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WEAKLY POSITIVE DEFINITE MATRICES

TRYGVE KASTBERG NILSSEN

Abstract. A weakly positive definite matrix is defined to be a matrix
which can be written as a product of two positive definite matrices. This
paper proves that a matrix is weakly positive definite if and only if the
real eigenvalues are positive. The main components of the proof are
Schur decomposition and mathematical induction.

1. Introduction

This paper proves the following theorem

Theorem 1.1. Let A be a nonsingular real matrix. The following two state-
ments are equivalent

λ(A) ∩ R− = ∅(1)

∃B,C positive definite, such that A = BC.(2)

Here λ(A) denotes the spectrum of A, which is the set of its eigenvalues.
R− is the set of strictly negative real numbers.

Positive definite matrices are defined by

Definition 1.1. A real matrix B is called positive definite if

xT Bx > 0,(3)

for all real and nonzero vectors x.

Notice that B is not assumed to be symmetric. We refer to xT Bx as the
quadratic form of B.

We now introduce the term weakly positive definite as

Definition 1.2. A matrix is called weakly positive definite if it can be fac-
torized into two positive definite matrices.

Obviously a positive definite matrix is also weakly positive definite, be-
cause it can be factorized into the identity and itself. The class of positive
definite matrices is not closed under multiplication, so the class of weakly
positive definite matrices is strictly larger.

Theorem 1.1 states that the weakly positive definite matrices are precisely
characterized as the real and invertible matrices where the arguments of the
eigenvalues differ from π.

The interest in weakly positive definite matrices arose through the study
of higher–order discretization methods for time dependent PDEs, see [3, 4].
The PDEs are discretized in time by fully implicit Runge–Kutta methods,
and the linear systems to be solved are preconditioned with block diago-
nal preconditioners. If the Runge–Kutta coefficient matrices were positve
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definite, which they usually are not in the fully implicit case, the precondi-
tioned systems can be proved to have bounded condition numbers. However,
as shown in [3, 4], it is sufficient that the Runge–Kutta coefficient matrices
can be factorized into two positive definite matrices. Now, since A–stable
Runge–Kutta matrices can easily be shown to not have negative eigenvalues,
Theorem 1.1 is valuable.

This paper is organized as follows: Section 2 makes some remarks about
weakly positive definite matrices. Section 3 proves Theorem 1.1.

2. Remarks

In the literature positive definite matrices are frequently assumed to be
symmetric in addition to (3). It can be shown that symmetric positive
definite matrices are characterized as symmetric matrices having positive
eigenvalues (see [1, 2]).

In order to characterize nonsymmetric positive definite matrices we define
the symmetric part of a matrix B as

S(B) =
1
2
(B + BT ).

Since xT Bx is a scalar, we see that xT Bx = (xT Bx)T = xT BT x, which
means that transposing a matrix does not change its quadratic form. Thus
we see that

xT Bx = xT S(B)x.

Therefore we can characterize (possibly nonsymmetric) positive definite ma-
trices as matrices where the symmetric part has positive eigenvalues. By
Theorem 1.1 weakly positive definite matrices are also characterized by their
eigenvalues.

Symmetric matrices are known to have real eigenvalues, see e.g. [1, 2].
Thus

Remark 2.1. In the symmetric case weakly positive definite and positive
definite matrices are characterized equally.

We now make two remarks which further motivates the word weakly in
Definition 1.2.

Remark 2.2. Weakly positive definite matrices are invariant under arbi-
trary change of basis, i.e. for an arbitrary invertible P , PAP−1 is weakly
positive definite if and only if A is weakly positive definite.

Proof. The result follows by Theorem 1.1 since A and PAP−1 are similar
matrices and share the same set of eigenvalues, cf. e.g. [1, 2]. �

Remark 2.3. Positive definite matrices are invariant under orthogonal
change of basis, but not under arbitrary change of basis.

Proof. Let Q be an orthogonal matrix representing an orthogonal change of
basis, i.e. QT = Q−1. If

xT Bx > 0, ∀x 6= 0,

then by defining y = QT x we see that

xT QBQT x = yT By > 0, ∀y 6= 0.
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To show that positive definite matrices are not invariant under an arbi-
trary change of basis, consider the standard 2 × 2 rotation matrix with an
angle θ, given by

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.(4)

Then Rθ is positive definite if θ ∈ (−π/2, π/2). This can be seen because

xT Rθx = cos(∠(x,Rθx))‖x‖‖Rθx‖ = cosθ ‖x‖2.

Now, let P be the positive definite matrix P =
(

2 0
0 1

)
. Then PRπ/3P

−1

is easily seen to not being positive definite by choosing x = (1, 1)T

xT PRπ/3P
−1x = 2 cos

π

3
− 3

2
sin

π

3
< 0.

�

We end this section by giving an equivalent characterization of weakly
positive definite matrices, which could have served as an alternative defini-
tion to Definition 1.2. The new characterization is closer to how Theorem
1.1 is used in practice, cf. [3, 4]. It will also be useful in the proof of Theorem
1.1.

Lemma 2.1. A real matrix A is weakly positive definite if and only if there
exists a positive definite matrix B such that the product BA is positive def-
inite.

Proof. We start by observing that a matrix is positive definite if and only if
its inverse is positive definite1. This is seen by the change of basis x = B−1y:

xT Bx = yT B−T BB−1y = yT B−T y = yT B−1y.

If there exists a B as in Lemma 2.1, we then see that A can be factorized
into the factors B−1 and BA which both are positive definite, and then A
is weakly positive definite. Further, if A is weakly positive definite, let B be
as defined in Definition 1.2. Then both B−1 and B−1A (= C) are positive
definite, and the lemma is proved.

�

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. First we need two lemmas. The
first states that 2 × 2 matrices with truly complex eigenvalues are weakly
positive definite.

Lemma 3.1. Any A ∈ R2×2 with nonreal eigenvalues is weakly positive
definite.

Proof. In this proof we construct a positive definite B, such that BA is
positive definite. To do so, we study the angle between x and Ax, written

α(x) ≡ ∠(x,Ax) : R2 → (−π, π].

1In other words, the property of being positive definite is closed under inversion.
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Notice that if there exists an x such that α(x) = 0, then A will have a
positive real eigenvalue, which is against the assumption. Similarly, if there
exists an x with α(x) = π, then there will be a negative eigenvalue of A.
Thus α(x) /∈ {0, π} for x 6= 0.

Notice further that α(x) is a continuous function of x 6= 0. This gives
that for a given A we will either have

α(x) ∈ (0, π) or α(x) ∈ (−π, 0) ∀x 6= 0.

Assume that
α(x) ∈ (0, π), ∀x 6= 0,

and let
θ = sup

x 6=0
α(x).

In the following we show that θ < π. We have that α(x) = ∠(x,Ax) =
∠( x

‖x‖ ,
Ax
‖x‖), because changing the length of vectors does not change the angle

between them. Therefore

sup
x 6=0

α(x) = sup
‖x‖=1

α(x).

Since the set defined by ‖x‖ = 1 is a compact set, and α(x) is a continuous
function of x, we can conclude that the supremum value is attained and that
it is less than π, i.e.

θ = max
x 6=0

α(x) ∈ (0, π).

Now, set B = R−θ/2 where R−θ/2 is the rotation matrix with an angle
− θ

2 , c.f. (4). Since B is a pure rotation matrix, we have that

∠(x, Ax) ∈ (0, θ), ∀x 6= 0,

⇓

∠(x, BAx) ∈ (−θ

2
,
θ

2
) ⊂ (−π

2
,
π

2
), ∀x 6= 0.

And further since ∠(x, Bx) = − θ
2 ∈ (−π

2 , 0), ∀x 6= 0, we get

xT Bx > 0, ∀x 6= 0,

xT BAx > 0, ∀x 6= 0,

which means that both B and BA are positive definite.
Finally, if

α(x) ∈ (−π, 0), ∀x 6= 0,
we define θ = inf α(x) and the result can be proved similarly. �

The next lemma proves that a special block matrix can be made positive
definite. This will be used as an induction step for extending the above
2× 2–result to Theorem 1.1.

Lemma 3.2. Let A ∈ Rn×n and B ∈ Rm×m be positive definite. For any
C ∈ Rn×m there exists an ε > 0 such that the block matrix

E =
(

εA εC
0 B

)
is positive definite.
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Proof. Since S(A) is symmetric positive definite, S(A)γ is defined for γ ∈ R,
cf. [1, 2]. Further let

α = min
‖x‖=1

xT Ax,

β = min
‖y‖=1

yT By.

Both α and β exist and are positive because the objective functions are
continuous and positive plus that the admissible sets are compact.

Let zT = (xT , yT ). We have

zT Ez = εxT S(A)x + εxT Cy + yT By

= ‖(εS(A))
1
2 x +

ε

2
(εS(A))−

1
2 Cy‖2 − ε

4
yT CT (S(A))−1Cy + yT By

≥ − ε

4
yT CT A−1Cy + yT By

≥
(

β − ε

4
‖C‖2

α

)
‖y‖2(5)

> 0,

when ε < 4αβ
‖C‖2 and y 6= 0. Here (5) follows by the definitions of α and β. �

We are now ready to prove Theorem 1.1. In Lemma 3.2 m and n are
arbitrary positive integers, but in the following proof only n ≤ 2 is needed.

Proof of Theorem 1.1. First, we prove that a weakly positive definite matrix
can not have negative eigenvalues, i.e. (2) ⇒ (1). To see this, assume that B
is positive definite and that A has a negative eigenvalue, Ax = −λx, λ ∈ R+

where x is an eigenvector. Then

xT BAx = −λxT Bx < 0,

and therefore BA is not positive definite.
Next, we show that if A has no real negative eigenvalues, then A is weakly

positive definite, i.e. (1) ⇒ (2). This is done by constructing a positive def-
inite matrix B, such that BA is positive definite. The construction utilizes
Schur decomposition.

Let A = QTQT be the real Schur decomposition of A, where Q is orthog-
onal and T is a block2 upper triangular matrix with 1× 1 or 2× 2 blocks on
the diagonal, see [1]. The real eigenvalues of A, which are positive, can be
found on the 1× 1 blocks on the diagonal of T , and the nonreal eigenvalues
can be found as the eigenvalues of the 2× 2 blocks on the diagonal of T .

The diagonal blocks of T are called Ti. An important observation now is
that each Ti is weakly positive definite. This is trivially true if Ti is a positive
real number, and shown by Lemma 3.1 if Ti has truly complex eigenvalues.

We now construct
B = QDQT ,

2Standard Schur decomposition has an upper (not block) triangular matrix T , but is
in general complex.
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where D is block diagonal, and where the diagonal blocks are denoted Di.
Then each Di should have the same dimension as Ti. We get that

BA = QDTQT .

In the following we show that the Dis can be constructed in such a way that
both D and DT are positive definite, and by Remark 2.3 this is equivalent
to both B and BA being positive definite. Note that D is positive definite
if and only if all the Dis are.

T may be written

T =


T1 t1
0 T2 t2
...

. . . . . .
...

0 . . . 0 Tk


where ti denote the nonzero offdiagonal (usually nonsquare) blocks, i.e. ti
is the matrix consisting of all the entries to the right of Ti. We see that

DT =


D1 0 . . . 0

0 D2
. . .

...
...

. . . . . . 0
0 . . . 0 Dk




T1 t1
0 T2 t2
...

. . . . . .
...

0 . . . 0 Tk



=


D1T1 D1t1

0 D2T2 D2t2
...

. . . . . .
...

0 . . . 0 DkTk

 .(6)

To finish this proof, we start in the lower right corner of DT and show by
induction that positive definite Di blocks can be constructed to make the
block matrix (6) positive definite.

Since Tk is weakly positive definite, there exists a positive definite Dk

such that the lower right block DkTk is positive definite.
Similarly, there exists a positve definite D̃k−1 such that D̃k−1Tk−1 is pos-

itive definite. Choosing Dk−1 = εD̃k−1, Lemma 3.2 gives us that the ex-
tended lower right block(

εD̃k−1Tk−1 εD̃k−1tk−1

0 DkTk

)
(7)

is positive definite (for any tk−1) if ε is small enough.
By Lemma 3.2 and induction we see that the system (7) can be extended

to the full block system (6), and the proof is complete. �
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