
Avoiding Head-of-Line Blocking using an Enhanced Fairness Algorithm
 in a Resilient Packet Ring

Stein Gjessing and Fredrik Davik

Simula Research Laboratory / University of Oslo
P.O. Box. 134 Lysaker, 1325 Lysaker, NORWAY

Email: {steing, bjornfd}@simula.no

Abstract. IEEE is currently conducting an effort to
standardize a full duplex, spatial reuse, ring network
architecture, called the Resilient Packet Ring (IEEE P802.17).
We discuss the relationship between spatial reuse and head of
line blocking in such a ring. An algorithm that schedules
packets individually based on destination address is outlined.
We have written a model of the RPR architecture in the
programming language Java, and simulated several scenarios in
order to evaluate and compare our algorithm with a con-
ventional ring fairness algorithm. Our performance evaluations
show that it is possible to achieve significant higher throughput
for traffic scenarios where head of line blocking traditionally
has degraded performance. Where head of line blocking is not
an issue, our algorithm behaves like the traditional one.

I. INTRODUCTION
The Resilient Packet Ring (RPR) is a scalable high
performance network architecture that connects nodes or
stations into a point-to-point, full duplex, ring topology. RPR
is currently under standardization by the IEEE working group
P802.17. The goal of the working group is to define a
standard that can be used for different sized rings and high
data rates. The original goal of the IEEE 802 committee is to
standardize LANs and MANs, but for 802.17 also Wide Area
Network usage is considered. RPR should be able to utilize
underlying technologies of various types, e.g. WDM, SONET
and high-speed point-to-point Ethernet.
The full duplex (one or more ringlets in each direction) ring
topology has several nice properties. A station can chose onto
which of the rings it will place a packet, and hence minimize
the travel distance (and possibly also the congestion) from
source to destination.
A dual ring is fault tolerant [1,21]. If a segment of the ring
breaks, the immediate nodes on each side can wrap the traffic
around and send the packets on the longer, but available, path
around the ring. When a station learns about a broken
segment, it can change the direction of packet insertion.
However, notice the reduced aggregate bandwidth of a
broken ring.
Ring topologies have been popular for LANs and MANs for a
long time. The Cambridge Ring was designed as early as in
the mid 1970’s [18], while the IEEE Token Ring standard
[10] and FDDI [21] were developed later. In the early
systems, access to the ring was regulated by a token, but later
spatial reuse was exploited, e.g., in systems like MetaRing
[6], ATMR [13], CRMA-II [15], DQDB [11] and SCI [12].

The access methods for these rings have been extensively
studied, compared and refined [2,5,9,16,17,20].
Unlike a token ring, where only one packet uses the ring at a
time, a destination removal ring like RPR can have several
packets on their way at the same time, provided the packets
use different segments of the ring. This is called spatial reuse
and is illustrated on the inner ring on figure 1. Packets that
are traveling on the ring and passing by a station will have to
wait if a locally sourced packet is being transmitted. While
waiting, the packet is placed in what we call the transit
buffer. Each station also contains a set of ingress buffers
where packets wait to be transmitted onto the ring, and a set
of egress buffers where packets are placed when they are
removed from the ring.

Submitted to International Conference on Telecommunications – ICT 2002

Figure 1. RPR-ring - Spatial reuse shown on the inner ring

A very naïve algorithm for ring access would be for each
station to start transmitting a packet as soon as the transit
buffer is empty. This would, however, make it easy for one
station to starve downstream neighbors by filling the ring
completely. In order to avoid such starvation and give each
station fair access to the ring, a fairness algorithm must be
deployed [4,5,12,23].
Most of the fairness algorithms rely on telling the upstream
node to send idle symbols or empty packets. In particular, [4]
discuss an advanced method for tracking packets and
achieving good spatial reuse in this way. The fairness
algorithm used by Cisco, called Spatial Reuse Protocol (SRP)
[23], is based on a regulation scheme where each congested

station sends information about its recent transfer rate
upstream. In a stable situation, all upstream stations will then
transmit onto the ring the same amount as the downstream
stations.
It is, however, not always optimal for all stations to send an
equal amount of data. This has been discussed for SCI [20],
and MetaRing [4]. The latter paper discusses some of the
problems presented in this paper, but solves the problem
using a different approach.
In this paper we present and discuss a fairness algorithm that
utilizes ring bandwidth significantly better by HOL blocking
avoidance. The possibility for better spatial reuse and our
enhanced fairness algorithm is the topic of the next section.
Then we present the ring model used in our evaluation.
Three traffic scenarios are discussed, and we show how a
conventional fairness algorithm and our new fairness
algorithm behave in these cases. Finally, we summarize and
conclude our findings.

II. AN ENHANCED FAIRNESS ALGORITHM
One of the main advantages of destination removal is the
possibility to send packets concurrently on different ring
segments. However, when several stations are waiting to use
the link, spatial reuse may be reduced. In particular, this will
be the case when the ingress queues are strictly FIFO. Figure
2 is used to illustrate this. Stations 0 through 6 send data to
station 7. Hence, they all require link bandwidth along the
path from source to destination. In particular, they all need to
send data on the link between stations 6 and 7. As an
example, assume that the first packet in the ingress buffer of
station 0 is destined for station 7 and the second packet is
destined for station 1. While station 0 is waiting to send to
station 7, the link from 0 to 1 is unused. The second packet
is however blocked by the packet waiting at the head of the
line, thus the opportunity to utilize the unused bandwidth
from station 0 to station 1 is lost (no spatial reuse). This is
called head of line (HOL) blocking. The same HOL blocking
situation will also happen, but to a lesser extent (lesser
unused bandwidth), at stations 1 to 5.

0 1 2 3 4 5 6 7

Figure 2. Hot receiver plus local traffic

Each station keeps track of its send rate, i.e. the number of
packets (bytes/sec) it has transmitted (from its ingress
buffers) onto the ring lately. In order to avoid high frequency
oscillations, this information is run through a low pass filter.
When a station is congested (it is not able to send as much
data onto the ring as it wants to), it advertises its send rate to
all upstream neighbors in a control packet. All upstream
neighbours store this value from station i in a counter o

There are at least two factors that must be fulfilled to
optimize utilization of unused link bandwidth and avoid HOL
blocking:

1. In each station there must be a separate ingress buffer per

destination station (or another mechanism to the same
effect)

2. The fairness algorithm must know the status of each
downstream link and/or transit buffer.

A cost and complexity analysis of buffer technologies
required to avoid HOL blocking is outside the scope of this
paper. This paper discusses enhanced algorithms and

evaluates possible performance improvements in rings with
non-HOL blocking buffers.
As noted by 2), a fairness algorithm which avoids HOL
blocking, must know the situation in the downstream parts of
the ring. The algorithm must be able to decide when it is
advisable and fair to send a packet to a station far away on
the ring, and when it may transmit a packet that has a more
immediate downstream station as its destination only.
All links connect two stations. The upstream station is called
the owner of the link. We suggest an algorithm where all
owners collect status information about their links. (We focus
on one of the rings transporting data unidirectionally; the
algorithm for the ring sending data in the other direction will
be congruent). Each station sends its status data in a control
packet upstream (on the link going in the other direction).
All upstream stations copy the content of this packet. It is a
broadcast packet that circulates the ring once. When the
packet returns to the sender, it is stripped from the ring.
Alternatively, one could collect all status data from all
stations in one (or a few) packet(s) that circulate on the ring.
The bandwidth used by such control packets is low.
Assuming 32 byte packets are used and each station sends out
its own status packet every 50 000 byte counts, this result in a
1% bandwidth usage for control packages in a 16-node
network.
When a station has received control packets from all
downstream nodes, it has global knowledge of the status of
the ring. This information is used by the station to inhibit
sending of data exceeding the nodes fair share of the ring
bandwidth from its ingress buffer. The fairness algorithm
basically has two possibilities:
I) The station inhibits sending of new packets onto the ring

for the time it takes the downstream transit buffer(s) to
empty (or its content size is reduced below a certain
threshold). This is the approach taken by MetaRing [6]
and SCI [12]

II) The station inhibits sending to adjust to the sending rate
of the downstream neighbor(s). This is the approach
taken by SRP [23].

In the implementation of the enhanced fairness algorithm
reported in this paper, we use a variant of method II.

i. In
addition, all stations have a set of counters, si , which tracks
their bandwidth usage on all downstream links i. The si
counters are updated for all links between sender and
destination each time a packet is transmitted.
Hence, all stations keep two counters for each downstream
link i: The oi counters are the owners’ send rate on link i.
The values of these counters are copied from the broadcasted
control packets. The si counters tracks this stations bandwidth
usage on the downstream link i.

Based on these counters, our enhanced algorithm decides
whether the station may send another packet, and in particular
how far downstream a packet may be sent at this time. For
link i, this means that as long as the stations send rate over a
link i is less than that of the owners send rate over this link
(i.e. as long as si < oi), the station may send another packet
over this link.
When a station i is not congested, is does not advertise its
send rate, i.e. no control packets are sent from this station.
The fairness algorithm allows the upstream stations to
gradually increase their oi values in an attempt to send more.
They will be able to do so until station i gets congested, at
which point station i again advertises its send rate, resulting
in a decrease in the oi values of the upstream stations, etc.
In a non-HOL blocking ingress buffer, several fairness
principles can be used in order for the algorithm to choose
among the packets it is allowed to send. In the
implementation evaluated in the sequel, we have adopted a
round robin strategy among all destination addresses.

III. THE EVALUATION METHOD
We use performance evaluation by simulation to support our
comparisons and discussions. We have designed a model of
the RPR-ring and implemented it in the programming
language Java. Using our ring model we can simulate
different technology solutions, different link speeds and ring
sizes and different traffic scenarios. The tractable model size
(a few thousand lines of Java code) makes it easy to modify
and vary any parameter and all aspects of the ring. The
ability to write results to file from anywhere in the program,
provides the opportunity to extract the information needed
from our executable model.
In order to compare the capabilities of our enhanced fairness
algorithm with those of a conventional one, we chose to
implement SRP [23] in addition to our own enhanced fairness
algorithm. One of the important reasons for implementing
SRP, is that it is well defined. SRP does not solve the HOL
blocking problem, i.e. the destination address of the packet is
not a parameter when a station has to decide whether it can
send a packet.
Our packets have two levels of priority. Control packets are
sent with high priority, while data traffic has low priority.
When a station is choosing a new packet to send out on its
link, it first looks for a high priority packet in the transit
buffer (there are separate transit buffers for high and low
priority packets). If that buffer is empty, it looks for high
priority packets in the ingress buffer. If there are no high
priority packets to send, data from the low priority transit and
ingress buffers have equal priority (it keeps an equal byte
count). This equal priority is in effect only as long as the size
of the transit buffer is below a threshold. When the size is
above this threshold, the transit buffer has priority. The
fairness algorithms do not control high priority traffic. Hence,
a large amount of high priority traffic could make the low
priority transit buffers overrun. A discussion of this is
outside the scope of this paper.
The results shown in the sequel are for rings of size 16
stations, but we have run the experiments with 32, 64, and
128 stations as well, and the results are the same. Packets are
sent on the shortest path to the destination. When a packet is

destined to the station directly across from the sender, the
outer ring is chosen.
It takes one clock tick to send a symbol (a byte) out on a link.
The propagation delay of each link is 2500 clock ticks. This
latency includes the time it takes to pass through an empty
station, i.e., a station where the transit buffer is empty.
Waiting time in none-empty transit buffers is included in the
simulation results. Assuming a clock tick of three
nanoseconds, the simulation results are valid for a system
with a link speed of just above 2.5Gbit/sec (OC-48) and
almost 1.5 km links. We have conducted some of the
experiments below with longer links as well (up to 50000
clock ticks), and the results we saw then are the same as we
see here for shorter links.
For simplicity, we have chosen to use one packet size. A size
of 500 bytes has been shown to be a good choice for a
“typical” data packet [7]. The control packet size is 32 bytes.
All experiments have been conducted with long simulation
times and different seeds, and the results shown are averages
for steady state. For experiments A and B below the results
shown are values for 108 ticks (OC-48: 300 ms). The final
standard deviation is small. The 99 % confidence interval for
the average would hardly be visible in our plots.

IV. THE EXPERIMENTS
Three main experiments were set up to demonstrate the effect
of our enhanced fairness algorithm. The first one is a hot
receiver scenario, the second a hot sender and the last one is a
random traffic scenario. As performance is mainly an issue
when the system is heavily loaded, all senders in all scenarios
are pushing as much data as possible onto the ring.

A. Hot receiver scenario
The advantages of our new algorithm is best seen when HOL
blocking effects are most serious. We have implemented the
example described by figure 2: Assume station 7 is the rings
connection to the outside, and that stations 0 through 6 are
streaming as much data as possible out of the ring, i.e. to
station 7. In addition, stations 0 through 6 also stream as
many packets as possible to their immediate downstream
neighbor. In figure 3 (Hot receiver – Traditional fairness) we
see the effect of a traditional fairness algorithm that does not
consider the destination address of the packages. The farthest
downstream sender station (station 6), sends a number of
packets to the hot receiver (station 7). This number gets
propagated upstream to station 5, allowing it to send out
approximately the same number of packets. Because of HOL
blocking, station 5 transmits on average 50% to station 7 and
50% to station 6. Going further upstream, stations 4, 3, 2 and
1 sends in the same way as station 5. The only station that
gets to send more is station 0.
We have not fully understood the reason for this, but it is
probably because of the spatial reuse caused by the packets
traveling only one hop. This causes the transit buffers in
nodes 1 through 5 to only carry traffic to the hot receiver, not
any local traffic. This “fools” station 0 to believe it can get
more bandwidth than stations 1 to 5. We have repeated the
experiment with more stations on the ring, and the same
pattern is observed.

Figure 4 shows the same scenario with our new algorithm
installed. We see that all stations get the same fair amount of
bandwidth to the hot receiver. This is possible because
station 6 sends control packets upstream to all stations telling
them how much station 6 itself is using of the bandwidth
between stations 6 and 7. The other stations then adjust to this
value when they send packets to station 7. When they send to
the other stations they ignore this value. Hence, they send as
much as they can to their immediate downstream neighbor.
We also see that all links between stations 0 to 7 are fully
utilized. E.g. for station number 3, the “Sent to immediate
downstream neighbour” value is 83692. In addition, on the
link from station 3 to station 4, also the “Sent to hot receiver”
values from stations 0, 1, 2, and 3 are transmitted. These
values are respectively 28341, 31284, 28342 and 28340. The
sum of these values is 199999 which equals the full link
bandwidth:

ckets].200.000[pa [packets]
500

8
10

ket][ticks/pacnsmit timepacket tra

[ticks] periodn observatio oflength
==

For the traditional fairness algorithm (figure 3), the link
utilization is limited between stations 0 – 6. The link is fully
utilized only between stations 6 and 7. E.g. when considering
the link betweens stations 3 and 4, the aggregate throughput
is reduced to 132.334 [packets] (calculated as above).

0

50000

100000

150000

200000

250000

0 1 2 3 4 5 6 7

Station number

N
um

be
r o

f p
ac

ke
ts

Sent to immediate downstream neighbour

Sent to hot receiver (station 7)

Total received by hot receiver

Figure 3. Hot receiver – Traditional fairness

B. Hot sender scenario
In this scenario we assume that station 0 is the connection to
the outside, and that it receives seven streams of data that it
passes on to stations 1 through 7. At the same time stations 1
through 6 sends as much data locally as possible to their
immediate downstream neighbor. Since these stations (1
through 6) each send one stream only, they experience no
HOL blocking.

0

50000

100000

150000

200000

250000

0 1 2 3 4 5 6 7

Station number

N
um

be
r o

f p
ac

ke
ts

Sent to immediate downstream neighbour

Sent to hot receiver (station 7)

Received by hot receiver

Figure 4. Hot receiver – Enhanced fairness.

In figure 5 (Hot sender – Traditional fairness) we see that
with a traditional fairness algorithm and a HOL blocking
queue in station 0, each of the stations gets equally many
packets from station 0. The traffic between the pairs 1 to 2, 2
to 3, etc. is utilizing all available bandwidth. The only under-
utilized link is the one between stations 0 and 1. Hence, we
get relatively good spatial reuse even with the traditional
algorithm.
Looking at figure 6 (Hot sender – Enhanced fairness) we see
that with an ingress buffer in station 0 that is not blocking the
head of the line, our new algorithm is capable of utilizing the
free bandwidth from station 0 to station 1. It can do so
because it knows about the free bandwidth on this link, and
can treat the packets destined for station 1 specifically. Now
all links are fully utilized.

0

50000

100000

150000

200000

250000

0 1 2 3 4 5 6 7

Station number

N
um

be
r o

f p
ac

ke
ts

Received from immediate upstream station

Received from hot sender (station 0)

Hot senders total output

 Figure 5. Hot sender –Traditional fairness

0

50000

100000

150000

200000

250000

0 1 2 3 4 5 6 7

Station number

N
um

be
r

of
 p

ac
ke

ts

Received from immediate upstream station

Received from hot sender (station 0)

Total sent by hot sender

 Figure 6. Hot sender – Enhanced fairness

C. Random traffic scenario.
In order to compare the two algorithms when there is no
special opportunity for extra spatial reuse, we let all stations
send packets randomly to all other stations. This is also the
only case reported in this paper where the ring is fully loaded
in both directions, and where control and data packets
compete about access to the links. Each of the 16 stations in
the ring sends packets randomly to all of the 15 other stations.
The results are shown in figure 7 and 8. The plots show the
average number of packets a station sends to downstream
stations 1 through 8 hops away. Since packets to the station
directly across from the sender uses the outer ring, the
average packet travel distance on this ring is 4.5 hops, while
the average packet travel distance on the inner ring is 4 hops.
This means that each station on average shares the capacity of
its outgoing link on the inner ring with its 3 closest upstream
neighbours, leaving the node with ¼th of the link capacity to
use for sending packets from its ingress buffer. Thus, during
one million ticks, a station can at most send 500 packets (à
500 byte) from its ingress buffer onto the ring. From figure 7
and 8, we find the total number of packets sent on the inner
ring is slightly higher than 7x70 = 490. This means that the
inner ring is almost fully utilized. The same argument applies
to the outer ring.
There is not much difference in the results for the enhanced
and the traditional algorithm. The traditional algorithm has a
slightly higher overall data throughput. Given that our
algorithm uses slightly more control data this is not
surprising.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Outer ring Inner ring

Number of hops away

Pa
ck

et
s p

er
 st

at
io

n
pe

r m
ill

io
n

tic
ks

Figure 7. – Random traffic – Traditional fairness

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Outer ring Inner ring

 Number of hops away

Pa
ck

et
s p

er
 st

at
io

n
pe

r m
ill

io
n

tic
ks

Figure 8. Random traffic – Enhanced fairness

V. CONCLUSION
In an RPR-like ring with HOL blocking ingress buffers and a
conventional fairness algorithm, spatial reuse is not fully
exploited. We have devised an enhanced fairness algorithm
that avoids HOL blocking in a full duplex ring. In order to
evaluate our new enhanced algorithm, we have implemented
it in a ring model together with a conventional one.
Our experiments have shown that non-HOL blocking ingress
buffers combined with our new algorithm, increase spatial
reuse significantly for some traffic scenarios. In addition it
performs equally well when HOL blocking is not an issue.
Our enhanced spatial reuse algorithm is not much more
complex than a traditional one, and the overhead of control
packets is not significantly more either.
Our approach has an advantage whenever a station has traffic
for more than one destination. The algorithm is dynamic, i.e.,
the transmit pattern need not be known in advance. The real

advantage of our approach remains to be seen, and will
depend upon real traffic patterns in deployed communication
rings.
In follow-up work we would like to evaluate the algorithm
under more dynamic traffic patterns. We will also look into
the possibility of aggregating more status information in each
packet and send them hop by hop (instead of broadcast
around the complete ring).

ACKNOWLEDGMENT
The author thanks Olav Lysne for his contribution to the
simulator and his valuable comments on this paper.

REFERENCES
1. ANSI T1.105.01-2000: Synchronous Optical Network
(SONET) - Automatic Protection.
2. H.R. van As: Major Performance Characteristics of the
DQDB MAC Protocol. Telecommunications Symposium,
1990. ITS’90 Symposium Record, SBT/IEEE 1990
3. S. Breuer, T.Meuser: Enhanced Throughput in Slotted
Rings Employing Spatial Slot Reuse. INFOCOM '94.
Networking for Global Communications. IEEE. 1994
4. I. Cidon, L. Georgiadis, R. Guerin, Y. Shavitt: Improved
fairness algorithms for rings with spatial reuse. IEEE/ACM
Transactions on Networking, Vol.5, No. 2, 1997.
5. I. Cidon, Y. Ofek: Distributed Fairness Algorithms for
Local Area Networks with Concurrent Transmissions.
In: Lecture Notes in Comp. Sci., Vol. 392, Springer, 1988
6. I. Cidon, Y.Ofek: MetaRing - A Full-Duplex Ring with
Fairness and Spatial Reuse. IEEE Trans on Communications,
Vol. 41, No. 1, January 1993.
7. K.C. Claffy: Internet measurements: State of DeUnion.
http://www.caida.org/outreach/presentations/Soa9911
8. M.W. Garrett, S.-Q. Li: A study of slot reuse in dual bus
multiple access networks. IEEE Journal on Selected Areas in
Communications, Vol. 9 Issue 2, Feb. 1991
9. A. Grebe, C. Bach: Performance comparison of ATMR
and CRMA-II in Gbit/s-LANs. SUPERCOMM/ICC '94,
IEEE Int. Conf. on Serving Humanity Through
Communications, 1994
10. IEEE Standard 802.5–1989, IEEE standard for token ring
11. IEEE Standard 802.6–1990, IEEE standard for
distributed queue dual bus (DQDB) subnetwork
12. IEEE Standard 1596–1990, IEEE standard for a Scalable
Coherent Interface (SCI)
13. ISO/IECJTC1SC6 N7873: Specification of the ATMR
Protocol (V. 2.0), January 1993
14. I. Kessler, A. Krishna: On the cost of fairness in ring
networks. IEEE/ACM Trans. on Networking, Vol. 1 No. 3,
June 1993
15. W.W. Lemppenau, H.R.van As, H.R.Schindler:
Prototyping a 2.4 Gbit/s CRMA-II Dual-Ring ATM LAN and
MAN. Proceedings of the 6th IEEE Workshop on Local and
Metropolitan Area Networks, 1993.
16. M.J. Marsan et al.: Slot Reuse in MAC Protocols for
MANs. IEEE J. on Selected Areas in Communications.
Vol. 11, No. 8, October 1993.
17. H.R. Muller et al: DQMA and CRMA: New Access
Schemes for Gbit/s LANs and MANs. INFOCOM '90,

Ninth Annual Joint Conference of the IEEE Computer and
Communication Societies. IEEE , 1990
18. R.M. Needham, A.J. Herbert: The Cambridge Distributed
Computing System. Addison-Wesley, London, 1982.
19. T. Okada, H. Ohnishi, N. Morita: Traffic control in
asynchronous transfer mode. IEEE Communications
Magazine , Vol. 29 Issue 9, Sept. 1991
20. D. Picker, R.D. Fellman: Enhancing SCI’s fairness
protocol for increased throughput. IEEE Int. Conf. On
Network Protocols. October, 1993.
21. F.E. Ross: Overview of FDDI: The Fiber Distributed
Data Interface. IEEE J. on Selected Areas in
Communications, Vol. 7, No. 7, September 1989.
22. I. Rubin, H.-T. Wu: Performance Analysis and Design of
CQBT Algorithm for a Ring Network with Spatial Reuse.
IEEE/ACM Trans on Networking, Vol. 4, No. 4, Aug. 1996.
23. D. Tsiang, G. Suwala: The Cisco SRP MAC Layer
Protocol. IETF Networking Group, RFC 2892, Aug. 2000

	Stein Gjessing and Fredrik Davik
	Figure 1. RPR-ring - Spatial reuse shown on the inner ring
	AN ENHANCED FAIRNESS ALGORITHM
	THE EVALUATION METHOD
	THE EXPERIMENTS

	Hot receiver scenario
	Figure 3. Hot receiver – Traditional fairness

	Hot sender scenario
	Figure 4. Hot receiver – Enhanced fairness.

	Random traffic scenario.
	Figure 8. Random traffic – Enhanced fairness
	CONCLUSION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

