Know when to hold 'em, know when to fold 'em...

Combining estimates with planning poker

Kjetil Moløkken-Østvold

Simula Research Laboratory kjetilmo@simula.no

Nils Christian Haugen

Objectnet nch@objectnet.no

Agenda

- Combining estimates
- Industrial studies
 - Planning poker vs. unstructured combination (UK)
 - Planning poker vs. individual estimates (Norway)
- Discussion
- Q&A

Background

- Most professionals are subject to group processes when estimating a project
- Warning!
 - Much of the "traditional" software engineering literature misinterprets and simplifies psychological research on groups
 - Lack of empirical research
- Research has found that combination of expert estimates might reduce over-optimism
 - Which method is used to combine estimates?
 - How is the project climate (customer, priorities, management)?
 - Who are the experts?

Some methods for combining estimates

Method	Structure	Anonymity	Interaction	Overhead
Delphi	Heavy	Yes	No	Major
Wideband Delphi	Moderate	Limited	Limited	Moderate
Planning Poker	Light	No	Yes	Limited
Unstructured group	None	No	Yes	Limited

Central features of planning poker

- Group discussion helps define the tasks before estimating
- Combines knowledge from several sources
- Simultaneous revealing of estimates might reduce anchoring effect and social comparison concerns
- Minimal overhead
- Face-to-face interaction
- Developers take more ownership of estimates

Industrial studies

- Planning poker vs. unstructured combination (UK)
- Planning poker vs. individual estimation (Norway)

Planning poker vs. unstructured combination

- Goal: Compare estimation performance of unstructured combination and planning poker
- Estimates derived in release planning
 - New release every 2-3 months
 - Estimates used throughout project
- Data from 4 subsequent releases
 - Order: Unstructured, Unstructured, Planning poker, Planning Poker
 - Most likely estimates in pair days

Team and methodology

- Mix of employees, consultants and independent contractors
 - 8-12 developers
 - 15-20 people total
- eXtreme Programming
 - User stories
 - Pair programming
 - Storytest-driven development
 - Story cards on wall
 - Daily stand-ups

Estimation process

- Unstructured group
 - Business analyst presents story
 - Story is discussed
 - Estimate volunteered
 - Consensus sought

- Planning Poker
 - Business analyst presents story
 - Story is discussed
 - Individual estimates derived
 - Estimates revealed simultaneously
 - Lowest/highest estimate justified
 - Team decides on collective estimate

The effect of planning poker

- Better group discussions
 - Got everybody involved
 - Revealed more information about the tasks
- Team preferred planning poker to unstructured combination
 - Made estimation process more effective
 - Fun!
- Tendency for tasks to be overestimated with planning poker
 - Or, is it a tendency to finish under estimate?

Results PP vs Unstructured

Relative Error = (actual - estimate) / actual

Not balanced (2-1)/2 = 0.5

$$(1-2) / 1 = -1.0$$

	PP	UC	Comment
Median	0.00	0.00	Typical case on target for both groups
Mean	-0.26	-0.08	Some tasks where overestimated with PP

Planning poker vs. individual estimates

- Twofold purpose of study
 - Compare PP tasks with a set of control tasks, estimated by individuals
 - Investigate if there is a reduction of optimism after discussion in the PP tasks
- Planning poker estimates performed in sprint planning
 - I4-day sprints
 - Individual estimates performed on task creation
- Data from 4 sprints
 - 50% of tasks re-estimated using planning poker
 - Most likely estimates in hours

Team and methodology

- Consultants from same company
 - 4-6 people total
 - All developers
- Scrum
 - Solo programming
 - Tasks tested and QAed by another person on the team
 - Tasks kept in issue tracking system (Jira)
 - Daily scrum

Estimation process

- For the planning poker tasks:
 - Task presented by task creator
 - Task is discussed
 - Individual estimates derived
 - Estimates revealed simultaneously (not predefined units)
 - High/low estimator justifies
 - Consensus sought
- Control task were estimated by an individual expert

The tasks estimated with planning poker

- Compared with the mechanical combination of individual estimates, the consensus estimates were
 - less optimistic after discussion
 - more accurate after discussion
- This is opposite of what is found in most studies from areas like psychology (usually optimism is found to increase after discussions)
- Can be caused by different perspectives on a task and/or identification of sub-problems

Results PP vs. Individual

BRE-bias =
(actual - estimate) /
min(actual, estimate)

Balanced

$$(2-1) / 1 = 1.0$$

 $(1-2) / 1 = -1.0$

	PP	Ind.	Comment
Median	0,00	0,00	Typical case on target for both groups
Mean	0,33	-0,04	Some PP tasks were underestimated

Results from analysis of code

- Planning poker tasks had on average:
 - Twice as many deleted control statements (indicates that effort was spent to reduce complexity)
 - Twice as many out-of-class references deleted (indicates that effort was spent to reduce coupling)
- Extra time spent on restructuring and simplifying code?
 - Can explain why there were some overruns in the planning poker tasks
- Question: Did planning poker (group discussion) lead to increased focus on quality?

Possible benefits of group estimating

- Participants takes more ownership of estimates
 - Estimates are not forced
 - More motivation to work towards estimates
 - Easier to estimate ones own work
- Uncertainty related to the implementation can be discussed and handled at an early stage (depending on combination method)
- Reduced need for discussion during project execution

Hazards of groups

- Lack of decentralisation and independence may make the group decision vulnerable to peer-pressure (depending on technique)
- The "anchor-effect" can have an impact
- An unstructured discussion might have side-effects, such as increasing number of sub-tasks

Summary

- Combination of estimates may increase accuracy, but can have certain side-effects
 - Does planning poker lead to more focus on quality?
 - Does planning poker lead to more focus on time?
- Planning poker was popular among developers
 - Both the UK and Norway
 - Rated as fun and easy to implement
- Choice of combination method should depend on project characteristics
 - Political pressure
 - Project practises

Questions?

- Diverging results
 - Differences in study setup
 - Differences in project properties
 - Cultural differences?
- How will maturation in Planning Poker proficiency affect results?
- Does combining expert opinions mainly impact the estimation process, or are other effects more important?

References

- Group Processes Rupert Brown, 2001
- The Wisdom of Crowds James Surowiecki, 2004
- Agile Estimating and Planning Mike Cohn, 2006
- An Empirical Study of Using Planning Poker for User Story Estimation N.C. Haugen, Agile Conference, 2006
- Group Processes in Software Effort Estimation
 K. J. Moløkken-Østvold and M. Jørgensen, Empirical Software Engineering 9(4):315-334, 2004
- Combining Estimates with Planning Poker An Empirical Study
 K.J. Moløkken-Østvold and N.C. Haugen, submitted to 18th Australian Conference on Software
 Engineering, 2007

