionality between releases,
there are changes in quality attributes and changes
that are made later by issuing change requests that are
not covered by use cases Therefore,, we used an
Equivalent Modification Factor (EMF) for other
changes of software not reflected in the use cases. The
original method does not explicitly define which
phases of development are covered by the estimates.
We made estimates for all activities before system test
and used an Overhead Factor (OF) equal to 2 to cover
all development. Data from one release were used to
develop the estimation method and the .method
produced an estimate for the successive release that
was only 17% lower than the actual effort. Results of
the study show that the estimation method can be
calibrated for such a context and produce relatively
accurate estimates.

1. Introduction

Effort Estimation is a challenge in every software
project. The quality of estimation will impact costs and
expectations on schedule, functionality and quality.
While expert estimations are widely used, they are
difficult to analyze and the estimation quality depends

on the experience of experts. Consequently, rule-based
methods could be used in addition to expert estimates
to improve these. Traditionally, software size estimated
in the number of Source Line of Code (SLOC),
Function Points (FP) and Object Points (OP) are used
as input to cost models, e.g. COCOMO and COCOMO
II [Boehm95]. Because of difficulties in estimating
SLOC, FP or OP, and because modern systems are
often developed using UML, UML-based software
sizing approaches are proposed that can be applied in
different stages of software development. Examples
are effort estimation methods based on use cases
[Karner93] [Smith99] and software size estimation in
terms of FP from UML class diagrams and sequence
diagrams [Uemura99].

The Use Case Points (UCP) estimation method
introduced in 1993 by Karner estimates effort in
Person-Hours (PH) based on external use cases that
mainly specify functional requirements of a system
[Karner93]. Use cases are assumed to be developed
from scratch, be detailed enough but not too detailed
[Ribu01] and typically have less than 10-12
transactions or steps. Use cases and actors are
classified as simple, average or complex and Use Case
Points are assigned to each of them. A set of technical
and environmental factors are also proposed as cost
drivers to arrive at a total sum of Adjusted Use Case
Points. This sum is multiplied by the number of
Person-Hour (PH) needed to implement each UCP
(PHperUCP) to estimate the needed effort. The method
has earlier been used in several industrial software
development projects (small projects compared to this
study) and in student projects. There have been
promising results [Anda01] [Anda02], the method
being more accurate than expert estimates in industrial
trials.

Most software is now developed incrementally or
evolutionary. There is some inconsistency in how these

UCP… Page 1 of 10

mailto:parastoo@idi.ntnu.no
mailto:bentea@simula.no
mailto:conradi@idi.ntnu.no

terms are used. We use these terms interchangeably
since requirements (and thus software) evolve in both
approaches, either preplanned or not. Project
management and iteration planning in these projects
needs an estimation method that can estimate the effort
for each release based on changes in requirements.
Furthermore, software is built on a previous release
that should be modified or extended. There are few
empirical studies on estimation of incrementally
developed software projects.

This paper presents results of an empirical study on
effort estimation of use cases in a large industrial
system that is developed incrementally. Use cases in
this study contain several complex main and
alternative flows that are typically modified between
releases. We broke each use case down into several
ones before classifying these as in the original UCP
method. We also applied the method on modified steps
in each use case to estimate effort needed to implement
the new or modified requirements specified in use
cases. The effort needed to modify a previous release
was estimated by applying a formula from COCOMO
II for modification of software [Boehm95] [Boehm04]
and defining a factor called Equivalent Modification
Factor (EMF). This effort is typically spent on
implementing and optimizing the non-functional
requirements (perfective changes in these), and on
preventive and corrective changes. The technical and
environmental factors were omitted from the method
by assuming an “average” project. Instead, we used a
relatively high number of PHperUCP (36 here) to
account for the complexity of the product. Estimates
were made for all activities before system test. We
multiplied the estimates by two to cover all project
activities (project management, configuration
management, system test, software process adaptation
and other minor activities), based on experience and
the effort breakdown profile of the projects. The
adapted and extended effort estimation method was
developed using data from one release and produced
good estimates for the successive release.

We concluded that high-level use cases can predict
the effort needed to realize a system, but the challenge
is to define rules that account for the level of detail in
use cases and how to estimate effort when these are
incrementally updated. The accuracy of the estimates
depends on the classification rules, the value of
PHperUCP, the EMF for software modification and the
activities that are assumed to be covered by the
estimates. Nevertheless, the method is rule-based, can
be improved in some iterations, and can be used as a
supplement to expert estimates to produce early top-
down estimates. We notice an increasing interest in
estimation methods based on use cases, and the study

contributes in evaluating the UCP method for
incremental development of a large-scale system,
identifying the factors that should be included in
incremental effort estimation and the factors that
impact the estimation accuracy.

This paper is organized as follows. Section 2
presents the UCP method and the elements of the
COCOMO II method that are used in this study.
Section 3 introduces the context. The research
questions are formulated in Section 4. Section 5
presents the extended estimation method and Section 6
gives the estimation results. The results are further
discussed in Section 7 and the research questions are
answered. The paper is concluded in Section 8.

2. The underlying estimation methods

2.1. The Use Case Points (UCP) estimation
method

A use case model defines the functional scope of
the system to be developed. Attributes of a use case
model may therefore serve as measures of the size and
complexity of the functionality of a system. A recent
study by Chen et al. on UML sizing metrics using 14
(small) eServices products confirmed that SLOC was
moderately well correlated with the number of external
use cases [Chen04].

The UCP estimation method [Karner93] is an
extension of the Function Points Analysis and MK II
Function Points Analysis [Symons91]. Table 1 gives a
brief introduction of the six-step UCP method. In
Table 1, WF stands for Weight Factor, UAW is the
Unadjusted Actor Weights, UUCW is the Unadjusted
Use Case Weights, UUCP is the Unadjusted Use Case
Points, UCP is the adjusted Use Case Point, PH is
Person-Hours and E is effort in PH.

There are 13 technical Factors (e.g. distributed
system, reusable code and security) and eight
environmental Factors (e.g. object-oriented experience
and stable requirements). The weights and the formula
for technical factors is borrowed form Function Points
method proposed by Albrecht [Albrecht79]. Karner
himself, based on some interviews of experienced
personnel, proposed the weights for environmental
factors, and the formula for environmental factors
seems to be calculated using some estimation results.

In step 6, Karner proposed 20 PHperUCP based on
three projects. Schneider et al. proposed 28 PHperUCP
if the values for the environmental factors indicate
negatives [Schneider98] and Russell proposed 36
PHperUCP for a complex project [Russell04].

UCP… Page 2 of 10

Table 1. The UCP estimation method
Ste
p

Task Output

1 Classify use case actors:
a) Simple, WF = 1
b) Average, WF = 2
c) Complex, WF = 3

UAW = ∑
(#Actors in each
group*WF)

2 Classify use cases:
a) Simple (3 or fewer
transactions), WF = 5
b) Average (4 to 7
transactions), WF = 10
c) Complex (more than 7
transactions), WF= 15

UUCW = ∑
(#use cases in
each
group*WF)

3 Calculate the unadjusted
UCP (UUCP).

UUCP = UAW
+ UUCW

4 Assign values to the
technical and environmental
factors (0..5), multiply by
weights (-1..2) and calculate
the weighted sums (TFactor
and EFactor). Calculate
TCF and EF as shown.

TCF = 0.6 +
(0.01 *
TFactor),
EF = 1.4 + (-
0.03 * EFactor)

5 Calculate the adjusted UCP. UCP = UUCP *
TCF * EF

6 Estimate effort in person-
hour.

E = UCP *
PHperUCP

Table 2 shows examples where the method is

applied to three industrial projects in a company in
Norway with 9-16 use cases each for new
development. The application domain was banking
[Anda01]. The system in this study is 20 times larger
than these examples measured in UCP and 50 times
larger in effort.

Table 2. Some examples on PHperUCP
Project UCP Est.

Effort
Actual
Effort

Actual
PHper
UCP

A 138 2550 3670 26.6
B 155 2730 2860 18.5
C 130 2080 2740 21.1

2.2. The Constructive Cost Model (COCOMO)
and incremental development

COCOMO (the Constructive Cost Model) is a well-

known estimation method developed originally by
Barry Boehm in 1970s [Boehm95]. COCOMO takes
software size and a set of factors as input and estimates
effort in person-months. The basic equation in
COCOMO is:

E = A*(Size)B EQ.1
E is the estimated effort in person-month, A is a

calibration coefficient and B counts for economy or
diseconomy of scale. Economy of scale is observed if
effort does not increase as fast as the size (i.e. B<1.0),
because of using CASE tools or project-specific tools.
Diseconomy of scale is observed because of growing
communication overhead and dependencies when the
size increases. COCOMO suggests a diseconomy of
scale by assuming B>1.0. COCOMO also includes
various cost drivers that fall out of the scope of this
paper.

Modern software is developed incrementally or
evolutionary. In both approaches, each iteration
delivers a working system being an increment to the
previous delivery or release. The Spiral method, the
Rational Unified Process (RUP) and recent agile
methods like eXtreme Programming (XP) are
examples of software processes with incremental
covering (or discovering) of requirements.

Benediktsson et al. analyzed the COCOMO II
model to explore the relation between effort and the
number of increments [Benediktsson03]. They
concluded that incremental development will need less
effort than the waterfall model when the diseconomy
of scale is significant.

Although there is some evidence that incremental
development reduces the risks for schedule overruns
[Moløkken04], we have not found any other empirical
study on the relation between incremental development
and effort. One challenge is to estimate the degree of
change between releases of a software system. Eick et
al. reported that during maintenance of a 100 MLOC
system, 20-30% of source code is added or deleted
every year, with a slightly decreasing change rate over
time [Eick01]. Another study by Lehman et al.
reported that 60-80% of software modules are
modified in the beginning of the maintenance phase,
but this rate is again reduced over time [Lehman98]. It
is interesting to evaluate these results when software is
both maintained and evolved between releases.
Another challenge in estimation of incrementally
developed projects is to count for modification of
software delivered in previous releases. Boehm et al.
write that there are non-linear effects involved in
module interface checking, which occurs during
design, coding, integration and testing of modified
code. The same conditions apply in incremental or
evolutionary development. Only the understanding
effort may be less, since development is typically done
by the same organization and with relatively stable
staff.

COCOMO includes a model to estimate Equivalent
new KSLOC (ESLOC) from Adapted KSLOC for

UCP… Page 3 of 10

software reuse. COCOMO II adds some non-linear
increments to the model [Boehm04]. The model is
given as:

ESLOC=ASLOC*AAM EQ.2
AAF = (0.4*DM+0.3*CM+0.3*IM)
AAM=0.01*[AA+AAF*{1+(0.02*SU*UNFM)}],
for AAF<=50 or
AAM=0.01*[AA+AAF+(SU*UNFM)], for AAF>50
The abbreviations in EQ.2 stand for:
AAF=Adaptation Adjustment Factor
DM=percentage of Design Modification

CM=percentage of Code Modification
IM=percentage of the original Integration effort

required to integrate the adapted software into an
overall product

AAM=Adaptation Adjustment Modifier
AA=Assessment and Assimilation increment, [0..8]
SU=Software Understanding increment, [10 (self-

descriptive code)..50 (obscure code)]
UNFM=programmer’s unfamiliarity with software,

[0 (completely familiar)..1 (completely unfamiliar)]
Thus if software is reused without modification

(black-box reuse), DM, CM and IM are zero, but there
is cost related to assessment (AA). The cost will
increase with the modification degree. Note that AAM
can exceed 100%; i.e. reuse may cost more than
developing from scratch if the cost of assessment or
understanding is high, or if the reused software is
highly modified. These factors are necessarily
subjective quantities.

In [Boehm04], the above formula is used to develop
a cost estimation model for product line development.
We are going to use it for modifying software of a
previous release in incremental development.

3. The company context

The system in this study is a large distributed
telecom system developed by Ericsson. It is
characterized by multi-site development, development
for reuse since some software components are shared
with another product and multi-programming
languages (mostly non object-oriented programming
languages but also minor parts in Java). The software
size measured in equivalent C code exceeds 1000
KSLOC (Kilo SLOC). The system is developed
incrementally and the software process is an adaptation
of RUP. Each release has typically 5-7 iterations, and
the duration of iterations is 2-3 months. The
architecture is component-based with most
components built in-house. Several Ericsson
organizations in different countries have been involved
in development, integration and testing of releases.

At the highest level, requirements are defined by
use cases and supplementary specifications (for non-
functional requirements, e.g. availability, security and
performance). The use case model in the study
includes use case diagrams modeled in Rational Rose,
showing actors and relations between use cases, while
flows are described in documents called Use Case
Specification (UCS). Each UCS includes:

− One or several main flows: Main flows are
complex and have several steps with several
transactions in each step. There may be cases
when several flows are equally desired. In
these cases, there may be several main flows as
well.

− One or several alternative flows.
− Some use cases also have exceptional flows.

These describe events that could happen at just
any time and terminate a flow. Exceptional
flows are described in a table, which gives the
event that triggers an exceptional flow, action
and the result.

− A list of parameters and constraints, such as
counters or alarms.

− Use cases may extend or include another use
case as well.

Each release may contain new use cases. Usually,
previous use cases are also modified or extended with
new or modified steps, flows or parameters. What is
new or modified in each use case is marked with bold
and blue font in the UCS, not distinguishing between
these two types of changes. In the remainder of this
paper, we use the terms UCS and use case
interchangeably.

4. Motivation of the study and research
questions

In this system, expert estimations are used in

different phases of every release in an inside-out style:
effort is estimated for activities such as design, coding
and some testing in a bottom-up style, and the total
effort is estimated by multiplying this estimated effort
by an Overhead Factor (OF). OF varies between 1.0
and 2.5 in different estimations. The reasons behind
using this factor is the experience that activities such as
system test fill whatever time that is available, and the
size of some activities such as project management and
configuration management is proportional to the size
of system. Expert estimations done by technical staff
tend to be over-optimistic. The UCP method can, on
the other hand, be applied also by non-technical staff
and is rule-based, allowing adaptation and
improvement. We consequently decided to extend and

UCP… Page 4 of 10

Table 3. The extended UCP estimation method evaluate this estimation method. Already when the
UCP method was introduced to the project leaders to
get their permission for the study, it was considered
interesting. A project leader used it in addition to
expert estimates by considering the amount of changes
in use cases comparing to the previous release. The
UCP method in its original form estimates effort
needed to develop use cases from scratch, but it is not
clear which activities (phases) are covered and it is not
tested on large systems.

Ste
p

Rule Output

1.1. Classify all actors as
Average, WF = 2.

UAW =
#Actors*2

1

1.2. Count the number of
new/modified actors.

MUAW = #New
actors*2

2.1. Since each step in the
main flow contains several
transactions, count each
step as a single use case.
2.2. Count each alternative
flow as a single use case.
2.3. Exceptional flows,
parameters, and events are
given weight 2. Maximum
weighted sum is limited to
15 (a complex use case).
2.4. Included and
extended use cases are
handled as base use cases.
2.5. Classify use cases as:
a) Simple (2 or fewer
transactions), WF = 5,
b) Average (3 to 4
transactions), WF = 10,
c) Complex (more than 4
transactions), WF= 15.

UUCW = ∑(#use
cases in each
group*WF) +
∑(Points for
exceptional flows
and parameters)

2

2.6. Count points for
modifications in use cases
according to rules 2.1-2.5.

MUUCW =
∑(#New/modified
use cases in each
group*WF) +
∑(Points for
new/modified
exceptional flows
and parameters)

3.1. Calculate UUCP for
all software.

UUCP = UAW +
UUCW

3

3.2. Calculate MUUCP for
new/modified software.

MUUCP =
MUAW +
MUUCW

4 Assume average project. TCF = EF = 1
5.1. Calculate UCP. UCP = UUCP 5
5.2. Calculate MUCP. MUCP =

MUUCP
6.1. Estimate effort for
new/modified use cases.

E1 = MUCP *
PHperUCP

6.2. Estimate effort for
other changes of software.

E2 = (UCP-
MUCP) * EMF *
PHperUCP

6

6.3. Estimate total effort. E = E1 + E2

We have formulated the following research
questions for this study:

RQ1: Does the UCP method scale up for a large
industrial project?

RQ2: Is it possible to extend the UCP method for
incremental changes in use cases?

RQ3: How to calculate effort needed to modify
software from a previous release?

RQ4. Does the method produce reasonable results
in this industrial setting?

5. The extended UCP estimation method

This section describes how the UCP method has
been adapted to the industrial context and is extended
for incremental development. The new rules are
summarized in Table 3. Additional information on
each step is given below.

Step 1. Actors. An actor may be a human, another
system or a protocol. However, the classification has
little impact on the final estimation result and all actors
are assumed as average. Modified actors are also
counted and MUAW is the Modified UAW.

Step 2. Counting the UUCW and MUUCW
(Modified UUCW). We started to count UUCW for
release 1 using the method described in Section 2.1.
All use cases in this study would be classified as
complex. Nevertheless, the total UUCP would be still
very low for all the 23 use cases (23*15=345 UUCP).
Comparing the complexity of these use cases with
previous projects convinced us that we have to break
use cases down into smaller ones as described in Rules
2.1 to 2.4. Rewriting use cases is too time-consuming
while counting flows and steps is an easy task. Use
cases should then be classified as simple, average or
complex. A first attempt to follow the rule described in
Section 2.1 resulted in most use cases being classified
as simple (66%), and very few as complex. But the
complexity of transactions does not justify such
distribution.

UCP… Page 5 of 10

Use case
Connect

Use case
XX

Use case
YY

include

include

Use Case Specification Connect
Main Flow:
M1- Request connection. A request message is received from the
user.
M2- The load of the node is checked. Use case XX is included.
M3- Validate the identity.

1.The user should use one of the allowed identification
numbers.
2. The identification number is analyzed.
3. Extra information is fetched from GGSN.
4. The user is authenticated. Use case YY is included

Alternative flow:
A1- Too high load. A reject message is sent to the user.

UUCP
Actor 1*2= 2
Main flow
#SimpleUC = 2
Weight per SimpleUC=5

2*5= 10
#AverageUC=1
Weight per AverageUC=10

1*10= 10
Alternative flow
#SimpleUC=1
Weight per SimpleUC=5

1*5= 5
Total for all flows 27

MUUCP
Main flow
#SimpleUC=1
Weight per SimpleUC=5
Total for changed flows 1*5= 5

Figure 1. Example of counting UUCP and MUUCP for a use case

We give an example of a use case called Connect in
Figure 1. Two transactions in the main flow are
modified or are new, and are classified as a new use
simple case. Thus this use case is modified by
5/27=0.19. In Figure 1, M1 is described in one
transaction, but it includes verifying that the received
message is according to the accepted protocols. M2
refers to an included use case. M3 has four transactions
where none of these is a single transaction and
includes another use case as well. Therefore, we chose
to classify the use cases according to the Rule 2.5. So
M1 and M2 would be classified as simple, while M3
would be an average use case.

Karner proposed not counting so-called including
and extending use cases, but the reason is unclear. We
have applied the same rules to all the use cases.

Step 4. TCF and EF. Assigning values to technical
and environmental factors are usually done by project
experts or project leaders, based on their judgment
[Anda01] [Ribu01]. The technical factors reflect some
non-functional requirements, but the authors of the
above papers conclude that the technical factors can be
omitted (or be set to 1) without significant
consequences for the estimate, since the impact of TCF
is small. The environmental factors may have a large
impact on the estimate, but the formula should be
validated. We decided to simplify the method by

assuming an average project, which gives TCF and EF
approximately equal to 1.

Step 5. The adjusted UCP and MUCP will be equal
to the unadjusted ones.

Step 6. We assume that there are two mechanisms
that consume effort in our model: E1 estimates effort
for realizing new and modified requirements as
specified in use cases (or primary changes), while E2
estimates effort for other changes (secondary changes).
We discuss E2 in more details here.

As discussed in Section 2.2, there is an overhead for
changing software of a previous release. In addition to
changes related to functionality in E1, there are several
other reasons for why software is modified:

1. Perfective functional changes not specified
in use cases: Functionality is enhanced and
improved between releases by initiating
change requests. There may also be a ripple
effect of changes in use cases.

2. Perfective and corrective non-functional
changes: Quality is improved between
releases (performance, security, reliability
etc.) and the share of changes due to quality
requirements is high, but these changes are
not reflected in use cases. We performed a
study of change requests for Rel.1 and two
previous releases [Mohagheghi04b].
Improving quality requirements is by

UCP… Page 6 of 10

modifying software that is already
implemented. Some effort is also spent on
modifying software to correct defects.

3. Preventive changes to improve design and
reduce software decay also consume effort.

We decided to use the model proposed in EQ.2 as a
first trial to estimate EMF. For our model, in the
simplest form we propose:

− AA=2, we assume low search, test and
evaluation cost for software developed in-
house.

− SU=30 for moderate understandable software.
− In [Mohagheghi04a], we reported that source

code is approximately modified by 55%
between releases, and this can be used as mean
value for CM. DM is usually less than CM and
is set to 30 here, which is slightly over the
mean value of changes in use cases. IM is set to
be 65, i.e. slightly over CM [Boehm04]. These
values give AAF=48.

− UNFM=0.2 for mostly familiar with code
Thus, EMF (AAM in EQ.2) will be equal to 0.56.

We have not found any empirical studies that contain
such a factor in incremental development. This factor
gives equivalent UCP for other modifications. The
above values can be calibrated and adjusted more, In
6.2, we multiply EMF with the size of use case points
that are not included in 6.1. Alternatively, we could
multiply it with SLOC from the previous release and
use EQ.1 to estimate effort for this part. Since we
wanted to valuate the UCP method, we used use case
points also in this step.

In this project we decided to compensate for not
counting the environmental factors and for the large
number of complex use cases, by using the maximum
recommended number of PHperUCP that is 36.
However, estimates should specify which phases
(activities) of a development project are covered by
them. As later described in Section 6, we found that
our estimates cover development before system test
and should be multiplied by an OF equal to 2 to
account for all phases.

6. Estimation results

The estimation method was developed based on the

use cases of one release and was later tested on the use
cases of the successive release. Of the 23 original use
cases in Rel.1, seven use cases were not modified, one
use case was new, while 15 use cases were modified.
Rel.2 had 21 use cases: two use cases were not
modified, one use case was new, while 18 were
modified. Note that 3 use cases are missing in Rel.2

(the sum should be 24). Two use cases were merged in
other use cases, while one use case is removed from
our analysis since development was done by another
organization and we do not have data on effort here.
We inserted the number of use cases, actors,
exceptions and parameters in spreadsheets in Microsoft
Excel, counted the UUCP and MUUCP, and estimated
the effort following the rules in Table 3. Table 4 shows
that after break-down of the use cases (UC), we ended
up with 288 use cases in Rel.1 and 254 use cases in
Rel.2.

Table 4. No. of use cases in each class
Rel. Sim

ple
UC

Ave
rage
UC

Com
plex
UC

Mod.
Simpl

e
UC

Mod.
Aver
age
UC

Mod.
Com
plex
UC

Rel.
1

170 83 35 57 18 2

Rel.
2

95 100 59 81 16 11

The distribution of use cases has changed towards

more average use cases in Rel.2. According to
Cockburn most well-written use cases have between 3
and 8 steps (transactions), consequently most use cases
will be of medium complexity, some are simple and a
few are complex [Cockburn00]. Our results only verify
this for one release.

The estimates with 36 PHperUCP were almost half
the effort spent in Rel.1 for all activities. Therefore we
compared our releases with the examples discussed
before in other aspects. In the projects A and B in
Table 2, estimates have been compared with the total
effort after the construction of the use case model.
These projects’ effort distribution is very different
from the releases of this system, as shown in Tables 5
and 6. The Other column in Table 5 covers
deployment and documentation, while in Table 6 it
covers CM, software process adaptation,
documentation and travel. These profiles will vary
depending on tools, environment and technologies. In
our case, development before system test (also
including use case testing added by Ericsson) only
counts for half the effort. The existing estimation
method in the company estimates effort needed for
development before system test and multiplies this by
an Overhead Factor (OF) to cover all project activities.
We concluded that the 36 PHperUCP covers only
development before system test. Based on empirical
data presented in Table 6, it should be multiplied by
approximately 2 to estimate the total effort.

UCP… Page 7 of 10

Table 5. Percentages of actual effort spent in
different activities in example projects

Project Development
before

System Test

Syste
m

Test

Othe
r

Project
Mngt

A 80% 2% 5% 13%
B 63% 7% 3% 27%

Table 6. Percentages of actual effort spent in Rel.

1 and 2 in this study
Rel. Development

before
System Test

System
Test

Othe
r

Project
Mngt

Rel.1 49% 25% 15% 10%
Rel.2 55% 18% 15% 11%

For confidentiality reasons, we cannot give the

exact figures for estimations and effort. However, our
estimations were 21% lower for Rel.1 and 17% lower
for Rel.2 than the spent effort, which has been around
100 person-labor year; i.e. indeed very accurate for
large projects. For comparison, the effort to develop
the first release was 2-3 times this number. The expert
estimations for Rel.2 were 35% lower than the actual
effort and thus the method has lower relative error in
this case than expert estimations.

7. Discussion of the results and answers to
research questions

We consider the data on effort as reliable and we
have had access to all the use cases. The estimation
was done by us (the first author was an employee of
Ericsson at the time) and one person spent around a
week on classification of use cases. The second author
had previous experience with the UCP method and had
applied it on several projects. Although the method
was presented to a few project leaders, we could not
involve them in the adaptation work due to internal
reorganizations.

The empirical study of Chen et al. [Chen04] and
earlier studies on the UCP showed that use cases can
be used as a measure of the size of a system, and steps
in use cases can be used as a measure of their
complexity. The results show that the adapted and
extended UCP method produced reasonable estimates
with the following adaptations:

1. Large use cases: we broke each use case down
to several smaller ones. The method was only
tested on small systems before.

2. Level of detail in use cases: we modified the
UCP classification rules, justified by the
complexity of transactions.

3. Technical and environmental factors: these
were omitted. Since the method is adjusted to a
context and is used on successive releases of
the same system, these factors are redundant.

4. Incremental modification of use cases: we
calculated effort for new and modified
transactions. We did not distinguish between
these two types of changes in use cases.

5. PHperUCP: we used the largest value
proposed by other studies, i.e. 36. The results
showed that it covers effort for specification
(after use case modeling), design, coding,
module testing and use case testing.

We also added two elements to the estimation
method:

1. The Equivalent Modification Factor (EMF):
this factor is used to estimate equivalent UCP
for modification of software from a previous
release, and is set to 0.56.

2. The Overhead Factor (OF): this empirically
derived factor is used to estimate the total effort
based on effort for development before system
test. It is set to 2.

EMF, PHperUCP and OF rely on empirical
observations and our judgments can be subject of
further adjustments. All estimation methods are
imprecise, because the assumptions are imprecise. The
method was adapted using data from Rel.1, but it even
gave better results for Rel.2. Each estimate should also
come with a range, starting with a wider range for
early estimates. Use cases are updated in the early
design stage (the inception and elaboration phases in
RUP), which gives a range of 0.67E to 1.5E according
to COCOMO II [Boehm95].

The impact of E2 is large on the total effort (65% of
effort in Rel.1 and 55% in Rel.2), due to the value of
EMF and the assumption that in addition to portions of
the software affected by changes in the use cases, the
rest of the software is modified for other reasons. Parts
of software may become more stable after a few
releases or be used more in a black-box style without
modification and E2 can decrease. But software also
decays and there is cost related to refactoring and
redesign. The study also showed that use cases are
approximately modified by 23-31% (counted in UCP),
while SLOC is typically modified by 50-60% between
releases. Boehm et al. also propose that CM is usually
larger than DM [Boehm04]. Here CM shows to be
larger than changes in use cases. We also add the
impact of modifications not specified in use cases and
the effort to maintain and improve quality. Empirical
studies of these factors can help us to understand the
nature and rate of incremental evolution.

UCP… Page 8 of 10

The UCP method showed flexibility in adapting to
the context, but there are many assumptions in the
original method and in our extensions of it. In other
words, the study has revealed those factors in the
method that needed adaptation for large-scale
incremental development. Future studies can help to
understand the practice of incremental evolution, how
the method works on other types of systems and which
parameters can be generalized to certain types of
systems, like the EMF, PHperUCP and OF.

We answer the research questions as follows:
RQ1: Does the UCP method scale up for a large

industrial project? It did when we broke down the
use cases as reflected in Rules 2.1-2.5 in Table 3. The
method depends on the level of details in use cases.
One alternative is to include examples of typical use
cases in the method, such as those defined in
[Cockburn00].

RQ2: Is it possible to apply the UCP method to
incremental changes in use cases? We did this by
counting changes in use cases. The method is
straightforward and Rules 1.2, 2.6, 3.2, and 6.1 in
Table 3 show how to calculate effort for new/modified
use cases.

RQ3: How to calculate effort needed to modify
software from a previous release? We used the
COCOMO 2.0 formula for adapted software,
calculated EMF and applied it on UUCP for the rest of
the software. The advantage is that EMF may be
adapted to the context.

RQ4. Evaluation of the method: The adapted and
extended UCP method fitted well into the adapted
RUP process and produced reasonable results.

We also observe the impact of size and complexity
of the system in the high value of PHperUCP, the
overhead factor and the effort needed to maintain
software (reflected in EMF). The study also the
question on whether the value of PHperUCP depend
on the effort break down profile and should this factor
be included in the model?

8. Conclusions

An effort estimation method based on use cases has
been developed and tested on a large industrial system
with incremental changes in use cases. One main
assumption is that use cases may be used a measure of
the size of a system, and changes in these may be used
as a measure of changes in functionality between
releases. The method is suitable when guessing SLOC
is difficult such as development with COTS or in
multiple programming languages. It is also suitable
when development is going to be outsourced. The

method does not depend on any tools and can promote
high quality use cases

The main contributions of the study are:
1. Testing the UCP method on a large

industrial project. The proposed changes for
breaking down use cases should be applicable
to other projects by comparing their use cases
to some example ones and calibrating the rules
in Table 3 to their context. For a cost model to
scale up, additional factors such as a higher
value of PHperUCP and OF may be necessary.
Although there is a relation between UCP and
effort, this relation is not linear, as shown here.

2. Extending the UCP method for incremental
development by accounting for modification
of software from a previous release and
counting changed transactions in use cases. The
EMF factor is added and the impact of quality
requirements in software evolution is
discussed.

3. Simplifying the UCP method. The UCP
method worked well without the technical and
environmental factors. The impact of these
factors is accounted for in other factors.

4. Showing the impact of effort breakdown
profiles on estimation results.

An estimation method for use cases depends on
some up-front requirement work and use cases that are
well structured and described at a proper level of
detail. Furthermore, use cases essentially express
functional requirements. The influence of non-
functional requirements should be included in the
technical factors, the number of PHperUCP or be
added to the estimated effort as done here. We have
achieved a better understanding of software evolution
in incremental development. The study also shows that
several factors could be integrated in an effort
estimation model such as information on the rate and
impact of change requests and defects, degree of
modification of SLOC and the impact of quality
requirements.

There are few empirical studies on estimation of
incrementally developed projects. The proposed
factors (EMF, OF and PHperUCP) and modifications
in the method could be subject of other studies.

9. Acknowledgements

The study was performed in the context of INCO
(INcremental and COmponent-based Software
Development), a Norwegian R&D project in 2001-
2004 [INCO01], and as part of the first author’s PhD
study. We thank Ericsson for the support.

UCP… Page 9 of 10

References

[Albrecht79] Albrecht, A.J., ”Measuring Application
Development Productivity”. Proc. IBM Applic. Dev.
Joint SHARE/GUIDE Symposium, Monterey, CA,
1979, pp. 83-92.

[Anda01] Anda, B., Dreiem, D., Sjøberg, D.I.K., and
Jørgensen, M., “Estimating Software Development
Effort Based on Use Cases - Experiences from
Industry”. In M. Gogolla, C. Kobryn (Eds.): UML
2001 - The Unified Modeling Language.Modeling
Languages, Concepts, and Tools, 4th International
Conference, 2001, Springer-Verlag LNCS 2185, pp.
487-502.

[Anda02] Anda, B., “Comparing Effort Estimates
Based on Use Cases with Expert Estimates”. Proc.
Empirical Assessment in Software Engineering (EASE
2002), 2002, ?? 13 p.

[Benediktsson03] Benediktsson, O., Dalcher, D.,
“Developing a new Understanding of Effort Estimation
in Incremental Software Development Projects”. Proc.
Intl. Conf. Software & Systems Engineering and their
Applications (ICSSEA’03), Volume 3, Session 13,
2003, 10 p.

 [Boehm95] Boehm, B., Clark, B., Horowitz, E.,
Westland, C., Madachy, R., Selby, R., “Cost Models
for Future Software Life Cycle Processes: COCOMO
2.0. USC center for software engineering, 1995.
http://sunset.usc.edu/publications/TECHRPTS/1995/in
dex.html

[Boehm04] Boehm, B., Brown, W., Madachy, R.,
Yang, Y., “Software Product Line Cycle Cost
Estimation Model”. Proc. the ACM-IEEE International
Symposium on Empirical Software Engineering
(ISESE 2004), 19-20 August 2004, Redondo Beach
CA, USA, IEEE CS Order No. P2165, pp. 156-164.

[Chen04] Chen, Y., Boehm, B.W,, Madachy, R.,
Valerdi, R., “An Empirical Study of eServices Product
UML Sizing Metrics”. Proc. the ACM-IEEE
International Symposium on Empirical Software
Engineering (ISESE 2004), 19-20 August 2004,
Redondo Beach CA, USA, pp. 199-206.

[Cockburn00] Cockburn, A., “Writing Effective Use
Cases”. Addison-Wesley, 2000.

[Eick01] Eick, S.G., Graves, T.L., Karr, A.F., Marron,
J.S., Mockus, A. “Does Code Decay? Assessing the

Evidence from Change Management Data”. IEEE
Trans. SE, 27(1):1-12, Jan 2001.

[INCO01] http://www.ifi.uio.no/~isu/INCO/

[Karner93] Karner, G. Metrics for Objectory. Diploma
thesis, University of Linköping, Sweden. No. LiTH-
IDA-Ex-9344:21, December 1993.

[Lehman98] Lehman, M.M., Perry, D.E. Ramil, J.F.,
“Implications of Evolution Metrics on Software
Maintenance. Proc. ICSM 1998, 16-19 Nov. Maryland,
USA, pp. 208-219.

[Mohagheghi04a] Mohagheghi, P., Conradi, R., Killi,
O.M., Schwarz, H., “An Empirical Study of Software
Reuse vs. Defect-Density and Stability. Proc. The 26th
Int’l Conference on Software Engineering (ICSE’04),
May 23-28, 2004, Edinburgh, Scotland, IEEE CS
Order No. P2163, pp. 282-292.

[Mohagheghi04b] Mohagheghi, P., Conradi, R., “An
Empirical Study of Software Change: Origin, Impact,
and Functional vs. Non-Functional Requirements”.
Proc. the ACM-IEEE International Symposium on
Empirical Software Engineering (ISESE 2004), 19-20
August 2004, Redondo Beach CA, USA, IEEE CS
Order No. P2165, 10 p.

[Moløkken04] Moløkken, K., Lien, A.C., Jørgensen,
M., Tanilkan, S.S., Gallis, H., Hove, S.E.,” Does Use
of Development Model Affect Estimation Accuracy
and Bias?”. Proc. the 5th International Conference
on Product Focused Software Process
Improvement (PROFES 2004), Springer LNCS 3009,
April 5-8, 2004, Japan, pp. 17-29.

[Ribu01] Ribu, K. Estimating Object-Oriented
Software Projects with Use Cases. Masters Thesis,
University of Oslo, November 2001.

[Russell04] Rusell, R. Visited on July 2004,
http://www.processwave.net/index.htm

[Schneider98] Schneider, G. & Winters, J.P.,
“Applying Use Cases, a Practical Guide”. Addison-
Wesley, 1998.

[Smith91] Smith, J., “The Estimation of Effort Based
on Use Cases”. Rational Software, White paper, 1999.

[Symons91] Symons, P.R., Software Sizing and
Estimating MK II FPA (Function Point Analysis), John
Wiley & Sons, 1991.

[Uemura99] Uemura, T., Kusumoto, S., Inoue, K.,
“Function Point Measurement Tool for UML Design
Specification”. Proc. Sixth Int’l Software Metrics
Symposium, 1999.

UCP… Page 10 of 10

http://sunset.usc.edu/publications/TECHRPTS/1995/index.html
http://sunset.usc.edu/publications/TECHRPTS/1995/index.html
http://www.ifi.uio.no/~isu/INCO/
http://www.processwave.net/index.htm

	1. Introduction
	2. The underlying estimation methods
	2.1. The Use Case Points (UCP) estimation method
	3. The company context
	7. Discussion of the results and answers to research questio
	9. Acknowledgements
	References

