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Abstract. IEEE is currently conducting an effort to 
standardize a full duplex, spatial reuse, ring network 
architecture, called the Resilient Packet Ring (IEEE P802.17). 
We discuss the relationship between spatial reuse and head of 
line blocking in such a ring.  An algorithm that schedules 
packets individually based on destination address is outlined.  
We have written a model of the RPR architecture in the 
programming language Java, and simulated several scenarios in 
order to evaluate and compare our algorithm with a con- 
ventional ring fairness algorithm.  Our performance evaluations 
show that it is possible to achieve significant higher throughput 
for traffic scenarios where head of line blocking traditionally 
has degraded performance.  Where head of line blocking is not 
an issue, our algorithm behaves like the traditional one.  

 

I. INTRODUCTION 
The Resilient Packet Ring (RPR) is a scalable high 
performance network architecture that connects nodes or 
stations into a point-to-point, full duplex, ring topology.  RPR 
is currently under standardization by the IEEE working group 
P802.17.  The goal of the working group is to define a 
standard that can be used for different sized rings and high 
data rates. The original goal of the IEEE 802 committee is to 
standardize LANs and MANs, but for 802.17 also Wide Area 
Network usage is considered. RPR should be able to utilize 
underlying technologies of various types, e.g. WDM, SONET 
and high-speed point-to-point Ethernet. 
The full duplex (one or more ringlets in each direction) ring 
topology has several nice properties. A station can chose onto 
which of the rings it will place a packet, and hence minimize 
the travel distance (and possibly also the congestion) from 
source to destination. 
A dual ring is fault tolerant [1,21]. If a segment of the ring  
breaks, the immediate nodes on each side can wrap the traffic 
around and send the packets on the longer, but available, path 
around the ring.  When a station learns about a broken 
segment, it can change the direction of packet insertion.  
However, notice the reduced aggregate bandwidth of a 
broken ring. 
Ring topologies have been popular for LANs and MANs for a 
long time. The Cambridge Ring was designed as early as in 
the mid 1970’s [18], while the IEEE Token Ring standard 
[10] and FDDI [21] were developed later.  In the early 
systems, access to the ring was regulated by a token, but later 
spatial reuse was exploited, e.g., in systems like MetaRing 
[6], ATMR [13], CRMA-II [15], DQDB [11] and SCI [12]. 

The access methods for these rings have been extensively 
studied, compared and refined [2,5,9,16,17,20]. 
Unlike a token ring, where only one packet uses the ring at a 
time, a destination removal ring like RPR can have several 
packets on their way at the same time, provided the packets 
use different segments of the ring.  This is called spatial reuse 
and is illustrated on the inner ring on figure 1.  Packets that 
are traveling on the ring and passing by a station will have to 
wait if a locally sourced packet is being transmitted.  While 
waiting, the packet is placed in what we call the transit 
buffer. Each station also contains a set of ingress buffers 
where packets wait to be transmitted onto the ring, and a set 
of egress buffers where packets are placed when they are 
removed from the ring. 
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Figure 1. RPR-ring - Spatial reuse shown on the inner ring 
 
A very naïve algorithm for ring access would be for each 
station to start transmitting a packet as soon as the transit 
buffer is empty.  This would, however, make it easy for one 
station to starve downstream neighbors by filling the ring 
completely.  In order to avoid such starvation and give each 
station fair access to the ring, a fairness algorithm must be 
deployed [4,5,12,23].    
Most of the fairness algorithms rely on telling the upstream 
node to send idle symbols or empty packets.  In particular, [4] 
discuss an advanced method for tracking packets and 
achieving good spatial reuse in this way.  The fairness 
algorithm used by Cisco, called Spatial Reuse Protocol (SRP) 
[23], is based on a regulation scheme where each congested 



station sends information about its recent transfer rate 
upstream.  In a stable situation, all upstream stations will then 
transmit onto the ring the same amount as the downstream 
stations.  
It is, however, not always optimal for all stations to send an 
equal amount of data. This has been discussed for SCI [20], 
and MetaRing [4].  The latter paper discusses some of the 
problems presented in this paper, but solves the problem 
using a different approach. 
In this paper we present and discuss a fairness algorithm that 
utilizes ring bandwidth significantly better by HOL blocking 
avoidance. The possibility for better spatial reuse and our 
enhanced fairness algorithm is the topic of the next section. 
Then we present the ring model used in our evaluation.  
Three traffic scenarios are discussed, and we show how a 
conventional fairness algorithm and our new fairness 
algorithm behave in these cases.  Finally, we summarize and 
conclude our findings. 

II. AN ENHANCED FAIRNESS ALGORITHM 
One of the main advantages of destination removal is the 
possibility to send packets concurrently on different ring 
segments.  However, when several stations are waiting to use 
the link, spatial reuse may be reduced.  In particular, this will 
be the case when the ingress queues are strictly FIFO. Figure 
2 is used to illustrate this. Stations 0 through 6 send data to 
station 7.  Hence, they all require link bandwidth along the 
path from source to destination.  In particular, they all need to 
send data on the link between stations 6 and 7.  As an 
example, assume that the first packet in the ingress buffer of 
station 0 is destined for station 7 and the second packet is 
destined for station 1.  While station 0 is waiting to send to 
station 7, the link from 0 to 1 is unused.   The second packet 
is however blocked by the packet waiting at the head of the 
line, thus the opportunity to utilize the unused bandwidth 
from station 0 to station 1 is lost (no spatial reuse).  This is 
called head of line (HOL) blocking.  The same HOL blocking 
situation will also happen, but to a lesser extent (lesser 
unused bandwidth), at stations 1 to 5. 
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Figure 2. Hot receiver plus local traffic 

                                                           
Each station keeps track of  its send rate, i.e. the number of 
packets (bytes/sec) it has transmitted (from its ingress 
buffers) onto the ring lately.  In order to avoid high frequency 
oscillations, this information is run through a low pass filter. 
When a station is congested (it is not able to send as much 
data onto the ring as it wants to), it advertises its send rate to 
all upstream neighbors in a control packet. All upstream 
neighbours store this value from station i in a counter o

There are at least two factors that must be fulfilled to 
optimize utilization of unused link bandwidth and avoid HOL 
blocking: 
 
1. In each station there must be a separate ingress buffer per 

destination station (or another mechanism to the same 
effect) 

2. The fairness algorithm must know the status of each 
downstream link and/or transit buffer. 

A cost and complexity analysis of buffer technologies 
required to avoid HOL blocking is outside the scope of this 
paper. This paper discusses enhanced algorithms and 

evaluates possible performance improvements in rings with 
non-HOL blocking buffers. 
As noted by 2), a fairness algorithm which avoids HOL 
blocking, must know the situation in the downstream parts of 
the ring. The algorithm must be able to decide when it is 
advisable and fair to send a packet to a station far away on 
the ring, and when it may transmit a packet that has a more 
immediate downstream station as its destination only. 
All links connect two stations. The upstream station is called 
the owner of the link.  We suggest an algorithm where all 
owners collect status information about their links. (We focus 
on one of the rings transporting data unidirectionally; the 
algorithm for the ring sending data in the other direction will 
be congruent).  Each station sends its status data in a control 
packet upstream (on the link going in the other direction).  
All upstream stations copy the content of this packet.  It is a 
broadcast packet that circulates the ring once. When the 
packet returns to the sender, it is stripped from the ring. 
Alternatively, one could collect all status data from all 
stations in one (or a few) packet(s) that circulate on the ring. 
The bandwidth used by such control packets is low.  
Assuming 32 byte packets are used and each station sends out 
its own status packet every 50 000 byte counts, this result in a 
1% bandwidth usage for control packages in a 16-node 
network. 
When a station has received control packets from all 
downstream nodes, it has global knowledge of the status of 
the ring. This information is used by the station to inhibit 
sending of data exceeding the nodes fair share of the ring 
bandwidth from its ingress buffer.  The fairness algorithm 
basically has two possibilities:   
I) The station inhibits sending of new packets onto the ring 

for the time it takes the downstream transit buffer(s) to 
empty (or its content size is reduced below a certain 
threshold).  This is the approach taken by MetaRing [6] 
and SCI [12]  

II) The station inhibits sending to adjust to the sending rate 
of the downstream neighbor(s).  This is the approach 
taken by SRP [23].  

In the implementation of the enhanced fairness algorithm 
reported in this paper, we use a variant of method II. 

        

i. In 
addition, all stations have a set of counters, si , which tracks 
their bandwidth usage on all downstream links i. The si 
counters are updated for all links between sender and 
destination each time a packet is transmitted.  
Hence, all stations keep two counters for each downstream 
link i:  The oi counters are the owners’ send rate on link i. 
The values of these counters are copied from the broadcasted 
control packets. The si counters tracks this stations bandwidth 
usage on the downstream link i.  



Based on these counters, our enhanced algorithm decides 
whether the station may send another packet, and in particular 
how far downstream a packet may be sent at this time. For 
link i, this means that as long as the stations send rate over a 
link i is less than that of the owners send rate over this link 
(i.e. as long as si < oi), the station may send another packet 
over this link. 
When a station i is not congested, is does not advertise its 
send rate, i.e. no control packets are sent from this station. 
The fairness algorithm allows the upstream stations to 
gradually increase their oi values in an attempt to send more. 
They will be able to do so until station i gets congested, at 
which point station i again advertises its send rate, resulting 
in a decrease in the oi values of the upstream stations, etc. 
In a non-HOL blocking ingress buffer, several fairness 
principles can be used in order for the algorithm to choose 
among the packets it is allowed to send. In the 
implementation evaluated in the sequel, we have adopted a 
round robin strategy among all destination addresses.  

III. THE EVALUATION METHOD 
We use performance evaluation by simulation to support our 
comparisons and discussions.  We have designed a model of 
the RPR-ring and implemented it in the programming 
language Java. Using our ring model we can simulate 
different technology solutions, different link speeds and ring 
sizes and different traffic scenarios.  The tractable model size 
(a few thousand lines of Java code) makes it easy to modify 
and vary any parameter and all aspects of the ring.  The 
ability to write results to file from anywhere in the program, 
provides the opportunity to extract the information needed 
from our executable model. 
In order to compare the capabilities of our enhanced fairness 
algorithm with those of a conventional one, we chose to 
implement SRP [23] in addition to our own enhanced fairness 
algorithm. One of the important reasons for implementing 
SRP, is that it is well defined. SRP does not solve the HOL 
blocking problem, i.e. the destination address of the packet is 
not a parameter when a station has to decide whether it can 
send a packet. 
Our packets have two levels of priority. Control packets are 
sent with high priority, while data traffic has low priority.  
When a station is choosing a new packet to send out on its 
link, it first looks for a high priority packet in the transit 
buffer (there are separate transit buffers for high and low 
priority packets).  If that buffer is empty, it looks for high 
priority packets in the ingress buffer.  If there are no high 
priority packets to send, data from the low priority transit and 
ingress buffers have equal priority (it keeps an equal byte 
count).  This equal priority is in effect only as long as the size 
of the transit buffer is below a threshold.  When the size is 
above this threshold, the transit buffer has priority. The 
fairness algorithms do not control high priority traffic. Hence, 
a large amount of high priority traffic could make the low 
priority transit buffers overrun.  A discussion of this is 
outside the scope of this paper.  
The results shown in the sequel are for rings of size 16 
stations, but we have run the experiments with 32, 64, and 
128 stations as well, and the results are the same.  Packets are 
sent on the shortest path to the destination. When a packet is 

destined to the station directly across from the sender, the 
outer ring is chosen.  
It takes one clock tick to send a symbol (a byte) out on a link. 
The propagation delay of each link is 2500 clock ticks.  This 
latency includes the time it takes to pass through an empty 
station, i.e., a station where the transit buffer is empty.  
Waiting time in none-empty transit buffers is included in the 
simulation results. Assuming a clock tick of three 
nanoseconds, the simulation results are valid for a system 
with a link speed of just above 2.5Gbit/sec (OC-48) and 
almost 1.5 km links. We have conducted some of the 
experiments below with longer links as well (up to 50000 
clock ticks), and the results we saw then are the same as we 
see here for shorter links.  
For simplicity, we have chosen to use one packet size. A size 
of 500 bytes has been shown to be a good choice for a 
“typical” data packet [7].  The control packet size is 32 bytes.   
All experiments have been conducted with long simulation 
times and different seeds, and the results shown are averages 
for steady state. For experiments A and B below the results 
shown are values for 108 ticks (OC-48: 300 ms). The final 
standard deviation is small.  The 99 % confidence interval for 
the average would hardly be visible in our plots. 

IV. THE EXPERIMENTS 
Three main experiments were set up to demonstrate the effect 
of our enhanced fairness algorithm. The first one is a hot 
receiver scenario, the second a hot sender and the last one is a 
random traffic scenario.  As performance is mainly an issue 
when the system is heavily loaded, all senders in all scenarios 
are pushing as much data as possible onto the ring.  

A. Hot receiver scenario 
The advantages of our new algorithm is best seen when HOL 
blocking effects are most serious.  We have implemented the 
example described by figure 2:  Assume station 7 is the rings 
connection to the outside, and that stations 0 through 6 are 
streaming as much data as possible out of the ring, i.e. to 
station 7.  In addition, stations 0 through 6 also stream as 
many packets as possible to their immediate downstream 
neighbor. In figure 3 (Hot receiver – Traditional fairness) we 
see the effect of a traditional fairness algorithm that does not 
consider the destination address of the packages.  The farthest 
downstream sender station (station 6), sends a number of 
packets to the hot receiver (station 7).  This number gets 
propagated upstream to station 5, allowing it to send out 
approximately the same number of packets.  Because of HOL 
blocking, station 5 transmits on average 50% to station 7 and 
50% to station 6.  Going further upstream, stations 4, 3, 2 and 
1 sends in the same way as station 5.  The only station that 
gets to send more is station 0. 
We have not fully understood the reason for this, but it is 
probably because of the spatial reuse caused by the packets 
traveling only one hop. This causes the transit buffers in 
nodes 1 through 5 to only carry traffic to the hot receiver, not 
any local traffic. This “fools” station 0 to believe it can get 
more bandwidth than stations 1 to 5.  We have repeated the 
experiment with more stations on the ring, and the same 
pattern is observed. 



Figure 4 shows the same scenario with our new algorithm 
installed.  We see that all stations get the same fair amount of 
bandwidth to the hot receiver.  This is possible because 
station 6 sends control packets upstream to all stations telling 
them how much station 6 itself is using of the bandwidth 
between stations 6 and 7. The other stations then adjust to this 
value when they send packets to station 7. When they send to 
the other stations they ignore this value. Hence, they send as 
much as they can to their immediate downstream neighbor. 
We also see that all links between stations 0 to 7 are fully 
utilized. E.g. for station number 3, the “Sent to immediate 
downstream neighbour” value is 83692. In addition, on the 
link from station 3 to station 4, also the “Sent to hot receiver” 
values from stations 0, 1, 2, and 3 are transmitted. These 
values are respectively 28341, 31284, 28342 and 28340. The 
sum of these values is 199999 which equals the full link 
bandwidth:  
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For the traditional fairness algorithm (figure 3), the link 
utilization is limited between stations 0 – 6. The link is fully 
utilized only between stations 6 and 7. E.g. when considering 
the link betweens stations 3 and 4, the aggregate throughput 
is reduced to 132.334 [packets] (calculated as above). 
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Figure 3. Hot receiver – Traditional fairness 

 
 

B. Hot sender scenario 
In this scenario we assume that station 0 is the connection to 
the outside, and that it receives seven streams of data that it 
passes on to stations 1 through 7.  At the same time stations 1 
through 6 sends as much data locally as possible to their 
immediate downstream neighbor. Since these stations (1 
through 6) each send one stream only, they experience no 
HOL blocking. 
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Figure 4. Hot receiver – Enhanced fairness.  

 

 
In figure 5 (Hot sender – Traditional fairness) we see that 
with a traditional fairness algorithm and a HOL blocking 
queue in station 0, each of the stations gets equally many 
packets from station 0.  The traffic between the pairs 1 to 2, 2 
to 3, etc. is utilizing all available bandwidth. The only under-
utilized link is the one between stations 0 and 1. Hence, we 
get relatively good spatial reuse even with the traditional 
algorithm.   
Looking at figure 6 (Hot sender – Enhanced fairness) we see 
that with an ingress buffer in station 0 that is not blocking the 
head of the line, our new algorithm is capable of utilizing the 
free bandwidth from station 0 to station 1.  It can do so 
because it knows about the free bandwidth on this link, and 
can treat the packets destined for station 1 specifically. Now 
all links are fully utilized. 
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 Figure 5. Hot sender –Traditional fairness 
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 Figure 6. Hot sender – Enhanced fairness 

 
 

C. Random traffic scenario. 
In order to compare the two algorithms when there is no 
special opportunity for extra spatial reuse, we let all stations 
send packets randomly to all other stations.  This is also the 
only case reported in this paper where the ring is fully loaded 
in both directions, and where control and data packets 
compete about access to the links. Each of the 16 stations in 
the ring sends packets randomly to all of the 15 other stations.  
The results are shown in figure 7 and 8. The plots show the 
average number of packets a station sends to downstream 
stations 1 through 8 hops away. Since packets to the station 
directly across from the sender uses the outer ring, the 
average packet travel distance on this ring is 4.5 hops, while 
the average packet travel distance on the inner ring is 4 hops.  
This means that each station on average shares the capacity of 
its outgoing link on the inner ring with its 3 closest upstream 
neighbours, leaving the node with ¼th of the link capacity to 
use for sending packets from its ingress buffer. Thus, during 
one million ticks, a station can at most send 500 packets (à 
500 byte) from its ingress buffer onto the ring. From figure 7 
and 8, we find the total number of packets sent on the inner 
ring is slightly higher than 7x70 = 490. This means that the 
inner ring is almost fully utilized. The same argument applies 
to the outer ring. 
There is not much difference in the results for the enhanced 
and the traditional algorithm.  The traditional algorithm has a 
slightly higher overall data throughput. Given that our 
algorithm uses slightly more control data this is not 
surprising. 
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Figure 7. – Random traffic – Traditional fairness 
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Figure 8. Random traffic – Enhanced fairness 
 

V. CONCLUSION 
In an RPR-like ring with HOL blocking ingress buffers and a 
conventional fairness algorithm, spatial reuse is not fully 
exploited.  We have devised an enhanced fairness algorithm 
that avoids HOL blocking in a full duplex ring. In order to 
evaluate our new enhanced algorithm, we have implemented 
it in a ring model together with a conventional one. 
Our experiments have shown that non-HOL blocking ingress 
buffers combined with our new algorithm, increase spatial 
reuse significantly for some traffic scenarios. In addition it 
performs equally well when HOL blocking is not an issue. 
Our enhanced spatial reuse algorithm is not much more 
complex than a traditional one, and the overhead of control 
packets is not significantly more either.  
Our approach has an advantage whenever a station has traffic 
for more than one destination. The algorithm is dynamic, i.e., 
the transmit pattern need not be known in advance. The real 



advantage of our approach remains to be seen, and will 
depend upon real traffic patterns in deployed communication 
rings.  
In follow-up work we would like to evaluate the algorithm 
under more dynamic traffic patterns. We will also look into 
the possibility of aggregating more status information in each 
packet and send them hop by hop (instead of broadcast 
around the complete ring).  
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