Offloading Multimedia Proxies using Network Processors

@yvind Hvamstad, Carsten Griwodz®> and Pal Halvorser?

IFAST ASA, Norway 2IFI, University of Oslo, Norway ?Simula Research Lab., Norway
e-mail: hvaoyv@fast.nd,griff, paalh} @ifi.uio.no

Abstract

In this paper, we present a system that aims at offloadingmmediia proxies using network processing technology

for applications like media-on-demand and distributedina-games. In particular, we have designed, imple-

mented and evaluated a proof-of-concept prototype on tie€IXP1200 network processor. Our results show that

the prototype succeeds in offloading the host machine as tacpdakets have to be processed by the host CPU,
and the prototype is able to perform application layer fadigy using only a fraction of the cycles compared to a

traditional architecture, where all packets are procebgete host CPU.

Keywords

Proxy server, IXP network processors, workload offloading

1 Introduction

The increasing availability of low-cost bandwidth for réguusers and a large improvement
in machine hardware enable new applications, like medidemand and distributed on-line
games. These applications have different requiremenistthditional applications, in partic-
ular the timely delivery of data. In such a multimedia scemdike in many others, a proxy
cache aims at reducing the latency, network load and sevael, bt the prive of an increased
latency for access to uncached content. Such a proxy cacheeng many concurrent clients,
and in addition to traditional proxy cache operations likeveng clients from the proxy cache,
forwarding data, making a cache copy of a data elementtkeé&se intermediate nodes may ex-
perience high processing loads due to transcoding, pattkeitig, stream aggregation, protocol
translation or other application-specific processing.

In this paper, we propose to offload a multimedia proxy cagheding network processing
technology and performing both networking and applicatewel operations on-board. As a
first step, we have designed a proxy cache for the limtelrnet Exchange ProcessofixP)
network processor (Intel Corporation, 2001). Our proxywtidoe able to perform fast low-
level data forwarding for urgent low-latency packets, éfit caching operations to reduce
resource consumption and application layer multicast sbEnmultiple receivers of a packet.
In our proof-of-concept prototype, we have implemented evaluated a small subset of the
required operations, i.e., a simple RTSP control/siggad@rver and an RTP forwarding unit.
Furthermore, we show that the prototype successfully afidhe proxy host in the data-plane,
i.e., no data packets are processed by the host computegdaudata forwarding operation,

leaving it free to perform other CPU intensive tasks. Ouregixpents show that the prototype
is able to do application layer forwarding using only a srfralttion of the cycles compared to
a traditional architecture, where all packets are prockgehe host CPU.

The rest of this paper is organized as follows: section 2 agd/& some background on
related work and the IXP network processor, respectivectiBn 4 describes our ideas and
the design of the network processor-based proxy archrectin section 5, we present the
prototype implementation, and a performance evaluatigivien in section 6. Finally, we give
a conclusion and directions for future work in section 7.

2 Related Work

On-board network processing units have existed for some with the initial goal of moving
the networking operations that account for the most CPU fiora software to hardware. As
the systems have improved, the fourth generation netwarggssors aim to improve perfor-
mance by integrating specialized packet processing haejwad reducing costs by making
the specialized hardware programmable (Comer, 2004). keymost existing work on net-
work processors concentrates on more traditional netwgrkiperations like routing (Kalin
and Peterson, 2001; Spalink et al., 2001) and active netag(Kind et al., 2003), while only
a few approaches have been proposed in the area of multimegi@ations. One example is
the booster boxes from IBM (Bauer et al., 2002) which try teegietwork support to massive
multiplayer on-line games by combining high-level gamecspelogic and low-level network
awareness in a single network-based computation platfémother example is a video qual-
ity adjustment mechanism (Yamada et al., 2002) that is implged on a network processor,
reducing the transmitted video quality for less capablksliand client receivers.

3 IXP1200 Overview

The Intel IXP network processors (Intel Corporation, 20Cbmer, 2004) are examples of
fourth generation network processors. Figure 1 shows tiR4200 network processor that for
example is integrated on the enp2505 card (Radisys Corpoy@002) that we have used in our
system. The basic features of this network processor iedinak 100 Mbps Ethernet interfaces,
a general purpose 232 MHz StrongARM processor, six 232 MHzigbpurpose processors
called microengines for packet processing, and three mpastof memory that should be used
for different operations according to access time and bodWwalth, i.e., 256 MB SDRAM for
packet store, 8 MB SRAM for tables and stack manipulatiod, &MB scratch (on-chip, not
shown in figure 1) for synchronization and inter-process rmamication. The StrongARM is
running a conventional Linux operating system and can bé asea traditional general purpose
CPU. The microengines are compact RISC processors eacingufour concurrent threads
where each has an own set of registers to make switches efficie

4 Design

Multimedia applications are usually characterized by highdwidth requirements and/or tim-
ing constraints. In our previous and current work on mediademand and interactive game
systems, we have seen that the workload on intermediates moidéat be very resource consum-
ing and that the processing results in increased laten€iaghe other hand, Mackenzie et al.
(2003) tested and analyzed the enp2505 and found many uresadces on the card. Similar

Host CPU PCI MAC Device
(optional) (optional)

A /32 N
< V4 PCIBus__66 MHz >
7 |4

Intel® IXP1200 Processor

PCI Bus Unit
?Z@?&B 116 Nle StrongARM* Core
pto 767 SDRAM /-\/ 232 MHz
Unit .
Multiple,
SRAM 116 MHz independent, 232 MHz
upto 8 MB] high speed
732 SRAM Tl Microengine 1
Unit [\ pusses
FiashoM oyz L |
wosve
IX Bus ,J _ -
InterfaceUnit Microengine 5
Mapped I/0
Devices
. /64 N
ie.MAC A
IX Bus 104 MHz
Control . \r ¢ // ¢ ¢ y>
' 10/100/1000 MB ATM, T1EL Other
""""" Ethernet MACS etc. 1XP1200 Processor

Figure 1:Simplified block diagram of the IXP1200 (Intel Corporation, 2001)

results have been found by Spalink et al. (2000) using thel2AB evaluation board (having
eight 100 Mbps Ethernet interfaces). Their results showfthravarding of IP packets can be
done using only 65% of the available capacity, and the perdoice could be further improved
by increased memory bandwidth. Thus, these experimenisaitedthat movement of other
operations like application specific processing to the nétyrocessor should be possible.

4.1 Multimedia Proxy Caches

In a traditional architecture (see figure 2A), all packetssang at a proxy cache are processed
on the host machine. This results in considerable resowmguenption and latency due to bus
transfers, interrupts, memory copying, checksumming asgiply application level processing
operations. To increase the efficiency of intermediate soslech as proxy cache servers in our
multimedia scenario, we design a system based on the oliseixvabove, i.e., programmable
network processor cards are capable of low-latency formvgrdnd some application-specific
processing while reducing the resource consumption ofaserhachine. Our proposed compo-
nent (see figure 2B) therefore makes use of the existing andbmemory, the low-level packet
processing microengines and the conventional StrongARM @Pestablish a faster and less
resource-consuming data path in our proxy cache design.

Some of the basic features of our proxy include support fokgeforwarding, data caching
and overlay multicast. Each of these are briefly describatiemext subsections, before we
present the implementation and the results of our initiatqtype.

4.2 Data Forwarding

If a data packet is passed through an unmodified proxy andafoied directly to clients without
any caching or data manipulating operations, the packétlisent from the network card to the
host and back to the network card (see thin arrows in figure 34¢h an operation is resource
demanding and introduces considerable latencies. Thibea®vastating in applications with
low delay requirements like interactive on-line games beovwirtual environments.

<= caching

application »- application <4— forwarding
N «- - - forwarding by application

user space

_
N
\ N kernel space
4

communication storage

communication
system

TN Sl
I

Figure 2:Traditional (A) and network processor based (B) data paths

Using a network processor, this operation can be performszhmmore efficiently and of-
fload the host CPU at the same time. The network processos caittoengines are special-
ized, low-level units for packet processing and can effityadentify and classify the packets.
To exploit this, we use a specifically-created fast path &ding component running on the
microengines that determines whether a packet can be fdedalirectly and if possible, sends
it directly to the outgoing network interface (see thin arsan figure 2B).

4.3 Caching

Obviously, caching a data stream to serve future requesisl®gs access latency, server load
and backbone load must involve the host machine. In an urfreddanachine, each received
packet is transfered to the host individually in a data tierfsom network card to disk including
several copy operations (see thick arrows in figure 2A) intamdto the processing overhead
mentioned above. These data copy and processing operatierexpensive in terms of bus,
disk and memory bandwidth.

If the data can be stored directly on disk (without modificatby an application), a first
optimization can be to make a fast in-kernel data path on tis& ftHowever, an optimal zero-
copy approach can not be used for two reasons. One is thattsamie smaller than blocks
that can be written to disk efficiently, and that they mustef@ae be assembled into a larger
block before the disk write operation, which means that &épigroach generates one interrupt
per arriving packet and one additional copy operation. Ttheras that packets can be lost or
arrive out-of-order, which leads to fragmented writing tekdunless the packets are reordered
in memory first.

Our proposed component (see thick arrows in figure 2B) airofflanding the packet pro-
cessing and supporting an optimized data movement opeiagiasing the on-board hardware.
Packet processing is performed on-board, and to reduceuthber of interrupts and to collect
data to be stored as larger items on disk, we queue sevetatpamn the card. When suffi-
cient data is received to make an efficient disk operationugesone interrupt to inform the
host that data has arrived. As packet processing has altesty performed we can also use
scatter-gather DMA to transfer all the fragmented memofgab in one bus operation into a
larger contiguous memory area, and finally, these data caardalirectly, without further copy
operations, to the storage system for large efficient distewaperations.

4.4 Overlay Multicast

In several applications, there might be several receiveessdata element, e.g., in interactive
on-line games where all players want the same updated stdtusation. However, due to
the lack of IP multicast support in most of the Internet tqdagre exist many approaches to
application level / overlay multicast. To minimize overbeand latency, we wish to perform
this operation on the network processor by having a comgdhancan send a data element to
several receivers.

4.5 Integration

Integrating all this functionality into one system may eageveral challenges, but one of the
most important in order to make the operations on the cardiaiti is to support efficient
sharing of data where packets are to be delivered to sevestaihdtions concurrently, e.g., both
forwarding to several clients and caching to disk. Theseaifmns can be performed in several
ways. A first step is to do this sequentially by reusing theesdata element, but this introduces
large delays for the destinations that are last in the sexpuehn alternative is to make copies
of the packet and to send each copy to a separate destinaiidhjs results in overhead for the
copy operation, which is also expensive. Instead, we wistotobine these, use one copy of
the data and send to several destinations in parallel. Toidem of having a sub-component
releasing the memory holding the packet is solved by usirefjaaagnce counter, and releasing
memory only when the packet has been forwarded to all destirsea

5 Initial Implementation

As a proof of concept, we have implemented RTSP signalingRarel forwarding as depicted
in figure 3. We have used the ingress and egress active camgpeigments (ACES) in the
SDK from Intel to receive and send packets on the microesgirespectively. After arriving
at the ingressACE, the packets are classified on the micnoesmigsing our classification and
forwarding ACE. If the packet is to be forwarded, it is simggssed on to the egressACE
with the necessary header modifications and from there aggrdnto the network. If a packet
is classified as an RTSP packet, an RTP packet that shouldchedgonly interface imple-
mented) or other packets requiring more processing, thieep@csent to the StrongARM. On
the StrongARM, the packet is processed using another egi8iCE implementing the protocol
stack (stackACE), and finally, if it is an RTSP packet, it ieg@ssed in the RTSP server process
running in the Linux environment.

To test the RTSP control functionality and RTP forwardings van a Darwin streaming
server from Apple and used a simple client to request angkveta small QuickTime movie
from the server. The server sent the movie using 1024 byt&gaEtkets, and in between, we
set our proxy prototype up to see how the offloading performed

6 Results and Evaluation

Our experiments, using the Darwin server to stream a Quim&Tnovie and running the RTSP
proxy server and the packet classifier/RTP forwarder on Xtk $how that the prototype can
successfully offload both control and data plane of a proxhedo the network processor in
a forwarding scenario. The RTSP server runs on the on-bdasd@\RM which should give

faster responses to requests in addition to offloading teerhachine. Additionally and more

RTSP proxy
Linux run-time
IXA run-time

stack ACE

I‘“’I->

[ingress coreACE] [classifier/forwarder coreACE] [egress coreACE]

A A A

microengine 1y A microengine 2 y

o

—*[ingress microACE] —>[classifier/forwarder microACE] rl egress microACE]——>

Figure 3:ACE layout

importantly, as the number of data packets outnumbers th&auof control packets by an
order of magnitude, it also showed that it is possible todbailast data path using microengines
only. In the forwarding scenario, we offloaded all expensigerations from the host machine,
and it greatly reduced the total time (intermediate nodenia) to forward a packet.

To measure the number of cycles to process and forward an BRElkep we used the on-
board cycle count register. We inserted cycle counteracsitins at several places, i.e., looking
at figure 3 we inserted the probes before the ingressACE,dest\the ingressACE and our
classifier/forwarder ACE, after the classifier/forward€2EAand after enqueuing the packet for
the egressACE Our processing overhead and forwarding latency resiétgisen in table 1 for
each component, and a plot of the experienced cycle consumgitthe approximately 3200
first packets of the stream is depicted in figure 4.

Prototype component cycles| microseconds
Ingress processing 493 2.13
Classification, forwarding and header modification 644 2.78
Enqueuing for egress 194 0.83

Table 1:Average overhead in the prototype

As seen in the plot, most packets are processed in about ¥8RSchbut to explain the vari-
ation, we performed some more experiments. In these testiested the forwarding operation
as an atomic operation, i.e., no other thread ran on the gsoceby blocking on every memory
access on the non-preemptive microengine scheduler, arekpezimented with the different
memory queues as this is a resource shared by all microengne results show that only the
maximum r in the original measurement was higher than thaiatexecution, and the variation
is slightly reduced when using prioritized memory acces€rs best explanation for the vari-
ance is therefore a difference in memory latencies and sdingdof the other threads running
on the same microengine. However, there still is some vegiimt cannot be explained by our
test results, and more experiments should be performed.

1The processing performed by the egress component is nounegaecause this is running on a separate
microengine. However, more detailed and comprehensiverarpnts are scheduled.

1650

1600 d

1B5Q [t fHrret bR R R b b b bbb e b R e
N -

1500 d

. ; ; ‘
1450 -, n - .t N + 7
N
b+ ++ o4+ * + + +
1400 b
R T T LN S s T e o et
1350 B
1300 4

FHEE R bR R B R R e e e ey R

microengine cycles

1250 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

packets

Figure 4:Experienced packet cycle count consumption

To see the real gain compared to traditional packet praogsgie have compared our ex-
periments with the processing and forwarding experiments 8.0.34 Linux kernel described
in (Guo and Zheng, 2008) As we have not measured the sending operation (egressM@E),
look at the reception, classification and forwarding operatvhich used about 1150 cycles (or
5 microseconds) on our network processor. Similar operatio the Linux stack, i.e., kernel
communication system processing only, without data movemaethe application and applica-
tion specific operations, consume 12250 cycles. Additignadore recent results also show a
considerable challenge in dealing with forwarding latennyexisting systems today. In (Liu
et al., 2005), the average processing delay of overlay nadeB2P application was found to be
approximately 30 milliseconds. Compared with the two torghiseconds physical network
latency between the hosts in that test, this contributesifsigntly to the overall end-to-end
delay. Thus, we have a considerable reduction in both psoug$atency and resource usage
compared to systems involving the host in the packet forimgrdperation.

Finally, as in (Spalink et al., 2000; Mackenzie et al., 20@3Jr tests show that we should
have resources available to perform even more processkbgarm. The four 100 Mbps inter-
faces on the enp2505 can sustain a maximum data-rate of 498.MAurthermore, the maxi-
mum throughput of our forwarder using 7.9 microseconds p2dbyte packet (assuming equal
ingress and egress processing overhead) is 1036 Mbpseseurces for other processing are
available as we have so far neither employed parallelismytilzed more than 2 microengines
— one for ingress, classification and forwarding and onedoess.

7 Conclusion and Future Work

In this paper, we have investigated a design for a multimpbay cache offloader using the
Intel IXP1200 network processor. Our prototype succebsfidfloads the host CPU with RTSP
control functionality and RTP forwarding, i.e., performsenations in both the control and data
plane. Our results show that a lot of resources can be fre¢deohost and at the same time
make the system as a whole more efficient by enabling a fastdrless resource-demanding
data path. Specifically, we found that a data item can be fa®din a fraction of the time

2We have an ongoing study of the performance profile of the ortwtack and the forwarding operation in
Linux and NetBSD, but it is not finished.

compared to traditional systems moving all data throughtist CPU.

With respect to ongoing work, we are currently working oniadagupport for the designed
caching operatiochand are going to perform more extensive tests and evalisatiith respect
to future work, we are looking into the possibility to tesetiystem on much faster versions
of the IXP processors, and there are many possible and stitggeareas in which to extend
the current prototype. In addition to adding the caching emdticast services, this includes
efficient communication between the NIC and the host overP@é bus and looking at the
design in other distribution architectures, such as caipey proxies, multi-level proxies and
P2P architectures.

References

D. Bauer, S. Rooney, and P. Scotton. Network infrastrudmrenassively distributed games. Rroceedings of
the Workshop on Network and System Support for Games (Nes}gqrages 36—43, Braunschweig, Germany,
Apr. 2002.

D. E. Comer.Network Systems Design using Network Processors - InteV&xgton Prentice-Hall, 2004.

C. Guo and S. Zheng. Analysis and evaluation of the tcp/ipopx stack of linux. InProceedings of the IEEE
International Conference on Communication Technology QAICCT), pages 444-453, Beijing, China, Aug.
2000.

S. Kalin and L. Peterson. Vera: An extensible router architere. InProceedings of the IEEE International
Conference on Open Architectures and Network Programm@BENARCH) pages 3-14, Anchorage, AK,
USA, Apr. 2001.

A. Kind, R. Pletka, and M. Waldvogel. The role of network pessors in active networks. FProceedings of the
IFIP International Workshop on Active Networks (IWANRges 18-29, Kyoto, Japan, Dec. 2003.

L. S. Liu, R. Hampole, B. Seo, and R. Zimmermann. Active: A latency p2p live streaming architecture. In
Proceedings of SPIE/ACM Conference on Multimedia Compguimd Networking (MMCN)San Jose, CA,
USA, Jan. 2005.

K. Mackenzie, W. Shi, A. McDonald, and I. Ganev. An intel ix3iD-based network interface. Rroceedings of
the Workshop on Novel Uses of System Area Networks (SAM&heim, CA, USA, Feb. 2003.

Intel Corporation. Intel ixp1200 network processor famiyhardware reference manual, Aug. 2001. URL
http://ww.intel.conidesign/network/mnual s/278303. ht m

Radisys Corporation. ENP-2505/2506 data sheet, Jan. 20B2. htt p: // ww. r adi sys. conf fil es/ -
1160.04_1202. 2. pdf.

T. Spalink, S. Kalin, and L. Peterson. Evaluating networkgessors in ip forwarding. Technical Re-
port TR-626-00, Computer Science Department, Princetonvddsity, NJ, USA, Nov. 2000. URL
ftp://ftp.cs.princeton. edu/techreports/2000/626. pdf.

T. Spalink, S. Kalin, L. Peterson, and Y. Gottlieb. Buildiagobust software-based router using network proces-
sors. InProceedings of the ACM Symposium of Operating Systemsilea¢SOSP)pages 216—229, Banff,
Alberta, Canada, Oct. 2001.

T. Yamada, N. Wakamiya, M. Murata, and H. Miyahara. Impletagon and evaluation of video-quality adjust-
ment for heterogeneous video multicast. Aroceedings of the Asia-Pacific Conference on Communitgtio
pages 454-457, Bandung, Indonesia, Sept. 2002.

3We also have current activities using the network processsimilar projects, like a server cluster and packet
priority management.

