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Abstract 
 

In recent years, Internet access methods such as xDSL and cable modems have become 

much cheaper, and the result is that broadband network access is becoming more and more 

widespread. Consequently, online multimedia services like News-on-Demand (NoD), 

digital libraries and Learning-on-Demand (LoD) are becoming important elements of the 

information society.  

The scenario of our work is a LoD-system, where a multimedia database management 

system (MMDBMS) realizes a large repository for multimedia-based learning material. 

Teachers create multimedia presentations consisting of combinations of multimedia 

objects, while the students search for and play back these presentations. The MMDBMS 

must handle a constantly shifting workload, with very diverse requirements; and because 

the large size of the multimedia data implies that secondary storage must be used, these 

requirements are also imposed on the storage subsystem.  

In this thesis, we show that disk scheduling is an effective way of meeting these storage 

subsystem requirements. We have developed an adaptive disk scheduler for mixed-media 

workloads, called APEX, which is specifically targeted at the requirements of a 

MMDBMS-based LoD-system. APEX is able to provide a number of different service 

types, support QoS, and at the same time achieve very high disk utilization. This has been 

made possible through the use of the following four techniques: (1) dynamic queue 

management, which keeps the overhead of the scheduling framework low, and updates 

bandwidth reservations according to the requirements of the MMDBMS; (2) an extended 

token bucket model, which ensures accurate distribution of disk bandwidth; (3) a batch 

building principle, which submits disk requests in batches, and ensures high disk 

utilization; and (4) a work-conservation feature that re-distributes unused disk bandwidth 

without loss of disk efficiency.    

We have implemented APEX together with two other disk schedulers in a simulation 

environment. Our measurements show that for best-effort disk requests, APEX achieves 

approximately 30% higher throughput and from 30% to 90% lower response times than 

comparable schedulers, while providing the equal QoS-guarantees for real-time requests. 

In addition, our analysis shows that APEX does not impose any higher computational 

complexity than other disk schedulers offering multiple service types. 
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From our simulations, it is also clear that APEX is able to handle the extensively 

shifting MMDBMS workload; it makes sure that the disk bandwidth is distributed 

according to the reservations that are made, and then re-distributes unused bandwidth to 

where it is needed. In addition, APEX is designed to take advantage of the intelligence of 

modern disks, leaving the final ordering of requests to the disk itself, and thereby further 

increasing the disk utilization.  

Consequently, our disk scheduling framework is well suited for a demanding 

environment like a MMDBMS. Furthermore, due to its modularity and dynamic 

configurability, APEX is well suited for a wide range of other applications, whether they 

require real-time service, high-throughput, low-latency, or any combination of these. 
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Chapter 1  

                                                

Introduction 

Broadband network access is becoming more and more popular, as access methods such as 

xDSL and cable modems become cheaper. Consequently, online multimedia services like 

News-on-Demand (NoD), digital libraries and Learning-on-Demand (LoD) are becoming 

important elements of the information society. 

These multimedia services are characterized by resource-intensive data, a high degree 

of user interaction, and need for quality of service (QoS) support. It is a challenge to make 

sure that all components involved in realizing such services are able to meet the application 

requirements. In this thesis, we focus on one of these components, namely the storage 

subsystem. Specifically, we aim to provide a disk scheduler that enables the storage 

subsystem to meet the requirements of a MMDBMS-based LoD-system. 

1.1 Motivation and Background 
This thesis is a part of the OMODIS1 (Object-Oriented Modeling and Database Support for 

Distributed Multimedia Systems) project [36]. The focus of the project is integration of 

database system (DBS) technology into distributed multimedia systems, as well as QoS-

issues for storage and retrieval of multimedia data. The primary target application areas of 

the OMODIS project are distance learning and LoD.  

 
1 The OMODIS Project is funded by the Norwegian Research Council, Distributed IT Systems (DITS) 

program to UniK and SINTEF, 1996-2001. 
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The focus of this thesis is QoS-support in the storage subsystem of a multimedia 

database management system (MMDBMS), and in particular, QoS-aware disk scheduling. 

The scenario of our work is LoD, and we consider a LoD-system with a server acting as a 

large repository for multimedia-based presentations, i.e., learning material such as recorded 

lectures, instructional videos, documentaries, etc. The presentations consist of 

combinations of multimedia objects, e.g., audio, video, subtitles, pictures, text documents, 

etc., all stored in the repository. These objects have been uploaded to the repository and 

then tagged with descriptive metadata. We assume that both syntactic metadata, describing 

the characteristics of the objects (format, bandwidth requirements, size, etc), and semantic 

metadata, describing the content of the objects (e.g., the theme of a video clip) are attached 

to the objects. The former type is required to be able to estimate resource requirements, 

and the latter to enable content searches and reuse of objects. 

The teacher creates a presentation by selecting a set of such multimedia objects, and 

specifying the temporal and spatial relationships between them. For instance, a video can 

be accompanied by a separate window displaying documents that are referred to in the 

video. The author must specify when each document should be displayed, where on the 

screen, how large the window should be, and for how long the document should be 

displayed.  

Consequently, in addition to storing the multimedia objects and their metadata, the 

repository must be able to store the temporal and spatial relationships that constitute the 

presentations. The LoD-server is also responsible for controlling the playback of the 

presentations. Thus, the server must be able to “understand” the relationships between the 

multimedia objects, and for this we need a data model that can handle such relationships.   

A student typically searches the object- and presentation-metadata stored in the 

repository for relevant information, and then selects one of the resulting presentations for 

playback. During the playback, the student can pause, jump to other positions in the 

presentation, or abort it. Thus, the repository must provide effective query facilities, and it 

must be able to handle a high degree of interaction.  

It is our view, that a LoD-system as described here can benefit greatly from using a 

MMDBMS to implement the repository (see ), since such systems provide 

efficient querying facilities, support for complex data models, and ability to control 

playback of multimedia presentations [8, 93]. Consequently, in the remainder of this thesis, 

the use of a MMDBMS will be the underlying assumption. 

Figure 1-1

 2 



We have identified four types of interaction between the user and the LoD-system: 

uploading of multimedia objects, authoring of presentations, searching for content, and 

playback of presentations. These represent a very diverse workload, with very different 

requirements on the MMDBMS. For instance, uploading a multimedia object, such as a 

video, benefits from high throughput, but no QoS-guarantees are required. On the other 

hand, playing back presentations usually implies that continuous media data is streamed 

from the server to the client. Thus, both high throughput and QoS-guarantees are required, 

in order to ensure sufficient playback quality. In turn, this means that admission control is 

required, to allow resource reservation. We assume a centralized admission control for the 

LoD-system, which uses metadata in the MMDBMS to estimate the resource requirements 

of the presentation [90]. 

User

LoD client
Client

Network

Server
MMDBMS

Data model

Database

LoD-
system

Operating system

Operating system

 

Figure 1-1: LoD-system architecture 

The amount of data that such a system manages is very large; especially continuous 

multimedia data, like video, represents large amounts of data, which means that it must 

reside on secondary storage, i.e., one or more disks. Consequently, the requirements that 

apply to the MMDBMS in general, also apply to the storage subsystem, including the 

secondary storage itself.  

1.2 Problem Statement 
Given the description of the LoD-system in the previous section, we argue that we need a 

storage subsystem that provides multiple service types, such as: 

• Different degrees of real-time guarantees for playback of continuous media data. 
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• Low-latency service for user-interaction and system-internal queries (e.g., retrieving 

index data from disk). 

• High throughput for moving large multimedia objects into or out of the database. 

• Traditional best-effort service for user queries, such as searching for content.  

It is also very important that these different service types are isolated from each other, 

in order to prevent traffic of different service types to affect each other. For example, 

downloading a large video should not affect the playback of a presentation.  

In addition to supporting different levels of service, the storage subsystem must ensure 

good utilization of disk bandwidth. This is necessary, since continuous media data often 

are bandwidth-demanding, and the disks still constitute a bottleneck in multimedia servers 

[102]. 

An efficient means of meeting these requirements is through disk scheduling. However, 

existing disk schedulers are not designed to meet the requirements of a MMDBMS. In 

particular, the lacking ability to handle large and rapid shifts in the workload is a problem. 

Even if detailed information about the requirements of the multimedia objects is available 

in the system catalog, resource planning in a complex system like a MMDBMS is a 

challenge. For instance, if two users play back the same presentation, with only a small 

time gap between them, disk bandwidth reserved for the second user may be left unused, 

because the data fetched for the first user is available in the buffer and can be used by the 

second user as well. If one of the users interact with the presentation (e.g., making a 

pause), the time gap between the two presentations may become too large, and the reserved 

bandwidth must be put to use. Thus, even with detailed knowledge of the nominal 

bandwidth requirements of the presentations, it is impossible to accurately predict the 

actual requirements. Consequently, it is necessary for the disk scheduler to be able to make 

constant adjustments, according to the actual bandwidth requirements, while still making 

sure that all bandwidth reservations are observed. This ability is usually not seen in 

existing disk schedulers, or it is realized with a significant loss of disk efficiency. 

1.3 Contributions and Claims 
The contribution of this thesis is a disk scheduling concept that submits disk requests in 

batches. By doing so, we achieve very high disk efficiency by leaving the final ordering of 

the disk requests to the components that has the best qualifications for optimizations, 

namely the disk and the disk controller. The concept is well suited for MMDBMS 
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environments with highly varying workload, and we achieve a good tradeoff between QoS-

guarantees, low latency, and disk utilization. 

We have realized the concept in a disk scheduling framework called APEX (AdaPtive 

disk schEduler for miXed-media workloads) [56], which is designed specifically for a 

MMDBMS environment, and which is able to exploit information derived from the system 

catalog of the MMDBMS, as well as handling the dynamic workload described above. 

The thesis is built around four claims about disk scheduling in general and APEX in 

particular. These claims express the core of our work, and we will prove these claims 

through this thesis. Below, we present our claims, together with brief supplementary 

explanations. 

Claim 1 

It is possible to design, implement, and integrate a disk scheduler in a MMDBMS, in such 

a way that it can utilize metadata from the MMDBMS to optimize the scheduling of disk 

requests. 

The OMODIS project focuses on using a MMDBMS for storing and managing 

multimedia data. Such a MMDBMS represents a demanding environment for the storage 

subsystem: it requires several, diverse service types from the disk, and the generated disk 

workload is highly varying. In this thesis, we demonstrate that our disk scheduling 

framework is capable of offering the required service types, as well as optimizing the 

scheduling of disk requests based on resource predictions made from MMDBMS metadata. 

Claim 2 

APEX is a highly configurable disk scheduling framework that can be used in a wide 

variety of contexts. 

Different applications can have very different requirements to the disk subsystem. 

Existing disk schedulers usually offer one, or a few, fixed service types, and there is little 

room for reconfiguration. We demonstrate that APEX can be easily configured to meet a 

wide variety of application requirements, such as different levels of QoS-guarantees, 

different bandwidth allocation paradigms [92], request dropping, and priorities. 

Claim 3 

APEX offers a superior combination of QoS-support and high utilization of disk 

bandwidth. 
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QoS-guarantees and high disk efficiency are contradicting goals for a disk scheduler, 

and a trade-off is necessary. In addition, most disk schedulers that support more than one 

service class have a scheme for redistributing unused bandwidth (work-conservation), 

which usually further reduces disk utilization. APEX uses batching of disk requests, 

combined with a work-conservation scheme without efficiency loss, in order to achieve a 

very good trade-off between QoS-guarantees and disk utilization. 

Claim 4 

Disk scheduling is necessary for providing QoS-support in the storage subsystem, but 

existing QoS-aware disk schedulers do not exploit the capabilities of modern disks. 

Modern, self-managing disks do their own internal scheduling of requests, in order to 

optimize performance. However, since the disk has no knowledge of different QoS-levels, 

and is unable to provide different service types to different requests, the internal scheduling 

is not sufficient to provide QoS-guarantees. Hence, external, host-based scheduling is also 

required. However, existing QoS-aware disk schedulers are based on detailed knowledge 

of the disk behavior, and they normally require full control of the order in which disk 

requests are served. Thus, the disk is left with little freedom to reorganize the requests, and 

reduced disk efficiency is the result. APEX, on the other hand, relaxes the need for detailed 

control, within the tolerance of the application, in order to take advantage of the 

intelligence of modern disks.  

1.4 Approach 
Our approach for proving that the four claims hold is twofold; with one theoretical part and 

one experimental part. The theoretical part consists of describing the scenario and the 

MMDBMS used in the LoD-system. We present the requirements of the user, the 

multimedia data, and the MMDBMS, and investigate the consequences of these 

requirements with respect to the storage subsystem. Furthermore, we consider the 

information that is available from the MMDBMS, to see what is relevant for the disk 

scheduler; and we analyze the behavior of modern disks. Based on this information, we 

analyze existing disk schedulers, to investigate their suitability in a MMDBMS context. 

We then provide a detailed description of our disk scheduling framework, called 

APEX. We describe the scheduling principles, as well as how the information from the 

MMDBMS is used to optimize the distribution of disk bandwidth. Finally, we present the 
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implementation of APEX, in order to allow the user to assess the modularity and 

configurability of APEX. 

The experimental part of the proof is performed using simulations. By implementing 

APEX in a simulation environment and applying a workload that is representative for a 

MMDBMS, the simulations serve as proof of concept for the scheduling principles of 

APEX.  

In addition, we have implemented two existing disk schedulers, C-LOOK and Cello, in 

the same simulation environment, and using the same workload. For all three schedulers, 

we compare response times of disk requests, disk throughput, and the ability of the 

schedulers to maintain a given QoS-level. These comparisons serve to verify the 

theoretical proofs, and provide an indication in terms of absolute performance. 

1.5 Outline 
This thesis is organized as follows: Chapter 2 presents the LoD-application that constitutes 

the scenario, while the system architecture is described in Chapter 3. In particular, we 

focus on the MMDBMS, presenting both the layered architecture and the functional 

aspects of the system. 

In Chapter 4, we analyze the requirements presented in the two previous chapters, and 

provide a requirements list for assessment of disk schedulers. Next, in Chapter 5, we use 

this requirements list to investigate existing disk schedulers.  

Chapter 6 presents the scheduling principles of APEX on a conceptual level, and we 

discuss the influence that external factors in the storage subsystem have on our design. 

Then, in Chapter 7, we elaborate the details of our scheduling framework, by describing 

the implementation of APEX, using pseudo-code. 

In Chapter 8, we describe our performance evaluation. We present the results of the 

simulations we have performed, and our analysis of the results. Finally, in Chapter 9, we 

conclude the thesis by doing a critical assessment of the four claims, and we describe 

future research directions for APEX. 

 

 

 

 

 

 7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 



 

Chapter 2  

LoD Application Scenario 

In this chapter, we present the application scenario of our work, namely an online, server-

based Learning-on-Demand (LoD) application. We present the functionality of the 

application, the different types of user interactions, and how these map to operations in the 

server.  

The purpose of this chapter is to provide the reader with sufficient background 

information about the scenario application to understand the requirements that are imposed 

on the server. This is important, since the LoD-application and its requirements on the 

server-side system forms the basis of our work.  

2.1 Introduction 
Multimedia applications exhibit a wide variety of characteristics, and can be classified 

based on several different criteria. At a high level, applications can be classified as either 

synchronous, such as videoconferencing, or asynchronous, like Video-on-Demand (VoD). 

The asynchronous applications can be further classified according to the degree of possible 

user interaction, leading to a range of different application classes.  At one extreme, we 

have the non-interactive applications like broadcast video. This application is used by 

broadcasting companies, as a substitute for the ordinary video player [89], and for the end-

users, i.e., the viewers, no interaction is possible when watching a programme. 

VoD applications usually allow some user interaction. In the lower end, Near-VoD 

applications allow the users to start watching at specific times, while the most advanced 

 9



VoD-applications allow the users to start watching at any time, and also perform VCR-

interactions. 

Some of the most advanced multimedia applications, with respect to user interaction, 

are those based on hypermedia and multimedia databases [89]. Two examples of such 

applications are News-on-Demand (NoD) and Learning-on-Demand (LoD). These 

applications are characterized by a high degree of user interaction, both of VCR-type and 

for navigating between different (parts of) presentations, as well as searching for specific 

content.  

For instance, in a NoD-application, a typical user browses through headlines or jumps 

from one story to another, maybe only watching the first few seconds to see if the story is 

of interest. The user may also skip parts of a story that are not of interest, or search for 

specific topics. 

This class of applications is typically also the most advanced with respect to the content 

presented to the users. The stored multimedia data is often presented in the form of 

composite presentations, i.e., presentations consisting of several different multimedia 

elements (e.g., audio, video, text), which may be presented in a synchronized fashion, both 

sequentially and in parallel [4]. 

2.2 Terminology 
In order to avoid misunderstandings, we present our understanding of a few central terms 

that will be used throughout the thesis. In addition, we give a more thorough definition of 

our understanding of quality of service (QoS), since this is a central notion in our work. 

• Multimedia data type (MMDT): Any data type used in a multimedia context is of some 

multimedia data type. Thus, data types like audio, video, text, images, and animations 

are all MMDTs. We distinguish between two main classes of MMDTs: (1) Continuous 

MMDTs: These are also known as time-dependent MMDTs, and include data types 

like audio, video, and animations. The main characteristic of this class is that the 

presentation of the data is time-dependent, i.e., it changes over time.  Although objects 

of such types appear as continuous to the user, they normally consists of a number of 

individual elements, presented as a continuous sequence. For instance, video consists 

of a number of frames. (2) Discrete MMDTs: This class is also known as time-

independent MMDTs. Typical examples are text and pictures, and common in all such 

data types is that their presentation is independent of time. 
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• A multimedia object is an object of some MMDT. For instance, video clips, text 

documents, and images are all multimedia objects. To separate between multimedia 

objects of discrete and continuous MMDTs, we use the terms discrete multimedia 

object and continuous multimedia object, respectively. Many multimedia objects, 

especially continuous multimedia objects, are complex, in the sense that they consist of 

a number of elements. For instance, a video object consists of a series of frames.  

• A presentation is a set of multimedia objects that are presented to the user, with both 

temporal and spatial orchestration. A very simple example is a video clip with a 

corresponding audio track. A more complex presentation may consist of audio and 

video with subtitling, and a separate window showing documents that are being 

referred to in the video. All this is presented in a synchronized manner, such that, for 

instance, the correct document is shown at the time it is actually referred to in the 

video. Thus, a presentation can be defined as a specification of how a set of multimedia 

objects should be played back in a coordinated fashion. 

• Streaming: Playback of a continuous multimedia object over a network. Instead of first 

downloading the object and then playing it back, the object is presented to the user as 

the data is received. The client normal buffers parts of the data, in order to smooth out 

jitter caused by the server and the network. 

• Metadata: Data describing the multimedia objects. For instance, a video can have 

metadata describing the format of the video, the bandwidth requirements, and the 

content of the video clip. 

2.2.1 Quality of Service 
QoS is a central issue when discussing multimedia systems, and before we describe the 

application that constitutes the scenario of our work, we will present our understanding of 

QoS.  

The concept of QoS was first used within the area of data communication, in order to 

describe technical characteristics, such as delay and error rate [97]. With the advent of 

multimedia applications, the QoS concept has been extended to cover end-systems as well, 

to enable an end-to-end control of the quality level.  

There is still no commonly agreed upon definition of QoS, but we have chosen the 

definition from [97]: 
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Quality-of-Service represents the set of those quantitative and qualitative 

characteristics of a distributed multimedia system necessary to achieve the required 

functionality of an application. 

Consequently, QoS concerns all parts of a distributed multimedia system: client system, 

network, and server. According to [97], there are five categories of QoS-parameters, and 

these are shown in Table 2-1. 

Table 2-1: The five categories of QoS-parameters [97] 

Table 2-1

Category Example parameters 
Performance-oriented End-to-end delay and bit-rate (bandwidth) 

Format-oriented Video resolution, frame rate, storage format, 
and compression scheme 

Synchronization-oriented Skew between the beginning of audio and 
video sequences 

Cost-oriented Connection and data transmission charges, 
and copyright fees 

User-oriented Subjective video and sound quality 
 

QoS-parameters from all categories in  are relevant for a LoD-system. For the 

user, the user- and cost-oriented parameters are the ones that matter, but the user-oriented 

parameters are in turn dependent on the performance-, format-, and synchronization-

oriented parameters. For instance, to perceive the subjective image quality of a video as 

being satisfactory, the video must be coded in a format and resolution that allows a 

sufficiently high image quality. Next, the system must be able to provide a sufficiently 

high bandwidth to support the bandwidth requirement of the video.  

The performance-oriented QoS-parameters are typically associated with the lowest 

layers (i.e., closest to the physical resources) of a system, and therefore impact parameters 

in most other categories. In this thesis, we focus on disk scheduling, i.e., scheduling of a 

physical resource, and for this reason, the performance-oriented QoS-parameters are the 

most important for us. In Chapter 4, we therefore analyze how the user oriented parameters 

map down to the performance parameters. 

2.3 The LoD-Application 
Interactive distance learning (IDL) is an evolving paradigm of instruction and learning that 

attempts to overcome both distance and time constraints found in traditional classroom 

 12 



learning. Learning-on-Demand (LoD) is one valuable approach for IDL and it extends 

conventional educational programs, as it introduces the idea of learning by doing. This 

creates an environment where learners have the necessary tools, computational or 

otherwise to explore different information spaces, and obtain contextualized and relevant 

information.  

The scenario of our work is a LoD-system (see ), where students use a client 

application on their local computer to access a LoD-server that acts as a large repository 

for multimedia-based learning material such as recorded lectures, instructional videos, 

documentaries, etc. The students can search for relevant material, and play it back in the 

form of presentations 

Figure 2-1

Figure 2-1: General LoD-system architecture 
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2.3.1 Functionality 
We separate between two main user groups in such a LoD-system: 

• Content providers, i.e., the teachers/instructors, who upload multimedia objects to the 

repository, review such objects, and combine them into presentations.  

• Content consumers, i.e., the students, who search for relevant information and play 

back presentations.  

Each user, whether it is a content provider or content consumer, uses his or her local 

machine, running a LoD-client application, to connect to the LoD-server over a network, as 

shown in Figure 2-1. The interaction that the two user groups have with the LoD-system 

can be classified into four main types: search for content, playback of content, authoring of 
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multimedia objects, and authoring of presentations. Below, we describe each of these 

operations in more detail: 

Search for Content 

Students and authors can search the repository for specific content, by specifying, for 

instance, a particular subject that they want information about. In practice, this operation 

implies searching the metadata associated with multimedia objects and presentations, and 

the result is a list of presentations and/or individual multimedia objects that all deals with 

the subject in question. In addition, the students can browse the repository, by following 

hyperlinks in the presentations.  

Since these types of operations involve a lot of user interaction, they should preferably 

be served quickly, i.e., with low response times.  

Playback of Content 

When the student has found a presentation or an author has found an individual multimedia 

object of interest, he or she starts a playback. If continuous multimedia objects are 

involved in the playback, we assume that the data is streamed to the user.  

During a playback, the  user can interact with the presentation, such as pausing and 

resuming, fast forward and rewind, following hyperlinks to other parts of the presentation 

(or other presentations), and choosing between alternative sub-presentations. Thus, a 

playback can imply considerable user interaction. 

It is important that the presentation is displayed in accordance with the specifications in 

the presentation and the requirements of the included multimedia objects. For instance, the 

presentation may specify that a text document should be displayed at a specific time during 

playback of a video, such as when a person in the video refers to the document. Thus, it is 

important that the LoD-system is able to transfer the document from the server to the 

client, and present it to the user at the correct time. In addition, objects of continuous 

MMDTs, such as video, require a minimum of resources, e.g., disk and network 

bandwidth, to be displayed properly.  

Authoring of Multimedia Objects 

Authoring of multimedia objects requires specialized tools, e.g., video editing programs 

and image editors, and we do not consider such tools as a natural part of the LoD-system. 

Thus, we assume that all such authoring takes place outside of the system. For instance, a 
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video is first transferred from video-tape to disk, and then edited, using a suitable program. 

When the editing is finished, the resulting video clip is uploaded to the repository. 

In general, new multimedia objects are created with suitable tools, and then checked in 

(uploaded) to the repository. Likewise, if an existing multimedia object is to be edited, it is 

first checked out (downloaded) from the repository, edited with a suitable tool, and then 

checked back in. We assume that such check-in- and check-out-operations are performed 

as “data dumps”, i.e., instead of streaming the data, it is transferred as fast as possible, but 

normally without QoS-requirements. 

After a new or edited multimedia object has been checked into the repository, 

descriptive metadata must be added to the object. Parts of this metadata, such as indexing 

of text, as well as deriving characteristics like size, format, and average and maximum 

bandwidth requirements can be automatically added. Also more complex tasks can be 

automated, such as analyzing a continuous multimedia object with variable bit-rate, in 

order to derive bandwidth requirements as a function of time. Since these tasks are 

performed automatically, they can run as background jobs, with no QoS-requirements 

Metadata that covers the semantic aspects for non-textual objects, e.g., descriptions of 

the content of a picture or a video, must normally be added manually. Thus, we assume 

that the author adds such data, after the check-in is completed. Being an interactive 

operation, the server should preferably respond quickly to the user-actions.  

Authoring of Presentations 

Creating a presentation means specifying temporal and spatial relationships between 

multimedia objects. Since all such objects are stored in a common repository, authors can 

reuse multimedia objects in different presentations.  

Existing multimedia objects are selected by searching the metadata of the multimedia 

objects, similar to a content search. In addition, the resulting objects will often be played 

back for review, as well as finding the correct start- and end-points for use in the 

presentation. Obviously, this type of playback normally implies much user interaction, and 

as such, the operations should be served quickly by the server. 

When the author has selected the relevant multimedia objects, the presentation is 

specified. This means that the author specifies the spatial layout of the multimedia objects, 

for instance, how a video window and a document window should be displayed on the 

screen. In addition, the temporal relationships are specified, i.e., when the different objects 

should be displayed, relative to each other. As opposed to multimedia object authoring, we 
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assume that presentation authoring is performed within the LoD-system. This is natural, 

since it is the LoD-system itself that coordinates the playback of presentations, based on 

the specifications made by the author, and since the specification refers to objects stored in 

the repository.  

2.3.2 Server Operations 
In the previous sub-section, we described the four main types of interaction between the 

user and the LoD-application. From this description, we saw that several of the interaction 

types involved the same operations on the server. We have identified four server operations 

that are required to handle the user operations, namely metadata retrieval, multimedia 

playback, multimedia authoring, and metadata authoring. 

These four server operations together constitute the user-generated workload on the 

LoD-server. However, it is reasonable to expect far more content consumers (i.e., students) 

than providers accessing the system. Thus, we expect the metadata retrieval and 

multimedia playback operations to constitute the prevailing part of the workload. 

Since the focus of our work is the behavior of the server, we will concentrate on the 

server operations in the remainder of the thesis. Below we describe these four operations in 

more detail. 

Metadata retrieval  

This operation normally occurs in authoring of presentations and in searches for content. In 

both cases, metadata stored in the repository is scanned, in order to find multimedia objects 

that match the given search criteria. The actual amount of data that needs to be searched 

depends on the storage structures used, for example, the extent to which metadata is 

indexed.  

Multimedia playback  

This operation usually takes place when a student plays back a presentation, but it is also 

used when content providers review individual multimedia objects, during authoring of 

presentations. The server is responsible for making the necessary data available to the 

client application at the correct time, according to the presentation specification, and the 

tolerance of the user. However, we assume that the final, fine-grained synchronization is 

performed on the client side.  
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 Multimedia authoring  

This corresponds to the check-in and check-out operations performed as part of authoring 

of multimedia objects. From the server point of view, the data in question should be 

transferred as fast as possible to or from the repository. The multimedia objects can be 

relatively large; a video clip, for example, can often reach a size of several hundred 

megabytes. Thus, the transfer will usually imply reading from or writing to disk, and disk 

throughput is therefore important.  

Metadata authoring  

This operation is used both when adding metadata to multimedia objects and when 

authoring presentations. We assume that the metadata consists of descriptive text and 

keywords, and therefore constitutes a relatively small amount of data. The operation itself 

is also small, since only one, or a few objects are updated at a time. 

2.4 Summary 
In this chapter, we have presented the LoD-application that forms the scenario of our work. 

We have described the four main types of user interaction, and described how these are 

mapped into four types of server interactions.  

In the next chapter, we describe the architecture and functionality of the server-side of 

the LoD-system, using the functionality described in this chapter as basis. 
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Chapter 3  

MMDBMS-Support for LoD 

In this chapter, we focus on the architecture of the LoD-system, consisting of a client-

application communicating with a LoD-server over a network. The server is realized using 

a multimedia database management system (MMDBMS), and the main focus of the 

chapter is the architecture and functionality of this MMDBMS. 

We start by giving a short description of the client side, including our assumptions 

about the client capabilities. Next, we describe a reference DBMS architecture [44], which 

we use as a framework for describing the MMDBMS. Furthermore, we present the data 

model we use, which is called TOOMM (Temporal Object-Oriented MultiMedia data 

model) [35]. Finally, we present a thorough description of the MMDBMS architecture, and 

in particular the functional aspects, i.e., how the server operations are realized.  

The purpose of this chapter is to provide the reader with an understanding of the 

composition of the LoD-system, while the presentation of the data model serves to clarify 

the modeling and structuring possibilities in the MMDBMS.  

3.1 Introduction 
The focus of the OMODIS project has been the integration of database systems (DBSs) 

into QoS-aware, distributed multimedia systems, and this also sets the background for the 

thesis. Thus, it is a fundamental assumption in our work that the repository of the LoD-

system is realized using a MMDBMS [26] (see ). This assumption also provides 

us with several advantages with respect to the LoD-application [112]: 

Figure 3-1
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• Ability to handle an advanced data model like TOOMM. Thus, the MMDBMS is able 

to support explicit modeling and storage of the temporal and spatial relationships 

between multimedia objects. 

• Support for both ad hoc queries (search for content) and pre-compiled queries 

(browsing).  

• Concurrency control, which is necessary to allow multiple users, both authors and 

students, to access the system concurrently, in a controlled fashion. 

• Fault tolerance through the use of transactions and error recovery. 

 

Data model

MMDBMS

Transaction mgr.   Admission ctrl

Query mgr.     Presentation mgr.

Object manager

O
perating system
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Storage
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Database
 

Figure 3-1: Overall architecture or the LoD-server 

The database constituting the LoD-repository contains a large set of multimedia 

objects, which have been checked into (uploaded to) the database. In addition, descriptive 

metadata has been associated with each multimedia object. The authors, e.g., the teachers, 

create presentations by specifying the temporal and spatial relationships between 

multimedia objects, and these specifications are also stored in the database. When students 

search for information about a certain topic, the result is a set of presentations that contain 

multimedia objects covering the given topic.  

When a user plays back a presentation, the MMDBMS is responsible for delivering the 

multimedia objects at the correct time. Thus, continuous multimedia objects are streamed 

over the network, while discrete multimedia objects are delivered in their entirety, shortly 

before they are to be presented. The LoD-client then handles the final coordination when 

displaying a presentation to the user. In other words, while the MMDBMS is responsible 

for the course-grained synchronization during data delivery, the LoD-client handles the 

fine-grained synchronization required when displaying the presentation. 
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3.2 Client Architecture 
The client-system consists of a LoD-client application running on suitable hardware, such 

as a standard PC with multimedia capabilities. The client application has to enable users to 

interactively browse through lectures, to use pre-defined queries, to formulate ad hoc 

queries, and to specify QoS-requirements both as part of queries and as part of a general 

user profile. Furthermore, the client has the final responsibility for displaying the 

presentations to the user. Thus, it must support QoS and synchronized playback. In 

, we show the architecture of the client-system [26]. 

Figure 

3-2

Figure 3-2: Layered architecture of the LoD-client 
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The interface manager is responsible for invoking MMDBMS interfaces and passing of 

input parameters and output results. The client query manager formulates complete 

multimedia queries, based on interactions with the end-user. Since a selection query may 

contain different types of multimedia data, this is done by integrating information from 

different multimedia devices on the client system into a single query. In addition, the client 

query manager is responsible for query refining, and checking that the queries are well-

formed.  

The playback manager receives data from the server, and presents it on the local client, 

in a best possible way, according to the capabilities of the client system. This includes 

responsibility for playback synchronization, and interfacing with the client's presentation 

devices, through the interface manager.  

We also assume the presence of a client buffer, in which the data received from the 

server is temporarily stored before it is presented to the user. This client buffer serves an 

important role in masking jitter introduced by server and network, and is therefore an 

essential component when the final, fine-grained synchronization is performed. In addition, 

this buffer plays an important role in masking interaction latency, through the use of 

specialized buffering strategies. Examples of such strategies are Q-L/MRP [41] and 

MPEG-L/MRP [7]. 
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3.3 Layered DBMS Reference Architecture 
We base our discussion on a layered architecture that was originally proposed in [44] and 

later revised in [45]. The idea of the architecture is that each layer realizes a set of types 

and operations, based on the services offered by the layer below, similar to a network 

protocol stack. In other words, layer n uses the types and operations of layer n-1 to realize 

its services. This principle is illustrated in , where each layer is presented as a 

resource manager [54]. Each resource manager uses the resources on the layer below, in 

order to realize its own layer. Together, the resource managers transform physical 

resources into logical resources that are more appropriate for the application area, and on 

each layer, measures taken to eliminate the bottlenecks that may occur. 

Figure 3-3

Figure 3-3: A layered architecture 
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Using this principle of layered architectures on a DBMS, we get the model shown in 

 [54]. The physical resource of secondary storage is mapped into an external 

(logical) resource, namely an object-oriented or relational database, via three intermediate 

layers. Note that, for performance reasons, no concrete DBMS has fully realized this 

layered architecture, but the model serves as a good basis for comparing data management 

systems. 

Figure 3-4
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Figure 3-4: Layered DBMS Architecture 

Figure 3-4In the following sub-sections, we present each of the layers in , starting from 

the bottom; and we explain how mapping of functionality and performance is realized. To 

avoid misunderstandings, we use the layer number (the number in the bottom right corner 

of each white box) when referring to the resource manager implementing a layer. Also note 

that we use the term object as a generic term for data element; it does not necessarily imply 

the use of object-orientation. 

3.3.1 Physical Storage Management (Layer 0) 
The physical database is stored on secondary storage, i.e., disks; and the lowest layer (layer 

0) is dedicated to management of this physical storage. Physical disks consist of a number 

of disk platters, with one read/write head for each platter surface. Each platter consists of a 

number of tracks, and each track is divided into sectors (also called slots). A disk block, 

which is the unit of transfer between disk and main memory, consists of one or more 
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consecutive sectors. Typically, a sector contains 512 bytes, while a block contains 2 to 64 

KB, i.e., 4 to 128 consecutive sectors [39]. Tracks with equal diameter constitute a 

cylinder, and since all read/write heads move together, all sectors within a cylinder can be 

read or written without moving the heads. 

The addressing of a disk slot is dependent on how the disk “presents itself” to the disk 

driver. Many disks offer addressing by specification of the cylinder, head (i.e., surface) and 

sector that holds the requested block, so-called CHS-addressing (Cylinder, Head, Sector). 

The other alternative is to present the disk as an array of consecutively numbered blocks, 

known as LBN (Logical Block Numbers) addressing.  

A disk consists of one or more physical disk partitions, where each partition consists of 

a contiguous set of tracks on one disk. A logical disk is assigned to one or more physical 

disk partitions, not necessarily on the same physical disk; and a physical disk partition may 

contain several logical disks. All disk partitions used to store one logical disk must have 

the same block size in order to keep the addressing scheme manageable, and the blocks of 

the logical disk (the logical blocks) are numbered consecutively, starting with zero. 

The task of layer 0 is to hide the physical addressing (CHS or LBN), and instead 

present the disk as a collection of logical disks. Thus, when layer 0 receives a block 

request, e.g., read(log.diskA, log.blockM), from the next higher level, the address is mapped 

to a block number within the corresponding physical disk partition. This address is in turn 

mapped to a CHS or LBN address, which is submitted to the disk driver.  

The performance measures taken on this layer are the storage of data on contiguous 

disk blocks, together with a large unit of transfer between disk and memory. Both these 

measures serve to reduce the non-productive work of the disk, i.e., disk head positioning. 

3.3.2 Segment Management (Layer 1) 
This layer offers a virtual storage containing pages. The storage is partitioned into 

segments, and the pages within a segment are numbered consecutively. The next-level 

layer (layer 2) requests pages using segment-ID and page number within the segment as 

address when it requests a page. When layer 1 receives such a request, it first checks 

whether the requested page is already present in one of the buffer frames. If so, a pointer to 

the page is returned immediately. If the page is not present, the (segment-ID, page number) 

address is mapped into a (logical disk ID, block number) address, and a request for the 

block with this address is submitted to the physical storage management layer. Note that, a 
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page has the same size as a disk block, and constitutes the unit of transfer between disk and 

memory. 

A segment is stored on one logical disk, while a logical disk may contain several 

segments, thus, there is a 1:n relationship between segments and logical disks. The ability 

to distribute a segment over several logical disks is not necessary, since, in effect; this can 

be achieved on layer 0, by distributing a logical disk over several partitions (and possibly 

physical disks). 

The main functionality of layer 1 is buffer management, and the performance measure 

taken on this layer is the efficient use of main memory, i.e., try to keep the most relevant 

pages in memory at all times, such that the disk traffic is minimized. 

3.3.3 Physical Data Structures Mangement (Layer 2) 
Layer 2 is responsible for the assignment of physical records to pages, and for the 

implementation of physical data structures that contain the records. Note that we use the 

term record, independent of whether it is an object-oriented or relational DBMS. Interfaces 

for accessing the records of a data structure are offered to the layer above, but different 

data structures support different access methods, and what interfaces to offer is therefore 

dependent on the data structure that is used. However, all structures support sequential 

access using iterators. 

There are two main types of physical data structures that can be distinguished, based on 

how the placement of records within pages is controlled: 

• Data structures with internal placement of records do their own record placements on 

pages, i.e., entire pages are allocated to the data structure. In general, these data 

structures do not allow direct access to its records based on physical address. Instead, 

object access is based on iteration, i.e., sequential access, on a key value (e.g., logical 

OID); or it is based on the relative position of the object. Examples of data structures 

with internal record placement are clustered lists, trees (B-trees, B*-trees, etc.), hash 

tables, and multi-dimensional data structures (grid-files [66], R-trees [40], etc.).  

• Records with external record placement leave the placement of records to the common 

free space administration of layer 2. Therefore, records of different types may be stored 

on the same page, if several data structures share a segment. Each physical object has 

an address, a record-ID (RID), that can be used by other data structures. Key-based 

access is not supported, while iteration-based and position-based accesses are 
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supported. Examples of data structures with external record placement are linked lists 

and pointer arrays. 

Depending on the physical data structure in question, when layer 3 requests a physical 

record from layer 2, the record is either requested based on a physical RID, using an 

iterator, or using one of the other access methods offered by the data structure. A RID 

typically consists of segment ID, page number within the segment, and an index into the 

page directory of the page. Upon receipt of such a request, layer 2 can locate the record 

directly, based on the RID. When the page is fixed in a buffer frame and the record is 

located, layer 2 returns a pointer to the record to the requester on layer 3.  

In order to realize sequential access, layer 2 uses the next/previous pointers (RIDs) of 

each physical record, and maintains a cursor to keep track of the current position in the 

data structure. 

Other functions performed by this layer are free space management for pages (not for 

data structures with internal record placement), pointer swizzling, and physical clustering. 

The performance measure taken on layer 2 is to control the placement of physical records 

on pages, such that the number of physical page references, i.e., pages that must be read 

from secondary storage, is minimized. 

3.3.4 Internal Objects and Collections (Layer 3) 
Layer 3 uses the physical data structures that layer 2 offers, in order to implement internal 

objects and collections, i.e., it realizes the internal database, using the content of the 

physical database. While the physical database consists of physical data structures and 

physical records, the internal database consists of (internal) collections of internal objects. 

Each internal collection maps to exactly one physical data structure and vice versa. 

Normally, there is also a 1:1 relationship between internal objects and physical records. 

However, in the case of physical clustering, one physical record may contain several 

internal objects.  

The performance measure taken on layer 3 is to choose physical data structures for 

internal collections such that the access pattern for internal objects is reflected. For 

instance, if the objects of an internal collection are usually accessed in a particular order 

(e.g., based on an attribute), then the physical data structure should store the corresponding 

records in the same order, thereby reducing the access cost.  
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The actual execution of queries also takes place in this layer. Operations on internal 

collections are performed as algorithms that use operations on physical data structures. 

During query execution, indexes are used to speed up data access. Like other data 

structures, the indexes are implemented on layer 2, and no distinction is made between 

index data structures and regular data structures; they are both treated equally on layer 2. 

3.3.5 Data Model (Layer 4) 
The top layer is responsible for mapping between the logical objects and collections, and 

the corresponding internal objects and collections. While the logical database reflects the 

structures and relationships of the “real world” (universe of discourse), the internal 

database should reflect the access pattern on the logical objects, i.e., the objects that are 

frequently accessed together. Thus, the internal database represents a re-structuring of the 

logical database, in order to make the occurring operations on the data as efficient as 

possible.  

The attributes of a logical object can be stored in one or more internal objects, and an 

internal object can contain attributes from several different logical objects. In the same 

way, a logical collection (e.g., a type extension) can be distributed over several internal 

collections. Thus, there is an n:m relationship, both between logical and internal objects, 

and between logical and internal collections. 

There exist a number of techniques for mapping from logical to internal objects and 

collections [95]: 

• The N-ary storage model (NSM) maps each logical collection to exactly one internal 

collection, and each logical object to exactly one internal object, which then contains 

all attributes of the logical object. Thus, there is a 1:1 relationship between the logical 

and the internal collections and objects. If complex objects are stored using this 

technique, there are two alternative techniques that can be used: 

• Normalized storage model: The complex object type is split into several internal 

object types, one for each logical object type, i.e., the super-object and every sub-

object. 

• Direct storage model: the resulting internal objects consist of both the complex 

object and the sub-objects. A consequence of this storage model is that shared sub-

objects are duplicated, i.e., a copy of the logical sub-object is stored in every 

internal object representing a complex object that references the sub-object. 
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• The Decomposition storage model (DSM) creates one internal collection for each 

attribute of the logical object type. If we assume a logical object type containing the 

attributes ‘name’ and ‘age’, in addition to an OID, the logical collection consists of all 

instances of this object type. If we use the decomposition storage model, the result is 

two internal collections, one consisting of internal objects of the type (OID, ‘name’), 

and one with objects of the type (OID, ‘age’).  

• The Partial DSM is a combination of NSM and DSM. Affinities between object 

attributes are used as basis for the decomposition, such that attributes that are 

frequently used together are mapped into one internal object type. Thus, the access 

pattern determines how many fragments (i.e., internal object types) the logical object 

type is decomposed into. 

The performance measure taken on layer 4 is in the structuring of the internal database. 

Thus, the structure of the internal database must reflect the access patterns into the logical 

database, such that the operations that are performed on the data are efficiently supported. 

For instance, objects that are frequently joined can be combined into one internal object, 

i.e., the join is pre-computed, in order to avoid joins during the execution of queries. 

3.4 Data Model 
Presentations usually consist of a combination of several multimedia objects, and it is 

important that the included objects are presented in a synchronized manner. Consequently, 

we need a data model that can handle these complex relationships, which include temporal 

information. In addition, the data model must support the metadata associated with the 

multimedia objects, and since objects can be reused in different presentations, the 

modeling of the multimedia objects themselves should be separated from the modeling of 

presentations. 

As part of the OMODIS project, a data model called TOOMM (Temporal Object-

Oriented MultiMedia data model) [35] has been developed to meet these requirements. 

This data model integrates temporal and spatial concepts into an object-oriented data 

model, in addition to modeling and handling of advanced multimedia-related metadata. 

Objects in TOOMM comprise the properties of traditional object-oriented data models and 

three different time dimensions: valid time, transaction time, and play time. The play time 

dimension places units of multimedia data, such as frames or audio samples, into a 

temporal structure for multimedia presentations. 
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In addition, TOOMM is based on the principle of separation of multimedia data from 

its presentation specification. This is in accordance with the modeling concept of 

independence between the way data is stored in the database, and how it is presented to the 

user. The advantage of the separation is that multiple presentations can be created, based 

on the same multimedia data, without having to replicate the data.   

While objects instantiated from the logical data model contain the actual multimedia 

data, the objects from the presentation model specify how the multimedia data should be 

presented. We present both these models in the following sub-sections. 
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Figure 3-5: Type hierarchy of the TOOMM data model 

3.4.1 Logical Data Model 
The logical data model consists of the most common multimedia data types (MMDTs), 

such as video, audio, animation, music, and basic abstract data types (ADTs), organized as 

an extensible class hierarchy (see Figure 3-5). 

In the logical data model, three main categories of MMDTs can be identified: 

• Play time dependent MMDTs (PTD_MMDTs): Includes all types that have a temporal 

dimension in their presentation, and is the same as continuous MMDTs, introduced in 
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Section 2.2. Based on the temporal characteristics, these object types are further 

classified as either stream or CGM (computer-generated multimedia data). 

• Play time independent MMDTs (PTI_MMDTs): Data types with no temporal 

dimension during presentation. Examples of this data type are text, images, and 

graphics. A PTI_MMDT is the same as a discrete MMDT, introduced in Section 2.2. 

• Component object types: These are components of PTD_MMDTs, and they are 

classified according to the sub-category of the PTD_MMDT they belong to: 

components of stream-objects are called LDUs (logical data units), while components 

of CGM are called event object types. 

In addition to the separation between multimedia data and its presentation specification, 

TOOMM also separates the temporal information inherent in all time-dependent 

multimedia data from the multimedia data itself. For instance, a video has a particular 

frame rate, and the frames have a temporal order. To maintain the original temporal order, 

TOOMM associates each component object with a play time stamp, via a time associator 

(TA) object. This is illustrated in , where video frames constitute the component 

objects. 

Figure 3-6

Figure 3-6: A video object modeled in TOOMM 
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This separation enables a possible reuse of multimedia data within different contexts. 

For instance, a video frame can be reused as a still image in another multimedia 

presentation; or a new video object can be defined, which uses only a subset of the frames 

of the original video.  

3.4.2 Presentation Model 
In order to support reuse of multimedia data in different presentations, TOOMM separates 

between the default temporal information inherently associated with the multimedia data 

(and which is stored within the logical data model), and the temporal information used for 
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a particular presentation of the multimedia data (see ). The latter information is 

kept in the presentation model, together with information on temporal relationships 

between different multimedia objects included in a presentation, as illustrated in 

. 

Figure 3-5

Figure 

3-7

Figure 3-7: Relationship between logical data model and presentation model 
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 The presentation model differentiates between two types of objects: 

• Atomic presentation objects (APOs) describe the presentation of single multimedia 

objects, for instance, a video or an image. 

• Composite presentation objects (CPOs) describe entire presentations. The main 

elements of a CPO are a set of APOs and a set of temporal relationships between these 

APOs (such as synchronization and order). TOOMM also allows recursive containment 

of CPOs, i.e., one CPO may contain other CPOs, such that a CPO tree is formed. 

To illustrate the principles of TOOM, we have modeled a simple presentation. The 

presentation starts with a piece of text, followed by two alternative sub-presentations, each 

consisting of a picture, and then two consecutive video clips with sound and some text. In 

 we show the timing of the presentation, while Figure 3-9 shows the presentation 

as it is modeled in TOOMM. Note that, in both figures, sub-presentation A is shown, since 

we assume that sub-presentation B is structurally equal. 

Figure 3-8

In , we see how the presentation is built from a hierarchy of CPO-objects. 

Each such object specifies the relationship between two sub-objects, each of which may be 

an APO or another CPO. We also see that the two video clips, P_VideoA1 and P_VideoA2, 

actually point to different parts of the same multimedia object, namely VideoA.  

Figure 3-9

 31



P_Text1

P_ImageA

P_TextA2

P_AudioA1

P_TextA3

P_VideoA1

P_AudioA2

P_TextA4

P_VideoA2

P_ImageB

P_TextB2

...

time

Alternative A

Alternative B

 

Figure 3-8: Timing of example presentation 
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Figure 3-9: Modeling a presentation with TOOMM 
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3.5 Internal MMDBMS Architecture 
We have now presented the layered reference architecture on which we base our 

description, as well as our data model. In this section, we use the reference architecture to 

describe the architecture of our MMDBMS.  

In Figure 3-1, we presented the architecture of the LoD-server. If we take the layered 

architecture of the MMDBMS from this figure, and map it onto the layered reference 

model in Figure 3-3, the result is the architecture shown in Figure 3-10. 
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Figure 3-10: Layered MMDBMS architecture 

The admission control component is not a part of the reference architecture, and must 

act independently of the layers. Thus, this component cannot be directly mapped onto the 

reference architecture, although it is closely related to the transaction manager. We also see 

that the storage manager covers the three lowest layers of the reference architecture, and as 

such, constitutes the largest component. In Figure 3-11, we show the internal components 

of the storage manager, and how these map to the reference architecture. In the following 
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sub-sections, we go through each of the MMDBMS components, and describe their 

functionality, using the reference architecture as a basis. 
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Figure 3-11: Layered architecture of the storage manager 

3.5.1 Transaction Manager 
The transaction manager (TM) is responsible for ensuring that the system meets the 

correctness criteria for all MMDBMS requests, and this task includes monitoring the active 

transactions. The TM defines, monitors, and modifies transaction plans, which are used to 

manage and control the system components. We assume a nested transaction model for the 

MMDBMS, and this is especially important for multimedia playback queries. In such a 

query, the transaction hierarchy reflects the CPO hierarchy, and ultimately, the playback of 

each individual multimedia object is controlled by a separate sub-transaction.  

As explained earlier, it is reasonable to expect far more content consumers than content 

providers. Thus, the dominant usage of the LoD-server is students accessing the stored 

multimedia data through read-only playback queries for presentations, and for such use, the 

concurrency control requirements can be somewhat relaxed. Admittedly, during such a 

playback, students may link questions or other forms of annotations to a presentation (such 

questions or annotations may also be in the form of multimedia objects), and the teacher 

may add answers to questions. However, such update-operations do not affect the 

multimedia data itself. That only happens when the teacher creates a new presentation, or 

edits an existing one.  
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Still, there is a need for transaction management, in order to ensure that data is stored 

correctly and to provide support for concurrency control during writes. For instance, a new 

lecture may not be made available until it is completely stored in the DBS. An existing 

lecture, which is to be edited, is first checked out of the DBS and then edited externally. 

During the editing of a multimedia object, the original version of the object is still 

available for reading. This indicates the need for one more lock type, in addition to read- 

and write-locks, and we call this new type “checkout-lock”. In Table 3-1, we show the 

dependencies between the different lock types. 

When a multimedia object is checked out for editing, a checkout-lock is set. 

Subsequent read-locks are allowed for the same object, but requests for a write-lock must 

wait until the checkout-lock is released. How to handle a subsequent checkout-lock is 

policy-dependent. If multiple versions are allowed, the second checkout-lock is granted, if 

not, it must wait until the first lock is released.  

Table 3-1: Relationship between lock types 

Then 

First 
Read-lock Checkout-

lock 
Write-lock 

Read-lock OK OK Wait 

Checkout-

lock 
OK OK/wait Wait 

Write-lock Wait Wait Wait 

 

In addition, the TM is responsible for coordinating the admission control process, both 

with respect to authorization, and to the availability of resources. For example, a client 

request for a multimedia playback query starts with a QoS-negotiation between the server 

and the client, using the available information as a starting point: 

• From the client, information like maximum tolerable interaction-latency and jitter, 

preferred QoS-guarantee level (deterministic, statistical, best-effort) and the 

willingness of the user to pay for a given guarantee level, as well as capabilities (client 

buffer size, codec capabilities, etc.) can be obtained. 

• We also assume that information about the network, such as maximum latency and 

jitter, available bandwidth, and possible service types, is available. 

Based on this information, a tentative transaction plan is created, which is used in the 

admission control process, by submitting it to the query manager. This plan specifies both 
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what should be retrieved (i.e., which multimedia objects) and how (i.e., QoS-parameters). 

If the query manager approves the request, the tentative transaction plan is converted into a 

regular plan, and the playback of the presentation can start. 

3.5.2 Query Manager 
The main task of the query manager (QM) is the translation and optimization of queries. 

We assume that (ad hoc) queries are entered in a declarative language, either directly by 

the user, or as a result of user interaction with the client application. In either case, the QM 

first translates the query into an algebraic expression on the logical data.  

Next, it transforms this expression into a number of equivalent algebraic expressions on 

the internal data. The QM then evaluates the different expressions, using information from 

the system catalog (also known as the data dictionary [21]), such as physical data 

structures used, available indexes, etc. Based on this evaluation, the QM selects the 

optimal2 expression, and translates this into a physical execution plan, by replacing the 

operators in the algebraic expression with algorithms that work on the physical data 

structures. Once the execution plan is ready, the QM hands it over to the object manager, 

which executes the code in the plan.  

An additional challenge of query processing in a multimedia context is the 

heterogeneity of the data types. As a result, it is not possible to work out one single 

processing strategy that is optimal for all data types. Instead, different strategies must be 

used for each data type, and these strategies must then be combined while processing the 

data.  

It is also important that queries, both pre-defined and ad hoc, can be easily formulated 

for all MMDTs. Since the queries can be made on multimedia data such as video and 

audio, i.e., content-based queries, it is necessary that the query language has mechanisms 

to support this. We assume that such content-based queries are supported through textual 

descriptions of the data, e.g., text describing the content of a scene in a video.  

In our MMDBMS, the QM also takes part in admission control and resource 

reservation for multimedia playback queries [26]. Based on the tentative transaction plan 

received from the TM, the QM creates an admission request, consisting of a tentative query 

execution plan (created as described above) and submits it to the admission control 

                                                 
2 In practice, the goal is to find an expression/plan that is as optimal as possible within the given time-

and processing constraints. 
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component. If the request is admitted, i.e., there are sufficient resources to execute the plan 

and the reservations have been made, the QM returns a positive acknowledgement to the 

admission request from the TM. The TM then commits the admission request, and the 

tentative query execution plan is converted to a regular query execution plan. 

3.5.3 Presentation Manager 
The presentation manager (PM) is responsible for controlling the transfer of data from the 

MMDBMS to the client. Regardless of query type, the PM is responsible for the delivery 

of all data; and to do so, the PM must create a presentation plan. Such plans are created 

from templates, and modified based on the transaction plan received from the TM, 

metadata stored in the database, and information from the client about its capabilities.  

 Thus, while the QM is responsible for making the correct data available in the 

MMDBMS-buffer, the PM is responsible for transferring these data to the client at the 

correct time, and with the correct QoS. However, to be able to perform its task, the PM 

depends on the data being available in the MMDBMS-buffer at the correct time, which in 

turn requires that the QM requests the data and, thereby, the lower layers provide the data, 

in time.  

3.5.4 Object Manager 
The object manager (OM) is responsible for performing the operations in the query 

execution plan. Many of these operations consist of calls to operations implemented by the 

storage manager (SM) on layer 2. Thus, the actual work performed during a query is 

shared between the OM and the SM. A typical operation performed by the OM is to 

request an object, using an iterator, a key value, or the physical address of the object. In all 

three cases, the SM provides the access method at its interface to the OM, i.e., the OM uses 

operations offered by the SM, and the SM performs the actual work of providing the 

object, possibly fetching it from disk. 

3.5.5 Storage Manager 
In Figure 3-11, we see that the SM covers three layers of the reference architecture. We 

have included the sub-components of the SM, in order to illustrate the functionality of each 

layer. The main interface to the SM, used by the object manager, is the interface to the 
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physical data structures layer, which is implemented by the physical data structure 

manager (PDSM). 

Physical Data Structure Manager 

As described in Sub-section 3.3.3, the PDSM is responsible for mapping between records 

and pages, and for implementing the physical data structures used by the OM. In an 

MMDBMS, the multimedia objects, and especially video objects, are typically very large. 

Even if the multimedia object is structured, e.g., that each frame or set of consecutive 

frames constitutes a separate component object (i.e., a LDU), these objects are usually 

larger than a page. Thus, handling storage of large objects is an important task for the 

PDSM.   

The Buffer Manager 

The buffer manager (BM) is responsible for transferring pages between secondary and 

main memory. When a particular page is requested by the PDSM, the BM first checks if 

the page is already present in the buffer, and if so, a pointer is returned immediately. If the 

page is not in the buffer, a free buffer frame must be acquired, possibly by flushing the old 

contents of the frame to disk, before requesting the page from disk. Thus, page 

replacement is also an important task of the BM. 

Since a MMDBMS handles very diverse data types, with correspondingly diverse 

access patterns, the buffer manager of an MMDBMS faces more challenges than the buffer 

manager of a traditional DBMS does [4]. For instance, system catalog data and TOOMM 

metadata requires a page replacement algorithm that tries to keep a “working set” of the 

most relevant data in memory at all times, such that subsequent accesses to the data can be 

served from the buffer, without having to go to disk. For multimedia objects, on the other 

hand, this is generally not feasible, since transactions typically access large amounts of 

sequential data. Instead, other page replacement algorithms are needed, that support the 

requirements of multimedia playback queries. One relevant technique for achieving this is 

known as bridging [48], i.e., pages used for one multimedia playback are kept in the 

buffer, in order to serve another, subsequent playback of the same multimedia object.  

The Physical Storage Manager 

The role of the PSM is the same in our MMDBMS as in the reference architecture. The 

BM submits disk requests to the PSM, which converts the logical addresses to physical 

 39



addresses according to the addressing scheme used by the disk. It then submits the requests 

to the disk driver in the operating system.  

3.5.6 Admission Control 
The LoD-server has a limited amount of resources, such as disk bandwidth, processor 

capacity, and amount of memory; and since the system is supposed to support multiple 

concurrent users, it is necessary to limit the admission to the system. If too many users 

access the system concurrently, the result is overloaded resources, and unsatisfactory QoS 

for the users. 

As part of the OMODIS project, an admission control and resource reservation agent 

(ACRA) has been developed [90] as part of a QoS-framework [27]. In our work, we 

assume that this ACRA is utilized for admission control and resource reservation in the 

LoD-server. However, admission control in itself is outside the scope of our work. 

The ACRA has been designed to meet the following criteria: 

• Multiple resource types: For every admission request, the ACRA must estimate the 

resource requirements for processor, memory, and disk. 

• Presentations with multiple multimedia objects: Presentations usually consist of a set of 

multimedia objects, which are presented both sequentially and in parallel. When 

estimating the resource requirements for a presentation, the ACRA must take the 

ordering of the objects into account, in order to compute the total resource 

requirements. 

• Multiple QoS-levels: Depending on the capabilities of the client and the network, as 

well as the resource situation in the server, the ACRA must be able to support several 

QoS-levels. Typical levels are deterministic QoS-guarantees, where violations of the 

guaranteed service level should never occur; statistical (also known as predictive) 

QoS-guarantees, where some violations are allowed to occur; and best-effort, where no 

guarantees are provided [33]. We have also introduced an additional level, called 

enhanced best-effort. This QoS-level implies that a resource share, e.g., a certain 

amount of disk bandwidth, is reserved, but the amount is not necessarily in proportion 

to the requirement, and it may change over time.  

• Session-level admission control: The ACRA must perform admission control on a 

session-level. For instance, it must perform admission control for a presentation 
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playback as a whole, instead of admitting the individual multimedia objects as they are 

requested during the presentation.  

• Support for user interaction: As described in Chapter 2, we assume a relatively high 

degree of interaction during presentation playback, and the ACRA must be able to take 

this into account when performing admission control and resource reservation. To do 

so, the ACRA can use several information sources, such as statistical information about 

user interaction and metadata from the presentation itself, e.g., the number of 

alternative sub-presentations. 

• Support for all types of user operations: In Sub-section 2.3.1, we described the four 

basic types of user operations, namely authoring of multimedia objects, authoring of 

presentations, search for content, and playback of content. Some of these operations 

require playback of time-dependent data, while others are time-independent. The 

ACRA must make sure that all operation types are handled fairly, and avoid starvation 

of, for instance, content searches. 

A consequence of the criteria listed above is that the ACRA must have access to 

metadata describing the requirements of each multimedia object. Thus, before a 

multimedia playback query starts, the ACRA knows the resource requirements of the 

involved multimedia objects as a function of time. This is not a problem, since the 

multimedia objects are stored as structured objects, as explained in Section 3.4, and 

knowing the “object-rate”, we can estimate the resource requirements over time. 

However, even if detailed information about the requirements of the multimedia objects 

is available in the system catalog, resource planning in a complex system like a MMDBMS 

is a challenge. For instance, if two users play back the same presentation, with only a small 

time gap between them, disk bandwidth reserved for the second user may be left unused, 

because the data fetched for the first user is still available in the MMDBMS buffer and the 

BM applies the bridging-technique. If one of the users interacts with the presentation (e.g., 

making a pause), the time gap between the two presentations may become too large, and 

the reserved bandwidth must be put to use. Thus, even with detailed knowledge of the 

nominal bandwidth requirements of the presentations, it is impossible to accurately predict 

the actual requirements, and it must be possible to dynamically redistribute resource 

allocations according to the varying needs.  
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3.6 Functional Aspects 
We have now described the architecture of our MMDBMS, together with the functions of 

each major component. Next, we present the MMDBMS from a functional point of view.  

In Sub-section 2.3.2, we presented four types of server operations, and these are executed 

by the MMDBMS: 

• Metadata retrieval query: Retrieve application-visible metadata, i.e., data describing 

the stored multimedia objects, typically TOOMM-metadata. This query type is 

performed interactively. 

• Multimedia playback query: Play back presentations, defined by CPOs. This query type 

is also performed interactively. 

• Metadata authoring query: Create and/or update CPOs and indexes Depending on the 

actual operations performed, this query type is either performed interactively or it is 

automated. 

• Multimedia authoring query: Checking multimedia objects into or out of the database. 

This query type is performed automated. 

In addition, all these request types may cause the MMDBMS itself to query the system 

catalog. In many cases, data from the system catalog is required in order to proceed with a 

user-initiated request, e.g., find the physical address of an object. Consequently, the service 

level experienced by the system catalog query has a direct influence on the service level 

for the user-initiated request. In the following sub-sections, we give a brief description of 

the characteristics of these operations. 

3.6.1 Metadata Retrieval Query 
In general, users interactively submit metadata retrieval queries to the MMDBMS, to find 

relevant presentations. This type of query is quite similar to queries in traditional DBMSs, 

in the sense that object attributes of basic types (such as text or integer), and/or indexes are 

scanned to find objects that match the search criteria3 in the query.  

Queries of this type are generally short-lived; they scan through a set of objects as fast 

as possible, and return a list of matching objects to the user. Thus, the execution of such a 

query will typically cause a short burst of disk requests to be submitted. 

                                                 
3 In the case of content-based queries, we assume that the multimedia objects have been analyzed 

(possibly automatically) in advance, and textual descriptions stored in the database. 
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We assume an extensive use of indexing on the content-related metadata. Thus, most of 

the work for the storage subsystem will consist of fetching pages containing such indexes. 

However, each index entry is usually very small, so many entries fit in a page (assuming 

clustering). Therefore, the disk traffic generated can be expected to be relatively modest, 

but short response times are advantageous, to keep the overall response time of the query 

down. On the other hand, queries involving object attributes that are not indexed can have 

a considerable influence on the extent of disk traffic, especially if the objects are large, i.e., 

there are few objects per page, and a storage model like NSM is used.   

Since metadata retrieval queries are read-only, logging is, in principle, not required. In 

addition, the TM must check that there are no write-locks on the objects being requested, 

i.e., traditional lock management. 

3.6.2 Multimedia Playback Query 
A typical course of a user session is to first run a metadata retrieval query to find 

presentations of interest. The result of the query is one or more potentially relevant 

presentations (CPOs), and the user then selects one of these presentations, starting a 

multimedia playback query. In addition, content providers may use this query type to 

review multimedia objects during authoring. 

Multimedia playback queries are often long-running transactions, since presentations 

frequently include continuous multimedia objects, which must be presented over time. A 

video, for instance, can typically last from 10 seconds to 60 minutes, and the transaction 

controlling the playback is obviously equally long.  

Each stored CPO contains a relatively detailed specification of the playback of a 

multimedia object. Thus, much of the query execution plan (QEP) can be created in 

advance and stored as a template, together with a transaction plan template and a 

presentation plan template. When such a template is instantiated, only information 

regarding the chosen QoS-level needs to be added. Thus, the effort (and time) needed to 

start the playback of a presentation can be reduced.  

During playback, the BM experiences a stream of requests for pages containing 

component objects, resulting from the playback of multimedia objects of the 

PTD_MMDT-type. These page requests arrive regularly, typically one or more every 

second. In addition, the BM may receive requests for pages containing multimedia objects 

of the PTI_MMDT-type, for instance, text documents to be displayed together with the 
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video. These requests are more sporadic, with maybe tens of seconds or more between 

each request. 

3.6.3 Metadata Authoring Query 
We assume two types of metadata authoring queries, namely automated (batched) and 

interactive. Automated authoring of metadata includes multimedia data analysis to create 

textual descriptions of the content, creation of indexes, resource requirement descriptions 

etc. Such queries can be run as background jobs, and best-effort service is therefore 

sufficient.  

Interactive authoring, which includes operations like creation of presentations (CPOs) 

and manual additions of content-descriptive text, have much in common with metadata 

retrieval queries.  However, an important difference is that authoring implies the use of 

write locks. Thus, an ongoing metadata authoring query may potentially block the start of a 

multimedia playback query, because some of the requested objects are write-locked. To 

avoid such situations, the playback transaction should try to acquire a read lock for all 

multimedia objects included in the presentation, before the playback starts. 

Both types of metadata authoring queries can be long-running, automated transactions 

due to the large amount of work that must be performed, and interactive transactions due to 

“user think time”. Automated authoring may generate extensive disk traffic, since entire 

multimedia objects must be analyzed. Interactive queries, on the other hand, imply small 

updates on individual multimedia objects, and the disk traffic is therefore modest. 

Logging and locking for metadata authoring transactions are handled in the same way 

as for a traditional DBMS transaction, i.e., the log is written to disk before the data itself, 

and write-locks must be acquired before updates can be made. 

3.6.4 Multimedia Authoring Query 
Editing of existing multimedia objects is based on the check-out/check-in model. Thus, a 

multimedia object to be edited is checked out of the database, and edited externally. Once 

the editing is finished, the multimedia object is checked back into the database.   

Checking a large multimedia object, e.g., a video, into or out of the database can 

represent a considerable load on the storage subsystem, and unless we limit the bandwidth 

usage, such operations may affect concurrent multimedia playback queries. However, since 
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multimedia authoring queries are non-interactive, they can be performed as a best-effort, 

background jobs, with limited bandwidth usage.  

Since the objects being updated are checked out, leaving a copy in the database, 

performing an UNDO of a multimedia authoring transaction is very simple; just revert to 

the previous version, already stored in the database. Thus, to enable UNDO, it is sufficient 

to log what objects have been checked out, and what locks have been set. Enabling REDO 

for a check-out operation is equally simple, by using the same log-information as for 

UNDO. However, logging of a check-in operation requires special attention: 

• Using traditional logging would mean that all data, including the multimedia data, must 

be written to the log, before being written to the database. This would require storing 

all the multimedia data twice, which is obviously not a good solution, especially for 

objects of the PTD_MMDT-type. Thus, traditional REDO based on the log is not 

feasible for multimedia data. 

• Instead, we can first check the edited multimedia object into a separate “log-area”, i.e., 

a temporary (but persistent) storage area owned by the MMDBMS, which functions as 

an intermediate store for large objects to be checked into the database. The MMDBMS 

then performs the check-in operation by copying data from this log-area. In addition, 

the check-in from the log-area can be split into several sub-transactions. Each time a 

sub-transaction ends, the OIDs of the component objects stored in the database during 

that sub-transaction are written to the log. If the system crashes during check-in, the log 

can be used to establish how far the check-in operation had come, and then re-start the 

check-in operation with the sub-transaction that was active when the system crashed 

3.6.5 System Catalog Query 
Common in all MMDBMS request types described so far is that during their execution, 

several components in the MMDBMS frequently have to access information in the system 

catalog. For example: 

• The transaction manager must access type- and instance-specific information for 

multimedia objects in order to create the transaction plan.  

• The query manager needs information about the mapping between the logical and the 

internal data model, in addition to information necessary for generation and 

optimization of query execution plans.  

 45



• The physical data structure manager must access addressing tables when the object 

manager requests objects stored on disk. 

Every user-initiated request usually causes several such system catalog queries, which 

are used in order to get information that is necessary to complete the user-initiated request. 

Thus, the response time of each system catalog query affects the total response time of the 

user request.  

In principle, a system catalog query is no different from a metadata retrieval query; in 

the physical database, no distinction is made between system catalog data and regular data, 

and the same physical data structures is used for storage. However, a system catalog query 

may have timing requirements, depending on the type of user request that generated it. For 

example, a requested object must be fetched within a certain deadline, but the mapping 

information necessary to find the address of that object (OID-RID table) is not resident. If 

the deadline of the object request is short, there may not be enough time to get first the 

mapping information from disk, and then the page containing the object, assuming the 

page has to be read from disk.  

In general, one can expect much of the system catalog to be cached [29], so querying it 

will normally not represent a problem with respect to response time. However, if there is a 

possibility that system catalog data must be read from disk during execution of a user 

request with QoS-guarantees, then such situations must be accounted for.  

In addition, some types of TOOMM metadata have the same characteristics as system 

catalog data. For instance, during playback of a video object, it is necessary first to consult 

objects of the Temporal-type in order to find the OID of the next Frame-object to fetch. 

Thus, in the remainder of the text, when we talk about system catalog queries, this also 

includes queries for this type of TOOMM metadata object. The remaining TOOMM 

metadata, which can be characterized as content-descriptive metadata, does not share these 

characteristics, and is not considered as being in the system catalog category. 

We identify two main contexts in which system catalog queries take place, and timing 

requirements apply: 

• During the planning phase of a query: This phase takes place before the actual 

execution of a user query. Thus, the execution times of the system catalog queries 

affect the response time of metadata retrieval queries, and the startup time of 

multimedia playback queries. Typical system catalog queries during this phase include 

finding information about physical data structures used, what indexes exist, blocking 
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generally should take as short a time as possible, all disk requests generated, whether 

they are for system catalog data or regular data, have the same requirements, namely to 

be serviced as fast as possible. Thus, all disk requests can receive the same service 

from the storage subsystem; there is no need to differentiate between disk requests 

caused by system catalog queries and those caused by user operations. 

• During the run-time phase of a query: As mentioned above, system catalog 

information, such as tables for mapping from logical OIDs to physical addresses, is 

needed during the execution of a user query. This information is often critical for the 

execution of the user query, i.e., if the system catalog information is not returned on 

time, the user query may not be able to fulfill its QoS-commitments. For instance, each 

video frame object must be fetched within a certain deadline during playback to be of 

any value. Therefore, the system catalog information necessary to identify and locate 

the frame object must be available some given amount of time before the deadline of 

the frame object. Thus, in this case we differentiate between the timing requirements 

for retrieval of regular objects and for retrieval of system catalog objects. In general, 

deadlines for requests for regular objects must be long enough to allow fetching system 

catalog data from disk before submitting the object request. 

3.7 Summary 
In this chapter, we have presented the MMDBMS constituting the core of our LoD-server. 

We first provided an overview of the system architecture, before describing the client-side 

architecture as well as the functionality of its major components. Next we presented the 

TOOMM data model, before introducing the layered reference architecture we use for 

describing our MMDBMS.  

With respect to the claims we presented in Section 1.3, this chapter, together with 

Chapter 2, are targeted at Claim 1: Integration of a disk scheduler in a MMDBMS. We 

have investigated the MMDBMS, in order to clarify its behavior during the different types 

of user interactions, and how it affects the storage subsystem. 

In the next chapter, we analyze the requirements imposed by the users, the application, 

and the MMDBMS, and we investigate the implications for the storage subsystem and in 

particular for disk scheduling. From this analysis, we derive a set of requirements, which 

we later use both to assess existing disk scheduling algorithms, and as a tool in the design 
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Chapter 4  

Requirements Analysis 

In this chapter, we review the requirements from the application, described in Chapter 2 

and from the server and MMDBMS, described in Chapter 3. We analyze these 

requirements, and investigate their consequences for the storage subsystem in general, and 

for disk scheduling in particular.  

The purpose of this chapter is to show that disk scheduling is an efficient means of 

meeting the storage subsystem requirements in a MMDBMS, and to work out a set of 

requirements that such a disk scheduler must be able to meet. In the subsequent chapters, 

these requirements are used both to analyze existing disk schedulers, and as design 

guidelines for our disk scheduling framework called APEX. 

4.1 Introduction 
In the previous two chapters, we have presented our LoD-application scenario, as well as 

the MMDBMS used to realize the LoD-server. We have described the operations that the 

users, i.e., content providers and content consumers, perform on the LoD-system, and how 

the server responds to these operations.  

Knowing how the LoD-system is used enables us to map out the requirements that it 

must meet. On a high level, the LoD-system as a whole has to meet the requirements of the 

user. This, in turn, puts requirements on the individual components of the LoD-system. 

Thus, we map the user-level requirements down to physical resource requirements. Since 

we focus on QoS in the server-side storage subsystem in this thesis, our analysis will focus 
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disk scheduling can be applied as an efficient means of making the storage subsystem meet 

its requirements. 

4.2 Application and User Requirements 
In Sub-section 2.3.1, we described the different user operations, and found that the 

requirements and expectations of the user varied from operation to operation. We also 

described the operations performed by the server in response to the user operations. Below, 

we have grouped these server operations according to the user’s requirements to the 

corresponding user operation. For each group, we present a summary of the requirements: 

• Multimedia playback: The user expects that the multimedia objects are presented 

smoothly, without glitches and hiccups. In addition, the multimedia objects included in 

a presentation must be presented with correct synchronization, e.g., that audio and 

video are presented with lip synchronization. Finally, the possibility of user interaction, 

such as pause, fast forward, and rewind, requires that the system responds quickly. 

• Metadata retrieval and interactive authoring: The user expects the system to respond 

quickly to the operations. For example, the time from a metadata retrieval query is 

submitted, until the MMDBMS returns the result should be reasonably short.  

• Multimedia authoring: This operation means checking a multimedia object into or out 

of the database. No interaction is required during the operation, and the response time 

requirements are therefore modest. However, it is important to avoid starvation, and 

thereby excessively long response times. 

• Automated authoring: Such operations run without user interference, which means that 

they have no requirements at all. However, such operations should not be delayed 

indefinitely. 

In Sub-sections 4.2.2 through 4.2.5, we analyze the requirements of each of the four 

groups above, and describe how the requirements affect the storage subsystem. However, 

we start by analyzing the requirements of different MMDTs, as these requirements have 

considerable influence on the storage subsystem, and require special attention. 

4.2.1 MMDT Requirements 
As mentioned in Section 2.2, we differentiate between two categories of MMDTs, namely 
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time-component. The processing of such MMDTs is not time-critical, since the validity of 

the data is independent of temporal conditions.  

Continuous MMDTs, on the other hand, change over time. In other words, the time at 

which the information is presented influences the validity of the data; consequently, the 

processing of such MMDTs is time-critical. Typically, such MMDTs consist of a series of 

elements of discrete MMDTs that are presented sequentially. For instance, a video consists 

of a series of video frames, i.e., images, which are presented sequentially.  

Discrete MMDTs do not differ significantly from traditional data types, and we will not 

focus on those here. For continuous MMDTs, on the other hand, there are normally three 

types of requirements that are common, namely space, real-time, and throughput. Below, 

we discuss each of these types. 

Space  

Continuous multimedia data normally requires considerable disk space. In Table 4-1, we 

show the space requirements for six different videos, and we see that even relatively low-

resolution videos take up several hundreds of megabytes. In a LoD-repository containing a 

large number of videos, it is normally impossible to keep all data in main memory, and the 

data must normally be read from secondary storage. Thus, the storage subsystem must 

meet the requirements imposed by the multimedia data. 

Table 4-1: Examples of space and bandwidth requirements for video (bandwidth requirements are 

measured with a resolution of one second) 

 Format Length 
(min) 

Reso- 
lution 

Rate
(fps)

Size 
(MB) 

Avg. bandw. 
KB/s 

Max. bandw.
KB/s 

Video 1 MPEG-2 48 720x576 25 1668.1 582 768 

Video 2 MPEG-1 60 320x240 25 348.6 98 192

Video 3 MPEG-2 46 352x288 25 416.1 154 256

Video 4 MPEG-1 29 480x360 25 355.8 212 320

Video 5 MPEG-1 11 720x576 25 221.1 345 448

Video 6 DVD 49 720x576 25 1203.7 421 1088
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Except for the last video, which is a documentary recorded from television, all the 

example videos shown in Table 4-1 are used in LoD today, and as such, they constitute 

realistic examples

Real-time  

As mentioned above, continuous MMDTs are normally presented as a sequence of discrete 

elements. All the videos in Table 4-1 have a rate of 25 frames per second. Thus, each 

second, 25 discrete “images” are presented in a sequence, and each one is displayed for 40 

ms. This means that there is a deadline for every frame, and if one or more frames are 

delayed, the user will observe a “hiccup” in the video. Alternatively, the delayed frames 

are dropped, and the user experiences a short dropout.  

In [111], three types of deadlines are identified, namely hard, firm, and soft deadlines. 

Violating a hard deadline is catastrophic, and must never occur. With a firm deadline, a 

violation is not disastrous, but the data has no value once the deadline is passed. For soft 

deadlines, the requested data may still be of some value after the deadline, but this value is 

monotonically decreasing, and at some point it reaches zero. Depending on how delayed 

data is handled, the deadlines in multimedia playback are either firm or soft: if delayed 

frames in a video are dropped, the deadlines are firm, but if delayed frames mean that the 

entire playback is delayed, then the deadlines are soft.  

On the storage subsystem level, individual frames are very rarely used as transfer unit. 

Instead, almost all storage subsystems that are used to store and play back continuous 

media data proceed in rounds [33]. In each round, the data to be played back during the 

following round is fetched. Thus, when data is read from disk during a round, all requested 

real-time data must be retrieved within the end of the round. For example, if a system uses 

a round time of one second, then at the beginning of each round one second worth of 

multimedia data is requested for each user, and the requested data has a deadline of one 

second, i.e., the end of the round. Note that we assume a constant time-length model 

(CTL), i.e., a fixed-length round, since (in a variable bit-rate environment) this has proven 

to be less resource-demanding than a constant data-length model, where a fixed amount of 

data is fetched in each round [17]. 

In Section 3.2, we described how the client-system buffers a small amount of data 

before starting the presentation. Such client-side buffering contributes to increasing the 

                                                

4.  

 
4 These videos are also used in our performance evaluation, which we return to in Chapter 8. 
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tolerance of the application playing back the multimedia data, since variations in the arrival 

time, i.e., jitter, is masked. Thus, while the data should still be delivered within the 

deadline, the client-side buffering provides the server with more freedom with respect to 

early delivery of data. In other words, the server is free to deliver the data ahead of the 

deadline, if that suits the operation of the server better. How much ahead of the deadline 

the data can be delivered is dependent on the buffering capabilities.  

Throughput  

The throughput requirements of continuous MMDTs can be relatively high. From our 

example videos in Table 4-1, we see that the average bandwidth requirements vary from 98 

KB/s to 582 KB/s, depending on resolution and coding format. In addition, most modern 

video coding formats imply variable bit-rate. Thus, the actual bandwidth requirement may 

vary considerably over time. We see from the table that for some of the videos, the 

maximum bandwidth requirement is more than twice the average.  

Note that, as described above, playing back multimedia data normally means retrieving 

the data from secondary storage (i.e., disks), and the use of buffering allows this retrieval 

to proceed in rounds. The round-principle, in turn, enables improvement of disk 

throughput, by allowing the ordering of disk requests to be optimized with respect to disk 

efficiency.  

Other Requirements 

The requirements described above are common to most continuous MMDTs. However, 

some MMDTs may have additional requirements. One example is layered video (see for 

instance [76]), where the different layers are stored separately. When data of such MMDTs 

is played back, requests sent to the storage subsystem may have different priorities, 

depending on which layer the requested data belongs to. Lower layers have higher priority 

than lower layers.  

Another example is the SPEG coding scheme [51], where prioritized layering of the 

video frames is applied. Up to 16 priority levels are used to allow fine-grained adaptation 

of the video rate, by priority-based data dropping. If this is to be supported by the storage 

subsystem, it must be able to distinguish between the different priority-levels, and treat the 

disk requests accordingly. 
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4.2.2 Multimedia Playback 
Multimedia playback is by far the most demanding server operation, imposing a number of 

different requirements on the LoD-system: 

• As described in Sub-section 4.2.1, the individual multimedia objects displayed during 

the presentation have a number of requirements, such as real-time service and high 

throughput, which must be met.  

• Since multiple multimedia objects are displayed during a presentation, both 

sequentially and in parallel, there are requirements for the synchronization between the 

objects. 

• A multimedia playback is an operation that usually implies user interaction; and if so, 

the user requires low latency, for instance, similar to a DVD-player.  

• Common in all three preceding requirement categories is that the user may require a 

certain degree of obligation from the LoD-system, i.e., QoS-guarantees. 

The requirements of the MMDTs were described in Sub-section 4.2.1, and below, we 

discuss the remaining three groups of requirements, with focus on their implications for the 

storage subsystem.  

Synchronization Requirements 

As described in Section 2.3, the presentations stored in the LoD-server normally consist of 

several multimedia objects, presented both sequentially and in parallel. Thus, in addition to 

the requirements of the multimedia objects themselves, there are also timing requirements 

between different objects. The most typical example is synchronization between audio and 

video, but other MMDTs may also require synchronization. For instance, both subtitling 

and display of documents that are referred to in a video are examples of discrete MMDTs 

that must be synchronized with objects of continuous MMDTs. Thus, we see that also 

discrete MMDTs may have timing requirements similar to continuous MMDTs. 

As described in Section 3.2, the client-system has the final responsibility for such 

synchronization, using the client buffer and the playback manager. All data received from 

the server is stored temporarily in the client buffer, from where the playback manager 

fetches the data.  

However, the playback manager depends on that data being available in the buffer at 

the correct time, and it is the responsibility of the server to ensure that this happens. 
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Assuming that all data, due to the large amount, normally must be read from disk, this 



means that the storage subsystem on the LoD-server must provide functionality for 

delivering data within a given deadline. In other words, the storage subsystem must 

provide a real-time service.  

Latency Requirements 

The possibility of user interaction during multimedia playback necessitates short response 

times (i.e., low-latency). As described in Section 3.2, we assume that the responsibility for 

this is shared between client and server. In addition, we distinguish between startup 

latency and interaction latency, since the situations in which these two latencies occur are 

very different, seen from the server point of view.  

Startup latency is the latency experienced by the user when a presentation is selected, 

i.e., the first time the play-button is pressed in a presentation playback session. This startup 

latency includes sending the request over the network from client to server; instantiating 

the transaction plan, presentation plan, and query execution plan; performing QoS-

negotiation and admission control; filling the first buffer frames on the server side with 

data; submitting these data to the client; and filling the first buffer frames on the client 

side. 

Interaction latency is the latency experienced during interaction throughout the 

playback, such as the time to resume playback after a pause, selecting a sub-presentation, 

etc. In this case, no plan instantiation or admission control is necessary, and the 

presentation data required for the start of the presentation can be expected to be present, 

either in the client buffer, or in the server buffer. As mentioned earlier, the client-side 

buffer manager can use an algorithm like MPEG/L-MRP [7], to make sure that the data 

most likely to be requested are kept in the client buffer.  

The reason for introducing this separation is that the startup-phase of a playback query 

is very unpredictable, with respect to time consumption, since many components are 

involved, and a large number of operations must be performed. Because of this fact, it is 

difficult to give an accurate “promise” about startup latency, other than a general worst-

case value, where we calculate with ample time. What we can (and should) do is make sure 

that sufficient resources are available for the startup phase, to avoid starvation. On the 

other hand, considerably fewer operations are required during interaction. Thus, it is more 

realistic to provide guarantees for interaction latency than for startup latency. 
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QoS-Guarantees 

So far, we have focused on the requirements from the MMDTs, user, and application, 

which the LoD-system must meet. In addition, we need to take into account the extent to 

which the LoD-system obliges to meet these requirements. The degree of obligation, i.e., 

the QoS-semantics, is an important part of QoS-management. In [24], five types of QoS 

semantics are defined:  

• Best-effort QoS: The weakest type of obligation. All components in the system do their 

best to meet the requested QoS-level, but no guarantees are given. 

• Guaranteed QoS: The required QoS-level is guaranteed by the service provider, and is 

supported through allocation of the necessary resources. 

• Compulsory QoS: Like guaranteed QoS, the QoS-level is guaranteed by the provider, 

through resource allocation. In addition, the QoS-parameters are monitored, and if the 

requested level can no longer be sustained, the connection is terminated. 

• Threshold QoS: This is similar to compulsory QoS, but if the level can no longer be 

sustained, the user is notified, instead of terminating the connection. 

• Maximal QoS: An upper limit to the QoS is provided, and the QoS-level should not 

exceed this. This semantic is typically used if there is a cost attached to the QoS-level, 

and the user does not want to pay more than a given price. 

It is up to the user to select suitable QoS-semantics, based on personal preferences and 

perhaps earlier experiences with the system in question. For the storage subsystem, an 

important consequence of these semantics is the need for admission control and resource 

allocation. That is, for guaranteed, compulsory, threshold, and possibly maximum QoS, a 

certain share of the disk bandwidth and buffer space are reserved in order to fulfill the 

QoS-level agreed upon.  

As described in Sub-section 3.5.6, we assume that the admission control is performed 

on a global level, and the result is either admittance of the query and subsequent 

reservation of resources; or the query is rejected, meaning either that the QoS-level must 

be renegotiated, or that the client must be rejected due to lack of system resources. In 

addition, except for best-effort QoS and guaranteed QoS, all semantics require that the 

actual QoS-level delivered by the storage subsystem is monitored. 

Finally, we make a distinction between statistical and deterministic guarantees (see 

e.g., [61]). For the real-time requirement described in Sub-section 4.2.1, a deterministic 
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guarantee implies that the requested data always will be delivered on time. However, this 



level of guarantee is expensive, since we must reserve resources, in our case disk 

bandwidth, according to worst-case requirements. When variable bit-rate multimedia data 

is present, this means poor utilization of disk bandwidth. 

A statistical guarantee means that a certain percentage of all requested data will be on 

time. For instance, for real-time disk requests, a statistical guarantee could state that 99.5% 

of all disk blocks will be delivered on time. The difference between the two guarantee 

levels lies primarily in the way admission control is performed: while a deterministic 

guarantee requires admission control and resource reservation according to worst-case 

requirements, a statistical guarantee is generally based on using some sort of average 

resource requirements (see, for instance, [107]). Thus, more clients can be admitted, and 

the resource is utilized better. The price to pay for this increased utilization is occasional 

resource shortage, since there may be times with peak load, where the resource 

requirement exceeds the amount reserved. However, the users of a statistical guarantee 

service are aware of this fact, and must be able to handle such violations of the service 

level agreement. For instance, deadline violations can be handled through increased 

buffering. 

4.2.3 Metadata Retrieval and Interactive Authoring 
These types of operations imply specifying a search criteria or a set of data to be written, 

submitting the query, and waiting for the result to be displayed. The requirement from the 

user is that the waiting time is “reasonably” short, where “reasonable” is defined by the 

LoD-application.  

From the storage subsystem point of view, these operations mean moving a set of 

database pages (i.e., disk blocks) between the disk and the MMDBMS buffer. However, 

there are no timing requirements to the individual database page transfers, since nothing is 

presented to the user until the query is finished. Furthermore, the result of these operations 

is static; for metadata retrieval, the result is a list of presentations or multimedia objects 

and for interactive authoring a notification is given, stating whether the operation 

succeeded or not. Thus, since the presented data is not time-dependent, timing does not 

affect the quality of the result.  

On the other hand, it is important that the storage subsystem does not starve requests 

generated by metadata retrieval and interactive authoring operations, and this means that it 
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should be possible to reserve a certain amount of the disk resource for such operations. If 



we assume that a share of the disk bandwidth and buffer space are reserved in advance, 

such that these resource shares are divided among all such queries, only traditional 

admission control, i.e., authorization control, is necessary. If bandwidth and buffer space 

are reserved per query, the admission control must be extended to check for available 

resources.  

4.2.4 Multimedia Authoring 
This type of operation is in principle equal to metadata retrieval and interactive authoring 

operations, but the amount of data transferred is considerably larger. Thus, on the one 

hand, the data should be transferred to or from disk as fast as the available disk bandwidth 

allows, but on the other hand, it is important to isolate such operations, to avoid reduced 

service for other, concurrent clients.  

Consequently, the storage subsystem must be able to separate different operations from 

each other, ensuring that each user receives the amount of resources he or she is entitled to, 

and at the same time prevent them from occupying an unreasonable amount of resources. 

4.2.5 Automated Authoring 
Multimedia objects that are checked into the database are analyzed, in order to derive 

metadata for use during both searching and playback. Such automated analysis can imply 

reading a considerable number of database pages from disk, for instance when analyzing a 

video. However, being completely non-interactive, this type of operation can be run on a 

best-effort basis. 

Similar to multimedia authoring, it may be necessary to limit resource usage, to avoid 

starvation of other clients. In addition, the progress of the operation should be monitored, 

to make sure that the operation do not starve, and thereby is delayed indefinitely. 

4.3 MMDBMS Requirements 
In Section 3.6, we investigated the different query types that occur in the MMDBMS, and 

in Section 4.2 we analyzed their requirements on the storage subsystem in more detail. 

From this analysis, we found that the different query types have very different 

requirements to the storage subsystem. In addition, it is important to consider two basic 
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assumptions about the LoD-system: 



• Multiple users are allowed to access the LoD-system concurrently. 

• Interaction is an important element in the usage of the system. 

Consequently, the MMDBMS must handle a workload that is constantly shifting as 

queries start and finish. Even the resource usage per individual user may change rapidly, 

due to user interaction, multimedia objects that start and finish as part of presentation 

playbacks, and variable bit-rate MMDTs. Obviously, this also applies to the storage 

subsystem, and we have identified three MMDBMS-specific requirements to the storage 

subsystem, assuming that data is normally read from disk: 

• Multiple service types, adapted to the needs of the different query types: As we have 

described, the different query types present very different requirements to the storage 

subsystem. Since we assume a multi-user system, different query types can be expected 

to run concurrently. In addition, the individual user may require multiple service types, 

for example during a multimedia playback query. Consequently, we need a storage 

subsystem that is able to provide all required service types, and to provide them 

concurrently.   

• Isolation between transactions: It is important that the system resources are divided 

fairly among the transactions, such that each user receives the service level that he or 

she is entitled to. Consequently, the storage subsystem, as well as other resources in the 

LoD-system, must isolate transactions from each other, such that no single transaction 

can behave in a way that affects the QoS for others. For instance, if one user downloads 

a large multimedia object, this download must not be allowed to use so much disk 

bandwidth that other users, playing back presentations, experience glitches or halts in 

the playback. 

• Redistribution of bandwidth (work-conservation): In Section 4.2, we described how 

admission control and resource reservation usually are necessary to ensure sufficient 

QoS during multimedia playback queries. However, we have also described how user 

interaction is an important part of using the LoD-application, and such user interaction 

is obviously hard to predict. Thus, reserved resources, including disk bandwidth may 

be left unused for shorter or longer periods. In addition, as described in Sub-section 

3.5.5, the storage subsystem may invoke bridging whenever possible, which means that 

reserved disk bandwidth may suddenly become unused for periods. On the other hand, 

there are usually a number of best-effort queries running as well, which could use this 
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available bandwidth. Consequently, the storage subsystem must be able to efficiently 

re-distribute unused disk bandwidth.  

4.4 Modern Disks 
Magnetic disk drives are still the prevailing media for secondary storage of data, and the 

rest of the storage subsystem, as well as the MMDBMS as a whole must accommodate the 

characteristics of these devices. In this section, we investigate the consequences of this 

fact.  

In Sub-section 4.2.1, we described real-time service as one of the requirements of 

multimedia playback queries. To be able to provide such real-time service, it must be 

possible to predict the behavior of the involved components. In our case, this means that 

the MMDBMS must be able to predict the service times of disk requests. If this is not 

possible, worst-case assumptions must be used, resulting in poor disk utilization.   

We introduced the basic principles of a magnetic disk in Sub-section 3.3.1, and 

described how the disk is divided into platters, cylinders, tracks, and sectors. Thus, in 

principle, serving a disk request consists of three operations: (1) move the disk head to the 

correct track; (2) wait until the requested data rotates in under the read head; and (3) read 

the data and transfer it to main memory. Thus, by knowing the current disk head position, 

the service times can be predicted with a relatively high accuracy.  

However, modern disk drives tend to hide all details about their internals, and they 

apply a series of techniques for performance improvement and self-management [74, 88, 

105, 106]. Thus, the “intelligence” of modern disks makes their behavior unpredictable, 

and this represents a problem for application areas where predictability is essential. Below, 

we describe the most important techniques that are applied in modern disks, and 

investigate how they affect the behavior of the disk: 

• Disk block addressing: As described in Sub-section 3.3.1, a disk uses either CHS 

(Cylinder, Head, Sector) addressing, or it uses logical block numbers (LBN)

LBN means that we have no information about the geometry of the disk, and the 

mapping from LBN to physical address. For CHS-addressing, we do apparently know 

the geometry, but the problem is that for modern disks, this geometry is logical (see, 

for instance, [79]), and has nothing to do with the actual physical geometry. Thus, even 

                                                

5. Using 

 
5 LBN is also known as LBA: Logical Block Addressing. 
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if we know the current disk head position with respect to the logical geometry, we 

cannot estimate positioning times for the disk head.  

• Zone-bit recording: Outer tracks on a disk are longer than the inner ones, and to 

maximize the storage capacity, a linear density of the stored data is used. 

Consequently, the outer tracks contain more sectors than the inner. Usually, the disk is 

divided into a number of zones, typically from three to 20, and within each zone, all 

tracks contains the same number of sectors. As a result of this zoning, the transfer rate 

that the disk can achieve is dependent on where on the disk data is read from. For 

instance, the Quantum Atlas 10K disk [58] has a transfer rate going from 18 MB/s at 

the innermost zone, up to 26 MB/s at the outermost zone. Combined with the lack of 

knowledge of physical disk geometry, this adds to the unpredictability of modern disks. 

• Sparing and slipping: When a disk is initially low-level formatted, individual regions, 

either sectors or tracks, are left unused with regular intervals. This sparing is managed 

by the disk itself; it is transparent to the outside world, and the regions cannot be 

addressed from the outside. Instead, they are kept as spare regions, to replace regular 

regions that are damaged. If defects are discovered in a regular track or sector, it is 

remapped, or slipped, to a spare region. Thus, the disk geometry changes over time, 

making it even more difficult to know the physical geometry. 

• Caching and pre-fetching: Modern drives contain an on-board memory of typically 2 - 

8 MB [101]. This memory was originally used as a buffer for speed-matching between 

the physical drive and the transfer of data over the bus, but in modern drives, it is also 

used as a data cache [105]. One of the most common techniques used is so-called read-

ahead. This means that once the disk has finished serving a request, it continues 

reading from the same track, storing the extra data in the on-board cache. If a future 

request addresses some of the data in the cache, this means that it is not necessary to 

access the physical disk, and the request can be served considerably faster. In addition, 

the cache can be used as a write-back buffer. Thus, instead of having to wait for the 

disk to write the data, the disk stores the data in the cache, and returns the write request 

immediately. However, using the on-board memory as a cache has two consequences: 

(1) it adds to the problem of determining disk head position, since the disk may be 

active even if it has no disk requests to service; and (2) the service time of disk requests 

become even more unpredictable, since it is reasonable to expect some requests to be 

served by the buffer.  
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• Disk-internal scheduling: Modern disks allow multiple outstanding requests, so-called 

command queuing [74]. This allows the on-board disk controller to reorder the 

requests, in order to optimize the request serving, for instance by minimizing disk head 

movement. Since the controller has full knowledge of the physical disk geometry, as 

well as the current head position, it is in a very good position to achieve an optimal 

order of the disk requests. However, the controller needs several requests to be able to 

perform any reordering, which means that the order in which the requests were 

submitted to the disk may be completely different from the order in which the requests 

are served. This is potentially a problem for a server offering real-time service, since 

the service time of the disk requests becomes more unpredictable. A possible solution 

is to avoid command queuing, submitting only one request at a time, but then we lose 

the performance gain of disk-internal scheduling. Consequently, the host-based 

scheduling of disk requests should cooperate with the disk-internal scheduling, in order 

to improve disk efficiency. 

All the techniques described above contribute to an unpredictable disk behavior, and 

this represents a problem for any component that is dependent on knowing and/or 

predicting the behavior of a disk (see, for example, [55]).  

On the positive side, disk performance is constantly improving; over the last 15 years, 

disk capacity has improved three orders of magnitude, while the transfer rate has improved 

40 times [39]. A high-end disk, such as the Seagate X15 [80], offers an average seek time 

of 3.6 ms, and a rotational latency of 2 ms. The theoretical transfer rate is 51 MB/s during 

continuous read from the innermost (i.e., the “slowest”) zone, and 69 MB/s from the 

outermost zone. 

If we assume a block size of 64 KB, and one average seek time and rotational latency 

between each block read, the X15 is able to sustain a theoretical transfer rate of at least 146 

blocks per second, i.e., 9.1 MB/s, from the innermost zone, and 9.6 MB/s from the 

outermost zone. Using 1 MB blocks instead, the X15 can theoretically deliver close to 40 

MB/s from the innermost tracks. If we compare these figures with the bandwidth 

requirements in Table 4-1, we see that even a single disk is able to support a relatively 

large number of concurrent streams. However, as described in this chapter, playback of 

streams is only one of several tasks for the disks, and the bandwidth must be shared both 

among multiple clients and multiple different tasks. Thus, disk performance is still an 

issue.  
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4.5 Meeting the Requirements 
We have now reviewed the requirements on the storage subsystem, imposed by the user, 

the application, the multimedia data, and the MMDBMS. We have also described some 

important characteristics of modern disks, and how these affect the behavior of the disk. 

Thus, the question is how the storage subsystem best can meet these requirements. 

As described in Sub-section 4.2.1, multimedia data is often very large, and when 

multiple users concurrently play back presentations, search for data, and perform 

authoring, it is clear that having to read data from secondary storage is the normal 

situation. There will, of course, also be situations where data can be found in the 

MMDBMS-buffer, but we consider these as exceptions.  

Consequently, the disk becomes the central component in the storage subsystem when 

trying to meet the requirements. Disk access is still several orders of magnitude slower 

than main memory access; thus, provided there is sufficient buffer space, the disk has by 

far the greatest impact on the behavior of the storage subsystem.  

Below, we investigate the three central requirements, namely the need for multiple 

service types, isolation between transactions, and QoS-guarantees, and discuss how we 

best can meet these requirements.  

Multiple Service Types 

When multiple service types, such as real-time, low-latency, and high-throughput, are to 

co-exist in a storage subsystem, we face several, contradicting goals:  

• High-throughput requires that the disk is given good working conditions, i.e., the disk 

requests are ordered such that the positioning work is minimized. This is achieved by 

careful scheduling of the disk requests, using the position of the requested data as the 

only sorting criteria. Note that this scheduling should involve the disk-internal 

scheduler, for reasons discussed above. In addition, there should always be a queue of 

pending requests, such that the disk is never idle. However, queuing requests causes 

waiting time, and thereby longer response times. 

• A low-latency service requires that the disk requests are served immediately, without 

taking the position of the requested data into account. Consequently, this service is also 

realized through disk scheduling. However, since the position of the data is not 

considered, the disk may have to perform more positioning work, which is harmful for 
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the disk efficiency, and thereby the throughput. 



• Real-time disk requests require that the disk serves the request within a predictable 

time. Thus, the disk requests must be scheduled for service such that the disk has time 

to serve them. Since disk behavior is difficult to predict, as explained in Section 4.4, 

worst-case assumptions about service times are often required [33]. However, this 

affects the utilization of the disk. 

We see that all service types are realized through disk scheduling. This is natural, since 

all these services require detailed knowledge of the traffic to and from the disk, and this 

knowledge is not available on the higher layers of the MMDBMS. Thus, it is clear that disk 

scheduling plays a crucial role in realizing a multi-service storage subsystem.   

One possible solution for realizing multiple service types is to use separate disks for 

each service type. This way, each disk only has to relate to one service type, and the 

contradicting goals are avoided. However, we have described how the workload mix varies 

considerably: At one point in time, the workload may be dominated by multimedia 

playbacks, while shortly after, there may be mostly metadata retrieval queries. If we store 

data on separate disks, according to, for instance, MMDTs, we are likely to experience that 

one set of disks is heavily loaded, while another set is almost idle. In other words, we get 

poor resource utilization. Evidence of this can be found in [84], where it is shown that, 

especially under bursty workload, integrated storage is up to six times more efficient than 

separated storage. The main reason for this is that unused bandwidth for one data type can 

easily be transferred to the others. 

In addition, we run into a classification problem. For example, when a video is played 

back, it is naturally treated according to its MMDT. However, when the same video is first 

checked into the database, it is usually treated as discrete data [22], with no QoS 

requirements. Thus, the same data requires different types of service, depending on the 

operations performed. Another example is video frames, being part of a continuous 

MMDT, that are used as still images, which are discrete MMDTs.  

The advantages of integrated storage are also confirmed in [81] and [75]. Thus, we 

consider the use of integrated storage as a requirement for the storage subsystem of a 

MMDBMS.  

Isolation 

With the use of integrated storage, it becomes necessary to prevent the service types, as 

well as the transactions using the service types, from affecting each other. For instance, 
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checking a large video into the database could cause concurrent multimedia playback 

queries to run short of disk bandwidth, causing hiccups in the presentations. 

There are two ways of preventing this from happening: (1) provide sufficient 

bandwidth, to ensure that there will always be enough for all transactions (over-

provisioning); or (2) isolate service types, as well as transactions from each other, by 

limiting the amount of bandwidth each service type and transaction is allowed to use 

(isolation).  

The over-provisioning alternative implies adding more disks, in order to increase disk 

bandwidth. Then we essentially have two ways of distributing the data over the disks: 

• We can use striping, either course-grained or fine-grained. Note that this implies a very 

wide definition of striping, going from bit-striping, up to storing entire multimedia 

objects (e.g., videos) on a single disk. The latter is also known as localized placement 

[73]. 

• We can reserve certain disks for certain service types. For instance, a separate disk for 

low-latency requests. 

However, the latter alternative is essentially separated storage, as described above; 

thus, this is not an option. Using striping means that data can be transferred in parallel from 

several disks, reducing transfer time. On the other hand, it is well known that parallel disk 

reads do not improve response time; on the contrary, they tend to increase it [73] [77]. 

Actually, the average seek time converge towards the full seek time, and the rotational 

latency converges towards the time for a full rotation, with an increasing number of disks 

[109]. The reason is that the more disks, the higher the probability that a disk head has to 

move longer, or a disk platter must rotate further, in order to get into the correct position. 

The alternative, coarse-grained striping, introduces load-balancing issues. Thus, 

processing resources are needed for measuring the load on the disks, and computing on 

which disks to store which data. In addition, it may be necessary to move data from one 

disk to another, in order to reduce the load on hot-spot disks [78], adding to the load on the 

disks.  

The alternative of over-provisioning is isolation, where we limit the amount of disk 

bandwidth that each service type and possibly each transaction is allowed to use, and 

thereby prevent them from affecting each other. Similar to the realizing of the service types 

themselves, this isolation requires detailed knowledge about the disk traffic, and disk 

scheduling is therefore a natural choice.   
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QoS-Guarantees 

Realizing QoS-guarantees has similarities to the isolation issue, but while the isolation is 

concerned with preventing excess consumption of resources, the QoS-guarantees are a 

means to ensure a certain minimum of resource availability.  

In theory, over-provisioning could be used to provide QoS-guarantees as well, but this 

approach would place restrictions on all transactions that are allowed use the storage 

subsystem. Thus, to make sure that each transaction receives its share of the disk 

bandwidth, the workload on the storage subsystem must be treated as a whole, meaning 

that the number of concurrent transactions allowed to generate disk requests must be 

limited. Consequently, it is up to the higher layers of the MMDBMS to control which and 

when transactions should be allowed access to the storage subsystem. The drawback of this 

solution is that the lack of detailed knowledge about the disk traffic makes it difficult to 

perform a sufficiently fine-grained control of the bandwidth usage.  

On the other hand, if the storage subsystem is able to guarantee a minimum bandwidth 

on a per-service or per-transaction basis, it suffices to limit the number of transactions that 

require QoS-guarantees. Transactions that only require best-effort service can freely access 

the storage subsystem, as the bandwidth usage for such transactions will be limited 

automatically. This means that there is a higher probability that there are pending requests, 

which in turn means less idle time for the disk. 

A further advantage of this solution is that it allows the storage subsystem to provide 

multiple guarantee levels, as described in Sub-section 4.2.2. Consequently, we consider the 

use of explicit QoS-guarantees through reservation a better solution than using over-

provisioning. Furthermore, we argue that disk scheduling is a well-suited means of 

providing such QoS-guarantees, partly because it provides an effective way of controlling 

the bandwidth distribution of a disk, but also because it fits well with the approaches 

proposed for realizing multiple service types, as well as for isolation.  

Putting it all Together 

From the analyses above, we conclude that disk scheduling appears as an efficient and 

well-suited approach for meeting the requirements analyzed in this chapter. However, 

given the partly contradicting requirements, it is evident that we need a relatively advanced 

scheduler. In addition, it is important to realize that disk scheduling is not the one and only 

solution. It must be accompanied by supporting functionality, such as admission control 

 66 

and QoS-monitoring to ensure correct operation. Furthermore, the disk scheduling should 



be supplemented with orthogonal techniques, such as suitable buffering schemes, to further 

improve the performance of the MMDBMS. 

Based on our investigations above, as well as an analysis of disk scheduler 

requirements performed in [86], we have created a list of five requirements that should be 

met by a disk scheduler for use in a MMDBMS environment: 

1. Efficient disk read: Playback of multimedia data can require a considerable disk 

bandwidth, and at the same time, other query types may generate large bursts of disk 

requests. Consequently, the disk scheduler must not induce substantial overhead during 

disk read, something which may easily happen if the scheduler does not consider the 

placement of data on disk. Instead, the scheduler should try to minimize the overhead, 

and make the servicing of requests as efficient as possible. 

2. Support for multiple service types and guarantee levels: Different request types should 

receive service types that match their requirements.  This includes deadline guarantees 

for real-time requests, support for interactivity through a low-latency service, high-

throughput for multimedia authoring queries, and best-effort service for requests 

without QoS-requirements. Support for different priority levels, as well as request 

dropping, are also relevant functionalities, for example, in connection with layered 

video. 

3. Flexibility: The load pattern on the storage subsystem may vary substantially, and the 

disk scheduler must be able to adapt to such changes. This means that the disk 

scheduler should be dynamically configurable, according to the service requirements of 

the data being retrieved from or written to disk at any given time. Otherwise, the result 

may be sub-optimal resource usage.  

4. Isolation: A burst of best-effort requests, for instance, must not be allowed to affect the 

servicing of real-time requests with QoS-guarantees. Similarly, starvation should be 

avoided for best-effort services. 

5. Work-conservation: As explained, the workload experienced by the storage subsystem 

may vary considerably and with a relatively high frequency, due to VBR streams, user 

interactions, appliance of bridging, and a varying mix of query types. Consequently, it 

is impossible to keep the distribution of disk bandwidth perfectly aligned with the 

needs of the different service types at all times. To compensate for this misalignment, 

work-conservation is required, in order to channel unused bandwidth to where it is 

needed. It is reasonable to assume extensive use of such work-conservation, thus, this 
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functionality should be realized with a minimum of loss of disk efficiency.  



These five requirements can be used both as a checklist when analyzing existing disk 

schedulers, and as guidelines in the design of new schedulers. The “ideal” disk scheduler 

should fully meet all these requirements; however, in practice, the contradictions in the 

requirements mean that trade-offs must be made. The goal is therefore to make these trade-

offs as good as possible, minimizing the drawbacks. 

4.6 Summary 
In this chapter, we have analyzed the requirements imposed on the storage subsystem by 

the LoD-application, the users, the multimedia data, and the MMDBMS. We investigated 

the consequences of these requirements, and proposed possible approaches for meeting 

them. Out of the proposed approaches, we found disk scheduling to be an effective way of 

realizing the required storage subsystem functionality, and we presented a list of five 

requirements that must be met by a disk scheduler for use in our application scenario.  

Like the two preceding chapters, this chapter has been targeted towards the first of our 

four claims presented in Section 1.3: the integration of a disk scheduler into a MMDBMS. 

We have shown that the requirements, when mapped down to the storage subsystem, can 

be met through disk scheduling, and what is required to do so.  

In the next chapter, we introduce four disk scheduler classification parameters, which 

we use together with the five requirements introduced here, in order to investigate the 

suitability of existing disk schedulers for our application scenario.  
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Chapter 5  

Related Work 

In this chapter, we analyze existing disk schedulers, to investigate their suitability for our 

LoD-system. Our tools for doing so are the five LoD-specific requirements introduced in 

Section 4.5. In addition, we present a set of four parameters representing different aspects 

of disk scheduler services. These four parameters can be used to characterize a wide range 

of disk schedulers, and we use them as tools, together with the MMDBMS-specific 

requirements, to analyze existing disk schedulers. 

The purpose of this chapter is to establish to what extent existing disk schedulers are 

suited for our application scenario. In addition, we select a small group of existing disk 

schedulers that we call the reference group, which consists of those schedulers that come 

closest to fulfilling our requirements. These schedulers will serve as a basis for comparison 

during the presentation and evaluation of our MMDBMS disk scheduler. 

To appreciate this chapter, it is important that the reader is acquainted with the 

requirements analysis in Chapter 4.  

5.1 Introduction 
Originally, disk scheduling was employed to reduce latency, or increase throughput or 

efficiency [33]. However, with the advent of real-time and multimedia applications, 

additional requirements emerged, which the existing disk scheduling algorithms were 

unable to meet [63]. 
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Consequently, disk scheduling has been an active research area for several decades, and 

there exists an extensive body of work [50]. This is also the case for disk scheduling in 

real-time and multimedia contexts (e.g., [3, 10, 11, 18, 23, 38, 50, 57, 62, 64, 86, 103]).  

However, in the area of MMDBMSs, little has been done with respect to disk 

scheduling, although some work does exist (e.g., [42]). Thus, our purpose is to establish 

whether disk schedulers created for other application areas could be suitable for our 

MMBDMS-based LoD-system.  

5.2 Characterizing Disk Schedulers 
By analyzing existing disk schedulers, we have worked out a set of four parameters for 

describing their capabilities. Each of the parameters represents an aspect of the type or 

level of service that can be requested from a disk scheduler, and as we will show in this 

chapter, most existing disk schedulers can be described using some combination of these 

parameters. 

The four parameters are: allocation paradigm, guarantee level, service type, and 

priorities. In the following sub-sections, we describe each of these parameters in detail. It 

should be noted that, in these descriptions we frequently use the term queue. Most disk 

schedulers that provide multiple service types do so by using queues for the disk requests, 

one queue for each service type. If multiple transactions require a particular service type, 

their disk requests usually share the same queue. Thus, in this section, we use queue as a 

generic term, representing an entity holding or generating disk requests that experience the 

effect of the different parameters.  

5.2.1 Allocation Paradigm 
When allocating a resource, the two most popular paradigms for doing so are proportional-

share allocation and reservation-based allocation [92]. In a disk scheduling context, 

proportional share implies that each queue

by specifying a weight. Thus, the bandwidth share received by a queue corresponds to the 

weight of the queue divided by the sum of the weights of all queues. This makes the 

allocation scheme fair, since each queue receives a share of the bandwidth that is in 

proportion to the other queues. 
                                                

6 reserves a relative share of the disk bandwidth, 

 
6 Note that, in this sub-section, we have used the word queue, but we could just as well have used the 

word client, as it is done in  [92]. 
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The proportional-share allocation paradigm is also flexible, since there are no 

restrictions on adding or removing queues dynamically, or on changing the weights of 

queues. However, this means that proportional share allocation is state dependent, since the 

received bandwidth share varies with the level of competition  [92]. Thus, if a new queue, 

n, with weight wn, is added in a disk scheduler, each existing queue i will have its 

bandwidth reduced from BW
W
wi ×  to BW

wW
w

n

i ×
+

, where W is the sum of all weights 

before queue n was added, and BW is the available disk bandwidth. Consequently, the 

weight of a queue only indicates the relative share of bandwidth proportional to the other 

queues in the scheduler; it says nothing about the actual bandwidth received. This means 

that, unless a the number of queues, as well as the weight of each queue is carefully 

controlled, a proportional share disk scheduler is unable to offer QoS-guarantees, since the 

bandwidth received with a given weight may vary arbitrarily.  

The other paradigm, reservation-based allocation, means that an absolute share of the 

resource is reserved for a queue. This queue is then guaranteed to receive at least its 

reserved share, independent of competition from other queues. This allocation scheme is 

less flexible than proportional-share, since it requires admission control to avoid over-

allocation (admission control can of course also be used with proportional share allocation, 

to ensure a lower bound on the shares). The scheme is also less fair, as the resource share 

reserved for a queue is fixed, independent of the requirements of other queues. To change 

the resource share, explicit reallocation must be performed.  

On the other hand, guaranteeing a minimum bandwidth for a queue has the advantage 

of enabling QoS-guarantees. However, in a disk-scheduling context, a bandwidth 

guarantee alone is not a sufficient condition to ensure real-time guarantees. The disk 

scheduler must also ensure that each real-time request is scheduled for service in time to 

meet its deadline, through the ordering of the pending requests. 

5.2.2 Guarantee Level 
Based on the effects of the two allocation paradigms, we distinguish between four levels of 

guarantee, namely deterministic guarantees, statistical guarantees, enhanced best-effort, 

and best-effort. 

Deterministic guarantees are absolute, i.e., violations of the guaranteed service level 

should never occur. For instance, offering deterministic real-time guarantees for disk 
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requests means that the requests will always meet their deadline. As described in Sub-

section 4.2.2, this guarantee level is expensive, since worst-case assumptions about 

resource usage must be made.  

Admittedly, there exist techniques that reduce the utilization problem by using so-

called load traces, i.e., when a continuous multimedia object has been stored on disk, its 

bandwidth requirement is computed as a function of time (see, for instance, [103]). When a 

playback of a multimedia presentation is requested, the presentation is scheduled such that 

the overall resource requirements for all ongoing playbacks are reduced, for instance by 

delaying the presentation to avoid concurrent bandwidth peaks between presentations. The 

problem of this technique is that it constrains interactivity; thus, it is not well suited for our 

highly interactive environment.   

In a mixed-media environment like ours, the cost of using deterministic guarantees can 

also be slightly reduced through work-conservation, since unused bandwidth from a 

deterministic guarantee queue can be transferred to other queues needing the extra 

bandwidth. However, during admission control, we must still use worst-case assumptions, 

so the total number of clients with deterministic guarantees that can be admitted does not 

increase with the use of work-conservation. 

As described in Sub-section 4.2.2, statistical guarantees are in principle equal to 

deterministic guarantees, but imply a less rigid guarantee level. Resources are reserved 

according to some statistically estimated requirement, instead of worst-case; thereby the 

resources are utilized better, and more clients can be admitted.  

Both deterministic and statistical guarantees require a reservation-based allocation 

paradigm, since proportional-share allocation is insufficient for this guarantee level, as 

explained in Sub-section 5.2.1. However, using proportional allocation still involves 

reserving some bandwidth. Thus, although the reserved bandwidth may have to be shared 

on an arbitrary number of queues, it is better than making no reservations at all, having 

only possible unused bandwidth at one’s disposal.  

We therefore introduce the term enhanced best-effort to describe the guarantee level 

offered by the “basic version” of the proportional-share allocation paradigm (as described 

in [92]), i.e., without restrictions on the access to disk bandwidth. Since the resource share 

can become arbitrarily, the service level is considered best-effort, but the queue in question 

will always receive a share that is in proportion to other proportional-share queues, which 

means that it is guaranteed fairness.  
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Finally, the best-effort “guarantee”-level means that no resource reservations are made, 

and the queue in question can only use whatever resource shares are available at any given 

time. In a disk scheduling context, this means bandwidth unused by other queues. 

Consequently, disk requests with a best-effort service level may experience starvation if 

there is no leftover bandwidth. 

5.2.3 Service Types 
From the point of view of the disk scheduler, there are three service types that can be 

offered, namely real-time, high-throughput, and low-latency. In addition, it is obviously 

possible to have no specified service type. The deadlines associated with real-time requests 

can be hard, firm, or soft, as described in Sub-section 4.2.1; hard deadlines can only be 

used in association with deterministic guarantee-level, while firm and soft deadlines can be 

used with any guarantee level. 

A real-time guarantee implies that the disk requests are guaranteed to be serviced 

within a specified deadline (e.g., [64, 86, 103]). Thus, in practice, a real-time guarantee is 

also a throughput guarantee, as long as the query that causes the requests stays within the 

request rate set during admission control. A high-throughput guarantee, on the other hand, 

is not concerned with the service time of each individual disk requests, thus the service 

times may vary considerably. However, over time, a certain throughput is guaranteed 

[103]. 

In principle, a low-latency service could be recognized as a real-time service, but there 

are some important differences: a real-time service implies that the disk request is served 

within a specified time, but this is not necessarily a very short time. In a multimedia 

context, real-time disk requests typically operate with deadlines in the area of 1-2 seconds. 

Low-latency requests, on the other hand, should be served “immediately”, i.e., if possible, 

such requests are served before real-time requests [85].  

In addition, while a real-time service usually is combined with some sort of QoS-

guarantee, a low-latency service is normally only best-effort, possibly in combination with 

some sort of rate control [103]. The reason for this is that providing a low-latency service 

is expensive, and the arrival rate of such requests is very unpredictable [86, 103]. 
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5.2.4 Priorities 
Disk requests generated by one and the same transaction may have different priorities. For 

instance, the SPEG coding scheme [51] distinguishes between 16 different priority levels 

for the layered video frames, and this can be reflected in the storage subsystem, provided 

that the storage structures support this. 

One way of handling priorities in a disk scheduler is by having one queue for each 

priority level (see, for instance, [15]). The queues are then serviced in order of priority, and 

no queue is serviced until all requests in higher priority queues are serviced. Alternatively, 

one queue can support multiple priorities, and sort the requests in the queue according to 

their priorities (other sorting criteria can be included as well) [49]. This solution is more 

flexible than the multi queue solution, since it supports an arbitrary number of priority 

levels. 

However, there is a potential problem of priority-based scheduling that different 

transactions may have different understandings of the priorities [28]. For instance, in a disk 

scheduler offering two priorities, one transaction may specify most of its request as low 

priority requests, and then only a few special requests as high priority. Another transaction 

may use high priority as “default” for its request, and only specify some occasional 

requests as low priority. If these two transactions were treated equally with respect to 

priorities, the transaction with “default high priority” would use most of the bandwidth 

allocated to the queue, regardless of how the bandwidth was meant to be shared between 

the two transactions. 

Consequently, unless the different transactions have the same understanding of the 

different priority levels, they cannot share queue(s). This problem has received very little 

attention, as existing work seems to assume that all transactions have the same 

understanding of the priority levels [15, 49]. 

5.2.5 Describing Disk Scheduler Services 
By using the four parameters described in the preceding sub-sections, it is possible to 

describe a large number of different service levels and types that a disk scheduler may be 

required to offer. Obviously, not all possible combinations make sense; for instance, there 

is no point in combining priorities with deterministic real-time guarantees, since all 

requests are guaranteed to be served on time. In Table 5-1, we show some of the most 
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From the table, we see that the real-time and high-throughput service types can be 

combined with deterministic and statistical guarantees, as well as enhanced best-effort; the 

choice of guarantee level is a question of how reliable one wants the service to be. In 

principle, a real-time service could also be combined with a best-effort guarantee level.  

The best-effort guarantee level represents the lowest level of service. The requests are 

served without reserving resources, thus, choosing an allocation paradigm is not relevant. 

However, similar to enhanced best-effort, an arbitrary number of priority levels can be 

chosen.  

In addition, we categorize the low-latency service type as best-effort, although 

reserving an absolute or relative share of the disk bandwidth is also possible. As explained 

in Sub-section 5.2.3, we do so because the request arrival rate to such a service is usually 

unpredictable, and the service type is expensive in use. 

Table 5-1: The most relevant combinations of disk scheduler parameters 

Guarantee 
level 

Allocation 
paradigm Service type Priorities 

Deterministic 
Guarantees 

Reservation-
based 

Real-time 
(hard/firm/soft)  

Not 
applicable 

Real-time 
(firm/soft)  Statistical 

guarantees 
Reservation- 

based 
High-throughput 

Real-time 
(firm/soft) Enhanced 

best-effort 
Proportional 

share High-throughput 

None None 
Best-effort 

None  Low-latency 

Any 
number 

 

We can now use these parameters to describe the requirements of different application 

types, and below, we give a few examples:  

• Traditional real-time applications: For traditional real-time applications, i.e., 

applications that only handle non-multimedia data, the real-time service type is the 

central issue. The choice of guarantee level and allocation paradigm is dependent on 

where the application is used. For instance, an application used to control a nuclear 

power station should use deterministic guarantees and hard deadlines, while for a POS 
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terminal, statistical guarantees and soft deadlines may suffice.    



• VoD: For VoD, a real-time service type with firm or soft deadlines is required. Again, 

the guarantee level is dependent on the requirements of the users. For instance, a 

service using enhanced best-effort can be offered at a low price, in addition to a higher-

priced service using statistical guarantees. Depending on the coding of the videos, 

priorities may be required. 

• LoD: As we have thoroughly described in the previous chapter, the LoD-system 

requires all the service types in Table 5-1. The guarantee level is dependent on factors 

such as the requirements and capabilities of the user and network. 

• Relational DBMS: In this case, low-latency and high-throughput are the most relevant 

service types, and usually based on a best-effort guarantee-level. Priorities may be 

required.  

5.3 Classification Criteria 
In our study of related work, we have chosen to classify existing disk scheduling 

algorithms according to the purpose for which they are designed, and we have identified 

four main classes: 

• Performance-oriented disk scheduling algorithms: These algorithms only focus on 

optimizing performance, i.e., increasing throughput and/or reducing latency. 

• Real-time disk scheduling algorithms: This class of disk scheduling algorithms is 

intended for use in real-time environments, i.e., servicing disk requests within given 

deadlines. 

• Stream-oriented disk scheduling algorithms: We introduce the term “stream-oriented” 

algorithms, since the algorithms in this class are primarily optimized for handling 

retrieval of continuous data streams. 

• Mixed-media disk scheduling algorithms: The algorithms in this class recognize that 

different disk requests may have different requirements with respect to service types.  

In addition, there exists a small body of priority-based disk scheduling algorithms, but 

support for priorities is orthogonal to the classification above, and we will therefore present 

those algorithms within the existing four classes. 
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5.4 Analysis of Existing Disk Schedulers 
In this section, we examine each of the four disk scheduler classes, and investigate their 

suitability for our MMDBMS-environment. The schedulers in the first three classes are 

relatively homogeneous, and we analyze the schedulers in each of these classes as a whole. 

For the last class, the mixed-media schedulers, we analyze the schedulers individually. 

5.4.1 Performance-Oriented Disk Scheduling Algorithms 
As mentioned above, the original motivation behind disk scheduling was performance 

optimization. A number of scheduling algorithms with this purpose have been proposed, 

for instance, Shortest Seek Time First (SSTF), SCAN [25], LOOK [60], C-LOOK, 

VSCAN [31], and Shortest Access Time First (SATF) [47]. 

Common in all such pure performance-oriented schedulers is the lack of QoS-support. 

The order in which disk requests are selected for service is based solely on achieving the 

performance optimization goal. Consequently, the algorithm may choose to postpone the 

servicing of a real-time request (e.g., a video data request) and serve a best-effort request 

instead, if the latter request serves the optimization goal better.  

Looking at the requirements from Section 4.5, we see that this class of disk schedulers 

only meets the efficiency requirement and, implicitly, the work-conservation requirement, 

since such disk schedulers will always schedule requests for service as long as there are 

any. From the list of service class parameters in Section 5.2, we see that this class only 

supports a best-effort guarantee level. Furthermore, this class does not support any 

particular service level, beyond the overall optimization goal of the scheduling algorithm, 

and priorities are not supported. 

It is clear that pure performance-oriented disk scheduling algorithms are insufficient for 

our environment, due to the lack of QoS-support and multiple service types. However, as 

mentioned in Section 4.5, performance is still an important issue, and this class of 

algorithms can therefore be of interest if used in combination with other scheduling 

techniques. 

5.4.2 Real-Time Disk Scheduling Algorithms 
The simplest algorithm in this class, Earliest Deadline First (EDF), focuses on deadline 
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only [53]. Due to the mechanical characteristics of a disk drive, i.e., variable service times 



and a non-preemptive nature, EDF achieves poor efficiency when used as a disk 

scheduling algorithm. Newer algorithms of this class try to combine the real-time 

scheduling with optimized disk read, in order to achieve better efficiency. Examples are 

SCAN-EDF [62], “Shortest Seek and Earliest Deadline by Ordering/Value” 

(SSEDO/SSEDV) [19], and Priority SCAN (PSCAN) [15]. 

While algorithms of this class are able to support requests with real-time deadlines, 

their problem is that they focus on real-time requests only, i.e., best-effort requests are 

generally not an issue, and such requests therefore tend to suffer from starvation, if they 

are supported at all. If we compare with the requirements in Section 4.5, we see that these 

algorithms partly meet the efficiency requirement. In addition, they generally provide the 

disk with work as long as there are pending requests, so the work-conservation requirement 

is usually also fulfilled. However, the remaining requirements are not met.  

From the analysis in Section 5.2, it is clear that the algorithms in this class offer real-

time services with deterministic or statistical guarantees. The PSCAN algorithm supports 

priorities, by offering three service classes. 

5.4.3 Stream-Oriented Disk Scheduling Algorithms 
There exist a large body of “stream-oriented” disk scheduling algorithms, which are 

schedulers that are primarily optimized for handling retrieval of continuous data streams, 

i.e., for use in multimedia applications such as VoD. Compared to the real-time scheduling 

algorithms, these algorithms often focus less on deadlines, and instead rely on periodicity 

of the requests (the requests are typically served in fixed-length rounds), and fair allocation 

of disk bandwidth. 

Some examples of algorithms in this class are Continuous Media File System (CMFS) 

[3], Pre-seeking Sweep algorithm [32], Quality Proportional Multi-subscriber Servicing 

(QPMS) [96], Grouped Sweep scheduling (GSS) [108], the scheduler in [110], BubbleUp 

[16], and T-scan [23]. Further examples are Batched SCAN (BSCAN) [50], Buffer-

inventory-based dynamic scheduling (BIDS) [68], RSCAN [6], Greedy-but-Safe Earliest-

Deadline-First (GS_EDF) [94], YFQ [11], Lottery scheduling [98], and Stride scheduling 

[99] (this algorithm is really a hybrid real-time and stream-oriented scheduler). 

In [46], a framework called anticipatory scheduling is introduced. This framework is 

used as an addition to performance-oriented and stream-oriented disk schedulers, in order 
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to avoid so-called deceptive idleness, i.e., the disk scheduler incorrectly assumes that a 



disk request is not followed by any further requests. Thus, this is not a self-contained disk 

scheduler, but it is included here since the idea presented has been an inspiration in our 

work.  

Compared to the requirements in Section 4.5, stream-oriented algorithms normally try 

to consider efficiency, and to a certain extent, work-conservation. The other requirements 

are generally not met. Looking at the list of characterization parameters, stream oriented 

algorithms typically do not offer an explicit real-time service. Instead, the lack of support 

for deadlines is compensated by careful load control, through admission control, and by the 

fact that the load is relatively uniform, since all requests are for video data. Furthermore, 

these schedulers normally operate with reservation-based allocation, in combination with 

statistical guarantees. 

5.4.4 Mixed-Media Disk Scheduling Algorithms 
During the last years, disk scheduling for mixed-media workloads has become an active 

research area, with some new designs for disk scheduling algorithms. Common in most of 

these algorithms is that they have a hierarchical (typically two-level) design, where one 

level ensures efficient usage of the disk, while the other handles QoS and differentiation of 

service types. 

It should be noted that some of these algorithms rely on the proportional-share 

allocation paradigm, while still offering statistical or deterministic QoS-guarantees. This is 

possible since they use a fixed set of queues, and the weight of each queue is carefully 

controlled. Thereby, the relative share of the bandwidth for a queue becomes equal to the 

absolute share, and QoS-guarantees can be offered. 

A very early attempt on mixed-media disk scheduling was the work in [72]. It is 

basically a stream-oriented disk scheduler with a certain fraction of the bandwidth reserved 

for non-real-time requests. Such requests are also allowed to use slack time during 

servicing of real-time requests, thus, the algorithm is work-conserving. It only supports 

two service classes, namely periodic real-time requests and non-real-time requests, but 

isolation between the two classes is provided. However, the two service types are fixed, 

thus, there is no flexibility; the scheduler cannot be configured according to varying needs. 

Comparing the scheduler with the list in Section 5.2, we see that this algorithm 

provides deterministic guarantees for periodic real-time requests, in combination with an 
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enhanced best-effort service. The latter service type is enhanced best-effort, since 



bandwidth is reserved for the service class, which in turn means that progress is 

guaranteed. Priorities are not supported. 

The Fellini storage system [57], supports two levels of service, a real-time service for 

retrieval of multimedia data, and a non-real-time service for other requests. Serving disk 

requests is based on a fixed service interval (rounds), where a fraction of each cycle is used 

for serving real-time requests, while the remainder of the interval is used for serving non-

real-time requests. Thus, this scheduling algorithm supports a very limited number of 

service classes, and there is no flexibility with respect to reconfiguration. On the other 

hand, the two service classes are isolated from each other, and the algorithm is partly 

work-conserving, since non-real-time requests are allowed to utilize unused bandwidth 

from the real-time queue. 

One of the first full-fledged mixed-media disk schedulers was Cello [85, 86], part of 

the Symphony multimedia file system [83]. This scheduler shares the total disk bandwidth 

among an arbitrary, but fixed, number of different service classes (i.e., queues) using a 

proportional-share allocation scheme. Thus, each class receives a share of the total disk 

bandwidth, proportional to its weight. The shares are proportional with respect to either 

time (share of the total round time) or amount of data (share of total number of bytes 

transferred in a round). 

The class-independent scheduler of Cello, which selects disk requests from the 

different class queues according to their weights, only serves requests as they arrive. Thus, 

it is up to the class-specific schedulers to determine the order in which requests are served 

on disk. The result of this policy can be a substantial seek overhead, since each class 

scheduler only is concerned with optimized ordering of its own requests; there is no single 

component with the responsibility for the final ordering of disk requests. Consequently, 

disk efficiency can be a problem. 

Cello is work-conserving, by distributing unused disk bandwidth among queues with 

pending requests. First, a set of queues eligible for utilizing the unused bandwidth is 

determined, according to weights or priorities, or both; and then requests are selected from 

these queues, according to their weights, in addition to trying to minimize seek time. Thus, 

the work-conserving property is essentially static, and Cello therefore only partially fulfills 

the work conservation requirement in Section 4.5. 

The weights of the different queues are assigned statically, thus it is impossible to 

dynamically change the allocation of bandwidth to the different queues. Dynamic 
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bandwidth allocation is defined as future work, but at the moment, Cello is not able to fully 
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meet the flexibility requirement from Section 4.5. The work-conserving property is not 

enough to compensate for the lack of dynamic allocation, since unused bandwidth is 

distributed using the same weights of the classes. This is illustrated by an example in 

Figure 5-1, which shows the situation immediately after all queues have been served in a 

round, and where we assume that there is unused bandwidth remaining. In this situation, 

queue A will receive twice as much of the unused bandwidth as queue B, since the weight 

ratio is two to one. Thus, it is clear that the bandwidth allocation does not match the 

workload. 

Figure 5-1: Work-conservation in the Cello disk scheduler 

On the short term, i.e., within the round, this situation could be remedied by allocating 

more of the unused bandwidth to queue B. However, this is not possible in Cello, since the 

allocation of unused bandwidth is determined by the statically allocated queue weights. 

If the situation described in Figure 5-1 persists, a good solution would be to reduce the 

weight of the queue C, and increase the weight of queue B. A possible alternative is to 

allocate unused bandwidth according to the length of the queues (the QoS-requirements 

associated with each queue must also be considered). However, neither of the solutions is 

possible in Cello; the former since the static determination of weights renders the 

reallocation of bandwidth impossible, and the latter since the same static weights are used 

for distributing unused bandwidth. 

It should also be noted that Cello depends on a relatively detailed knowledge of the 

disk behavior, as it estimates service times based on the address of the requested data and 

the current disk head position. As we showed in Section 4.4, information about the 

physical disk geometry and the current disk head position is not necessarily available in 

modern disks, and this could represent a problem for Cello. 

 



From the list in Section 5.2, we see that Cello provides a real-time service with 

deterministic or statistical guarantees, in addition to a high-throughput service with 

enhanced best-effort guarantees, and a best-effort low-latency service.  

Another early approach was the disk scheduler of MARS (Massively-parallel And Real-

time Storage) [13]. This disk scheduling algorithm maintains one non-real-time queue, and 

N real-time queues, and a fair queuing algorithm called Deficit Round Robin (DRR) [87] is 

used to allocate bandwidth to these queues. Each queue is assigned a service quantum 

(corresponding to a weight in Cello), and this quantum may be changed dynamically, 

through a system call (ioctl)

                                                

7. 

As opposed to Cello, the class-independent scheduler, called job selector in MARS, is 

responsible for ordering the requests in the work queue, i.e., the queue containing the 

requests that are scheduled for service in the next round. The work queue is formed in the 

beginning of each round, and the requests are serviced using an elevator (SCAN) 

algorithm. Thus, the MARS scheduler meets the efficiency requirement from Section 4.5. 

However, a consequence of this solution is reduced support for a low latency service type, 

since no request is allowed to “jump into” the current work queue.  

Another important difference between MARS and Cello is that the MARS disk 

scheduler allows the round length to vary. Implicitly, there is an upper bound on the round 

length, since the number of admitted clients must be limited, in order to avoid overload. 

This admission control requires assumptions about the performance of the disk, i.e., the 

disk bandwidth.  

The work-conserving property is implicit, through the DRR scheduling, since the 

available bandwidth is proportionally allocated to the classes with pending requests; if a 

queue does not use all of its service quantum, the round becomes shorter (MARS uses 

proportional-byte allocation), instead of allocating the unused bandwidth to other queues 

with pending requests. The effect of MARS’ work conservation is the same as in Cello, 

i.e., unused bandwidth is allocated according to the service quanta (weights) of the 

different queues. 

It is difficult to evaluate the MARS scheduler both as a MMDBMS scheduling 

algorithm and against the list in Section 5.2, since the class-specific schedulers are not 

specified. By choosing appropriate schedulers, MARS has the potential of supporting 

 
7 Currently, MARS has only been implemented and evaluated with one real-time queue in addition to the 

best-effort queue, and without the possibility of dynamically changing the service quanta 
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several of the relevant combinations, but the lack of support for a low latency service is a 

problem. 

In [64] several slightly different scheduler designs are discussed. The designs are all 

relatively simple, as only two service types are supported, discrete and continuous 

requests. The disk bandwidth is divided between the two classes, either statically, or 

dynamically, based on the service times of the discrete data requests. Disk efficiency varies 

between the different designs, as some use SCAN, while others use FCFS. The main 

problem of this approach is its limited flexibility. The only parameter that can be adjusted 

is the division of bandwidth between the two service types, i.e., the number of requests 

serviced or the time spent in each queue. 

A more recent approach to mixed-media disk scheduling is the scheduler proposed in 

[103], part of the Prism server system architecture [102] (in the remainder of the thesis, we 

refer to this scheduler as the “Prism scheduler”). This approach is based on a two-level 

scheduling scheme, with three different service types: periodic, interactive, and aperiodic; 

with or without throughput guarantees. However, while Cello and MARS uses the class 

independent scheduler to allocate bandwidth to the queues, this algorithm makes each 

queue responsible for not using more bandwidth than allocated. This is achieved by having 

an admission controller for each queue that admits requests into the pool of requests 

scheduled for service, according to the allocated amount of bandwidth for the queue. 

Currently, only static bandwidth allocation is supported, and the scheduler is based on a 

constant round length. 

At the start of each round, periodic requests, and aperiodic requests with minimum 

throughput guarantees are combined into SCAN order. These requests are then grouped 

into subgroups, based on disk location. If possible, interactive requests are grouped into the 

closest subgroup; otherwise they are served between the servicing of two subgroups, given 

that slack time allows it. If unused disk bandwidth still exists, it is used to serve interactive 

requests, and aperiodic requests without throughput guarantees, until the end of the round. 

Thus, this scheduler attempts to compromise between efficient disk accesses on the one 

hand, and support for interactive requests on the other. Still, the emphasis is on serving 

interactive requests, at the cost of disk efficiency.  

The scheduling algorithm is partly work-conserving, in the sense that aperiodic and 

interactive requests are allowed to utilize all unused bandwidth; and there is no admission 

control for aperiodic requests without throughput guarantees. However, if there are no 

pending requests in the aperiodic and interactive queues, disk bandwidth remains unused. 
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Dynamic bandwidth allocation and adaptive performance guarantees are currently under 

investigation, but in its present version, the scheduler does not meet the flexibility 

requirement.  

As opposed to Cello and MARS, the Prism scheduler also considers admission control. 

This admission control is based on load traces, i.e., a trace of the disk-demand of the 

stream. Thus, when a new stream requests admission, it presents its demand trace. The 

admission controller combines this trace with its current load trace, i.e., the sum of the 

demand traces of all admitted streams, to check if the new stream can be admitted. 

However, using this type of admission control represents a problem if users are allowed to 

interact with the playback of presentations, as is the case in our LoD-environment, since 

the admitted load trace will no longer be valid, as soon as a user pauses and restarts a 

presentation. This problem is not considered in the work.  

From the list in Section 5.2, we see that, this scheduling algorithm provides a real-time 

service with deterministic and statistical guarantees for periodic requests, a best-effort low-

latency service for aperiodic requests, as well as a high-throughput service with guaranteed 

bandwidth. Priorities are not supported. 

In [49], a deadline-driven, priority-based disk scheduler is proposed. Each request has a 

deadline and a priority, and requests that will obviously miss their deadlines are considered 

lost, i.e., they are dropped. When the scheduler inserts a new request, it tries to satisfy the 

following conditions: 

6. Insertion of a new request should not lead to deadline violations for higher priority 

requests already in the queue. 

7. The number of requests that are lost should be minimal. 

8. The new schedule should not violate the SCAN order. 

This scheduling policy supports an arbitrary number of priority levels, and to the best 

of our knowledge, this is the only work on disk scheduling algorithms that acknowledges 

the fact that, within the same stream, different disk requests can have different importance. 

For playback of an MPEG video, for instance, a request for data constituting an I-frame is 

considered more important than a request for data constituting a B-frame. However, 

starvation is a potential problem, as is isolation between the classes. The policy is 

implicitly work-conserving, since the disk will never be idle as long as there are pending 

requests.  

The most important problem of this approach is that there is really no support for 

bandwidth reservation. Combined with the attempt to compromise between priority, 
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deadline, and disk efficiency, this may lead to an unpredictable behavior, making it 

difficult to provide QoS-guarantees to the clients. 

Using the service class parameter list from Section 5.2, we see that this algorithm 

provides a real-time service, but the guarantee level is restricted to something like 

enhanced best-effort. In addition, priorities are supported, but since all requests share the 

same queue, it is required that all clients have the same understanding of the priorities. 

The ∆L disk scheduler in [10] is also deadline-driven. All admitted real-time tasks are 

guaranteed to meet their deadline, while best-effort requests are given priority, using slack 

time scheduling. This scheduler is quite similar to the scheduler in [72], and it shares most 

of the drawbacks. 

In [38], a deadline sensitive SCAN (DSSCAN) scheduling algorithm is introduced. 

This algorithm supports periodic and aperiodic real-time requests, as well as interactive- 

and “ordinary” (i.e., non-interactive) best-effort requests. The algorithm selects the real-

time request with the shortest deadline, and then picks as many interactive, and then real-

time and best-effort requests, as possible without violating the deadline of the first real-

time request. It is not possible to reserve bandwidth for any of the service classes, thus, this 

scheduler is in practice priority-based; real-time requests have the highest priority, then 

come interactive requests, and finally non-interactive best-effort requests.  

This algorithm does allow efficient disk reads (to a certain extent), and it is work-

conserving. However, the support for different QoS levels is too limited, as is the 

flexibility. In addition, the isolation between queues is not sufficient; under heavy load, the 

non real-time requests may not be served at all. 

5.5 The Reference Group 
We have now investigated four classes of existing disk scheduling algorithms. From 

these descriptions, it is clear that it is only algorithms of the mixed-media class that 

potentially have the qualities required for use in a MMDBMS-environment. However, as 

shown in Table 5-2, it is also clear that no existing scheduler in this class is ideal for such 

an environment. 
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Table 5-2: Summary of disk scheduler characteristics  

(“-“ = not supported, “(X) = partly supported, “X” = supported) 

 Efficiency
Multiple
service 
types 

Flexi-
bility Isolation Work- 

conservation 

[72] - (X) - X (X) 
Fellini [57] (X) (X) - X (X) 
Cello [85] (X) X (X) X (X) 
MARS [13] X (X) (X) X (X) 
[64] - (X) - X (X) 
PRISM [103] (X) (X) (X) X (X) 
[49] (X) (X) - - (X) 
∆L [10] -  (X) - X (X) 
DSSCAN  [38] (X) (X) - - (X) 

 

In general, the main drawbacks of existing mixed-media disk scheduling algorithms are 

that they support few service types (typically two or three), they provide only static work-

conservation and often with loss of disk efficiency, and they lack flexibility. Additionally, 

all algorithms provide a static set of queues, with a fixed set of service types. Thus, instead 

of the scheduling algorithm providing the services that the MMDBMS needs, the 

MMDBMS must accommodate to the service types offered by the scheduling algorithm. 

Only one algorithm supports priorities, but it does not allow different transactions to have 

different understandings of the priorities. 

Among the existing scheduling algorithms for mixed-media workloads, we consider 

Cello, MARS, and the Prism scheduler to be the algorithms that come closest to the needs 

of our environment. All three schedulers have the potential ability to dynamically change 

the allocation of bandwidth to different queues, but only Cello has implemented this. In 

addition, they all (potentially) support multiple service types, and except for MARS, these 

include a low-latency service. However, none support dynamic creation and deletion of 

queues. Finally, the algorithms are all (partly) work-conserving.  

For the remaining mixed-media scheduling algorithms, we consider these as being too 

limited in functionality and/or flexibility to be applicable in a MMDBMS-environment. As 

we introduce our disk scheduling algorithm in the next chapter, we will therefore use the 

three selected algorithms as a basis for comparison, i.e., they constitute the reference 

group. 

Finally, an interesting observation is that, to the best of our knowledge, there exist no 
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real-time, performance-oriented or mixed-media disk schedulers that support command 



queuing. As explained in Section 4.4, the on-board controller on a modern disk is able to 

do its own internal scheduling. Through its first-hand knowledge of the physical disk 

geometry, the controller is able to achieve an optimal ordering of the requests, with respect 

to performance. However, existing disk schedulers allow only one request to be submitted 

to the disk at a time, and thereby lose the potential performance gain of disk-internal 

scheduling. 

5.6 Summary 
In this chapter, we have investigated existing disk schedulers, and evaluated their 

suitability for use in a MMDBMS. We found that only the mixed-media class of schedulers 

had the properties necessary for being considered as relevant. No scheduler in this class 

was found to have all the required properties, but we selected a reference group consisting 

of the three schedulers that met most of our requirements. This reference group will be 

used for comparison with our disk scheduling framework, which we present in the next 

chapter. 

With respect to the four claims presented in Section 1.3, this chapter targets claim 4: 

Our descriptions of existing QoS-aware disk schedulers illustrate how these schedulers 

depend on detailed knowledge of the disk layout, as well as full control of the ordering of 

the disk requests. As described in Section 4.4, modern disks complicate these 

requirements, and reduced disk efficiency is the result. 
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Chapter 6  

APEX Design 

In this chapter, we present the design of the APEX disk scheduling framework. We assume 

that the reader is familiar with the description of the MMDBMS in Chapter 3, the disk 

scheduler requirements from Chapter 4, and the properties of the schedulers in the 

reference group that are described in Chapter 5. 

This chapter serves two purposes: first, it presents our assumptions about the 

environment APEX is targeted for. This includes the components that surround, and 

interact with, APEX. Second, the chapter presents the design of APEX at a conceptual 

level, including data structures, interfaces, and components.  

After this chapter, the reader should understand the principles of APEX; how it 

interacts with its environment, how queues and bandwidth are managed, and how the 

scheduling of requests is carried out. In the next chapter, we then describe the 

implementation of these principles.  

6.1 Assumptions 
APEX constitutes the bottom part of the storage manager, as shown in Figure 6-1. The 

buffer manager (BM) is the only component generating disk requests to APEX, and it does 

so in order to fetch pages requested by the PDSM, or to write dirty pages. These disk 

requests are submitted to APEX via the PSM, and each request is for a single page. 
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Figure 6-1: Server architecture 

It is important to realize that as part of the APEX design, there are a set of underlying 

assumptions about the environment. These assumptions concern the data retrieval 

principles of the MMDBMS, how buffering and caching is performed, and how APEX 

interacts with higher-level components. In addition, we make assumptions about what 

functionality the operating system in general, and the disk driver in particular, offers to 

APEX. In the following sub-sections, we discuss each of these assumptions in more detail. 

6.1.1 Round-Based Server 
We assume that the server is round-based, i.e., at the beginning of each round, all real-time 

requests that are to be served by the disk during that round are submitted to APEX. In 

addition, we use the constant time-length (CTL) model [17], i.e., all rounds have the same 

length, typically between 0.5 and two seconds. It is important to note that, it is only the 

real-time requests that have to be submitted at the beginning of the rounds. All other disk 

requests can be submitted to APEX at any time during a round. 

In round-based servers, continuous multimedia data (i.e., data retrieved by real-time 

requests) is usually transmitted from server to client using a double-buffering scheme [5, 

65]. That is, the data that was read from disk during one round is transmitted to the client 

during the next round, and if a maximum of p pages are read from disk during a round, 

then 2p buffer frames must be reserved for the playback.  
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Longer rounds can improve disk efficiency, since the disk scheduler gets more disk 

requests to work with, and, consequently, more latitude to optimize the request ordering. 

However, longer rounds also mean that more buffer space is needed; consequently, 

choosing a round length becomes a trade-off between disk efficiency and memory usage. 

In addition, longer rounds mean higher latency, since the server needs to fill up one set of 

buffers before playback can start.  

If necessary, APEX allows an intermediary solution, allowing real-time requests to 

have longer deadlines than the round time, but this requires that these extended deadlines 

are multiples of the round time. Alternatively, several different round times can be used, if 

the shortest round time is used as “master”, and the other round times are multiples of this 

“master” round time. 

6.1.2 Buffering and Caching 
The BM of the MMDBMS tries to minimize the traffic to and from the disk, using page 

replacement algorithms. For non-multimedia data, this typically means using designated 

algorithms to try to keep the most relevant data in the buffer at all times. System catalog 

data is normally fetched from disk the first time it is needed, and then kept in memory for 

as long as the system is running [29].  

For multimedia playback queries, we assume that the BM uses techniques like bridging 

(also known as buffering or caching [37, 48]), i.e., multimedia data used by one client is 

kept in the server buffer for later use by another client. However, we assume a high degree 

of interaction. Therefore, bridging can usually only be successfully applied during parts of 

presentations. For example, a user may make a pause in the presentation for a short period. 

When playback is resumed, another user, watching the same presentation, may be so close 

in time that bridging can be applied. However, as soon as one of the involved users do any 

further interaction, bridging may no longer be possible. Another example is two users 

“sharing” a presentation through bridging, but then, at some point, selecting different sub-

presentations. 

Since the techniques for reducing disk traffic are the responsibility of the BM, which is 

located above the PSM, the PSM itself, as well as the disk scheduler and the disk, are not 

aware of the usage of these techniques; it only experiences a reduction in workload. For 

example, if two clients are playing back the same presentation with a sufficiently large 
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clients then makes a pause in its presentation for a short time, and then resumes, such that 

the temporal distance between the presentations is reduced. The BM is now able to cache 

the data between the two playbacks, such that the presentation data only need to be fetched 

from disk once. However, to the PSM there is no difference between a client that has made 

a pause in its presentation and one that is using cached data; in both cases, the same 

reduction in workload is observed. 

We also assume that neither the PSM nor APEX do pre-fetching, i.e., they only relate 

to the disk requests they have actually received. Pre-fetching is left to the higher layers of 

the MMDBMS, since these higher layers are in a much better position to know which data 

will be needed in the near future, due to their first-hand access to metadata. On the other 

hand, a modern disk may pre-fetch data into its internal buffer based on analysis of the 

incoming requests [106]. However, this pre-fetching is transparent outside of the disk 

controller, and it does not affect the functionality of APEX. 

In addition, APEX assumes that the BM never submits a read request without having an 

available buffer frame in which to put the requested page. Thus, APEX is free to submit a 

disk request to the disk driver as soon as the request is received from the BM (via the 

PSM), independent of the length of a possible deadline of the request. Consequently, the 

BM may receive a requested page at any time between the submission of the page request 

(plus the time needed to actually serve the request) and the deadline of the request.  

6.1.3 Interaction with MMDBMS Components 
Like most other mixed-media disk schedulers, APEX implements the different service type 

using queues for the disk requests, one or more queues for each service type. All disk 

requests that are submitted to APEX must be associated with a queue; otherwise, APEX is 

unable to determine the service type that the requests should receive. Thus, for any query, 

the controlling transaction must have one or more queues assigned before it starts. 

Depending on the type of the transaction, this can be a pre-determined queue (for instance, 

one queue can be assigned to handle all disk requests from metadata retrieval queries), or a 

queue that is requested as part of the admission control for the transaction. 

We assume that all existing queue types (i.e., service types) supported by APEX are 

registered in a table in the system catalog of the MMDBMS. Thus, as part of the admission 

control process of a user query, this table can be queried. When doing so, the requirements 
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queue type. This queue type name is included in a queue request to APEX, which then 

instantiates a queue of the requested type.    

Requesting a queue from APEX is done as part of the admission control, and the 

request is only sent if the admission control component of the MMDBMS decides that 

there is sufficient bandwidth available. However, APEX is only one component among 

many on the server side, and until all relevant components on the server side have admitted 

the new transaction, the instantiation of the new queue is only tentative. We assume that 

the admission control component informs APEX about the result of the system-wide 

admission control, i.e., whether the queue request should be committed or not.  

In the MMDBMS, transactions start and finish continuously, and in addition, active 

playback transactions may change their bandwidth requirements during playback. We 

assume that APEX is informed about such state changes for transactions. Thus, APEX can 

always keep the bandwidth distribution up to date, and this allows a very efficient 

distribution of disk bandwidth. 

6.1.4 Interaction with the Operating System 
Disk requests generated by the MMDBMS are handed over to the operating system (OS), 

which is responsible for serving the requests and transferring the data between MMDBMS 

buffer and disk. We assume that APEX constitutes the lowest layer of the MMDBMS (see 

Figure 6-1), and as such, APEX submits its scheduled disk requests to the OS (i.e., the disk 

driver). In other words, APEX is added as an extra layer below the PSM, which is the 

component that normally submits disk requests to the disk driver. Each request submitted 

to APEX from the PSM is a regular disk request, but in addition, we assume that the 

requests also contain the extra information needed by APEX, such as queue ID and 

possibly deadline. Given that the PSM is located in user space, such a configuration 

implies that the PSM uses raw disk access, i.e., it bypasses the file system in the OS. In 

other words, APEX does not interact with the file system of the OS, but instead, interacts 

directly with the disk driver. 

In order to provide its services, APEX needs predictable access to the disk. This means 

that either APEX has the disk at its exclusive disposal, or that a fixed share of the total disk 

bandwidth is reserved for APEX and the rest may be used by the operating system. In the 

latter case, the disk scheduler located in the disk driver must be able to share the total disk 
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guaranteed to receive at least a certain share of disk bandwidth. This can be achieved by 

using, for instance, the current implementation of the MARS disk scheduler [13], which is 

implemented as an extension to the disk driver of NetBSD.  

The functionality of APEX relies on the disk driver, or the disk itself, to sort the 

received disk requests in some optimized order (e.g., SCAN). Most existing operating 

systems, such as the BSD variants (NetBSD, FreeBSD, OpenBSD) [59], Linux [14], and 

Windows 2000 (with NTFS file system) [20] do this, and in any case, modern disks 

ultimately do the final scheduling of requests [88], as described in Section 4.4.  

In addition, APEX relies on the existence of asynchronous I/O, i.e., when it submits a 

request to the disk driver, the call returns immediately, and when the serving of the request 

is finished, the disk driver gives a notification to APEX, either as a signal, or as a call to a 

specified function. This is also a reasonable assumption, since asynchronous I/O is 

supported by the POSIX standard, using the aio_read() and aio_write() system 

calls for single requests and the lio_listio() system call for multiple requests, and is 

implemented in, for example, GNU C library [34], and Windows 2000 [91].  

6.1.5 Server Push vs. Client Pull 
There are two main principles for moving data from the server to the client, namely server-

push and client-pull. The server-push principle implies that a component on the server side 

(in the case of a MMDBMS, this is the presentation manager) is controlling the sending of 

data to the client. The client controls the presentation playback, by sending VCR-type 

commands to the server, such as play, pause, and stop.  

Client-pull means that the client actively requests the multimedia data from the server, 

using a MMDBMS cursor. Thus, the client is in control of the data transfer, and the server 

can only try to make sure that the data is in the server buffer when requested.  

Consequently, the main difference between server-push and client-pull is who controls 

the sending of data. However, for the OM and the components below it, there is no 

difference:  

• The OM must make sure that the data is ready when requested, independently of 

whether the presentation manager (within the server) or the client is the requester. 

• In both cases, the OM has a query execution plan which informs it about (probable) 

future operations. 
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• In both cases, the consumption of data from the MMDBMS buffer (i.e., sending the 

data over the network) may deviate from what is defined in the query execution plan, 

since user interaction may occur (this makes sense, since also in the server-push model, 

it is ultimately the client that controls the presentation manager). Therefore, the BM on 

the server side must adapt its disk block retrieval rate to the consumption rate of data in 

the buffer, both for server-push and for client-pull.    

6.2 APEX Architecture 
The basic architecture of APEX is that of a two-level disk scheduler, an architecture which 

is common in many mixed-media schedulers. In other words, there is at least one queue for 

each service type, and one queue for the requests scheduled for service. However, while 

the majority of other two-level schedulers, including Cello and Prism, are depending on 

complete control of the final scheduling, APEX leaves this task to the disk driver and/or 

the disk.  

The basic principle of APEX is that instead of submitting one request at a time to the 

disk driver, a number of requests are assembled into a batch, and all requests in the batch 

submitted collectively to the disk driver. Thus, with APEX, the final scheduling of disk 

requests can be performed by the disk controller, taking into account low-level information 

that is not available on higher layers of software. 
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Figure 6-2: The APEX architecture in a MMDBMS context 

6.2.1 Interfaces 
APEX effectively functions as the interface between the MMDBMS and the disk driver. 

As shown in Figure 6-2, there are four interfaces between MMDBMS-components and 

APEX, as well as two interfaces between APEX and the disk driver: 

• Queue request interface: Before a new query can start, an APEX-queue is needed, to 

which the disk requests of the query can be submitted. This queue request specifies the 

type of service that is needed, together with transaction ID, and possibly additional 

parameters such as the amount of bandwidth to be reserved. As mentioned in Sub-

section 6.1.3, descriptions of the queue types (i.e., service types) offered by APEX are 

stored in the system catalog. Requesting queues is part of the admission control, and 

this interface is therefore used by the admission control component.  

• AdmitCommit interface: APEX is informed about the completion of the global 

admission process through the AdmitCommit interface. The ID of the requesting 

transaction is included, and the return value is the ID of the queue (which is to be 

included with every disk request for that queue). This interface is used by the 

admission control component. 
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• Transaction state interface: This interface is used to notify APEX about the status of 

transactions, i.e., when they start and finish. In addition, this interface is used to change 

bandwidth reservations for running transactions. The transaction state interface is used 

by the transaction manager. 

• Disk request interface: This interface is used by the PSM to submit disk requests to 

APEX. Associated with each disk request are a queue ID, a transaction ID, and, if the 

request is submitted to a real-time queue, a deadline. Calls to this interface are 

asynchronous, i.e., each call is returned as soon as the request is placed in a queue.  

• Batch submission interface: This is the interface used by APEX to submit disk requests 

to the disk driver. The requests are submitted asynchronously to the disk driver. 

• Completion notification interface: This is an interface used by the disk driver to notify 

APEX each time the disk is finished serving a disk request. Thus, if APEX submits a 

batch consisting of n disk requests, the disk driver will subsequently send a total of n 

completion notifications back. 

From a functional point of view, APEX consists of two parts: the request management 

(see Section 6.3) is responsible for receiving and scheduling requests, while the queue 

management (see Section 6.4) is responsible for managing the queues, and allocating 

bandwidth to these. The queue request interface, AdmitCommit interface, and the 

transaction state interface are all part of the queue management, while the three remaining 

interfaces belong to the request management.  

6.2.2 Components 
From Figure 6-2, we see that APEX consists of five components: 

• The request distributor receives disk requests from the BM (via the PSM), and 

determines the queue in which the request should be placed. This is done using the 

queue ID that is attached to each request. 

• The queue scheduler receives the request from the request distributor together with a 

reference to the queue in which to place the request. It is the task of the queue 

scheduler to place the request in the correct position within that queue, and the actual 

position depends on the queue type. For instance, in a real-time queue the requests are 

ordered according to their deadlines, while in a best-effort queue, the requests may be 

ordered FCFS. 
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• The batch builder picks disk requests from the instantiated queues, assembles them 

into batches, and submits these to the disk driver. The number of requests picked from 

each queue depends on the amount of bandwidth assigned to that queue. In addition, 

the batch builder receives notification from the disk driver each time the disk is 

finished serving a request. 

• The queue manager receives queue requests and AdmitCommit calls from the 

admission control component, as well as Transaction State calls from the transaction 

manager. Based on these calls, the queue manager makes sure that all required queues 

are present, instantiating and removing queues as necessary. 

• The bandwidth manager distributes the available disk bandwidth between the 

instantiated queues, according to bandwidth reservations and transaction states. 

The separation between request management and queue management mentioned in 

Sub-section 6.2.1 is also reflected by the components of APEX. The request distributor, 

queue scheduler, and batch builder together constitute the request management, while the 

queue manager and bandwidth manager constitute the queue management.  

6.3 Queue Management 
APEX is able to manage queues dynamically. Each offered service type is realized by 

means of a queue, which can be instantiated and removed dynamically, as needed. Each 

service type that APEX can provide is specified in the form of a queue template, which is a 

description of the service type, based on the parameters we discussed in Section 5.2.    

The service type specification tells the queue scheduler how to order the requests in the 

queue. These specifications are also stored in a queue description table in the system 

catalog of the MMDBMS, each identified with a unique “name”. When the queue manager 

in APEX receives a queue name during a queue request call, the characteristics of that 

queue can be found in the queue templates. Note that, some service types require 

bandwidth reservation, and if so, the amount of bandwidth to be reserved is included in the 

request. However, no bandwidth reservation is actually made at this time.  

The queue request call to APEX is made as part of an admission control process for the 

transaction in question. If this admission request is globally accepted in the LoD-system, 

APEX is then notified through the AdmitCommit interface. The queue manager in APEX 

instantiates a new queue if necessary, and returns a handle for the queue (i.e., a queue ID 
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When the transaction is started, APEX is notified through the Transaction state 

interface. If a bandwidth reservation was requested in the queue request call, this 

reservation is now made. An END- or ABORT-message leads to the corresponding 

bandwidth reservation being released.  

The transaction state interface can also be used to change bandwidth reservation for a 

running transaction. For example, if a user changes from ordinary playback to fast forward, 

this may require a change in required bandwidth, with a corresponding change in the 

bandwidth reservation. 

Multimedia playback transactions can also be paused during runtime, causing reserved 

bandwidth to be left unused. How to re-distribute such bandwidth is policy-dependent, but 

regardless of the policy, APEX is able to re-distribute the bandwidth without efficiency 

loss.  

When several transactions have requested the same queue type, these transactions can, 

in many cases, share a single queue. For instance, two transactions both requiring 

deterministic real-time guarantees, can use the same queue, which then needs a bandwidth 

reservation equal to the sum of the bandwidth requirements of the two transactions. On the 

other hand, since APEX supports an arbitrary and dynamic number of queues, we can also 

assign the two transactions to different queues, which allows us to efficiently isolate 

transactions from each other with respect to bandwidth usage. 

It could be argued that dynamic queues are unnecessary, and just add overhead to 

APEX. However, as we will show in Section 7.4, the overhead of dynamic queues is low, 

and in addition, by removing unused queues, the overhead of the request management is 

reduced, since there are fewer queues to visit each time a batch is being assembled 

(obviously, this is dependent on the number of queues that are required). The use of 

dynamic queues actually enables APEX to support a “transaction-oriented” service model, 

with a separate queue for each transaction. 

6.4 Request Management 
APEX is basically a hybrid disk scheduler, in the sense that it is deadline-driven, while at 

the same time being round-based. The key principle is to postpone the submission of 

requests to the disk, in order to gather more disk requests, and if possible, submit these as a 

batch to the disk.  
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The number of requests that can be contained in a batch is dependent on the deadlines 

(if any) of the requests, and the time left in the current round: First, the pending request 

with the shortest deadline is found, by checking all real-time queues. We define this as the 

controlling request of the batch to be assembled. The set of instantiated queues that are 

allowed to provide the controlling request is called the candidate queues. Based on a pre-

computed value for the service time of a disk request, we then compute how many requests 

B that can be served before the controlling request. We then pick B requests from the 

instantiated queues, and submit all the requests, including the controlling request, as a 

request batch to the disk driver. 

Our rationale behind submitting requests in batches is that modern disks are very 

complex, as described in Section 4.4. Consequently optimizing the final disk schedule 

requires knowledge of low-level details such as bad block management, controller-level 

caching, etc., and this information is not available to higher level software. By submitting 

batches of requests to the disk, we leave the final optimization of the disk schedule to the 

component with the best knowledge of how to do so, namely the disk controller. 

Normally, the cost of assembling requests into batches, instead of submitting them as 

they arrive, is increased response time. However, we reduce this effect through two 

measures: First, the batch assembly is, in practice, load dependent, such that in low load 

situations the scheduler will effectively function as an EDF/FCFS scheduler. Second, the 

batch builder supports a special low-latency service, provided on a best-effort basis. 

6.4.1 Extended Token Bucket Model 
When a new batch is being assembled, the batch builder visits each instantiated queue. The 

queues are always visited in the same order, and to avoid starvation of the backmost 

queues, it is therefore necessary to limit the number of requests taken from each queue. 

Our approach for doing so is based on the token bucket principle, but with a number of 

modifications to make it suitable for controlling disk bandwidth. 

The token bucket model [67] is normally used for traffic shaping and characterization 

in networks. Two parameters are used to control the outgoing flow, namely rate r and 

maximum burst size b. Thus, b determines the “depth” of the bucket, while r is the rate at 

which the bucket is filled with tokens. 

We use the token bucket model for controlling both the allocation of disk bandwidth to 
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the different queues and the allowed burstiness within each queue. One token corresponds 



to the serving of one disk request, i.e., in order to pick a pending request from a queue and 

put it into the batch being assembled, there must be a token available for that queue

                                                

8. 

We assume that each disk request is for one disk block (corresponding to one database 

page), thus, the token rate r for a queue translates directly into disk bandwidth for that 

queue. For each queue, APEX keeps track of the token rate, as well as the last time the 

queue was visited by the batch builder. Thus, each time the batch builder visits a queue, the 

assigned rate is checked, and compared to the number of milliseconds passed since the last 

time the queue was visited. If sufficient time has passed, one or more tokens are added to 

the queue, a corresponding number of requests picked from the queue, and the time of the 

visit is registered for the queue. We refer to this procedure as token update. 

For example, a queue is assigned a bandwidth of 10 pages/s, i.e., a new token should be 

assigned to the queue every 100ms. We assume that a token is added at t=2000ms (the 

assignment time is registered). At t=2090ms, the batch builder visits the queue. Only 90ms 

has passed since the last token was added, so no new token is added. The next visit is at 

t=2140ms. Now, 140 ms have passed since the last token assignment, so a new token is 

added, and the “last assignment time” is set to 2100. If the batch builder visits the queue 

again at t=2310ms, two new tokens are added, and the “last assignment time” is set to 

2300. 

However, availability of tokens is not the only requirement for serving a request. In 

addition, deadline requirements and service times are also taken into consideration. Thus, 

if adding another request to the batch means that a deadline may be violated, the request is 

not added, even if there are available tokens. 

While r is the parameter for controlling the bandwidth allocation, b is used to fine-tune 

the bandwidth allocation to the characteristics of the workload for the queue, and to 

compensate for the fact that the token update operations not necessarily happen at regular 

intervals. In particular, we use b to limit the number of tokens that are allowed to 

accumulate. Consider, for instance, if the queue from the example above, has not received 

any requests for the last five seconds. If a large burst of requests then arrives in this queue, 

we could allow 50 requests to be picked from this queue. However, this may affect the 

following queues, and it may therefore be necessary to set b to a lower value.  

Adjusting r and b according to the workload of the queue is done in two ways. Initially, 

the values are set based on the characteristics of the presentation and the requested QoS-

 
8 This condition is relaxed during work-conservation, as we will show in Sub-section 6.4.3. 
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level. We assume that when multimedia objects are stored in the database, the 

characteristics, such as bandwidth requirements, are stored as metadata, and are used as 

basis for resource reservation in the MMDBMS. For example, a video stored in the 

database may have an average bandwidth requirement of three pages/s, and a maximum 

requirement of five pages/s. If the user wants a deterministic QoS-guarantee, then a 

bandwidth of five pages/s (i.e., five tokens/s) must be reserved for the playback, and with a 

bucket depth of five tokens. However, if the user requests a statistical QoS-guarantee, then 

it may be sufficient to reserve three pages/s, and then set the bucket depth to five tokens.  

In addition, APEX keeps track of r, b, and the actual number of tokens available, for 

each queue. These variables enable the use of a controller with a feedback loop, which 

fine-tunes the bandwidth allocation. However, this has not yet been implemented. 

6.4.2 Assembling Batches 
Assembling a batch containing real-time requests, means that the batch builder needs an 

estimate of the time it takes to service a request. However, the unpredictability of modern 

disks complicates making such an estimate. In addition, since the final scheduling is left to 

the disk driver/disk, we do not know what the final schedule of a batch of requests will 

look like, making it even worse to estimate the service time. 

Given this unpredictability, we use a fixed, predetermined estimate for this service 

time, called t ain factors that determine t mance, the disk block 

size, and the data placement scheme. In our current implementation of APEX, t  initially 

determined using manual adjustment, and then a very simple, automatic fine-tuning is 

applied, based on comparing the estimated batch service time with the actual time used. 

es. The m es are disk perfor

es is

An inaccurate setting of tes is easily discovered by comparing the estimated and actual 

service times as described above. Normally, there will always be a small deviation between 

these two values, but by monitoring trends in the deviation a more advanced, feedback-

based controller that automatically adjusts tes is feasible to realize. 

When assembling the batches, there are two conditions that should be met: First, the 

assembly of the next batch should be postponed for as long as possible, in order to wait for 

more disk requests to arrive. Second, as long as there are pending requests, the disk should 

never be idle. Therefore, the next batch must be ready for submission before the current 

batch is finished. 
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We meet these conditions by taking advantage of the fact that APEX is notified each 

time a disk request is finished: Since APEX knows both the original size of the current 

batch and how many requests remain to be served, it can always maintain an updated 

estimated finishing time, using tes.  

Based on a worst-case estimate for the time to assemble the batch, we know when to 

start the assembly, tbas, relative to the number of remaining requests in the current batch. 

This is illustrated in Figure 6-3. 

In the following, we assume that the assembly of a new batch starts when there is one 

request left to be served in the current batch. The batch assembly algorithm then works as 

follows: 

1. Find controlling request: In order to find the controlling request, which has deadline 

ted, the batch builder checks the first request in each of the candidate queues. If there 

are no pending real-time requests, the end of the round is used as a substitute for the 

controlling request. If a request is found, token update procedure is run, the request is 

moved to the batch being assembled, and the number of tokens for the queue reduced 

by one. 

2. Compute batch size: B = ( t t e at 

which the assembly started. Computing B in this way means that we always assume the 

worst-case condition that the controlling request is served last in the batch. The actual 

serving order of the request is dependent on how the disk or disk driver sorts the 

requests in the batch. 

ted – tstart) / es, where tstart = bas + tes, and tbas is the tim

3. Batch assembly: Visit all instantiated queues, and for each queue, run the token update 

procedure, and reduce B according to the number of requests that were picked. Thus, a 

batch will normally contain requests from several queues, but the actual mix of 

requests is dependent on bandwidth allocations and the number of pending requests in 

each queue. Thus, the request mix will normally vary from batch to batch. 

4. Stop conditions: The batch assembly continues until either B=0, or until all queues have 

been visited. Finally, the estimated finishing time of the batch is computed: tef = B*tes. 
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Figure 6-3: Batch assembly timing 

Note that, with one global round time, the shortest deadline will always be the end of 

the round, and the principle of searching for a controlling request can therefore seem 

unnecessary. However, as described in Sub-section 6.1.1, APEX allows requests with 

different deadlines, or several round times in the same system, and this requires the use of 

a controlling request. Also note that, as shown in Figure 6-3, more than one batch may be 

assembled and served in each round.  

We originally designed APEX as a pure deadline based scheduler, working without any 

notion of rounds. This required that APEX knew the minimum deadline that could occur in 

any queue, and the maximum size of such a request. When APEX computed the batch size, 

it always took into account that a request with this shortest deadline could arrive just after a 

batch was submitted. However, this solution limited the possible batch size, and thereby 

the disk utilization. This version of APEX was also implemented in our simulation 

environment (described in Chapter 8), and preliminary simulations confirmed the reduced 

performance.  

As a consequence, we chose not to pursue this version of APEX for use in our LoD-

scenario. However, the pure deadline version of APEX still outperforms the EDF disk 

scheduler, and in other scenarios, such as real-time environments that do not require 

continuous media playback, this version can be useful. 
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6.4.3 Work-Conservation 
As we have already described, our scenario is characterized by variable bit-rate streams, a 

high degree of user-interaction, partial bridging of presentations, bursty user queries, and 

aperiodic real-time requests (e.g., still images synchronized with a video). All these factors 

contribute to a highly shifting workload for APEX, which, in turn, means that there will 

often be discrepancies between allocated bandwidth and the actual usage of bandwidth 

within queues. Typically, some queues can have pending requests, but no tokens, while 

other queues may have tokens but no pending requests. 

To alleviate this, the batch assembly algorithm is extended with an active work-

conserving facility that can re-distribute unused bandwidth. The principle is very simple: if 

a batch being assembled still has room for more requests after all queues have been visited, 

the batch builder starts selecting requests from the queues once more, but this time without 

taking tokens into consideration. These requests are then added to the batch that is 

currently being assembled, which means that the disk can serve these requests with the 

same efficiency as ordinary requests. In fact, adding more requests to the batch contributes 

to disk efficiency, since a large batch means more requests over which to amortize the 

positioning work of the disk head. 

In addition, the work-conserving phase serves another important purpose: during the 

normal phase, only queues with tokens are visited, which means that best-effort queues are 

not served during this phase. Instead, requests in such queues must rely on the work-

conserving phase. 

In our current design, the order in which the queues are visited during the work-

conserving phase is the same as during the normal batch assembly phase. However, as will 

be shown in the next chapter, APEX allows full control of the number of requests to pick 

from each queue during this phase. This means that the work-conservation of APEX can 

easily be adjusted to implement different policies: 

• General: The bandwidth is distributed among all queues with pending requests, as 

described above. 

• Need-based: The queues are re-visited in order of need, given some sorting criterion. 

For instance, using queue length as sorting criterion, the queue with most pending 

requests is re-visited first. 

• Dedicated: The unused bandwidth is dedicated to one or a few queues. In this case, the 

 105

extra bandwidth can either be used as a replacement for (some of) the explicitly 



allocated bandwidth, or it serves as an extra reserve, e.g., for handling bursts. If the 

selected queue(s) is unable to use all the bandwidth, the rest is distributed using general 

or need-based distribution. One example of this policy is to dedicate all unused 

bandwidth to the best-effort queues, assuming that other queues receive sufficient 

bandwidth through their bandwidth reservations. 

If we compare the work-conserving scheme of APEX with the schedulers in the 

reference group, we find that they all provide some form of work-conservation. Cello has, 

like APEX, a separate work-conservation phase, where queues “eligible for utilizing 

unused bandwidth” are re-visited, and requests possibly picked. MARS is implicitly work-

conserving through its variable round-times: when all queues have been visited, the serving 

of the selected requests is started, even if the round is not “filled”. Thus, the next round is 

started earlier, and the disk is kept busy.  

The Prism scheduler dedicates all unused bandwidth to two queues (interactive queue 

and aperiodic queue), and as such use a “dedicated” policy. Cello and MARS, on the other 

hand, use a “general” policy, but for both schedulers, the bandwidth distribution scheme 

used during the work-conserving phase is the same as the scheme used during the normal 

phase. 

6.4.4 Low-Latency Service 
As described in Sub-section 6.4.2, we use an estimated service time 

batches. However, since this value is a slightly conservative estimate (in our simulations, 

76% of the actual service times were smaller than t mally finish earlier 

than the estimated finishing time, 

tes, when assembling 

es), the batch will nor

tef. 

Since the batch builder knows both the remaining size and tef of the current batch, the 

slack time can easily be computed, using tes. If this slack time is larger than tes, the batch 

builder allows a request from a special low-latency queue to be inserted into the current 

batch. Since no guarantees can be given about available slack time, this service is offered 

on a best-effort basis, but by adjusting tes, the actual service level can be adjusted; a larger 

tes gives more slack time, but reduces the maximum batch size, and thereby the disk 

efficiency. 

When a low-latency request is submitted by APEX to the disk driver, we assume that 

the request is added to the batch currently being served by the disk, and that the request is 
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added in sorted order. This means that inserting low-latency requests does not affect disk 

efficiency.  

The service time of a low-latency request is estimated as follows: when a low-latency 

request is inserted, half the batch remains to be served, on average, and the low-latency 

request can be expected to be served in the middle of the remaining batch. This means that 

the average service time for a low latency request is approximately B/4 * tes. In the worst-

case, a batch has just been submitted, and the low-latency request is served last in the 

batch, giving a service time of approximately B * tes.  

If the disk is idle when a low-latency request arrives in APEX, the request is normally 

submitted to the disk immediately, without waiting for a new batch to start.  

6.5 Different Contexts 
Through the use of dynamic queues and a modular design, the APEX scheduling 

framework can be configured for a number of different environments. In Sub-section 5.2.5, 

we listed the requirements of some application areas, using the four characterization 

parameters. The service types of APEX are based on these four parameters, and APEX is 

therefore able to support all these application areas.  

Furthermore, a MMDBMS represents a very demanding, dynamic environment that 

utilizes all functionality of APEX, and this makes it suitable as an example environment. 

Other environments may only require a subset of the functionality, but since APEX has a 

modular design, it is easy to remove or simplify components. For example, in an 

environment with a static, stable workload, most of the queue management can be left out. 

Instead, APEX just reads the required configuration data from a file, and instantiate the 

necessary queues.  

It should also be noted that the core of APEX, which is the assembly of disk request 

batches, must always be present, regardless of configuration. Thus, a minimum 

requirement is that at least one queue is instantiated, such that the batch building can take 

place. Also the interaction between APEX and the disk driver is common in all 

configurations. 
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6.6 External Factors 
There are several factors in the storage subsystem that can affect the functionality and 

performance of a disk scheduler. For instance, using long round times provides the 

scheduler with greater freedom to reorganize disk requests according to the optimization 

goal. In this section, we investigate four important external factors that can influence the 

disk scheduler, and discuss their impact on the scheduling principles used in APEX: data 

placement, disk block size, round time, and disk characteristics. 

6.6.1 Data Placement 
During assembly of a batch, APEX does not consider the placement of the data to be read 

of written. The idea behind this approach is that the unproductive positioning work 

performed during the serving of a batch is amortized over the requests in the batch. A large 

batch means more requests on which the unproductive work can be shared, which implies 

that the unproductive work constitutes a lower relative share of the overall work. 

In addition, it is a basic assumption that the LoD-system is a multi-user system. Thus, 

multiple students and teachers access the system concurrently, working with different 

multimedia objects. Consequently, at any given time, we can expect the requests pending 

in the scheduler to address data all over the disk, regardless of data placement scheme.  

However, if we consider the data requested for each individual transaction, the data 

placement scheme does have an impact. Especially for multimedia playback queries, more 

than one disk block (i.e., database page) is usually requested in each round. If we assume 

random data placement, and a transaction requests b blocks in a round, this means that b 

positioning operations have to be made. If, on the other hand, we use extent-based or 

contiguous allocation, only one such positioning operation is necessary. Consequently, 

reading the b blocks can be expected to go considerably quicker in the latter case.  

In practice, this means that the estimated time for serving a request, ust be lower 

when using extent-based or contiguous allocation, than when random allocation is used. As 

described in Sub-section 6.4.2, the actual setting of paring the 

estimated service time with the actual service time; consequently, it is easy to adjust APEX 

according to different data placement schemes.  

tes, m

tes is done based on com
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6.6.2 Disk Block Size 
In today’s modern disks and operating systems, a disk block size between 2 KB and 64 KB 

is common, and the trend is towards larger block sizes, as disks become faster [39]. 

Determining the block size is a trade-off between disk efficiency, on the one hand, and 

latency on the other: a small block size means short transfer time, and the block can be 

read or written quickly. However, smaller blocks means that, for a given amount of data, 

more blocks must be fetched, leading to more positioning operations.  

For instance, reducing the block size from 64 KB to 16 KB means a quadrupling of the 

arrival rate. On the other hand, the service time is not reduced to one-fourth, since only the 

transfer time is reduced, and not the seek time or rotational latency [63].  

To APEX, reducing the block size would mean that each disk request is served slightly 

faster by the disk, since the transfer time is reduced. The average positioning time would 

not be changed, however, provided the data placement scheme is the same. Consequently, 

reducing the block size means that 

6.6.3 Round Time 
As mentioned in Sub-section 6.1.1, longer round times are beneficial for the disk 

scheduler, since it is given more requests to work with when setting up the schedules. For 

example, for a SCAN scheduler, longer round times means that more requests can be 

included in a sweep over the disk surface, which, in turn, means higher disk efficiency.  

The drawback of longer round times is that the latency increases, since data retrieved 

during one round is sent to the user during the next. Thus, doubling the round time means 

doubling the latency. In addition, more data must be buffered before being sent to the user, 

meaning that the amount of buffer space must be increased. 

For APEX, the length of the rounds directly affects the maximum size of the batches, 

since the round length affects the earliest deadline, atches affects the 

efficiency of the disk, thus, the round length indirectly affects the disk efficiency. 

However, as mentioned above, this is not limited to APEX; practically all disk schedulers, 

with a few exceptions like FCFS and EDF, are exposed to this effect.  

Furthermore, APEX needs to be able to accumulate requests for the batch building 

principle to work. If the round time becomes very short, we expect this principle to break 

down, and APEX will be reduced to a EDF or FCFS scheduler, depending on what types of 

queues that are instantiated. Assuming an average service time of a disk request in the 

tes should be slightly reduced. 

ted. The size of the b
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magnitude of 10 ms, this implies that a round time of perhaps 100 ms or less can cause 

problems. Since round-based servers normally use a much longer round time than this, 

typically 500 – 2000 ms, we do not consider this to be a problem. 

6.6.4 Disk Characteristics 
The most obvious characteristics of the disk are seeking time, rotational latency, and 

transfer time. Reducing these times means both lower latency and higher throughput for 

the disk. In addition, as discussed in Section 4.4, the ability of the disk to pre-fetch and 

cache the correct data also influences the performance.  

When APEX submits a batch of requests to the disk, it is reasonable to expect some of 

these to be served by the disk-internal cache, while others have to be read from the disk 

surface, and the service times of the individual requests will therefore vary considerably 

within a batch. However, since a batch consists of many requests, the average service time 

for the requests in a batch will vary much less.  

Consequently, the disk characteristics have little impact on the functionality of APEX. 

Similar to data placement scheme and disk block size, it is a question of adjusting 

match the disk.  

6.6.5 Conclusion 
As described in the previous sub-sections, the external factors do not represent any 

problem to APEX; it is simply a matter of adjusting t atch the premises set by these 

factors, and this can to a certain extent be done automatically.  

The batch building principle makes APEX relatively independent of these external 

factors, but this is to a certain extent dependent on the batch sizes. With a small average 

batch size, there may be large variations in the relationship between estimated (based on 

t al service times for the batches, which, in turn, can cause problems for the 

automatic adjustment of t

tes to 

es to m

Furthermore, it is important to notice that these factors normally are static: the disk 

characteristics only change if the disk is replaced, and once the system is running, data 

placement scheme, disk block size, and round time cannot easily be changed. 

es) and actu

es.   
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6.7 Example 
In order to illustrate the functionality of APEX, we now present an example: A student is 

searching for information about a specific topic, and queries the LoD-database for it. The 

student enters the relevant search criteria, and submits them as a metadata retrieval query 

(see Sub-section 3.6.1). The disk requests generated by this query are sent to the common 

metadata retrieval query queue in APEX, which we assume is always present. The result of 

the query is a list of presentations that contain the requested information. We now assume 

that the student starts playback of one of these presentations, consisting of video, audio and 

subtitles. 

The first step of the playback is admission control, and during this phase, the system 

catalog is queried, in order to find service types for the disk requests, which match the 

QoS-requirements of the student. These QoS-requirements can be provided by a profile 

associated with the user, or the user explicitly states the QoS-level he or she wants, before 

the playback starts. In addition, the capabilities of the network and the client system may 

affect the possible QoS-levels. 

We assume that two suitable service types are found (one for audio/video disk requests, 

and one for disk requests for subtitle data), and the “names” of these service types are 

submitted to APEX through the queue request interface, together with IDs of the 

corresponding sub-transactions, and other relevant information. If the admission control 

component finds that there is sufficient disk bandwidth available, queue requests are 

submitted to APEX, which in turn registers the requests, and returns a positive 

acknowledgement for each of the requests. We assume that all server components admit 

the new playback request, and APEX is informed of this through the AdmitCommit 

interface. The requested queues are now instantiated (assuming no suitable queues already 

existed), and the IDs of the queues returned. The reserved bandwidth is still not associated 

with the queues, though, since the transactions have not yet started. 

When the playback starts, APEX is informed through the transaction state interface. 

The bandwidth reservations are now made, and APEX is ready to receive disk requests 

generated by the multimedia playback query. If the bandwidth requirements of the 

playback change, for example because the student wants better QoS, APEX is notified 

through the transaction state interface, and updates the reservations correspondingly (we 

assume that the admission control component found that there were sufficient bandwidth 
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If the student makes a pause in the playback, APEX makes the unused bandwidth 

available to other transactions during the work-conserving phase, and when the playback 

ends, APEX is notified through the transaction state interface, the reserved bandwidth is 

released, and the queues are possibly removed. 

6.8 Summary 
The goal of this chapter has been to introduce the reader to APEX, at a conceptual level. 

We have described the assumptions we make about the environment of APEX, and how 

APEX interacts with it. Furthermore, we have described the overall architecture of APEX, 

its interfaces, and the functions of its components. We have also briefly explained how 

parts of APEX can be left out, depending on the application area.  

However, the main focus of this chapter has been on the scheduling principles that 

APEX builds on. We first presented the queue management, showing how queues can be 

dynamically instantiated and removed, in order to keep the computational overhead at a 

minimum. Next, we described the principles behind the request management, with its use 

of an extended token bucket model to distribute bandwidth between the queues.  

Then, we thoroughly described the principles behind the two key features of APEX, 

namely the assembly of request batches, to increase disk efficiency, and the work-

conservation facility that redistributes unused bandwidth without loss of disk efficiency. 

Finally, we discussed the impact of external factors on APEX, such as data placement 

scheme and disk block size. 

With respect to the claims presented in Section 1.3, we have shown how APEX creates 

batches of disk requests, which is our main argument for Claim 3 (Good combination of 

QoS-support and high utilization). In addition, the description of APEX used in different 

contexts, in Section 6.5, supports Claim 2 (configurability of APEX). 

In the next chapter, we will describe the implementation of APEX, including data 

structures, interfaces, and components. 
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Chapter 7  

Implementation of APEX 

In this chapter, we present the implementation of APEX. All functions, except some minor 

ones, are presented in C-like pseudo-code, in order to provide an unambiguous explanation 

of the functionality. We also describe the data structures used, as well as the interfaces that 

APEX offers to its environment, and we analyze the complexity of APEX. 

To understand this chapter, we assume that the reader knows the assumption and 

concepts described in Chapter 6. In addition, the reader should be familiar with the most 

relevant related work, described in Chapter 5, as well as the requirements analysis in 

Chapter 4.  

7.1 Data Structures 
APEX supports a number of different queues, which can be instantiated and removed 

dynamically. To realize this functionality, we have chosen to implement the queues as a 

linked list, as shown in Figure 7-1. The start of the list (rootQ) is a static data structure 

that is always present, and provides an entry point to the queue list. As shown in Figure 

7-2, this structure is also used to store global state information that is frequently used, 

including the estimated request service time, 

igure 

7-3

tes. 

From Figure 7-1, we also see that each queue is controlled by a queue header. Each 

queue header contains a description of the queue, realized as a set of attributes (see F

). The information in the queue header provides a full description of the queue, 

including the token bucket parameters r and b, and this information is used by several 
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components in APEX (this will be described in the following sub-sections). The order of 

the queue headers is fixed, determined by the order of the queue templates in the 

ServiceTable-array, and it is this order that determines the order in which the queues 

are serviced. Thus, except for Queue 0 (described below), real-time queues are always 

nearest to the queue root. 

rootQ

Queue 1
Description

Queue 2
Description

Queue n
Description

...

State

I I I

I

II

Req

Req Req Req

Req

Req

...

Queue header

Request descriptor

ActiveQueues

...
ServiceTable

Queue 0
Description

ActiveTrx

Transaction
descriptor

Queue root

 

Figure 7-1: Structure of the queues in APEX 

 
numQueues //Number of active queues in APEX
ps_BW //Bandwidth assigned to the queues using proportional-share allocation
totalW //Sum of the weights of the proportional-share queues
t_es //Estimated request service time, tes
currDL //Deadline (in absolute time) for the batch being served
nextDL //Deadline (in absolute time) for the batch being assembled
currBSize //Number of remaining requests in the current batch
nextBSize //Number of requests in the new batch being assembled
bLimit //Number of requests left when building of a new batch must start
*firstQ //Pointer to the first queue (i.e., Q0) in the queue list

 

Figure 7-2: State information in the rootQ-structure 

The first queue header, Queue 0, is instantiated at system startup time, and is always 

present. This queue serves as queue header for pending low-latency requests. As described 

in Sub-section 6.4.4, these requests are allowed to “jump the line”, in the sense that they 
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are inserted into the batch currently being served by the disk, if there is sufficient slack 

time.  

QID //The queue ID (i.e., the index in the ActiveQueues-array)
tokenRate //The rate at which tokens should be assigned, i.e., the... 

//... number of milliseconds between each token assignment
bw //The assigned bandwidth (pages/s). tokenRate=1/(bw/1000)
numTokens //Number of tokens currently in the bucket
lastAssigned //The (absolute) time when a token was last assigned
maxTokens //Max number of tokens allowed to accumulate (bucket depth)
numRequests //Number of requests in the queue
weight //The weight of the queue (if proportional-share queue)
serviceType //Describes the service level of the queue (index in ServiceTable-array)
candQ //Can the queue provide controlling requests? (TRUE/FALSE)
*firstTrans //Pointer to the first (oldest) transaction using the queue
*lastTrans //Pointer to the last (newest) transaction using the queue
*firstReq //Pointer to the first request descriptor in the queue
*nextQ //Pointer to the next queue header
*prevQ //Pointer to the previous queue header

 

Figure 7-3: Structure of the queue headers 

The serviceType-attribute is an index to the ServiceTable-array, which 

contains the description of the queue (see Figure 7-4). Each element in this array is a 

structure with one attribute for each of the scheduler characteristics described in Section 

5.2. In addition, the reqDrop-attribute indicates whether request dropping is used, the 

share-attribute shows whether the queue can be shared among several transactions, and 

the candQ-attribute indicates whether the queue is a candidate for providing controlling 

requests. 

guaranteeLevel //What guarantee level does the queue offer
allocParadigm //The allocation paradigm
type //Guarantee type (Real-time/throughput-only)
priority //Priority? (TRUE/FALSE)
reqDrop //Request dropping? (TRUE/FALSE)
share //Can the queue be shared among several transactions (TRUE/FALSE)
candQ //Can the queue provide controlling requests? (TRUE/FALSE)

 

Figure 7-4: Structure of the entries in the ServiceTable-array 

As explained in Section 6.3, a queue may be shared by several transactions. 

Consequently, it is necessary to maintain information about each single transaction that 

uses a queue. This is done by maintaining a linked list of transaction descriptors for each 

instantiated queue (see Figure 7-5), which is pointed to by the firstTrans and 

lastTrans-attributes in the queue header. In addition, the transaction descriptors form a 

separate list, rooted in the variable ActiveTrx. This list is used to locate the queue 

header, given the transaction ID. When a transaction ends, the corresponding entry is 

removed from both lists, and the descriptor is destroyed. Note that in Figure 7-1, the 

transaction lists rooted in the queue headers are not shown. 
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TrxID //Transaction ID
bandwidth //The bandwidth (pages/s) requested by the transaction
weight //Weight of the queue (for proportional-share queues)
QN //”Name” of the queue used by the transaction (i.e., index in the... 

//...ServiceTable-array)
instQ //Pointer to the instantiated queue header of the requested queue
currQ //Pointer to the queue that the transaction is currently assigned to
nextTrxQ //Pointer to the next transaction decriptor in the queue
nextTrxL //Pointer to the next transaction decriptor in the ActiveTrx-list

 

Figure 7-5: Structure of the transaction descriptors 

Since the disk requests must be handed over to the OS for service, the MMDBMS must 

format the requests according to the requirements of the OS. As explained in Sub-section 

6.1.4, we assume raw disk access, which means that these requests must be formatted 

according to the requirements of the disk driver.  

In many operating systems (e.g., BSD [59], Linux [14], and Windows [91]), a request 

to the disk driver is realized as a structure (or object), which contains the information 

needed by the disk driver to service the request (i.e., disk number, address on disk, buffer 

address, whether it is a READ or a WRITE operation, etc.). In the remainder of this thesis, 

we refer to this request structure as a buf structure, which is the term used in the BSD OSs 

[59].  

The PSM submits disk requests to APEX using such buf structures, together with 

additional information that APEX needs to provide the correct service type. When APEX 

receives a disk request, the buf structure is placed in a “container”, called a request 

descriptor, together with the information intended for APEX.  The principle of handling 

the disk requests as buf structures internally in the disk scheduler is also used in Cello and 

MARS, but by wrapping the buf structure in a container, we are able to associate 

information with each request, without have to modify the buf structure itself.  

TrxID //The ID of the transaction that “caused” the request
deadline //The deadline of the request (NULL if no deadline)
priority //The priority of the request (NULL if no priority)
bufStruct //Pointer to the buf structure received from the PSM
nextReq //Pointer to the next request descriptor

 

Figure 7-6: Structure of the request descriptors 

In Figure 7-6, we show the structure of the request descriptor. It contains three 

variables for the APEX-specific information (TrxID, deadline, and priority), a 

pointer to the buf structure, and a pointer to the next request descriptor in the queue. Thus, 

a queue of pending requests is realized as a linked list, which implies good flexibility with 

respect to the size of the queue. Each queue header contains a pointer to the linked list of 
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request descriptors for that queue, and when the batch builder picks requests for service, it 

always picks from the head of the queue, i.e., closest to the queue header.  

Finally, there is a pointer array called ActiveQueues, which provides direct access 

to the different queue headers, using the queue ID (QID) as an index. The request 

distributor uses this array when new requests arrive, in order to quickly locate the correct 

queue into which the request should be inserted. When a new queue is instantiated, the first 

available position in the ActiveQueues -array is used. Thus, as Figure 7-1 indicates, 

there is no relationship between the order of the queue headers and the order of the pointers 

in the ActiveQueues -array. 

7.2 Interfaces to APEX 
As explained in Sub-section 6.2.1, APEX offers four interfaces to MMDBMS components; 

request submission interface, queue request interface, AdmitCommit interface, and 

transaction state interface. In this section, we give a short presentation of each of these 

interfaces, which parameters they take, as well as their return values. 

Request Submission Interface 

In our MMDBMS architecture, the physical storage manager (PSM) represents the 

traditional interface to the disk driver. Thus, without APEX, disk read/write calls would go 

directly from the PSM to the disk driver. With APEX as part of the MMDBMS, an extra 

layer between the disk driver and the PSM is effectively added. During a call, the request 

submission interface of APEX receives the same parameters as the disk driver would (i.e., 

the buf-structure), in addition to a set of APEX-specific parameters: 

Schedule(*buf, QID, deadline, priority, TrxID) 

When APEX receives a disk request through the Schedule-interface, an empty 

request descriptor is filled with the received data, and handed over to the queue scheduler 

for positioning within the queue given by the QID-parameter. As can be seen from Figure 

7-6, the queue ID is not stored in the request descriptor. The reason is that this parameter is 

only needed to find the correct queue for the request. The request distributor uses the queue 

ID as an index in the ActiveQueues-array, which yields a pointer to the correct queue. 

Thus, with this pointer to the correct queue, the queue ID is no longer needed. 
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Not all the APEX-specific parameters are relevant for all types of requests. For 

instance, a non-real-time request does not use the deadline-parameter. In these cases, 

the unused parameters are set to NULL. 

The request submission interface is synchronous, i.e., when the PSM uses the interface, 

the call returns as soon as the request has been placed in its queue. We have chosen this 

solution, because the process of finding the correct queue and placing the request is very 

simple and executes quickly. The return value is OK or FAIL, depending on whether the 

request could be placed in a queue or not. 

Queue Request Interface 

As mentioned, the queue names (i.e., names of service classes) are stored in the system 

catalog of the MMDBMS, and can be queried in order to find a suitable queue type (see 

Sub-section 6.1.3). Since the ServiceTable array contains descriptions of all supported 

queue types, such a queue name is nothing more than an index to the ServiceTable 

array.  

When the admission control component requests a queue from APEX during the 

admission control phase, the queue name is included in the request. Thereby, APEX is able 

to determine the requested service type, and perform the necessary tentative reservations. 

The interface itself looks like the following: 

RequestQ(TrxID, queueName, bandwidth, weight) 

TrxID (i.e., the ID of the transaction that requests admission) and queueName are 

always included in the request. The bandwidth parameter states the amount of 

bandwidth (in pages/s) that should be reserved in the queue, on behalf of the transaction in 

question. Thus, this parameter is only used for queues that are based on explicit bandwidth 

reservation. The weight parameter is only used in requests for proportional-share queues, 

and states the weight of the queue, relative to other proportional-share queues. In other 

words, the bandwidth and weight parameters are mutually exclusive. 

The result of the call is that a new transaction descriptor is instantiated, and the 

information received in the call is stored in this descriptor. The transaction descriptor is 

then placed in the ActiveTrx-list. 

As described in Sub-section 3.5.1, we assume a nested transaction model. Thus, a query 
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may include several transactions; one master-transaction, and several sub-transactions. For 



instance, a multimedia playback query may have one sub-transaction controlling the 

playback of audio and video, while another controls the presentation of associated 

subtitles. Since these different elements of the query may require different service types 

(i.e., different queues in APEX), a separate RequestQ-call must be performed for each 

sub-transaction, and each call contains the ID of the corresponding sub-transaction. 

The return value of this call is either “OK” or “FAIL”, depending on whether APEX 

was able to provide the requested queue or not. 

AdmitCommit Interface 

When the global admission control for a transaction is completed, the admission control 

component of the LoD-system informs APEX about the result, through the AdmitCommit 

interface: 

AdmitCommit(TrxId, result)  

The call takes two parameters; the ID of the (sub-) transaction for which the admission 

control was made, and the result of the global admission process, i.e., either OK or FAIL. 

The transaction ID is necessary for APEX to be able to change the tentative reservation 

made after the RequestQ-call into an explicit one. Note that, if several RequestQ-calls 

were made, for instance for several sub-transactions constituting a playback, then a 

corresponding number of AdmitCommit-calls must also be made.  

If the global admission control succeeded (i.e., the value of the result-parameter is 

“OK”), APEX returns a queue ID, which identifies the queue in which the requests should 

be placed. Later, when the query starts, and disk requests are submitted to APEX, this 

queue ID must be associated with every disk request that is sent to APEX through the 

request submission interface.  

Transaction State Interface 

In a dynamic environment like a MMDBMS, transactions continuously start and finish. 

Thus, it must be possible to notify APEX each time a transaction changes state, so the 

bandwidth distribution can be updated accordingly.  

Consequently, we have implemented a transaction state interface that allows APEX to be 

notified each time a transaction starts, ends, or changes its bandwidth requirements: 
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TrxState(TrxID, state, newValue) 



The state parameter can have one of the following values: START, END, ABORT, 

or CHANGE. For the first three values, the newValue parameter is set to 0, while if the 

state parameter is CHANGE, then the newValue parameter is set to the new reserved 

bandwidth (in pages/s) or new weight (depending on whether the queue in question is 

reservation-based or proportional share). The return value of the call is either “OK” or 

“FAIL”. 

Initially, it is not necessary to notify APEX about a transaction that makes a pause, 

since the work-conserving facility re-distributes the unused bandwidth. However, with the 

transaction state interface, it is possible to set the reserved bandwidth to zero for the 

transaction in question, and thereby release the reserved bandwidth. When the transaction 

resumes, another transaction state call can be made, to reclaim the reserved bandwidth. 

7.3 Components in APEX 
In Sub-section 6.2.2, we presented the five components of APEX (see also Figure 7-7). In 

this section, we provide a detailed description of each of these components, using pseudo-

code.  We first focus on the two queue management components, namely the queue 

manager and the bandwidth manager. Next, we describe the request management 

components, which are the request distributor, the queue scheduler, and the batch builder.  

Notice that in order to limit the amount of code presented in the thesis, we have focused 

on the central functionality, and left out other parts of the code. For instance, small support 

functions are only described textually, and most of the error handling is left out. 

...

Request Distributor

Queue
Manager

Bandwidth
Manager

Queue Scheduler

Batch Builder
 

Figure 7-7: The components in APEX 

7.3.1 Queue Management 
The queue management is responsible for administering the queues in which the incoming 

disk requests are placed. New queues are instantiated as needed, and unused queues are 
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removed. In addition, distribution of bandwidth to the different queues is performed, based 

on the information received from the admission control component and the transaction 

manager. 

The queue management components are only active when a transaction changes state, 

i.e., during admission control (when a queue is requested), when (if) it changes its 

bandwidth reservation, and when it ends. This means that these components are sleeping 

most of the time, and represents little processing overhead. Given the low overhead, we 

consider the use of dynamic queue management to be a better solution than a static 

solution where all queues that may be required are instantiated at system startup time.  

Queue Manager 

The queue manager is responsible for instantiating and deleting queues based on the needs 

of the active transactions (see Figure 7-8). When a queue is requested, using the 

RequestQ()-interface, the queue manager first creates a transaction descriptor structure, 

to store the information about the new transaction, and places this descriptor in the 

ActiveTrx-list. Thus, all necessary information about the new transaction is now stored 

within APEX. 
RequestQ(Tx, Qname, bw, weight)

TrxId Tx;
int Qname;
int bw;
int weight;

{
td = new(transactionDescr);  //Create a new transaction descriptor
td->TrxID = Tx; //Assign values to the attributes
td->bandwidth = bw;
td->weight = weight;
td->QN = Qname;
InsertTD(td); //Insert the trx-descriptor in the ActiveTrx-list

}  

Figure 7-8: Implementation of the RequestQ-interface of the queue manager 

If the admission process failed, i.e., some component in the MMDBMS rejected the 

admission request, APEX receives an AdmitCommit(TrxID, ‘FAIL’)-message. 

The queue manager removes the transaction descriptor from the ActiveTrx-list, and 

then destroys this descriptor. 

If the transaction was successfully admitted, APEX receives an 

AdmitCommit(TrxID, ‘OK’)-message. The queue manager must now make sure 

that the requested queue actually exists, creating a new queue header if necessary. This is 

described in Figure 7-9.  
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AdmitCommit(Tx, result)
TrxId Tx;
enum result; //Values: OK, FAIL

{
if (result == ‘FAIL’) { //The MMDBMS admission process failed

td=RemoveTD(tx); //Remove the transaction from the ActiveTrx-list...
//...(returns a pointer to the transaction descriptor)

destruct(td); //Destroy the transaction descriptor
} else { //The transaction was successfully admitted

td = GetDescr(Tx); //Locates the trx-descr. in ActiveTrx, based on TrxId
qh = NULL;
if (ServiceTable [td->QN]->share) //If queue-sharing is allowed, check ActiveQueues-

qh = FindQH(td->QN]);  //To see if queue is instantiated (returns NULL if not)
if (qh == NULL) {

qh = new(queueHeader); //A new queue header must be instantiated
QID = GetID(); //Locates a free entry in the ActiveQueues-array...

//...and returns the index
qh->QID = QID;
qh->tokenRate = 0; //Rate is zero, since the queue is not yet active
qh->weight = 0; //Weight is zero, since the queue is not yet active
qh->serviceType = td->QN; //Index to the ServiceTable-array
if (ServiceTable[td->QN]->candQ) //Candidate for providing controlling requests?

qh->candQ=‘TRUE’;
InsertQ(qh); //Insert the queue header into the list of queues
ActiveQueues[QID] = qh; //Insert the queue header into the ActiveQueues-array

}
td->instQ = qh;
return(QID);

}
}  

Figure 7-9: Implementation of the AdmitCommit-interface of the queue manager 

When a transaction starts or finishes, APEX is informed through the TrxState-

interface (see Figure 7-10). APEX then adds or removes the transaction from the queue in 

question, and possibly updates the bandwidth reservation for the queue. In addition, the 

queue is removed if no transactions are using it. 

This interface is also used to change bandwidth reservations for transactions. If the 

transaction in question uses a reservation-based queue, the difference between the old and 

the new bandwidth reservation for the transaction is used to update the amount of 

bandwidth reserved for the queue. In addition, the amount of bandwidth available to the 

proportional-share queues is updated, using the UpdatePS()-function in the bandwidth 

manager.  

For all transaction state changes, if the transaction uses a proportional-share queue, the 

weight for the queue in question is updated, as well as the total weight for all proportional-

share queues. In addition, the bandwidth available for the proportional-share queues is re-

distributed, using the UpdatePS()-function, based on the new weights.  
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TrxState(Tx, state, newValue)
TrxId Tx;
enum state;
int newValue;

{
td = GetDescr(Tx); //Get a pointer to the trx-descr. from the 

//ActiveTrx-list
if (state == ‘START’) {

Move(td, td->instQ, ‘ADD’); //Add trx-descr. to the correct queue
}
if (state == ‘CHANGE’) {

if (ServiceTable[td->QN]->allocParadigm == PS){    //If proportional-share queue
td->currQ->weight += newValue - td->weight;    //Update weight in queue header
rootQ.totalW += newValue - td->weight; //Update total weight for alle PS-queues
td->weight += newValue - td->weight;           //Update weight of trx
UpdatePS(td, NONE, 0); //Update proportional-share queues

} else { //Reservation-based queue
td->currQ->bw += newValue – td->bandwidth;     //Update queue bandwidth
td->bandwidth += newValue – td->bandwidth;     //Update transaction bandwidth
UpdatePS(td, UPDATE, newValue – td->bandwidth);//Update available prop.share bw

}
}
if (state == ‘END’|| state == ‘ABORT’) {

Move(td, td->currQ, ‘REMOVE’); //Remove the trx-descr from its queue
RemoveTD(Tx);
if (state == ‘ABORT’) 

RemoveReq(td);  //Abort pending requests
CheckQ(td); //Remove the queue if no transactions
destruct(td);

}
}  

Figure 7-10: Implementation of the TrxState-interface of the queue manager 

In addition to implementing the queue management interfaces, the queue manager also 

contains several small support functions. These are relatively straightforward, and we 

therefore only describe them briefly: 

• InsertTD(*trxDescr): Inserts the transaction descriptor trxDescr into the 

ActiveTrx list. New transactions are inserted at the end of the list, using the pointer 

to the last transaction. 

• RemoveTD(TrxID): Traverses the ActiveTrx list to find the descriptor with 

transaction ID equal to TrxID. When the descriptor is found, it is removed from the 

list, and a pointer to the descriptor is used as return value of the call. 

• GetDescr(*queueHeader, TrxID): This function traverses the list of 

transaction descriptors in queueHeader and returns a pointer to the descriptor with 

transaction ID equal to TrxID. If queueHeader is NULL, the ActiveTrx list is 

traversed. 

• GetID(): Searches the ActiveQueues array, and returns the index of the first 

unused element. 

• InsertQ(*queueHeader): Inserts queueHeader into the queue list. The order 

of the queues is given by the order of the elements in the ServiceTable array, i.e., 

the order of the queues is static. 
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• CheckQ(*trxDescr): Checks if the queue header identified by the instQ-

attribute of trxDescr has any transactions, by traversing the ActiveTrx-list. The 

purpose of this function is to avoid deleting a queue with transactions that have not yet 

started. If the queue has no transactions, the queue header is removed from the queue 

list and destroyed.  

• FindQH(queueName): Traverses the list of queue headers to check if a queue with 

the “name” (i.e., index in the ServiceTable-array) queueName is instantiated. If 

so, it returns a pointer to the queue header, otherwise it returns NULL. 

Bandwidth Manager 

While the queue manager is responsible for creating and deleting queues, the bandwidth 

manager distributes the available bandwidth among the instantiated queues. The Move()-

function called by the queue manager is shown in Figure 7-11. This function relies on the 

AddTrx() and RemoveTrx()-functions described below to do the actual work of 

updating the queue headers. 
Move(*td, *Q, op)

trxDescr *td;
queueHeader *Q;
enum op; //’ADD’ or ’REMOVE’

{
ap = ServiceTable[td->QN]->allocParadigm;  //Reservation-based or proportional-share
if (op == ‘ADD’) { //A new transaction is added

AddTrx(td, Q); //Add the transaction to queue Q
if (ap == ‘RES’) //If reservation-based queue...

UpdatePS(td, ‘REVOKE’, 0); //...take bandwidth from proportional-share queues
else if (ap == ‘PS’) //If proportional-share queue...

UpdatePS(td, NONE, 0); //... update weights for proportional-share queues
} else if (op == ‘REMOVE’) {        //A transaction has ended

RemoveTrx(td, Q); //Remove the transaction from queue Q
if (ap == ‘RES’) //If reservation-based queue...

UpdatePS(td, ‘ADD’, 0); //...give bandwidth to proportional-share queues
else if (ap == ‘PS’) //If proportional-share queue...

UpdatePS(td, NONE, 0); //... update weights for proportional-share queues
}

}  

Figure 7-11: Algorithm for the Move()-function in the bandwidth manager 

The Move()-function distinguishes transactions using reservation-based queues from 

queues using proportional-share allocation. We do this because of the way bandwidth is 

distributed between the different queue types in APEX: As long as there are no queues 

using reservation-based allocation, all available bandwidth is reserved for the proportional-

share queues, while best-effort queues only receive unused bandwidth. When a 

reservation-based queue is requested (in the RequestQ()-call), the required bandwidth is 

taken from the proportional-share queues using the UpdatePS()-function. 

Correspondingly, bandwidth is given back to the proportional-share queues when a 
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transaction using reservation-based allocation ends. When the available bandwidth for the 

proportional-share queues changes, all these queues are affected, according to their 

weights. This technique for supporting both reservation-based and proportional-share 

allocation is based on the work in [92]. 
AddTrx(*td, *Q)

trxDescr *td;
queueHeader *Q;

{
ap = ServiceTable[td->QN]->allocParadigm; //Get description of the queue
td->currQ = Q;
AddQHTD(td, Q); //Add td to Q’s transaction-list
if (ap == ‘RES’) //Reservation-based allocation

UpdateBW(td, Q, ADD); //Add bandwidth & update tokenRate
else if (ap ==‘PS’) { //If proportional-share...

Q->weight += td->weight; //...adjust the weight of the queue 
rooQ.totalW += td->weight; //Update total weight

}
}  

Figure 7-12: Algorithm for the AddTrx()-function in the bandwidth manager 

When a transaction descriptor is added to a queue using the AddTrx()-function, the 

bandwidth allocation paradigm of that queue determines the course of the operation. For 

instance, we assume that transaction descriptor T es, T  

inserted into the list of descriptors pointed to by the firstTrans/lastTrans-

attributes of the queue header of Q AddQHTD()-call.  

The RemoveTrx()-function, shown in Figure 7-13, is similar to the AddTrx()-

function, but has the opposite effect.  

1 is added to queue Qa. In all cas 1 is

a, using the 

If T1 has specified a queue with reservation-based allocation, the tokenRate and bw-

attributes of the queue header of Qa are updated, using the UpdateBW()-call. If, instead, 

T1 has specified a proportional-share queue, the weight of the queue, as well as the total 

weight of all proportional-share queues is updated. 

RemoveTrx(*td, *Q)
trxDescr *td;
queueHeader *Q;

{
ap = ServiceTable[td->QN]->allocParadigm;
RemoveQHTD(td, Q); //Remove td from Q’s transaction-list
if (ap == ‘RES’)  //If reservation-based allocation...

UpdateBW(td, Q, REMOVE); //...remove bandwidth & update tokenRate
else if (ap ==‘PS’)  { //If proportional-share...

Q->weight -= td->weight; //...adjust the weight
rootQ.totalW -= td->weight; //Update total weight

}
}  

Figure 7-13: Algorithm for the RemoveTrx()-function in the bandwidth manager 

In addition to the three main functions described above, the bandwidth manager 

provides four support functions: UpdatePS(), UpdateBW(), AddQHTD(), and 

RemoveQHTD(). The UpdatePS()-function is used for adjusting the bandwidth 
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allocations for the queues using proportional-share allocation. These queues share a certain 

bandwidth, and each queue receives a portion of this bandwidth according to its weight.  

The bandwidth available for proportional-share queues changes each time a transaction 

using a reservation-based queue enters or leaves the system, or has its bandwidth changed. 

Thus, each time one of these events occur, bandwidth must be redistributed, and this is 

done by the UpdatePS()-function, described in Figure 7-14. 

UpdatePS(*td, op, delta)
trxDescr *td;
enum op; //ADD, REVOKE, UPDATE, or NONE
int delta; //If UPDATE, this is the difference in bandwidth

{
if (op ==‘ADD’) //Increase the amount of bandwidth at ...

rootQ.ps_BW += td->bandwidth; //... the disposal of the prop.share queues
else if (op == ‘REVOKE’) //Decrease the amount of bandwidth at ...

rootQ.ps_BW -= td->bandwidth; //... the disposal of the prop.share queues
else if (op == ’UPDATE’) //Update available PS-bandwidth after updating..

rootQ.ps_BW += delta; //... a reservation-based queue
qh = rootQ.firstQ;
while (qh != NULL) {

if (ServiceTable[qh->ServiceType]->allocParadigm == ‘PS’) {  //If prop.share queue...
qh->bw = (qh->weight / rootQ. totalW) * rootQ.ps_BW;      //...compute bandwidth share
updateBW(td, qh, NONE)

}
qh = qh->nextQ;

}
}

 

Figure 7-14: Algorithm for the UpdatePS()-function in the bandwidth manager 

The UpdateBW()-function (Figure 7-15) does the actual updating of bandwidth and 

token rate, and is called for each instantiated queue. The op-parameter determines whether 

the bandwidth of the included transaction descriptor should be added to or subtracted from 

the bandwidth reserved for the queue. If this parameter is set to “NONE”, the function only 

computes the token rate, without changing the bandwidth first, and this is used for updating 

the proportional-share queues each time bandwidth allocations are changed for a 

reservation-based queue.  

UpdateBW(*td, *Q, op)
trxDescr *td;
queueHeader *Q;
enum op; //ADD, REMOVE, or NONE

{
if (op ==‘ADD’) //Transaction added to the queue

Q->bw += td->bandwidth;
else if (op == ‘REMOVE’) //Transaction removed from the queue

Q->bw -= td->bandwidth; 
Q->tokenRate = 1/(Q->bw / 1000); //Compute token rate from bandwidth

}
 

Figure 7-15: Algorithm for the UpdateBW()-function in the bandwidth manager 

The two remaining support functions are very simple, and we have chosen not to show 

them in pseudo-code: 
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• AddQHTD(*trxDescr, *queueHeader): Inserts the transaction descriptor 

trxDescr into the linked list of transaction descriptors in queueHeader. New 

transaction descriptors are inserted at the end of the list, using the lastTrans-

attribute in the queue header. 

• RemoveQHTD(*trxDescr, *queueHeader): Removes the transaction 

descriptor trxDescr from the linked list of transaction descriptors in 

queueHeader. It starts at the head of the list (pointed to by firstTrans), and 

works its way through the list. 

Queue manager

RequestQ()

InsertTD()

RequestQ() call

Synchronous call

Return from synchronous call

1

 

Figure 7-16: Functions involved in an RequestQ()-call 

In Figure 7-16, we show the functions that participate in an RequestQ()-call, while 

Figure 7-17 shows the functions used in an AdmitCommit()-call. As can be seen from 

the figures, all calls are synchronous.  

Queue manager

AdmitCommit()

GetDescr()

AdmitCommit() call

GetID()
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FindQH()

4

1 2

InsertQ()

3

 

Figure 7-17: Functions involved in an AdmitCommit()-call (assuming transaction was admitted) 

Figure 7-18 shows the functions involved in a TrxState(TrxID, START, 0)-

call, i.e., a notification to APEX that a transaction has changed state. Again, all calls are 

synchronous. 
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Figure 7-18: Functions involved in a TrxState()-call (assuming the state was changed to 

START for a reservation-based queue) 

7.3.2 Request Management 
The request management is responsible for all handling of disk requests. Thus, while the 

queue management controls the service type that each request should receive, the request 

management is responsible for realizing these service types.  

All information that the request management components need for realizing the service 

types is available in the rootQ-structure, as well as the queue headers. Hence, these data 

structures effectively constitute the interface between the two parts of APEX. 

Request Distributor 

The request distributor implements the Schedule()-interface, where all disk requests 

from the MMDBMS arrives (see Figure 7-19). When the request distributor receives a 

request from the PSM, it extracts the queue ID, and uses this parameter to locate the 

correct queue (using the ActiveQueues-array) in which to put the request. More 

precisely, the queue ID is used as an index in this array, and the result is a pointer to the 

correct queue header. If the pointer does not exist (i.e., the requested queue does not exist), 

the request distributor returns the call from the PSM with an error message. 

Next, the request distributor instantiates a request descriptor, fills in the attributes, and 

adds the request (i.e., the buf-structure) to the descriptor. Note that, in practice, we use a 

pool of empty request descriptors, since this is a more efficient solution than instantiating 

and destroying descriptors for each single request.  
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Schedule(*bp, Q, dl, pri, Tx)
buf *bp;
QID Q;
deadline dl;
priority pri;
TrxID Tx;

{
qh = ActiveQueues[Q]; //Find pointer to the correct queue header
if (qh == NULL) return(FAIL);  //The requested queue does not exist
rd = new(requestDescriptor); //Instantiate a new request descriptor
rd->TrxID = Tx;
rd->deadline = dl;
rd->priority = pri;
rd->bufStruct = bp;
PlaceRequest(rd, qh); //Call the queue scheduler to insert the request
return(OK);

}
 

Figure 7-19: Algorithm for the Schedule()-call 

Finally, the request distributor calls the queue scheduler, with the request descriptor 

and a pointer to the queue header as parameters. If the request is successfully inserted into 

the queue, the queue scheduler returns the call from the request distributor, which, in turn, 

returns the call from the PSM with a positive acknowledgement. 

Request distributor Queue scheduler

Schedule() PlaceRequest()

Call from PSM

Sort()
Batch builder

Notify()

Synchronous call Return of a synchronous call Asynchronous call
 

Figure 7-20: Functions involved in a normal Schedule()-call 

In Figure 7-20, we show graphically how a schedule()-call from the PSM is 

handled by APEX. Note that, if a low-latency request is pending in Queue 0 or the batch 

builder is idle when the Notify()-function is called, the batch builder performs several 

additional actions (this is not shown in the figure). 

Queue Scheduler 

Given a request descriptor and a pointer to a queue header, the queue scheduler is 

responsible for placing the descriptor in the correct position in the queue held by the queue 

header. In order to do this, the queue scheduler uses the information in the queue header to 

determine where to place the request; for instance, if the queue is a real-time queue, the 

queue scheduler orders the requests according to their deadline.  
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PlaceRequest(r, qh)
requestDescr r;
queueHeader qh;

{
qh->numRequests++;
QC = ServiceTable[qh->serviceType]; //Determine the queue characteristics
If (QC->Type == ‘RT’ && QC->priority == ‘N’) 

sort(qh, r, DEADLINE, POS); //Sort on deadline first, then on position   
.
.
.

If (QC-level == ‘BE’ && QC->priority == ‘Y’)
sort(qh, r, PRIORITY, POS); //Sort on priority first, then on position

<call Notify-function in the batch builder>;   //This is to avoid deadlocks
}  

Figure 7-21: Algorithm for the PlaceRequest()-function in the queue scheduler 

Figure 7-21 shows the main principle of the algorithm. When a new request descriptor 

arrives from the request distributor, the queue scheduler first extracts the characteristics of 

the queue, using the serviceType-attribute of the queue header as index in the 

ServiceTable-array. 

Based on the information from the ServiceTable element, the queue scheduler is 

able to add the new descriptor to the queue at the correct position. As can be seen from 

Figure 7-21, more than one sorting criteria can be used. For instance, real-time requests 

with a common deadline can be sorted based on the disk position of the requested data. We 

chose this approach, since it provides extensibility with respect to sorting criteria; if a new 

sorting method is required, it can easily be added to the scheduler. 

In addition, the queue scheduler has two support functions: 

• RemoveReq(*trxDescr): The queue manager uses this function to remove 

pending requests if a transaction aborts; the function traverses the list of requests 

pointed to by the queue header indicated in the instQ-attribute of the transaction 

descriptor. 

• Sort(*queueHeader, *reqDescr, sortCrit1, sortCrit2): Inserts the 

request descriptor reqDescr into the request list of queueHeader, using 

sortCrit1 and possibly sortCrit2. 

Batch Builder 

The batch builder is the component that performs the final scheduling of the pending disk 

requests. It picks requests from the queues in order to build request batches, and while 

doing so, it relies on the information in the queue headers. The batch builder is also 

responsible for submitting the request batches to the disk driver, and for receiving and 
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forwarding notifications from the disk driver, each time the disk is finished serving a disk 

request. 

The core of the batch builder is the Notify()-function (see Figure 7-22), which is 

called by the disk driver each time a request finishes, and causes the batch builder to wake 

up. This function updates the number of outstanding requests, and when the number of 

requests left in the current batch goes below a given threshold, which is found in the 

variable bLimit in the rootQ structure (see Figure 7-2), the assembly of a new batch is 

started.   

A potential problem of this approach is that, in a case where the disk is idle and 

requests suddenly starts to arrive, the batch builder would never be activated, since no 

notifications are received from the disk driver (which is idle). We avoid this by letting the 

queue scheduler call the Notify()-function with a NULL pointer each time a request is 

inserted in a queue, as shown in Figure 7-21.  
Notify(*bp)

buf *bp;
{

if (bp==NULL) { //The call comes from the queue scheduler 
if (Q0->numRequests>0) PostSubmit(Q0); //Are there pending low-latency requests?
if (rootQ.currBSize)==0) build(currTime); //Run build() if the batch builder is idle

} else { //The call comes from the disk driver
<notify PSM>; //Notify PSM that a request is finished
rootQ.currBSize--; //One request less in the batch
if (Q0->numRequests>0) PostSubmit(Q0); //Are there pending low-latency requests?
if (rootQ.currBSize = rootQ.bLimit) //Time to start building a new batch?

batch = build(currTime + rootQ.currBSize * rootQ.servWC); //Estimate finishing time...
else if (rootQ.currBSize == 0) { //...of current batch, tef

rootQ.currDL = rootQ.nextDL; //Next batch now becomes the active batch
rootQ.currBSize = rootQ.nextBSize;
submit(batch); //Submit new batch to the disk driver

}
}
sleep(); //Go back to sleep

}
 

Figure 7-22:  Algorithm for the Notify()-function in the batch builder 

Before the assembly of a batch can start, the controlling request must be determined, as 

described in Sub-section 6.4.2. This is done by the function shown in Figure 7-23, which 

traverses the list of queue headers, and checks all queues that are candidates for providing 

the controlling request, i.e., the candidate queues. 
FindCReq(*qh)

queueHeader *qh;
{

minDL = current_Time + <system default latency>;   //Start with a system-default deadline
while (qh != NULL && qh->candQ) { //Only check candidate queues

if (qh->firstReq != NULL && minDL > qh->firstReq->deadline)
if (qh->firstReq->deadline >= (currTime + <system minimum deadline>)) 

minDL = qh->firstReq->deadline; //Update deadline
qh = qh->nextQ;

}
return(minDL);

}
 

Figure 7-23: Algorithm for the FindCReq()-function in the batch builder 
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The function starts with the artificial system deadline, and then visits all candidate 

queues to check if there are requests with shorter deadlines. If such a request exists, and its 

deadline is not smaller than the system minimum deadline, the request is used as 

controlling request. The rationale behind the system minimum deadline is to take into 

account that the controlling request can be provided by a queue with statistical real-time 

guarantee. In such a queue, there is a chance that requests miss their deadlines, and if such 

a request is chosen as controlling request, then the batch building principle would break 

down, since a too short deadline would not allow additional requests to be added to the 

batch.  

In a system with one global round time and where all real-time requests have deadlines 

equal to the end of the round, the FindCReq()-function is, strictly speaking, not 

necessary. However, having this function allows both real-time requests with deadlines 

that are multiples of the round, and several round times in the same system (these must be 

multiples of the smallest round time). In addition, the overhead of the function is small, 

since there are a limited number of candidate queues, and only the first request in each 

queue is checked.  
Build(startTime)

long startTime; //The latest time at which the batch... 
{ //...will be submitted

rootQ.nextBSize = 0; //Reset batch size
endTime = FindCReq(Q0->nextQ); //Find the controlling request
minTime = endTime-startTime;  //Available service time for the batch
numReq=floor(minTime/rootQ.t_es); //Compute the maximum batch size
if (numReq > MaxBatchSize) numReq = MaxBatchSize; //Limit maximum batch size  
currQ = Q0->nextQ; //First queue to visit
while (numReq > 0 && currQ != NULL) { //While available time and queues...

if (currQ->numRequests>0){ //If pending requests...
tokenUpdate(currQ);    //...update tokens
if (currQ->numTokens>0) { //Visit queue if available tokens

numReq=DeQueue(currQ, &first, &last, numReq, TRUE);  //Pick requests, reduce tokens
if (batch == NULL) batch = first; //Add requests to...
else lastReq->nextReq = first; //...the end of the batch
lastReq = last;

}
}
currQ = currQ->nextQ;

}
currQ = Q0->nextQ; //Start work-conserving phase
while (numReq>0 && currQ!=NULL) {

<same as above, but without checking for tokens,>
<and the last parameter in the DeQueue-call is set to FALSE>

}
rootQ.nextDL = startTime + rootQ.nextBSize*rootQ.t_es; //Estimated finishing time
return(&batch);

}  

Figure 7-24: Algorithm for the Build()-function in the batch builder 

While the Notify()-function controls the batch builder, the Build()-function has 

the overall responsibility for assembling the request batches. Given the latest time at which 

the serving of the batch will start, and the deadline of the controlling request, the 
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Build()-function  selects as many requests as possible from the request queues. This is 

shown in Figure 7-24. 

The assembly of a batch is performed in two phases. In the first phase, the ordinary 

selection of requests takes place, where the availability of tokens is taken into 

consideration. This means that only requests from reservation-based queues and 

proportional-share queues are selected during this phase, since best-effort queues are not 

assigned tokens. It is during this phase that we make sure that all queues with bandwidth-

reservations actually get the bandwidth they are entitled to. 

Next, if there is room for more requests in the batch, the work-conserving phase starts. 

Bandwidth that has not been reserved, as well as unused reserved bandwidth, is now 

distributed among the queues. The algorithm for this phase is dependent on the chosen 

work-conservation policy, as described in Sub-section 6.4.3). In Figure 7-24, we show the 

algorithm for a very simple policy; if there is still capacity left after all queues have been 

visited, each queue with pending requests is visited once more, and more requests selected.  

Generally, tokens are not taken into consideration during the work-conserving phase. 

This approach is a consequence of the purpose of the extended token bucket principle: 

• It is used to ensure that all reservation-based and proportional-share queues receive at 

least their share of the disk bandwidth.  

• It prevents queues from starving other queues, by limiting the amount of bandwidth 

that a queue is allowed to use. 

Once these requirements have been fulfilled, the tokens are no longer needed. Instead, 

the available time in the batch becomes the only criterion. Thus, the numReq parameter in 

the DeQueue()-call becomes the tool to realize the work-conserving policy. When there 

is no more capacity left for the batch (i.e., the numReq-variable reaches zero), or all 

queues have been visited once more (depending on what comes first), the work-conserving 

phase ends.  
TokenUpdate(*qh)

queueHeader *qh;
{

elapsed = currTime – qh->lastAssigned; //How much time since last update
tokens = floor(elapsed/qh->tokenRate); //How many tokens to add
qh->numTokens += tokens;
if (qh->numTokens > qh->maxTokens) //Bucket depth exceeded?

qh->numTokens = qh->maxTokens;
if (tokens > 0) qh->lastAssigned += tokens*qh->tokenRate; //Update time for last update

}
 

Figure 7-25: Algorithm for the TokenUpdate()-function in the batch builder 
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Before requests can be selected from a queue during the normal phase, a token update 

operation must be performed on the queue, in order to establish if, and how many, requests 

that can be selected. This is shown in Figure 7-25. Time is measured since the last token 

update, and tokens are added according to the token rate. 

The DeQueue()-function is responsible for moving requests from a queue and into 

the batch being assembled (the batch is a linked list of request descriptors). The algorithm 

is shown in Figure 7-26. The principle of this algorithm is to return a linked list of 

requests, where the variables firstR and lastR points to the start and end of the list, 

respectively. 
DeQueue(*qh, **firstR, **lastR, max, token)

queueHeader *qh;
requestDescriptor *firstR, *lastR; //Will point to first and last request
int max; //Max # of requests to pick
boolean token; //Indicates whether tokens are used

{
*firstR = req = qh->firstReq;
if (!token) qh->numTokens++; //For use in the work-conserving phase 
While (max > 0 && qh->numTokens > 0 && req != NULL) { //Select requests

if (token) qh->numTokens--; //Remove token if not work-cons. phase
qh->numRequests--; //Update # of pending requests
rootQ.nextBSize++; //Update batch size
max--; //Reduce “space” left in batch
*lastR = req;
req = req->nextReq;

}
qh->firstReq = req; //De-queue the request(s)
req = *lastR;
req->nextReq = NULL; //Detach the last selected request
if (!token) qh->numTokens--; //Remove the extra token (for use...
return(max); //...in the work-conserving phase)

}  

Figure 7-26: Algorithm for the DeQueue()-function in the batch builder 

If tokens are not used (i.e., we are in the work-conserving phase), we add a token 

before the request picking start. This is just to make sure that there is at least one token 

available (otherwise the while-loop would not start). The extra token is removed before the 

function ends. 

When the disk is serving the last request of a batch, APEX submits a new batch to the 

disk driver. This is done by the Submit()-function in the batch builder (see Figure 7-27), 

which takes a pointer to a list of request descriptors as input, extracts the requests from the 

request descriptors, and submits the requests to the disk driver. As mentioned earlier, we 

assume that the calls to the disk driver are non-blocking. The empty request descriptors are 

either destroyed, or returned to a pool of empty descriptors. 

Note that the code shown in Figure 7-27 is based on using a “single-request”-call to the 

disk driver. If calls for submitting multiple requests at once are available, as described in 

Sub-section 6.1.4, the while-loop in the function can be dropped. 
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Submit(*batch)
requestDescriptor *batch;

{
while (batch != NULL) {

Make_Request(batch->bufStruct); //Call the disk driver (OS-dependent)
rd = batch;
batch = batch->nextReq; //Go to next request descriptor
<release rd>; //Remove the request descriptor

}
}  

Figure 7-27: Algorithm for the Submit()-function in the batch builder 

Finally, the PostSubmit()-function is responsible for handling low-latency 

requests. If there are pending requests of this type, the function is called each time the 

Notify()-function is called, be it by the queue scheduler or the disk driver.  
PostSubmit(*qh)

queueheader *qh;
{

reqsLeft = floor((rootQ.currDL – currTime)/rootQ.t_es); //How many requests can be...
//...served in the remaining time

availReq = reqsLeft – rootQ.currBSize; //How many more can be inserted
while (qh->firstReq != NULL && availReq > 0) {

Make_Request(qh->firstReq->bufStruct); //Call the disk driver (OS-dependent)
rootQ.currBSize++; //Update batch size 
rd = qh->firstReq; 
qh->firstReq = qh->firstReq->nextReq;               //Take the request out of the queue
<release rd>;           //Remove the empty request descriptor
qh->numRequests--;

}
}  

Figure 7-28: Algorithm for the PostSubmit()-function in the batch builder 

In Figure 7-29, we show the course of a Notify()-call from the disk driver to APEX. 

For this particular example, we assume that the call makes the size of the current batch go 

below the threshold value (rootQ.bLimit), such that a call to the Build()-function is 

triggered.  
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Figure 7-29: Functions involved in a Notify()-call from the disk driver, assuming that the call 

triggers a Build()-call 

7.4 Complexity 
Since the configuration of APEX shown in this thesis could appear as relatively complex, 

it is important to investigate the cost of using the scheduler. In this section, we examine the 
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computational complexity (i.e., the running time) of APEX, and for this, we use “big oh” 

notation [1].  

As mentioned earlier, APEX consists of two functional parts: request management and 

queue management. The request management is the more critical part, since it is involved 

in every disk request submitted to the storage subsystem. The queue management is only 

active each time a queue is requested, or a transaction changes state (i.e., it starts, ends, or 

changes bandwidth requirement).  

In the following sub-sections, we use a number of different parameters to analyze the 

running time of the different functions. We provide an overview of these parameters in 

Table 7-1, and in this table, we have tried to indicate a probable range for the values that 

each parameter may take. Note, however, that these ranges are by no means meant to be 

exact; they only indicate the magnitude of the values. 

Table 7-1: Overview of the parameters used in the complexity analyses 

Parameter Description # 

E Number of elements in the ActiveQueues-array (i.e., number 
of instantiated  queues) 100 

P Average number of requests selected from each queue 1 – 20 
Q Number of queues 5 – 20 
Rq Number of requests in queue q 1 – 50 
Tq Number of transactions in queue q 1 – 5 
T Number of transactions in the system (i.e., the ActiveTrx-list) 1- 200

 

7.4.1 Request Management 
When a disk request arrives, the location of the correct queue is done in a single step, given 

the queue ID associated with the disk request (Figure 7-19). Next, the request must be 

placed in the correct position within the queue. How much of the request list that must be 

traversed depends on the type of queue (i.e., how the pending requests are ordered in the 

queue), but in the worst case all requests in the queue in question must be traversed, until 

the correct position is found (Figure 7-21). Consequently, the worst-case running time is 

O(R R ber of pending requests in the queue, for each request that is 

submitted to the storage subsystem.  
q), where q is the num

The other part of the request management, assembly of a batch, first requires finding 

the controlling request (Figure 7-23). This operation has a worst-case running time of 
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O(Q), where Q is the number of queues. Note that this is the number of candidate queues, 

which is normally lower than the number of instantiated queues. During the batch 

assembly, all queues are checked, and in the worst case, each of these queues is visited 

twice: once during the normal batch assembly phase, and once during the work-

conservation phase (Figure 7-24). Thus, the batch assembly operation has a worst-case 

running time of O(Q+2QP), where P is the average number of requests picked per queue.  

Finally, if we assume that each disk request is submitted separately to the disk driver, 

the batch submission operation has a running time of O(QP), i.e., corresponding to the 

batch size. The total complexity of the batch assembly then becomes O(3QP+Q). If we use 

the lio_listio()-call described in Sub-section 6.1.4, this is reduced to O(2QP+Q), 

since all requests in the batch can be submitted with one call. However, in both cases, if we 

simplify according to the rules of the “big oh” notation, the resulting running time becomes 

O(QP). 

If we compare this to the schedulers in the reference group, we find that the first part, 

the placement of requests in the queues, is identical to APEX. A new request must be 

placed in the correct position within its queue, and this requires exactly the same 

operations as in APEX.  

For the second part, Cello [86] visits all queues and moves as many requests as possible 

to the scheduled queue, i.e., a running time of O(QP). If there is unused bandwidth, queues 

with pending requests are re-visited, and more requests picked, adding O(QP). In addition, 

each request is submitted individually to the disk driver. Thus, the total running time for 

this part becomes O(3QP).  

Cello does not have the concept of a controlling request, therefore the O(Q) time 

needed for locating this request is saved. On the other hand, the slack stealing technique 

used for inserting low-latency requests requires scanning the scheduled queue each time 

such a request is inserted, i.e., an O(S)-operation for every low-latency request, where S is 

the number of requests already in the scheduled queue. APEX, on the other hand, only 

relates to the number of outstanding requests in the current batch (Figure 7-28), i.e., an 

O(1)-operation. The combined running time of Cello becomes O(QP), i.e., equal  to 

APEX. 

In MARS [13], each queue is visited only once in each round (i.e., there is no 

additional work-conserving phase), and requests are picked according to the allocated 

service quantum. Thus, the running time for moving requests from the queues to the 
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working queue (corresponding to the scheduled queue in Cello) is O(QP), which is also the 

overall complexity. 

The Prism scheduler [103], first selects requests from the “periodic” queue and the 

“aperiodic minimum-throughput” queue, taking O(2P), and sort these in SCAN order. The 

sorting algorithm is not specified, but if we assume a fast algorithm like Quicksort, this 

takes O(2Plog(2P)). The scheduler then continues by selecting requests from the other two 

queues (“interactive” and “aperiodic best-effort”), and for each request selected, the 

already selected requests must be scanned to find an insertion point for the new request. 

This takes O(2P2P), which is reduced to O(P2). Thus, the overall complexity becomes 

O(P2+2Plog(2P)), which is reduced to O(P2). 

From this short analysis, we conclude that the request insertion phase is equal for all 

schedulers (both APEX and the reference group). As for selecting requests from the queues 

and create a set of scheduled requests (a batch), APEX, Cello, and MARS performs 

equally (O(QP)). Given the value range of P and Q (see Table 7-1), the Prism scheduler 

will, in practice, also perform similarly to APEX.  

Thus, our conclusion is that APEX does not have a higher degree of computational 

complexity than the schedulers in the reference group for this task (see Table 7-2). 

Table 7-2: Comparison of complexity for APEX and the reference group 

 Submit one request to 
storage subsystem 

Select requests for a 
round (batch) 

Cello O(Rq) O(QP) 

MARS O(Rq) O(QP) 

Prism O(Rq) O(P2) 

APEX O(Rq) O(QP) 

 

7.4.2 Queue Management 
The queue management functionality is unique to APEX. None of the reference schedulers 

describes similar functionality, and a comparison is therefore not meaningful. Still, it is 

important to investigate the complexity of this functionality, in order to get an idea of the 

overhead introduced.  
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Queue Request Interface 

The RequestQ()-function is O(1), as are InsertTD(), Move(), AddTrx(), 

AddQHTD(), and UpdateBW(). The UpdatePS()-function (Figure 7-14) is O(Q), 

where Q is the number of instantiated queues.  In total, the complexity of the queue request 

interface is therefore O(Q).  

AdmitCommit Interface 

The AdmitCommit()-function itself (Figure 7-9) is O(1). The GetDescr()-function  

must search the list of transactions, which is O(T) in the worst case. Next, the FindQH()-

function traverses the list of instantiated queues, i.e., a complexity of O(Q).  

If a new queue must be instantiated, the GetID()-function must traverse the 

ActiveQueues-array, an operation that is O(E) in the worst case, where E is the number 

of elements in the array. However, since E is a fixed number, this is reduced to O(1). Then 

the new queue descriptor must be inserted into the list of instantiated queues, which is done 

by the InsertQ()-function. This operation has a complexity of O(Q). Consequently, the 

worst-case complexity of the AdmitCommit-interface is O(T+2Q), which is reduced to 

either O(T) or O(Q), depending on which is the larger.  

Transaction State Interface 

Independent of what kind of state change takes place, the TrxState()- and Move()-

functions (Figure 7-10 and Figure 7-11) have a complexity of O(1). This also applies to 

RemoveTrx(), UpdateBW(), and AddQHTD(), while GetDescr() has a 

complexity of O(T). 

If the state change is ‘START’, the functions influencing the complexity are 

GetDescr() and UpdatePS(), the latter having a complexity of O(Q). Thus, the 

complexity is O(T+Q), which we reduce to either O(T) or O(Q), depending on which is the 

larger.  

If the state change is to ‘END’ or ‘ABORT’ additional functions are executed, which 

have the following complexities: RemoveTD() is O(T), RemoveReq() is O(R

RemoveQHTD()is O(T CheckQ()is O(T+Q). Thus, the total complexity becomes 

O(T

the largest: O(T), O(Q), or O(R

q), 

q), and 

q+3T+2Q+Rq), which we reduce to one of the following values, depending on which is 

q). 
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Finally, if the transaction state call is for a change in allocated bandwidth/weight, the 

involved functions are TrxState(), which is O(1), and UpdatePS(), which is O(Q). 

Thus, the total complexity becomes O(Q). 

Table 7-3: Complexities for the queue management functions in APEX 

Queue request O(Q) 

AdmitCommit O(T) ∨ O(Q) 

Transaction state (START) O(T) ∨ O(Q) 

Transaction state (END/ABORT) O(T) ∨ O(Q) ∨ O(Rq) 

Transaction state (CHANGE) O(Q) 

 

In Table 7-3, we show an overview of the complexities for the queue management 

functions in APEX. From this table, it is clear that these functions introduce a relatively 

modest overhead, since all functions have linear growth rate for their running time, and 

since the magnitude of the variables (Q, T, and R ely limited, as shown in Table 

7-1. In addition, the queue management functions are only used when transactions change 

state, or new transactions are (tentatively) added. Thus, the invocation frequencies for the 

functions are much lower than for the request management functions.  

7.5 Multi-Threading 
Since APEX interacts both with MMDBMS-components and with the disk driver, we have 

chosen to split APEX into three separate threads (see Figure 7-30). Thread 1 handles disk 

requests received from the PSM, and insertion of these into queues. Thread 2 handles all 

remaining communication with MMDBMS-components, except notifying the PSM about 

completed requests, which is done by the batch builder. In addition, this thread controls 

creation and removal of queues, and distribution of bandwidth among the queues. Thread 3 

handles communication with the disk driver, as well as assembling batches of requests, and 

submitting these to the disk driver. This means that thread 1 and 3 handles request 

management, while thread 2 is responsible for the queue management.  

q) is relativ
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Figure 7-30: Multi-threading and usage of the main data structures in APEX 

During normal execution, all threads access the main data structure of APEX, i.e., the 

queue list. For instance, the Sort()-function in the queue scheduler (thread 1) adds 

requests to the queues, while the DeQueue()-function (Figure 7-26) in the batch builder 

(thread 3) removes requests, possibly from the same queues. To avoid race conditions, it is 

therefore necessary to protect the data structure using, for instance, semaphores. 

There are two entities with critical regions, namely the queue header structure (Figure 

7-3) and the request descriptor structure (Figure 7-6). Some of the attributes in these 

structures are accessed by functions in different threads, and it is therefore necessary to 

protect, either the attributes or the entire structure, with locks, in order to avoid race 

conditions. In Table 7-4, we have listed the structures and attributes in question, together 

with the components accessing them.  

Among the schedulers in the reference group, only Cello refers to the usage of threads. 

According to [85], Cello uses one thread for the class-independent scheduler, and one 

thread for each class-specific scheduler. Thus, with n class-queues, n+1 threads are 

required.  

When a disk request arrives, a class-specific scheduler thread is responsible for 

receiving the request and place it in the correct position in its queue. The class-independent 

scheduler thread moves requests from the class-queues into the scheduled queue. To avoid 

race conditions, access to all queues are controlled by read-write locks. 
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Table 7-4: Attributes accessed by functions in different threads 

Data structure Attribute Write Read 

numRequests 
Queue scheduler (T1) 

Batch builder (T3) 
Batch builder (T3) 

firstReq 
Queue Scheduler (T1) 

Batch builder (T3) 

Queue Scheduler (T1) 

Batch builder (T3) 

nextQ Queue/Bw mgr  (T2) 
Queue/Bw mgr (T2) 

Batch builder (T3) 

numTokens 
Queue/Bw mgr (T2) 

Batch builder (T3) 
Batch builder (T3) 

Queue Header 

tokenRate Queue/Bw mgr (T2) Batch builder (T3) 

Request 

Descriptor 
nextReq 

Queue scheduler (T1) 

Batch builder (T3) 

Queue scheduler (T1) 

Batch builder (T3) 

 

7.6 Summary 
In this chapter, we have presented the implementation of APEX. All major functions have 

been described using detailed pseudo-code, we have analyzed the complexity, and 

investigated the consequences of using multi-threading.  

With respect to our four claims, we have demonstrated in this chapter that it is possible 

to design and implement a disk scheduler that uses metadata from a MMDBMS, i.e., Claim 

1 has been our primary target. In addition, by thoroughly describing each component in 

APEX, the reader should be able to assess our disk scheduler framework against Claim 2 

(configurability of APEX) and Claim 3 (good combination of QoS-support and high 

utilization). 

In the next chapter, we describe how APEX, together with C-LOOK and Cello have 

been implemented in a simulation environment, and we present the results of the 

experiments performed on the three schedulers. 
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Chapter 8  

Performance Evaluation 

In this chapter, we present the performance evaluation of three disk schedulers, namely C-

LOOK, Cello, and APEX. All three schedulers have been implemented in a simulation 

environment, and they are run with the same workload. We first present the 

implementation of the simulations and the tools used. Next, we describe the workload used 

as input to the simulations, before we present the configuration of the experiments. Finally, 

the results of the simulations are presented, together with an analysis of the results.  

The purpose of this chapter is partly to serve as a proof-of-concept, showing that the 

principles of APEX also work in practice. In addition, the chapter serves as partial proof 

for all of the four claims that were presented in Section 1.3. 

We assume that the reader is familiar with the requirements analysis in Chapter 4, the 

analysis of related work in Chapter 5, and the description of APEX in Chapter 6 and 

Chapter 7.  

8.1 Introduction 
In our analysis of existing disk schedulers in Chapter 5, we found Cello, MARS, and Prism 

to be the disk schedulers that come closest to our requirements. Ideally, we should 

implement all three schedulers, and perform comparisons with an implementation of 

APEX. However, due to limited time, we found it necessary to limit ourselves to one 

scheduler, in addition to APEX. We chose to implement Cello, since this scheduler appears 

to be best suited for our environment: MARS lacks support for low-latency service, and 
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We expect APEX, with its batch building principle, to perform well, with respect to 

disk efficiency. However, providing QoS-support usually has a cost in that respect, and in 

order to investigate that cost, we have also chosen to compare APEX with a pure 

performance-oriented scheduling algorithm. For this purpose we chose C-LOOK, since this 

has proven to be one of the most efficient variants of the SCAN algorithm [106]. 

When evaluating a disk scheduler, there are several possible approaches, such as using 

an analytical model, simulating the disk system, or implementing the scheduler on a real 

system. In our work, we have chosen to use simulations, as this provides us with a very 

controllable and predictable environment, compared to an implementation on a real 

system. Still, the environment is relatively realistic, so “real” schedulers can be ported to 

the simulation environment with a minimum of code modifications. In addition, the 

simulator enables very detailed measurements, which allows us to investigate the behavior 

of each scheduler in detail. Using an analytical model is not a feasible solution, since it is 

very difficult to express the behavior of the different schedulers in such a model. 

There are two goals of the simulations:  First of all, we use them as proof-of-concept, 

i.e., we demonstrate that the principles of APEX work in practice. Second, we use the 

simulations as partial proof of the claims presented in Section 1.3:  

• Claim 1: We show that APEX can be integrated with a MMDBMS by applying the 

(simulated) workload of a MMDBMS, and show that APEX can handle this. 

• Claim 2: The versatility of APEX is demonstrated by applying very different types of 

workload. 

• Claim 3: The combination of QoS-support and high bandwidth utilization is 

demonstrated by comparing APEX with Cello and C-LOOK. By running the same 

simulations with Cello and APEX, we wish to show that APEX provides better disk 

efficiency than Cello, given the same level of QoS. We then compare APEX and Cello 

to C-LOOK, which is used as a reference with respect to pure performance. This gives 

us an indication of the “cost” of the QoS-support, both in APEX and Cello. 

• Claim 4: By investigating the behavior of C-LOOK, we get an indication of how this 

class of schedulers, which is the one used internally in disks, is suited for environments 

where QoS-support is required. 
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8.2 Implementation 
We first describe the simulation environment, and how the three disk schedulers have been 

adapted for use in this environment. In addition, we describe the format of the trace-files 

used as input to the simulations, as well as the format of the output, and how we analyze 

this information. 

8.2.1 DiskSim 
We have chosen to use a disk system simulator called DiskSim [30]. This simulation 

environment is developed at the University of Michigan, and it is intended as a support for 

research within storage subsystems.  

The simulator includes modules for a number of components within the storage 

subsystem, including disks, controllers, buses, and disk drivers. Since these components 

are modeled individually, they can be configured and connected in a number of ways, 

depending on the experiments to be performed. 

The disks are modeled particularly detailed, and the disk component has been validated 

against several commercial disks [12, 105, 106]. According to the authors, DiskSim 

provides an accuracy that “exceeds any previously reported simulator” [30].  

DiskSim can be driven by external disk request traces, or by an internally generated 

synthetic workload. For our experiments, we rely solely on the use of external disk 

requests, since this allows full control of the workload. 

 

Device Driver

Controller

Disk

Bus

Bus

 

Figure 8-1: Physical organization of the components simulated in DiskSim 

Furthermore, DiskSim offers a large number of adjustable parameters. However, 

included in the DiskSim package is a set of pre-defined configurations of these parameters, 

based on real components. In our simulations we have used such pre-defined 

configurations, and it has therefore only been necessary to specify the “physical” setup, 

i.e., which components that are used, and how they are interconnected. In Figure 8-1, we 
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show the component organization used in our simulations. The actual setting of each single 

parameter is shown in Appendix A. 

8.2.2 Using Disk Schedulers with DiskSim 
We have implemented all three schedulers on top of DiskSim. As illustrated in Figure 8-2, 

we feed exactly the same workload (i.e., the same trace file) to each of the schedulers, 

which, in turn, order the requests according to their algorithms. For DiskSim itself, there 

are simulation parameters that can be adjusted, and finally Cello and APEX provides 

adjustable simulations parameters such as bandwidth distribution. 

C-LOOK

DiskSim

Workload (trace file)

Simulation parameters

Simulation results

Cello APEX

 

Figure 8-2: Using DiskSim for evaluation of disk schedulers 

Common in all three scheduler set-ups is the use of simulated time, held in a global 

variable. This simulated time is driven by DiskSim, i.e., a new request is added to a queue 

when the time computed by DiskSim is equal to the arrival time of the request. This works 

well, because DiskSim updates this simulated time a large number of times for every 

request that is processed: When a scheduler submits a disk request to DiskSim, it uses the 

disksim_interface_request_arrive-call to submit the request. Before DiskSim 

returns the call, it updates a global variable with the next point in time at which an event 

will take place in DiskSim. The simulation in DiskSim is then driven by 

disksim_interface_internal_event-calls. Each call leads to the same global 

variable being updated with the next point in time for a DiskSim-event to take place.  

In summary, each simulation of the serving of a disk request starts with a 

disksim_interface_request_arrive-call, followed by a number of 

disksim_interface_internal_event-calls, typically 500-1000 per disk request. 

For each call, the simulated time is updated, and this means that we achieve a simulated 

time with a granularity of less than ten microseconds.  

If DiskSim is finished with all queued requests before the arrival time of the next 

request in the trace, there is a danger that time will stop progressing. However, if such a 
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situation occurs, we let the scheduler move time forward to the arrival time of this next 

request. 

Since the disk schedulers must relate to a trace file instead of actual disk requests, it has 

been necessary to make minor changes to the schedulers, compared to a real 

implementation. Below, we describe the implementation of the three disk schedulers in 

their simulation version. 

Cello 

The designers of Cello, P. Shenoy and H. M. Vin, originally implemented their own disk 

simulator, in order to evaluate disk schedulers.  This simulator, incidentally called DiskSim 

as well, has many features in common with the simulator we use, although it models the 

disk considerably less detailed and it does not take other components of the storage 

subsystem into consideration.  

The simulation version of Cello, together with the simulator, is publicly available [82], 

and due to the many similarities between the two simulators, we were able to port Cello 

with a minimum of modifications. The main difference lies in how the two versions feed in 

requests from the trace file. 

Our implementation uses three threads; one for handling the reading of requests from 

the trace file and inserting them into the correct queue, one for Cello itself (i.e., picking 

requests from the class queues and inserting them into the scheduled queue), and one for 

DiskSim together with the function that picks requests from the scheduled queue. This is 

slightly different from the real Cello implementation, which uses one thread per class-

queue scheduler and one for the class-independent scheduler [85].  

C-LOOK 

As a reference with respect to performance, we chose to implement C-LOOK, which has 

proven to be the most efficient variant of the SCAN-algorithms [106]. The differences 

from traditional SCAN are that the disk arm is allowed to return when it reaches the last 

cylinder for which there are requests and that the disk arm serves requests only in one 

direction.  

Since C-LOOK is not a QoS-aware scheduler, it is unable to consider the type of the 

disk requests. Instead, all requests are placed in the same queue, with disk address as the 

only sort criterion. The queue is split in two: the first part contains all disk requests with 
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disk addresses. The second part of the queue contains all disk requests with block 

addresses smaller than the current head position, and also these requests are sorted on 

ascending addresses. When all requests in the first part of the queue has been served, i.e., 

the disk head reaches the outermost position, the second part of the queue becomes the first 

part, and a new second part is started. 

The implementation uses two threads, one for reading requests from the trace file and 

placing them in the correct position in the queue, and one for DiskSim.  

APEX 

For APEX, it has been necessary to adapt the queue manager and the bandwidth manager 

to read from files, instead of receiving requests from the MMDBMS (see Figure 8-3). 

Thus, at the start of a simulation, the queue specification files are read, and the specified 

queues are instantiated and assigned bandwidth.  

Like in Cello, it has also been necessary to modify the input of requests. In the 

simulation version, the request distributor actively fetches requests from the trace file each 

time the simulated time reaches the arrival time of the next request. 

Request Distributor/
Queue Scheduler

Queue/Bandwidth
Manager

...

Batch Builder

Request Dispatcher

DiskSim

Trace fileConfiguration files

Result file

Configuration files

 

Figure 8-3: Implementation of APEX on top of DiskSim 

The Submit()-function is implemented according to a single request interface, i.e., 

only one request can be submitted per system call (see Sub-section 6.1.4). In addition, the 

final sorting of requests is done in the request dispatcher, instead of in the disk driver, and 

only one request submitted to DiskSim at a time. This was necessary due to the fact that 

DiskSim seemed to have problems handling multiple outstanding requests. However, it is 

not clear whether this was caused by configuration problems or bugs in DiskSim. 
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On the other hand, Cello requires full control of when and in which order the requests 

are submitted to the disk driver, making the single-request solution described above a 

necessity. Thus, the two schedulers are compared under more equal conditions, but APEX 

loses the potential performance gain provided by disk-internal scheduling. 

The APEX implementation uses three threads; one for the request distributor/queue 

scheduler, one for the batch builder, and one for the request dispatcher, i.e., the 

Submit()-function, together with DiskSim and the queue/bandwidth manager.  

8.2.3 Input to the Simulations 
The workload for the simulated schedulers is a file containing a list of disk requests. For 

each simulation, there is only one workload file; thus, if there are more than one type of 

disk requests (for example, real-time and best-effort requests), these are merged into one 

file, and sorted on arrival time. Each line in the file constitutes one disk request, and 

contains the following information: 

• Request flags: Used to indicate whether the request is a read or write. 

• Device number: Specifies to which disk the request should be sent. 

• Block number: The address of the first block to be read. DiskSim uses LBN (logical 

block number) addressing, thus, the disk appears as a long array of consecutive blocks. 

• Request size: The number of bytes requested (must be a multiple of the sector size – 

512 bytes). In our simulations, the request size is always fixed, such that all requests 

request the same amount of data, and we use a request size of 65536 bytes (64KB). 

• Queue ID: The ID of the APEX queue that the request should be put in. As explained 

in Sub-section 7.3.2, this number is used as an index into the ActiveQueues-array. This 

parameter is also used in Cello, to identify the correct queue, while it is ignored by C-

LOOK. 

• Arrival time: The time (in seconds) when the request arrives at APEX. As explained in 

Sub-section 8.2.2, the request distributor compares this value to the simulated time, to 

know when the request should be inserted into the correct APEX queue. This value is 

also the sorting criterion in the trace file, such that all requests in the trace are listed in 

order of ascending arrival time. 

• Deadline: The deadline (in seconds) for the request, given in absolute time. If a request 

does not have a deadline, this value is set to zero. 
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• Priority: If the request uses a queue that supports priorities, the priority of the request is 

given here. Otherwise this value is set to zero. 

• Transaction ID: This value gives the ID of the transaction that the request belongs to. 

The first four parameters constitute a “standard” disk request, and are, together with the 

arrival time, the parameters required by DiskSim. The remaining parameters are used by 

APEX (we call these APEX-parameters). Out of the APEX-parameters, Cello uses Queue 

ID and deadline, and ignores the rest, while C-LOOK ignores all these parameters. In 

addition, all schedulers use the block number when ordering the requests based on position 

of the data. 

In addition to the workload, APEX also requires information about the queues that 

should be instantiated. We do this with two configuration files; the first one is used to 

create the ServiceTable array, and contains a list of queue specifications. For each queue, 

we specify guarantee level, allocation paradigm, whether it is a candidate queue, etc. The 

second file specifies which of these queues that should be instantiated, and their queue IDs. 

In addition, token rate or weight (depending on allocation paradigm), as well as bucket 

depth are specified for relevant queues. 

8.2.4 Output from the Simulations 
DiskSim itself provides very detailed statistics about the results of the simulation. 

However, all this information is aggregated, i.e., it is not possible to identify results for a 

single transaction, a single queue, or an individual request. In addition, DiskSim only 

provides information about the handling of requests within DiskSim, while we are also 

interested in the handling of the requests within the schedulers, which are outside of 

DiskSim.   

To be able to compute statistics at a sufficiently detailed level, we have added a time 

registration module that, for every disk request, registers when it arrives in the scheduler, 

when it is submitted to DiskSim, and when DiskSim is finished serving the request. This 

new module runs outside of DiskSim and it only registers the simulated time, i.e., it just 

reads the global time variable, and has no possibility of modifying it. Thus, the time 

registration module has no effect on the simulation results. 

Using our module, each request is registered in a result file with the following 

information: 
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• Queue ID: In a real implementation, this value can be discarded as soon as the request 

is placed in the correct queue. However, to be able to calculate statistics on a per-queue 

basis, this value follows the request all the way through the simulator.  

• Block number: The address of the first sector that was read or written. 

• Arrival time: The time when the request arrived at the disk scheduler. 

• Start time: The time when the request was selected for service, i.e., the request was 

submitted into DiskSim. 

• Finishing time: The time when DiskSim reported that the request was completed. 

• Service time: The time needed by DiskSim to serve the request, computed as finishing 

time minus start time. 

• Response time: The time needed by the storage subsystem to serve the request, 

computed as finishing time minus arrival time. 

• Transaction ID: To be able to compute statistics on a per-transaction basis. 

Even though C-LOOK does not utilize any of the APEX-parameters, they are still 

preserved as the requests pass through the scheduler. Thus, using the result files, we are 

able to perform a detailed comparison of the behavior of the disk schedulers. 

Most of our analysis is performed on a per-queue basis, where we compute average and 

maximum response times, as well as 95-percentiles. In addition, we measure the 

throughput of large transfers, by measuring the time from the first to the last disk block 

being transferred. Finally, by computing average service time, we can say something about 

the efficiency of the disk schedulers. Lower average service time means that the schedules 

leads to less non-productive work (i.e., head positioning), which in turn indicates a more 

efficient disk scheduler. 

8.3 Workload 
In order to create a realistic workload, we use four different types of workload in our 

simulations: continuous media playback (corresponding to a multimedia playback query), 

metadata retrieval query, checkout operation, and low-latency requests. In the following 

sub-sections, we describe each of these workload types. 
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8.3.1 Continuous Media Playback 
In our simulations, we assume that audio and video are multiplexed when stored on disk. 

However, due to limitations in our tools for creating traces, it has been necessary to treat 

the two MMDTs separately, and then join them as a final step. 

Video 

We assume that the videos stored in the DBS can be coded in different formats, such as 

MPEG-I, MPEG-2, DVD erences of the author and the 

content of the video. For instance, for a “talking head” type of video, low resolution 

MPEG-1 may suffice, while a video showing a detailed medical procedure requires much 

higher resolution.  Thus, different videos may have very different bandwidth requirements.  

For our experiments, we have used six different videos, encoded in different MPEG 

formats and in various resolutions (see Table 8-1). “Lecture1” to “Lecture3” are video 

recordings of classroom lectures held at UniK, while “Doc1” is a documentary on quality 

assurance in a Norwegian company, made especially for a course in quality assurance held 

at UniK. “Medical” is an instructional video used by the medical faculty at the University 

of Oslo, and finally, “Doc2” is a documentary about Cuba, recorded from television. All 

these videos, except the Cuba documentary, are actually used in electronic distance 

education today, and, as such, represent a very realistic workload.  

Table 8-1: Video traces used in the simulations (the bandwidth requirements in pages/s are based 

on a page size of 64KB) 

9, MPEG-4, etc., based on the pref

Name Format GOP Length
(min)

Reso-
lution 

Rate
(fps)

Size 
(MB)

Avg. bandw. 
KB/s (pages/s) 

Max. bandw.
KB/s (pages/s)

Lecture1 MPEG-2 I(BBP)4BB 48 720x576 25 1668.1 582 (9.1) 768 (12)

Lecture2 MPEG-1 I(BBP)4BB 60 320x240 25 348.6 98 (1.53) 192 (3)

Lecture3 MPEG-2 I(BBP)4BB 46 352x288 25 416.1 154 (2.4) 256 (4)

Doc1 MPEG-1 I(BBP)4BB 29 480x360 25 355.8 212 (3.32) 320 (5)

Medical MPEG-1 I(BBP)4BB 11 720x576 25 221.1 345 (5.39) 448 (7)

Doc2 DVD I(BBP)3BB 49 720x576 25 1203.7 421 (6.58) 1088 (17)

  

The videos were first transferred from DV-tape to avi-files, before using TMPGEnc 

[43] to encode them into the different MPEG formats. Next, traces consisting of long lists 

                                                 
9 DVD is one particular interpretation of the MPEG-2 standard. 
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of frame sizes were generated, using a modified version of mpeg2dec [52, 70] . In order to 

make these traces useable for APEX, we must convert the frame sizes into disk requests, 

by aligning the frame sizes with the page size. Thus, several small frames may fit within 

one page, while large frames may require several blocks.  

When doing this, we also determine the storage structures of the simulated data. In the 

simulations, the frames of each video are grouped into one-second chunks, each chunk 

consisting of 25 frames. To the storage subsystem, such a chunk constitutes an atomic unit 

with no visible internal structure. For each chunk, we sum up the sizes of the 25 frames, 

and divide by the page size. If the result for one such chunk is n pages, then n page 

requests, with the same deadline, are generated. 

Audio 

We assume that all audio tracks are constant bit-rate, which is in accordance with the 

MPEG-1 audio standard (for layer 1 and 2, support for variable bit-rate coding is “not 

mandatory”) [71]. In Table 8-2, we list the characteristics of the audio tracks for the 

different videos. Note that, the video “Medical” does not have a sound track. 

Table 8-2: Audio traces used in the simulations 

Name Format Size 
MB 

Bandwidth 
KB/s 

Lecture1 MPEG-1 Audio layer 2 135.0 48  
Lecture2 MPEG-1 Audio layer 2 84.4 24 
Lecture3 MPEG-1 Audio layer 2 64.7 24 
Doc1 MPEG-1 Audio layer 2 40.8 24 
Doc2 MPEG-1 Audio layer 2 133.9 48 

 

As mentioned, we have not been able to provide audio trace data for multiplexed 

videos, and the size and bandwidth requirements shown in Table 8-2 are therefore based on 

the standard bit-rates listed in the MPEG-1 audio standard. 

Multiplexing Audio and Video 

Starting with the original video frame trace, we divide the size of one second of audio with 

the video frame rate, and, thus, get the “number of audio bytes per video frame”, which is 

constant, since we assume CBR audio. This number then is added to each frame size in the 

frame trace. Next, we create the disk request traces in the same way as described for video. 
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Since we use a round-based model, which implies that several frames are requested in each 

round, this approach provides a relatively good approximation of the disk load.  

Figure 8-4: Number of 64KB page requests per one-second round for each video 
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In Figure 8-4, we show the resulting bandwidth distribution for each of the resulting 

videos with multiplexed audio. To illustrate the variability of the bandwidth, we also show 

the bandwidth trace for the “Doc2” video, in Figure 8-5. 
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Figure 8-5: Bandwidth trace for the "Doc2" video 

8.3.2 Metadata Retrieval Query 
This workload type covers metadata retrieval and metadata authoring, and in the 

remainder, we refer to these as MR-queries. Unfortunately, we have been unable to find 

adequate traces that show disk request patterns in a DBMS query context. In addition, such 

patterns will be dependent on the type of DBMS, the storage structures used, the extent to 

which indexes are used, etc.  

Instead, we have created a workload based on measurements performed in [9], where, 

depending on the query, between 2 and 1011 disk requests were submitted during each 

query, with an average of 364 requests. These values are based on a page size of 8KB, and 

we have adjusted them according to the page size we use.  

The disk requests constituting a MR-query have an exponentially distributed inter-

arrival time, with a mean of 9.7 milliseconds, which is the smallest average inter-arrival 

time found in [9]. A user-query trace contains a set of such MR-queries, with exponentially 

distributed inter-arrival times with an average of 10 seconds. In order to vary the workload, 

we vary the number of such user-query traces. Since each query starts at a random time, 

this means that two or more queries may run concurrently. 
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8.3.3 Checkout Operations 
This type of traffic is characterized by a large burst of disk requests arriving in a very short 

time. We assume that the multimedia object being checked out is transferred over the 

network to a client machine. Thus, the bandwidth of the client’s network connection is a 

limiting factor for the arrival rate of the requests.  

In our experiments, we assume that each client has a 100Mb/s network connection, 

which means that the theoretical upper bound for the page request rate is one request every 

5 millisecond, given a page size of 64KB. Thus, in the simulations, the disk requests 

constituting a checkout operation have an inter-arrival time of 5 milliseconds. 

Each checkout operation is for an entire video, thus, depending on the video, between 

261.9 and 1823.1 MB is read from disk in such an operation. 

8.3.4 Low-Latency Requests 
These are requests that require low response times, such as requests for index data in the 

MMDBMS. The workload is based on the interactive best-effort workload used in the 

evaluation of Cello [86], and consists of single disk requests with exponentially distributed 

arrival time. The workload is varied by changing the average inter-arrival time of the 

request, and we use values from five seconds, down to 0.1 seconds. 

8.4 Configuration of Experiments 
In addition to the workload, there are several variables that can affect the behavior of the 

disk schedulers, as we described in Section 6.6. In this section, we show the settings of 

these parameters in our experiments, as well as the combination of workloads used in the 

different experiments. 

8.4.1 Simulation Parameters 
In Section 6.6, we discussed the impact that external factors such as disk block size, data 

placement, length of round times, and disk performance have on the performance of the 

disk schedulers. For our simulations, we have chosen one combination of these parameters, 

which we describe below: 

• Data placement: In our simulations, we have chosen to use random data placement, in 
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order to set up a worst-case scenario. Thus, when building the trace files, a random disk 



block was chosen. If that block was already occupied, the block address was increased 

by one, and so on, until a free block was found.  

• Disk block size: We use a disk block size, and, thus, a database page size, of 64 KB. 

Thus, every disk request sent through the disk schedulers is for 64 KB of data. We have 

chosen this size, since it is a good trade-off between throughput and latency [39, 63].  

• Round time: Many multimedia servers use a round time of 0.5 to one second [2, 64, 83, 

103], as this represents a good trade-off between disk efficiency, latency, and required 

buffer space. We have chosen to use a round time of one second in our simulations. 

• Disk performance: Obviously, the performance of the disk has an impact on the 

simulation results. However, the disks that DiskSim can simulate must be thoroughly 

analyzed first, and we are therefore forced to use the disk models that are provided in 

the DiskSim package. In our simulations we chose the Quantum Atlas 10K, which is 

one of the fastest disks that have been analyzed for DiskSim. In Table 8-3 we show the 

characteristics of this disk. With random data placement and a block size of 64 KB, we 

have measured the average throughput of the disk to be approximately 105 blocks per 

second. This gives  s. 

Table 8-3: Characteristics of the Quantum Atlas 10K disk [58] 

Size 9100 MB 

tes =  1/105 = 9.52 m

Interface Ultra 160 SCSI 

Seek time (min / avg / max) 0.8 / 5.0 / 12.0 ms 

Rotational latency 3.0 ms 

Rotation speed 10000 rpm 

Sustained throughput 18 - 26 MB/s 

 

8.4.2 Combinations of Workload 
In Section 8.3, we described the four types of workload we have created. For our 

simulations, we now merge different combinations of these workload types, and use these 

mixed workloads to evaluate the three disk schedulers. 

In Table 8-5 we show the different workload configurations used in our simulations. In 

addition, we show which workload type we vary, and what we measure. The letters 

indicating workload type refers to the list in Table 8-4. 
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Table 8-4: Types of workload 

Symbol Workload 
A Continuous media playback (audio/video) 
B MR-queries 
C Checkout 
D Low-latency 

 

For instance, configuration 2 consists of continuous multimedia data, MR-queries, and 

checkout operations (A, B, C). We keep the multimedia load and the checkout load 

constant, and vary the number of MR-query traces. As measurements, we check if there are 

any deadline violations among requests for multimedia data, we measure the response time 

of the MR-query requests, and the overall response time and throughput of the checkout 

requests. 

In all the simulations, we assume that the start times for the continuous media playback 

clients are exponentially distributed, with a mean inter-arrival time of five seconds. In 

addition, each simulation is run for 600 seconds of simulated time. 

Table 8-5: Workload configurations 

 Workload types Workload 
varied Measured 

1 A, B B A (deadline violations) 
B (response times) 

2 A, B, C B 
A (deadline violations) 
B (response times) 
C (response time and throughput) 

3 A, B, D D 
A (deadline violations 
B (response times) 
D (response times) 

4 A, B, C, D A 

A (deadline violations) 
B (response times) 
C (response time and throughput) 
D (response times) 

 

8.5 Simulation Results 
Each of the workload configurations from Table 8-5 were run on all three schedulers, and 

in this section, we present the results of these experiments. For the response time 
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measurements, we show the average and maximum value, as well as the 95-percentile for 



the measured values, i.e., for each value shown in the graphs, 95% of the actual values 

measured are smaller than, or equal to, this value. 

It is important to note that Cello and APEX are based on different allocation paradigms. 

Cello, being a proportional-share scheduler, allocates bandwidth in shares (percent) of the 

total disk bandwidth. APEX, although it supports proportional-share allocation, is basically 

reservation-based, and reserves bandwidth in pages (i.e., disk blocks) per second. For both 

schedulers, we first established how much bandwidth that was necessary for the real-time 

requests, by turning off the work-conservation, and reducing the allocated bandwidth as 

much as possible without causing deadline violations. This is why there may be slightly 

different bandwidth allocations for the real-time queues in APEX and Cello. 

In the experiments involving more than two types of workload, there are no rules or 

guidelines for distribution of disk bandwidth between the non-real-time queues. Thus, the 

distribution used in this paper is just the first of several different alternatives, and more will 

be tried, as part of future work. 

8.5.1 Experiment 1 
In this experiment, we use a fixed, real-time workload, corresponding to six playbacks of 

randomly selected videos. We then vary the MR-query workload by adding more and more 

traces, each one as described in Sub-section 8.3.2.  

We assume that there are 6 video clients, each playing back one of the six videos 

described above, selected randomly. The start times for the video clients are exponentially 

distributed, with a mean inter-arrival time of five seconds. The selected videos and their 

starting times are shown in Table 8-6. 

Table 8-6: Start times for video playbacks 

 Time Video 
1 0 Lecture1 
2 4 Medical 
3 5 Doc1 
4 14 Lecture1 
5 14 Doc2 
6 17 Medical 
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In Cello, we reserved 50% of the bandwidth for the real-time (RT) queue, and 50% for 

the interactive best-effort (IBE) queue, while for APEX; we reserved 55 pages/s for the 

real-time queue, and 50 pages/s for the MR-query queue.   
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Figure 8-6: Response times for disk requests generated by MR-queries 

The result of the simulation is shown in Figure 8-6. We see that for the 95-percentile, 

C-LOOK performs best, but the maximum response times are considerably higher than 

APEX. Cello consistently displays the highest response times. As shown in Table 8-7, both 

APEX and Cello avoid deadline violations, while C-LOOK caused a relatively high 

number of violations at high load.  

Table 8-7: Deadline violations for real-time requests, with nine MR-query traces 

 # violations Average 95% Maximum 
APEX 0 - - - 
Cello 0 - - - 
C-LOOK 3266 769 ms 2186 ms 4626 ms 

 

Since we expect the workload to vary extensively, and the bandwidth allocations 

therefore may be misaligned with the actual needs in short periods, we also investigate 

how sensitive APEX and Cello are to such misalignment. In this simulation, we use the 
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same workload, but this time all bandwidth is allocated to the real-time queue in both 

schedulers. Thus, the MR-query disk requests must rely on work-conservation only. 
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Figure 8-7: Increase in response time for MR-query disk requests with all bandwidth assigned to 

the real-time queue 

From Figure 8-7, we see that APEX performs considerably better than Cello in this 

experiment. The reason is that, when Cello selects requests during the work-conserving 

phase, it puts the requests at the end of the scheduled queue, i.e., it does not consider the 

placement of the requested data on disk. APEX, on the other hand, places all requests in 

the same batch, regardless of whether the requests were selected during the normal phase 

or the work-conserving phase, and this batch then is sorted in SCAN. 

While this experiment demonstrates the robustness of APEX with respect to over-

allocation of bandwidth to real-time queues, it is reasonable to assume that in the opposite 

case, both APEX and Cello will cause deadline violation if the total load is sufficiently 

high. However, we have not yet performed any such experiments. 

8.5.2 Experiment 2 
Here we keep the workload from the previous experiment, but in addition, we add a 

checkout-operation, as described in Sub-section 8.3.3. For Cello, we assign 50% of the 

bandwidth to the RT queue, 25% to the IBE queue, and 25% to the throughput-intensive 

best-effort (TIBE) queue (for the checkout operation). The corresponding figures for 

APEX are 55 page/s, 25 pages/s and 25 pages/s, respectively. 
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Figure 8-8: Response time for MR-query disk requests 

As can be seen in Figure 8-8, APEX performs better than Cello in this experiment. The 

reason for this is that while APEX groups requests of all types into large batches, Cello 

treats each request type individually. The result for Cello is three small “SCAN groups” 

instead of one large, and this reduces the efficiency of the disk. 

C-LOOK achieves the lowest response times for MR-query disk requests, but while 

neither APEX nor Cello violate any deadlines, C-LOOK does: With four MR-query traces, 

1246 deadlines were violated by, on average of 540 ms (see Table 8-8).  

Table 8-8: Deadline violations for real-time requests, with four MR-query traces 

 # violations Average 95% Maximum 
APEX 0 - - - 
Cello 0 - - - 
C-LOOK 1246 540 ms 1422 ms 2779 ms 

 

We also measured the throughput achieved for the checkout-operation, and the results 

are shown in Figure 8-9. The figure shows the average throughput measured over the entire 

duration of the operation. As can be seen from the figure, APEX displays the best 

throughput, followed by Cello, and with C-LOOK last.  
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Figure 8-9: Throughput for checkout-operation 

8.5.3 Experiment 3 
In this experiment, we investigate the ability of the schedulers to offer a low-latency 

service. APEX offers a special service class for this purpose, while for Cello, we are forced 

to use the IBE queue, i.e., the same queue that is used for MR-queries. 

The real-time workload is the same as in the previous experiments, and the MR-query 

workload is kept constant, using five traces. We then vary the low-latency workload, by 

varying the average inter-arrival time of the low-latency requests. 

In APEX, we assign 55 pages/s to the real-time queue, 50 pages/s to the MR-query 

queue, while no bandwidth is assigned to the low-latency queue. In Cello, we assign 50% 

of the bandwidth to the RT queue, and 50% to the IBE queue. 

As can be seen from Figure 8-10, APEX consistently achieves lower response times for 

the low-latency request, than the other two schedulers, even with an average arrival rate of 

ten low-latency requests per second. Except for the last simulation (100 ms inter-arrival 

time), the increase in response times of the MR-query disk requests was less than 4%, for 

all schedulers. With 100 ms inter-arrival time, the increase was 34%, 19%, and 17%, for 

APEX, Cello, and C-LOOK respectively. 
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Figure 8-10: Response times for low-latency requests 

8.5.4 Experiment 4 
In the final experiment, we combine all four workloads, in two different simulations. The 

first is based on one real-time client, while the second is based on four real-time clients. In 

both simulations, we use one MR-query trace, and low-latency requests with an average 

inter-arrival time of one second. 

For Cello in the first simulation, we reserve 12% of the bandwidth for the RT queue, 

78% to the IBE queue, and 10% to the TIBE queue. The corresponding reservations for 

APEX are 12 pages/s for the real-time queue, 82 page/s for the MR-query queue, and 11 

pages/s for the checkout queue. 

Figure 8-11 shows the response times for low-latency and MR-query disk requests, 

while Table 8-9 shows the throughput for the checkout operation. Neither APEX nor Cello 

violated any deadlines, and C-LOOK only violated three deadlines, with maximum 221 

ms. 
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Figure 8-11: Response times for low-latency and MR-query disk requests, with one real-time client 

In the second simulation, using four real-time clients, we assign for Cello 30% of the 

bandwidth to the RT queue, 60% to the IBE queue, and 10% to the TIBE queue. For 

APEX, we assign 31 pages/s to the real-time queue, 63 pages/s to the MR-query queue, 

and 11 pages/s to the checkout-queue. 

Table 8-9: Throughput for checkout operation (MB/s) 

 APEX Cello C-LOOK 
1 real-time client 5.7 4.4 2.7 
4 real-time clients 4.6 3.6 2.5 

 

The results are shown in Figure 8-12, while Table 8-9 shows the throughput for the 

checkout operation. We see that APEX achieves considerably better response times for 

low-latency requests than Cello. Also for the MR-query disk requests, APEX performs 

better than Cello. C-LOOK performs relatively well, but as the maximum values show, the 

variability of the response times is much higher than for APEX. 

Once again, APEX and Cello avoid deadline violation, while C-LOOK violates a 

modest 53 deadlines, by a maximum of 942 ms.  
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Figure 8-12: Response times for low-latency and MR-query disk requests, with four real-time 

clients 

8.6 Analysis of the Results 
As mentioned in Section 8.1, the purposes of the simulations are both to provide proof-of-

concept for APEX, and to function as partial proof of the four claims presented in Section 

1.3.  

From the simulation results, it is clear that the scheduling principles of APEX work in 

practice, and that the scheduler behaves as expected. During light-load situations, the 

scheduler works as a FCFS/EDF scheduler, and when the load starts to increase, batches 

are being formed. We see that the token bucket principle works well, providing each queue 

with the reserved bandwidth as a minimum, and at the same time limiting the number of 

requests selected from each queue. In general, the service types are realized as expected. 

Finally, it is clear that the work-conservation provides very effective redistribution of 

unused bandwidth.  
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8.6.1 Proof of Claims 

Claim 1: MMDBMS integration 

This claim requires that we show that APEX can handle MMDBMS workload efficiently. 

We consider the workload of experiment 4 to be representative as MMDBMS workload, 

and if we look at the results from this experiment, it is clear that APEX is able to handle 

this workload better than Cello and C-LOOK. 

Given that metadata retrieval and multimedia authoring queries generate bursts of disk 

requests, that the presentations contain mixes of (variable bit-rate) multimedia objects, and 

that the query mix is constantly changing, the overall disk workload is highly and rapidly 

varying. Thus, being able to apply available bandwidth where it is needed, and doing so 

without efficiency loss, is very important, and thanks to its very efficient work-

conservation, APEX is able to achieve this.  

Claim 2: Versatility of APEX 

This claim requires us to demonstrate the ability of APEX to handle very diverse workload 

types efficiently. The workload we have used in our simulations includes four different 

types. Although this is not an exhaustive selection, the four workload types are very 

diverse, and have been mixed in different combinations. APEX has proven to handle all of 

these workload types very well, and this fact supports our claim. 

Claim 3: QoS-support and high Bandwidth Utilization 

Our simulations show that APEX, compared to Cello, consistently provides both better 

throughput and lower response times for best-effort services, while at the same time 

providing the same QoS-level for guaranteed services. 

Comparing APEX to C-LOOK, we see that the difference is relatively small. C-LOOK 

performs slightly better with respect to response times of MR-query disk requests, but 

tends to have higher variability. For throughput of the checkout-operation and response 

times of low-latency requests, C-LOOK consistently performs poorer than APEX, and in 

addition, some of the experiments lead to a large number of deadline violations for real-

time disk requests. 

From the simulations, we conclude that APEX comes very close to C-LOOK, with 

respect to bandwidth utilization, i.e., APEX achieves a low amount of non-productive 

positioning work, and thereby increases performance. At the same time, our scheduler is 
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able to provide a large set of service types, as well as providing QoS-guarantees similar to 

Cello. This means that the cost of providing QoS-support in APEX is low. Thus, we 

consider that the simulations prove the superior combination of QoS-support and high 

utilization of disk bandwidth offered by APEX (claim 3).  

Claim 4: Disk Scheduling is necessary for QoS-support in the storage subsystem 

From the simulations we see that C-LOOK, due to its high bandwidth utilization performs 

well, also with respect to QoS-support; the deadline violations are relatively modest in 

size. Thus, depending on the latency requirements of the user, and the buffering 

capabilities in the client hardware, these violations could be masked. 

However, in the checkout experiments, we found it necessary to limit the arrival rate of 

checkout disk requests to C-LOOK, in order to limit the queue length. Otherwise, several 

hundred requests could be pending, leading to unrealistic working conditions for the disk. 

During experiments with different maximum values, we discovered that this parameter has 

a significant impact on the behavior of the scheduler. The results of experiments 2 and 4 

are based on a maximum of 25 requests in the queue. If we double this maximum queue 

length to 50, the checkout throughput increase considerably, but so does the response time 

for MR-query disk requests, as well as the number of deadline violations.  

These results indicate that, although a performance-oriented scheduler like C-LOOK in 

some cases could meet our QoS-requirements using “brute force”, its behavior varies 

considerably with varying workload mix, and this unpredictability represents a 

considerable problem for a system that offers QoS-guarantees. 

8.6.2 Observations 
The batch building principle seems to work very well. Submitting batches of disk requests 

provides the disk with good working conditions, since the non-productive disk work (i.e., 

head positioning) can be amortized over many disk requests, and this is reflected by the 

simulation results.  

However, in our simulations, we found it necessary to limit the maximum batch size. It 

turned out that during heavy loads, the batches could consist of more than 80 requests, and 

this proves to be detrimental for the response times of non-real-time requests that are 

served late in the batch, at the same time as the efficiency gain is relatively limited. By 

experimenting with different maximum sizes, we find that, with the configuration used in 

these experiments, limiting the batch size to 50 requests provides a good compromise 
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between efficiency and response times. In all the experiments, we have therefore used a 

maximum batch size of 50 requests. 

8.6.3 Cello and Over-Provisioning 
Our analyses and simulations show the following characteristics of Cello, compared to 

APEX: 

• Poorer efficiency: In general, Cello orders disk requests in a less optimal way than 

APEX, and, therefore, the overall efficiency is reduced. 

• Poor efficiency during work-conservation: During work-conservation, Cello does not 

take the position of the requested data into consideration. Thus, efficiency becomes 

poor during this phase. 

• Higher sensitivity to incorrect bandwidth allocation: This is strongly related to the 

work-conservation problem. 

• Lack of low-latency service: Cello does not provide a low-latency service, apart from 

trying to serve interactive best-effort requests as soon as possible. Our simulations 

show that such requests experience considerably longer response times than requests 

using the low-latency service of APEX. 

It is important to investigate whether the issues described above will change by 

allocating more resources to Cello, i.e., compensating by adding more disks.  

First of all, it is obvious that adding disks will not increase the efficiency of Cello, 

neither in the regular phase, nor in the work-conserving phase. On the contrary, as 

explained in Section 4.5, increasing the number of disks tends to reduce the overall 

efficiency, due to an increased amount of non-productive work (i.e., head positioning). Our 

only option is to use separated storage, such that each disk receives request of only one 

type. However, as we showed in Section 4.5, this is not an alternative. 

In [83], the usage of Cello in a multi-disk context is described. From this description, it 

is clear that the storage subsystem is realized using one instance of Cello per disk, an 

approach that is also used for the Prism scheduler [104]. This scheme implies that, the 

computational overhead of using Cello increases proportionally with the number of disks. 

Thus, if we increase the number of disks in order to compensate for lacking efficiency, we 

also increase the computational overhead. In addition, the overhead caused by managing 

data placement may also increase, as described in Section 4.5. 
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Consequently, we conclude that adding more disks to a storage subsystem using Cello 

as disk scheduler cannot increase the efficiency, but it could compensate for the lack of 

efficiency, by increasing raw bandwidth. The cost of doing so is increased resource (i.e., 

processor) usage due to more instances of Cello. The lack of a proper low-latency service 

cannot be alleviated. 

8.6.4 Limitations and Open Issues 
Though the DiskSim simulation environment provides a very detailed model of the storage 

subsystem, using simulations still has limitations. First of all, the workload is static, in the 

sense that it is generated from a trace file. In real life, the arrival of disk request n+1 is 

often dependent on the finishing time request n. Thus, if block n is delayed, then block n+1 

will not be requested until block n has been retrieved. However, with a trace file this 

“feedback loop” is lost, and block n+1 is requested, even if block n has still not been 

retrieved from disk.  

The consequences of this are difficult to calculate, but it is reasonable to assume that 

one effect would be that using trace files can lead to a too high arrival rate of requests into 

the disk scheduler. On the other hand, the static workload is equal for all three schedulers 

(except for checkout-request for C-LOOK), so at least the results should be comparable. 

The use of simulated time also caused some problems for the implementation of the 

disk schedulers. As mentioned earlier, all three schedulers are multi-threaded, where each 

thread is responsible for a separate part of the scheduler. In a real-life implementation, 

these threads will run concurrently, and the shared variables protected by semaphores, or 

the like. However, the use of simulated time, held by a global variable, made it difficult to 

avoid race conditions. Instead, we let the threads run round robin, such that there were 

never more than one active thread. Each time DiskSim updated the simulated time, one 

“round” of threads were run. This should not have any significant impact on the simulation 

results, and again, the conditions are equal for all three schedulers.  

Unfortunately, limited time has prevented us from performing all the simulations that 

we would like to do, and this is perhaps the most serious shortcoming. Specifically, we 

would like to try out other settings of the simulation parameters; other disk layouts, round 

times, disk block sizes, and disk types. Such simulations would not necessarily provide 

new information, but they would increase the reliability of the results already presented, by 
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showing that APEX is not dependent on one particular configuration to function.  



As explained in Sub-section 8.2.2, we were forced to submit disk requests one by one 

to DiskSim, instead of submitting whole batches, which is the intention of APEX. This 

means that, while we still get the advantage of sorting the requests in a batch in SCAN 

order, we reduce the potential performance gains of the disk-internal scheduling. However, 

this fact is in the disfavor of APEX, and we expect APEX to perform even better in a real-

life implementation. This is supported by results from experiments performed in [101], 

where disk-internal scheduling achieves up to 30% higher throughput than host-based 

scheduling. 

This last issue is also related to claim 4, stating that disk scheduling is necessary for 

QoS-support in the storage subsystem. We have used C-LOOK as a substitute for the 

behavior of a modern disk, which is reasonable, since the internal scheduling of modern 

disks relies on performance-oriented algorithms like elevator or SPTF (shortest positioning 

time first). However, our approach means that some of the features of a modern disk are 

not fully utilized, since only one request is submitted at a time. Thus, in a real-life 

implementation, one could expect the disk-internal scheduling to support slightly better, 

but also even more unpredictable. 

8.7 Summary 
In this chapter, we have presented the simulation environment used in our evaluation of 

APEX. We have described how the three schedulers have been configured for use in this 

environment, and we have presented the experiments performed.  

In addition, we have presented the results of the simulations, and analyzed these. 

Finally, we made a critical assessment of the results, and discussed the limitations of using 

a simulation environment.  

With respect to our claims, presented in Section 1.3, we reviewed these in Sub-section 

8.6.1, where we showed how this chapter involved all four claims.  

In the next chapter, we present our conclusions. We do a final review of the four 

claims, make a critical assessment of our performance evaluation, and present possible 

directions for future work. 
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Chapter 9  

Conclusion 

In this thesis, we have addressed the challenges of disk scheduling for a MMDBMS. In this 

chapter, we summarize the contributions of our work. We present a critical review of the 

four claims made in Section 1.3, and we perform a critical assessment of our results. 

Finally, we address directions of future research. 

9.1 Summary 
We have analyzed the requirements of a LoD-system based on a MMDBMS, and used this 

analysis as a basis for designing a disk scheduling framework that is able to handle the 

workload of such a system. The key features of our framework are: 

• Dynamic queue management, meaning that APEX can create and remove queues as 

needed, and update the bandwidth reservations according to the requirements of the 

transactions using the queue. Thus, at any given time, only the queues that are needed 

are actually instantiated, and this contributes to keep the overhead of the scheduler low. 

In addition, the queue management itself is very simple, requiring little computational 

resources. 

• An extended token bucket model, which serves two purposes: the token rate parameter 

ensures that each queue receives the bandwidth it is entitled to, and the bucket depth 

parameter prevents queues from starvation, by limiting the per-queue bursts. 

• A batch building principle, which submits batches of disk requests to the disk driver. In 

essence, this principle introduces “split-level” scheduling: the higher-level scheduling, 
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performed by APEX, distributes bandwidth and ensures QoS, working with a temporal 



granularity based on the needs of the application (i.e., the latency requirements). The 

lower-level scheduling is performed by the disk-internal scheduler, based on 

information that is unknown outside of the disk, since it is hidden by the disk itself. 

Furthermore, submitting many requests at once implies that the unproductive 

positioning work of the disk can be amortized over multiple requests.  

• A work-conservation feature that re-distributes unused disk bandwidth without loss of 

disk efficiency. Thus, during the normal phase, APEX just ensures that each queue gets 

its rightful share of disk bandwidth, and then during the work-conservation phase, the 

unused bandwidth is distributed. The result of the two phases is one batch, meaning 

that no disk efficiency is lost. 

We have verified that the scheduling principles work, by implementing our disk 

scheduling framework in a simulation environment. In addition, we have shown that, 

despite its advanced functionality, APEX does not represent higher computational 

complexity than other mixed-media disk schedulers. 

9.2 Review of Claims 
In Section 1.3, we made four claims about disk scheduling in general and APEX in 

particular. We now review these claims, based on the work presented in this thesis.  

Claim 1 

It is possible to design, implement, and integrate a disk scheduler in a MMDBMS, in such 

a way that it can utilize metadata from the MMDBMS to optimize the scheduling of disk 

requests. 

We started by describing our LoD-scenario, and we analyzed the system architecture 

with special emphasize on the MMDBMS. Next, we analyzed the requirements of the 

LoD-system, and showed why existing disk schedulers are insufficient. We also described 

what information is available from the MMDBMS. Furthermore, we gave a detailed 

description of the design and implementation of APEX, and showed how our disk 

scheduling framework is able to use information from the MMDBMS. 

To verify this theoretical proof of the claim, we ran simulations, and these confirmed 

that in the intersection between performance, QoS-support, and multiple service types, 

APEX performs better than both Cello (representing the class of mixed-media schedulers) 
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and C-LOOK (representing the class of performance-oriented schedulers).  



Claim 2 

APEX is a highly configurable disk scheduling framework that can be used in a wide 

variety of contexts. 

Since the scenario of our work has been an MMDBMS-based LoD-system, it is natural 

that we have focused on the requirements of such as system. However, in Section 5.2, we 

introduced the four scheduler characterization parameters, and used these to describe the 

requirements to the disk scheduler for other contexts. APEX is designed to support all 

relevant combinations of these four parameters; thus, it can, in principle, be used in any 

context that can describe its requirements using these four parameters. 

 Furthermore, we showed how the modularity of APEX allows it to be tailored for 

different contexts. The configuration of APEX used in our thesis includes all components, 

while in other, less dynamic contexts, components that are not needed can be removed. 

In addition, the workload used in our simulations is very diverse, and therefore 

representative for a number of different contexts. As the simulations show, our 

configuration of APEX handles the entire workload very well, and this confirms the 

versatility of APEX.  

Finally, it should be noted that the batch building principle is common, regardless of 

the configuration. Thus, in many cases, adding a new configuration is a question of 

implementing a new queue type. Examples of such types are priorities and request 

dropping (e.g., dropping requests that will obviously miss their deadlines). In other words, 

regardless of the type of service offered by the queue, the batch building principle is 

always used when selecting requests for service, and we have shown that this principle 

works. 

Claim 3 

APEX offers a superior combination of QoS-support and high utilization of disk 

bandwidth. 

By comparing existing QoS-aware disk schedulers with the requirements of our LoD-

system and the characteristics of modern disks, we pointed out the weaknesses of these 

schedulers. It is clear that the cost of supporting QoS is relatively high, and the work-

conserving facilities tend to reduce disk efficiency. 

With its batch principle, APEX provides the disk with very favorable working 
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conditions. The disk is given freedom to organize the requests according to its internal 



scheduling algorithm, and the positioning operations can be amortized over several disk 

requests. In addition, the work-conservation facility that works without efficiency loss 

ensures a very effective redistribution of unused bandwidth. Finally, the extended token 

bucket principle allows a very accurate control of the distribution of disk bandwidth.  

The simulations we have performed, confirm that these principles work in practice. 

APEX achieves higher throughput and lower response times than Cello, and when 

compared with a pure performance-oriented scheduler like C-LOOK, the simulation results 

indicate that the cost of providing QoS-support in APEX is low. 

Claim 4 

Disk scheduling is necessary for providing QoS-support in the storage subsystem, but 

existing QoS-aware disk schedulers do not exploit the capabilities of modern disks. 

In Section 4.5, we discussed why integrated storage of the multimedia data is 

necessary. Such storage requires the ability to differentiate between different service types, 

and protect the different transactions from each other.   

We also described the characteristics of modern disks and controllers. We discussed 

how the intelligence of these components makes them unpredictable. In addition, the 

simulations showed that the workload mix has a considerable impact on the behavior of the 

disk (i.e., the C-LOOK algorithm). Thus, it is difficult to know the order in which the 

requests will be served, and this problem increases by the usage of integrated storage. 

Consequently, trying to meet the need for multiple service types with a “brute force” 

approach is difficult; the lack of isolation between different service types makes it 

impossible to provide QoS-guarantees without considerable restrictions on all types of 

traffic to the storage subsystem.  

Finally, many QoS-aware disk scheduling algorithms, especially in the class of mixed-

media schedulers (including Cello), are dependent on detailed knowledge of the disk 

behavior. However, the intelligence of modern disks and controllers once again cause 

problems, since the internal organization and behavior of the disk is hidden. APEX, on the 

other hand, takes advantage of the capabilities of modern disks, leaving the final ordering 

of the requests within a batch to the disk itself. 
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9.3 Critical Assessments 
In our experimental evaluation of APEX, we have relied on a simulation environment. 

Although this environment provides very detailed modeling of disk, controller, and disk 

driver, there are several factors, both concerning the disk simulator itself and our usage of 

it, which could affect the evaluation. We discussed these issues in Sub-section 8.6.4, and 

we refer to this section for details. However, there are also other issues that may affect our 

results, and we discuss these below. 

9.3.1 Workload Quality 
Since we do not have a running MMDBMS, it is difficult to verify how representative the 

workload traces are, and in particular for metadata retrieval queries. The traces we have 

used are based on measurements performed on real DBMSs, in [9]. However, in this work, 

relational DBMSs were used, and the measured workload is not necessarily representative 

for other types of DBMSs. On the other hand, the workload is identical for all three disk 

schedulers, thus, it does provide a basis for comparison of the disk schedulers.  

9.3.2 Workload Differences 
As mentioned in Sub-section 8.6.1, it was necessary to limit the maximum queue length in 

C-LOOK. Otherwise, the queue could contain several hundred requests, which is clearly 

unrealistic; this scheduler orders request purely on the basis of data placement on disk, and 

the extremely large SCAN-schedules that were formed, resulted in excessively long 

response times.  

Since this queue length limitation has only been done for C-LOOK, the resulting 

checkout-workload is not 100% identical for the three schedulers. However, since Cello 

and APEX consider bandwidth distribution before taking data placement into account, the 

long queue of checkout-requests has a much smaller impact in these schedulers.  

9.3.3 Multiple Disks 
We have only performed simulations with a single disk. In a real LoD-system, it is 

reasonable to expect multiple disks to be used, either in the form of a disk array (e.g., a 

RAID-system), or as a set of individual disks. Currently, APEX has not been tested in a 
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multi-disk environment, but as we will come back to in the next section, this is part of our 

future work. 

9.3.4 Simulation Parameters 
As we have mentioned earlier, the set of simulations performed so far is relatively limited, 

and we have focused on MMDBMS workload. By running simulations with other types of 

workload, as well as other combinations of workload, we would improve the basis of 

comparison between C-LOOK, Cello, and APEX.  

In addition, running simulations with different parameter settings, i.e., disk layout, 

round time, disk block size, and disk type, would improve the understanding of the 

behavior of APEX. Furthermore, varying the parameter settings would also provide 

important information about Cello and C-LOOK. In particular, the use of C-LOOK in 

combination with extent-based or contiguous data placement is of interest. Since data 

placement is the only factor that C-LOOK takes into consideration when sorting requests, 

we expect the workload-dependent behavior revealed in the simulations to be reinforced. 

Thus, the C-LOOK scheduling algorithm, as well as the SCAN-algorithms in general, 

could prove to be even less suited for QoS-support using extent-based or contiguous data 

placement. 

9.4 Future Work 
In this thesis, we have presented our work on the APEX disk scheduling framework. 

Through simulations we have shown that the scheduling principles work, and that APEX 

achieves high disk efficiency under very varying workload conditions. However, there are 

still a lot of open questions and unsolved tasks. In the following sub-sections, we present 

what we consider the most important remaining work. 

9.4.1 Parameter Settings 
With respect to the more theoretical aspects of APEX, there are three issues concerning the 

configuration of APEX that would benefit from further research: 

• Estimated service time t  our simulation, we have initially set this parameter 

manually, and then used a simple, automatic fine-adjustment, which compares the 

estimated finishing time of each batch with the corresponding actual finishing time. 

es: In
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However, more research should be performed in order to find the optimal setting of this 

parameter. For instance, it is an open question whether this parameter has a fixed, 

optimal value with a given configuration of the external parameters (i.e., data 

placement, round time, disk block size, and disk type), or if the workload mix also has 

an influence, such that t ust be constantly monitored and adjusted. If there is a fixed 

value, then it would also be of interest to work out the theoretical relationship between 

eters. 

• Token bucket parameters: When determining the required bandwidth for the different 

queues, we turned off the work-conservation, and set the token rate and bucket depth as 

low as possible without deadlines being violated. However, it is necessary to work out 

a theoretical relationship between the bandwidth requirement of the multimedia objects 

stored in the MMDBMS, and the required token rate and bucket depth. For constant 

bit-rate multimedia objects this is trivial, but for variable bit-rate objects, it is more of a 

challenge. In addition, the type of guarantee offered also affects the setting of these 

parameters. For instance, if deterministic real-time guarantee is offered, the token rate 

must probably be set higher than if a statistical guarantees are offered. Finally, the 

setting of token rate and bucket depth is done on a per-queue basis. Thus, when several 

multimedia playback queries share a queue, the setting of these parameters is further 

complicated.  

es m

tes and the external param

• Maximum batch size: As explained in Sub-section 8.6.2, we found that APEX 

performed better if the maximum batch size was limited. In our simulation, we found 

the best value for this maximum batch size by using a “trial and error” approach. 

However, a better theoretically foundation should be worked out, where the maximum 

size is determined based on data placement, round time, disk block size, and disk type. 

In addition, there is a possibility that this value is dependent on the workload mix, and 

therefore should be constantly monitored and adjusted. For instance, if the LoD-system 

only serves multimedia playback queries, we can allow a very large batch size, but as 

soon as other queries, such as metadata retrieval queries, are started, the batch size 

must be reduced. Finally, the size of the disk-internal scheduling queue should also be 

taken into consideration, since there probably is little performance gain in submitting 

batches larger than what this queue can hold.  
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9.4.2 Multiple Disks 
In this thesis, we have only focused on single-disk storage subsystems. However, many 

servers designed for delivery of multimedia data are based on multiple disks. This is often 

necessary in order to meet both space and bandwidth requirements. 

As explained earlier, both Cello and PRISM are able to handle multiple disks, by 

running one instance of the scheduler for every disk. This solution is also possible for 

APEX, and since each instance of APEX in such a case only schedules one disk, there is, 

in principle, little difference from the single-disk scenario we have used.  

However, while Cello and PRISM require detailed knowledge about the behavior of the 

disk, and therefore cannot handle multiple disks per scheduler, APEX is largely 

independent of knowledge about disk behavior. Consequently, it is possible that one 

instance of APEX can handle multiple disks, provided that the disks appear as a single 

storage unit, such as in a RAID system [69]. The latter condition is necessary, since 

otherwise, load balancing becomes an issue.  

 If a single instance of APEX can handle an array of disks, this would imply 

considerably lower computational overhead, compared to the per-disk approach used by 

Cello and PRISM. Thus, this issue should definitely be subject to more research. 

9.4.3 Round-Less Version of APEX 
As mentioned in Sub-section 6.4.2, we originally designed APEX as a pure deadline-based 

scheduler. We found that this approach was less suited for our scenario than the round-

based version, and abandoned this solution. However, for other, non-multimedia, 

application scenarios, the round-less version of APEX may be of interest.  

In Sub-section 5.4.2, we showed that existing real-time disk scheduling algorithms 

generally provide only one service type, and the round-less schedulers, such as EDF, often 

suffer from poor disk utilization. Thus, if real-time disk service is required, possibly in 

combination with other service type requirements, and a round-based approach is not an 

option, it could be worthwhile doing further research on the round-less version of APEX. 
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9.4.4 Admission Control 
APEX relies on an estimated time for service of a disk request, puting the 

batch sizes. This estimated time influences the exploitable capacity of the disk: A larger 

means that fewer requests can be served per time unit; thus, we get a lower throughput.   

Furthermore, APEX offers levels of QoS-guarantees that require admission control, and 

this admission control must also rely on t ed admission 

control as described in [90], but further investigations of how the admission control can be 

tailored to the characteristics of APEX should be performed. 

9.4.5 Implementation 
When evaluating APEX using simulations, we are subject to the limitations of the 

simulation environment. Thus, the natural step beyond simulations is to implement APEX 

in a real system. Currently, there is ongoing work on implementing a MMDBMS-based 

LoD-system in the OMODIS-LoD longer term, incorporating 

APEX in this system is a possibility.  

In addition, we are considering an implementation of APEX in a Media-on-Demand 

server being developed within our research group. This would be an implementation in the 

kernel of the operating system, below the file system and buffer cache. In this version, the 

queue requests are performed during the OPEN system call, where we add parameters for 

specifying the type of service required, as well as the amount of bandwidth to be reserved. 

The queue is then associated with the file descriptor used, instead of using explicit queue 

IDs. Thus, two file descriptors pointing to the same file may provide different service 

types, if they are associated with different queues in APEX. 

9.4.6 “Transaction-Oriented” Service Model 
In our work, we have assumed a “service-oriented” model where the service types and 

levels are realized as a relatively small set of queues. All transactions requiring a particular 

service then share the APEX-queue that offers this service type and level.  

However, APEX is able to support an arbitrary number of queues, and this opens the 

possibility of a “transaction-oriented” model, where each transaction is assigned a separate 
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10 The OMODIS LoD Project is funded by the Norwegian Research Council, Distributed IT Systems 

(DITS) program to UiO/Ifi, 2000-2003. 
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queue, and the queue is removed when the transaction ends. This approach has not been 

much discussed in the literature, but one approach that provides something similar, is the 

“User Safe Disk” (USD) [6].  

This solution would imply a somewhat increased queue management overhead, but on 

the other hand, it would provide a full isolation between the transactions. In a MMDBMS 

context, where the MMDBMS itself has full control of the transactions, this is perhaps not 

necessary, but in other application areas, this solution enables APEX to provide a very 

good protection against clients or applications that do not behave.  

It is our view that it could be worthwhile investigating both the “transaction-oriented” 

model, as well as a hybrid solution, where both models are in use (APEX is able to support 

this as well). First of all, the utility value of the model should be assessed for different 

application areas. Then, it is necessary to assess the balance between increased cost, in the 

form of queue management, and the advantages, in the form of increased isolation.  

9.5 Final Remarks 
In this thesis, we have presented APEX, a versatile and highly configurable disk 

scheduling framework. We have shown, by means of simulations, that APEX works as 

intended, and that it achieves better disk utilization and provides more service types than 

other disk schedulers. 

However, as presented in this thesis, APEX is still very much in an early prototype 

stage, and as described in Section 9.4, there are a number of possibilities for further 

research and development. Consequently, we believe that APEX has room for further 

performance improvement, and that our disk scheduling framework will prove valuable in 

a number of application areas. 
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Appendix A 

DiskSim Parameters 
 

 
DiskSim is highly configurable, offering a large number of parameters that can be 

adjusted. In our simulations, we have chosen to use one of the pre-set configurations 

included in the DiskSim package.  

DiskSim relies on two configuration files, which together specify all the necessary 

parameters. The first file specifies the configuration of the disk that is used, while the 

second specifies the interconnection of the different components, i.e., disk, buses, 

controllers and disk driver. Below, we list the content of the configuration files used in our 

experiments.  

Disk Configuration 
Disk brand name: QUANTUM_TORNADO 
Access time (in msecs):             -2.0 
Seek time (in msecs):               -5.0 
Single cylinder seek time:          1.24500 
Average seek time:                  atlas10k.seek 
Full strobe seek time:              10.82800 
Add. write settling delay:          0.0000 
HPL seek equation values:           0 0 0 0 0 0 
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Allow sneaky full read hits:        0 
Allow sneaky partial read hits:     0 
Allow sneaky intermediate read hits:0 

First 10 seek times:                1.25 1.16 1.16 1.38 1.36 1.44 1.49 1.64 1.51 
1.53  
Head switch time:                   0.17600 
Rotation speed (in rpms):           10025 
Percent error in rpms:              0.0 
Number of data surfaces:            6 
Number of cylinders:                10022 
Blocks per disk:                    17938986 
Per-request overhead time:          0.000000 
Time scale for overheads:           0.0 
Bulk sector transfer time:          0.00000 
Hold bus entire read xfer:          0 
Hold bus entire write xfer:         0 
Allow almost read hits:             0 



Allow read hits on write data:      1 
Allow write prebuffering:           0 
Preseeking level:                   0 
Never disconnect:                   0 
Print stats for disk:               0 
Avg sectors per cylinder:           1786 
Max queue length at disk:           1 
Scheduling policy:                  1 
Cylinder mapping strategy:          0 
Write initiation delay:             0.0 
Read initiation delay:              0.0 
Sequential stream scheme:           0 
Maximum concat size:                0 
Overlapping request scheme:         0 
Sequential stream diff maximum:     0 
Scheduling timeout scheme:          0 
Timeout time/weight:                0 
Timeout scheduling:                 0 
Scheduling priority scheme:         0 
Priority scheduling:                0 
Number of buffer segments:          10 
Maximum number of write segments:   1 
Segment size (in blks):             374 
Use separate write segment:         0 
Low (write) water mark:             0.00 
High (read) water mark:             0.00 
Set watermark by reqsize:           1 
Calc sector by sector:              1 
Enable caching in buffer:           0 
Buffer continuous read:             0 
Minimum read-ahead (blks):          0 
Maximum read-ahead (blks):          354 
Read-ahead over requested:          0 
Read-ahead on idle hit:             0 
Read any free blocks:               0 
Fast write level:                   0 
Immediate buffer read:              0 
Immediate buffer write:             0 
Combine seq writes:                 1 
Stop prefetch in sector:            0 
Disconnect write if seek:           0 
Write hit stop prefetch:            1 
Read directly to buffer:            1 
Immed transfer partial hit:         1 
Read hit over. after read:          0.00000 
Read hit over. after write:         0.00000 
Read miss over. after read:         0.00000 
Read miss over. after write:        0.00000 
Write hit over. after read:         0.00000 
Write hit over. after write:        0.00000 
Write miss over. after read:        0.00000 
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Minimum seek delay:                 0.00000 
LBN-to-PBN mapping scheme:          1 

Write miss over. after write:       0.00000 
Read completion overhead:           0.00000 
Write completion overhead:          0.00000 
Data preparation overhead:          0.00000 
First reselect overhead:            0.00000 
Other reselect overhead:            0.00000 
Read disconnect afterread:          0.00000 
Read disconnect afterwrite:         0.00000 
Write disconnect overhead:          0.00000 
Extra write disconnect:             0 
Extradisc command overhead:         0.00000 
Extradisc disconnect overhead:      0.00000 
Extradisc inter-disconnect delay:   0.00000 
Extradisc 2nd disconnect overhead:  0.00000 
Extradisc seek delta:               0.00000 



Sparing scheme used:                9 
Rangesize for sparing:              1 
Number of bands:                    24 
Band #1 
First cylinder number:              0 
Last cylinder number:               432 
Blocks per track:                   334 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           113.000000 
Number of spares:                   89 
Number of slips:                    0 
Number of defects:                  0 
Band #2 
First cylinder number:              433 
Last cylinder number:               848 
Blocks per track:                   334 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           113.000000 
Number of spares:                   84 
Number of slips:                    0 
Number of defects:                  0 
Band #3 
First cylinder number:              849 
Last cylinder number:               1264 
Blocks per track:                   334 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           113.000000 
Number of spares:                   87 
Number of slips:                    0 
Number of defects:                  0 
Band #4 
First cylinder number:              1265 
Last cylinder number:               1688 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           101.000000 
Number of spares:                   85 
Number of slips:                    0 
Number of defects:                  0 
Band #5 
First cylinder number:              1689 
Last cylinder number:               2104 
Blocks per track:                   324 
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Number of spares:                   85 
Number of slips:                    0 

Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           101.000000 
Number of spares:                   84 
Number of slips:                    0 
Number of defects:                  0 
Band #6 
First cylinder number:              2105 
Last cylinder number:               2520 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              63.000000 
Skew for cylinder switch:           101.000000 



Number of defects:                  0 
Band #7 
First cylinder number:              2521 
Last cylinder number:               2936 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              62.000000 
Skew for cylinder switch:           101.000000 
Number of spares:                   84 
Number of slips:                    0 
Number of defects:                  0 
Band #8 
First cylinder number:              2937 
Last cylinder number:               3360 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              61.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   92 
Number of slips:                    0 
Number of defects:                  0 
Band #9 
First cylinder number:              3361 
Last cylinder number:               3776 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              61.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   87 
Number of slips:                    0 
Number of defects:                  0 
Band #10 
First cylinder number:              3777 
Last cylinder number:               4192 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              61.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   85 
Number of slips:                    0 
Number of defects:                  0 
Band #11 
First cylinder number:              4193 
Last cylinder number:               4608 
Blocks per track:                   324 
Offset of first block:              0.000000 
Empty space at zone front:          0 
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Number of defects:                  0 
Band #13 

Skew for track switch:              61.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   85 
Number of slips:                    0 
Number of defects:                  0 
Band #12 
First cylinder number:              4609 
Last cylinder number:               5032 
Blocks per track:                   306 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              58.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   79 
Number of slips:                    0 



First cylinder number:              5033 
Last cylinder number:               5448 
Blocks per track:                   306 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              58.000000 
Skew for cylinder switch:           98.000000 
Number of spares:                   89 
Number of slips:                    0 
Number of defects:                  0 
Band #14 
First cylinder number:              5449 
Last cylinder number:               5864 
Blocks per track:                   302 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              57.000000 
Skew for cylinder switch:           92.000000 
Number of spares:                   88 
Number of slips:                    0 
Number of defects:                  0 
Band #15 
First cylinder number:              5865 
Last cylinder number:               6280 
Blocks per track:                   293 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              56.000000 
Skew for cylinder switch:           91.000000 
Number of spares:                   73 
Number of slips:                    0 
Number of defects:                  0 
Band #16 
First cylinder number:              6281 
Last cylinder number:               6704 
Blocks per track:                   288 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              55.000000 
Skew for cylinder switch:           91.000000 
Number of spares:                   85 
Number of slips:                    0 
Number of defects:                  0 
Band #17 
First cylinder number:              6705 
Last cylinder number:               7120 
Blocks per track:                   288 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              55.000000 
Skew for cylinder switch:           88.000000 
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First cylinder number:              7537 
Last cylinder number:               7952 

Number of spares:                   72 
Number of slips:                    0 
Number of defects:                  0 
Band #18 
First cylinder number:              7121 
Last cylinder number:               7536 
Blocks per track:                   280 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              54.000000 
Skew for cylinder switch:           88.000000 
Number of spares:                   77 
Number of slips:                    0 
Number of defects:                  0 
Band #19 



Blocks per track:                   270 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              51.000000 
Skew for cylinder switch:           87.000000 
Number of spares:                   66 
Number of slips:                    0 
Number of defects:                  0 
Band #20 
First cylinder number:              7953 
Last cylinder number:               8376 
Blocks per track:                   262 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              51.000000 
Skew for cylinder switch:           83.000000 
Number of spares:                   66 
Number of slips:                    0 
Number of defects:                  0 
Band #21 
First cylinder number:              8377 
Last cylinder number:               8792 
Blocks per track:                   255 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              48.000000 
Skew for cylinder switch:           83.000000 
Number of spares:                   66 
Number of slips:                    0 
Number of defects:                  0 
Band #22 
First cylinder number:              8793 
Last cylinder number:               9208 
Blocks per track:                   246 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              47.000000 
Skew for cylinder switch:           75.000000 
Number of spares:                   60 
Number of slips:                    0 
Number of defects:                  0 
Band #23 
First cylinder number:              9209 
Last cylinder number:               9624 
Blocks per track:                   237 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              45.000000 
Skew for cylinder switch:           75.000000 
Number of spares:                   60 
Number of slips:                    0 
Number of defects:                  0 
Band #24 
First cylinder number:              9625 
Last cylinder number:               10021 
Blocks per track:                   229 
Offset of first block:              0.000000 
Empty space at zone front:          0 
Skew for track switch:              44.000000 
Skew for cylinder switch:           75.000000 
Number of spares:                   716 
Number of slips:                    0 
Number of defects:                  0 
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Component Interconnection 
Byte Order (Endian):               Little 
Init Seed:                          42 
Real Seed:                          42 
Statistic warm-up period:           0.0 seconds 
Checkpoint to null every:           0.0 seconds 
Stat (dist) definition file:        statdefs 
Output file for trace of I/O requests simulated:ioreq 
 
I/O Subsystem Input Parameters 
------------------------------ 
 
PRINTED I/O SUBSYSTEM STATISTICS 
 
Print driver size stats?            1 
Print driver locality stats?        0 
Print driver blocking stats?        0 
Print driver interference stats?    0 
Print driver queue stats?           1 
Print driver crit stats?            1 
Print driver idle stats?            1 
Print driver intarr stats?          1 
Print driver streak stats?          1 
Print driver stamp stats?           1 
Print driver per-device stats?      1 
Print bus idle stats?               1 
Print bus arbwait stats?            1 
Print controller cache stats?       1 
Print controller size stats?        1 
Print controller locality stats?    1 
Print controller blocking stats?    1 
Print controller interference stats? 1 
Print controller queue stats?       1 
Print controller crit stats?        1 
Print controller idle stats?        1 
Print controller intarr stats?      1 
Print controller streak stats?      1 
Print controller stamp stats?       1 
Print controller per-device stats?  1 
Print device queue stats?           1 
Print device crit stats?            0 
Print device idle stats?            1 
Print device intarr stats?          0 
Print device size stats?            1 
Print device seek stats?            1 
Print device latency stats?         1 
Print device xfer stats?            1 
Print device acctime stats?         1 
Print device interfere stats?       0 
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Scheduling policy:                  1 
Cylinder mapping strategy:          1 

Print device buffer stats?          1 
 
GENERAL I/O SUBSYSTEM PARAMETERS 
 
I/O Trace Time Scale:               1.0 
Number of I/O Mappings:             0 
 
COMPONENT SPECIFICATIONS 
 
Number of device drivers:          1 
 
Device Driver Spec #1 
# drivers with Spec:                1 
Device driver type:                 1 
Constant access time:               0.0 



Write initiation delay:             0.0 
Read initiation delay:              0.0 
Sequential stream scheme:           0 
Maximum concat size:                128 
Overlapping request scheme:         0 
Sequential stream diff maximum:     0 
Scheduling timeout scheme:          0 
Timeout time/weight:                6 
Timeout scheduling:                 4 
Scheduling priority scheme:         0 
Priority scheduling:                4 
Use queueing in subsystem:          1 
 
Number of buses:                    2 
 
Bus Spec #1 
# buses with Spec:                  1 
Bus Type:                           2 
Arbitration type:                   1 
Arbitration time:                   0.0 
Read block transfer time:           0.0 
Write block transfer time:          0.0 
Print stats for bus:                0 
 
Bus Spec #2 
# buses with Spec:                  1 
Bus Type:                           1 
Arbitration type:                   1 
Arbitration time:                   0.0 
Read block transfer time:           0.0 
Write block transfer time:          0.0 
Print stats for bus:                1 
 
Number of controllers:              1 
 
Controller Spec #1 
# controllers with Spec:            1 
Controller Type:                    1 
Scale for delays:                   0.0 
Bulk sector transfer time:          0.0 
Maximum queue length:               1 
Print stats for controller:         1 
 
Number of storage devices:          1 
 
Device Spec #1 
# devices with Spec:                1 
Device type for Spec:               disk 
Disk brand name:                    QUANTUM_TORNADO 
Disk specification file:            atlas10k.diskspecs 
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# of utilized slots: 2 
Slots: Controllers 1 

PHYSICAL ORGANIZATION 
 
Driver #1 
# of connected buses: 1 
Connected buses: 1 
 
Controller #1 
# of connected buses: 1 
Connected buses: 2 
 
Bus #1 
# of utilized slots: 1 
Slots: Controllers 1 
 
Bus #2 



Slots: Devices 1 
 
SYNCHRONIZATION 
 
Number of synchronized sets: 0 
 
LOGICAL ORGANIZATION 
 
# of system-level organizations:    1 
 
Organization #1: Parts Asis Noredun Whole 
Number of devices:                  1 
Devices:                            1-1 
High-level device number:           1 
Stripe unit (in sectors):           17938986 
Synch writes for safety:            0 
Number of copies:                   2 
Copy choice on read:                6 
RMW vs. reconstruct:                0.5 
Parity stripe unit:                 64 
Parity rotation type:               1 
Time stamp interval:                0.000000 
Time stamp start time:              60000.000000 
Time stamp stop time:               10000000000.000000 
Time stamp file name:               stamps 
 
# of controller-level organizations:0 
 
 
Process-Flow Input Parameters 
----------------------------- 
 
PRINTED PROCESS-FLOW STATISTICS 
 
Print per-process stats?            1 
Print per-CPU stats?                1 
Print all interrupt stats?          1 
Print sleep stats?                  1 
 
GENERAL PROCESS-FLOW PARAMETERS 
 
Number of processors:               1 
Process-Flow Time Scale:            1.0 
 
SYNTHETIC I/O TRACE PARAMETERS 
 
Number of generators:               5 
Number of I/O requests to generate: 10000 
Maximum time of trace generated (in seconds):1000.0 
System call/return with each request:0 
Think time from call to request:    0.0 
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Variance:                           100.0 
General inter-arrival times (in milliseconds) 

Think time from request to return:  0.0 
 
Generator description #1 
Generators with description:        5 
Storage capacity per device (in blocks):17938986 
Number of storage devices:          1 
Blocking factor:                    8 
Probability of sequential access:   0.0 
Probability of local access:        0.0 
Probability of read access:         0.66 
Probability of time-critical request:1.0 
Probability of time-limited request:0.0 
Time-limited think times (in milliseconds) 
Type of distribution: normal 
Mean:                               30.0 



Type of distribution: exponential 
Base value:                         0.0 
Mean:                               0.0 
Sequential inter-arrival times (in milliseconds) 
Type of distribution: normal 
Mean:                               0.0 
Variance:                           0.0 
Local inter-arrival times (in milliseconds) 
Type of distribution: exponential 
Base value:                         0.0 
Mean:                               0.0 
Local distances (in blocks) 
Type of distribution: normal 
Mean:                               0.0 
Variance:                           40000.0 
Sizes (in blocks) 
Type of distribution: exponential 
Base value:                         0.0 
Mean:                               8.0 
 
 

 

As a final remark, we would like to mention one issue concerning a parameter in DiskSim: 

for all components (disk, buses, and controllers), there is a parameter called “Bulk sector 

transfer time”. According to the DiskSim manual, this parameter has the following 

function [30]: 

… specifying the time necessary to transfer a single 512-byte block to, from, or 

through the controller. Transferring one block over the bus takes the maximum of 

this time, the block transfer time specified for the bus itself, and the block transfer 

time specified for the component on the other end of the bus transfer. 

The problem with this parameter is that using the values provided by the DiskSim 

package yields unrealistically low throughput. We have not been able to get any 

explanation from the authors of DiskSim, and personal communication with Seagate 

revealed that they had never heard of this parameter. Setting the parameter to zero yielded 

a disk performance in accordance with what could be expected, based on the disk 

characteristics. As a consequence, we have chosen to set this value to zero in all our 

simulations. The result is that the measured disk performance may be somewhat too high, 

but since this is equal for all schedulers, we do not consider this a problem.  
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Appendix B 

Abbreviations 
 

Prefixes  

m milli (10-3) 

K Kilo (210) 

M Mega (220) 

Acronyms and Abbreviations 

ACRA Admission Control and Resource reservation Agent 

APEX AdaPtive disk schEduler for miXed-media workloads 

APO Atomic Presentation Object 

BM Buffer Manager 

CGM Computer Generated Multimedia Data 

CHS Cylinder Head Sector 

CPO  Composite Presentation Object 

CTL Constant Time Length 

DBMS Database Management System 

DBS Database System 

DSM Decomposition Storage Model 

EDF Earliest Deadline First 

FCFS First Come First Served 

fps frames per second 

IBE Interactive Best-Effort 

IDL Interactive Distance Learning 

KB Kilobyte 

LBA  Logical Block Addressing 

LBN Logical Block Number 

LDU Logical Data Unit 
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LoD Learning-on-Demand 

MB, Mb Megabyte, Megabit 

MMDBMS Multimedia Database Management System 

MMDT MultiMedia Data Type 

MR Metadata Retrieval 

NoD News-on-Demand 

NSM N-ary Storage Model 

OID Object Identifier 

OM Object Manager 

OMODIS Object-Oriented Modeling and Database Support for Distributed 

 Multimedia Systems 

OS Operating System 

PDSM Physical Data Structures Manager 

PM Presentation Manager 

PSM Physical Storage Manager 

PTD_MMDT Play Time Dependent MMDT 

PTI_MMDT Play Time Independent MMDT 

QEP Query Execution Plan 

QID Queue IDentifier 

QM Query Manager 

QoS Quality of Service 

RID Record Identifier 

RT Real-Time 

SCSI Small Computer Scalable Interface 

SM Storage Manager 

SPTF Shortest Positioning Time First 

TA Time Associator 

TIBE Throughput-Intensive Best-Effort 

TM Transaction Manager 

TOOMM Temporal Object-Oriented MultiMedia data model 

VCR Video Cassette Recorder 

VoD Video-on-Demand 

xDSL Asynchronous/Synchronous Digital Subscriber Line 
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