Consistency requirements in Multiplayer Online Games

Wladimir Palant
University of Oslo

palant@ifi.uio.no

ABSTRACT

Multiplayer online games are becoming increasingly popular
as broadband internet connections replace the old modems.
However, while available bandwidth grows steadily accord-
ing to Moore’s law, the latency of the internet connections
remains almost constant, making it difficult to maintain a
consistent game state over a large number of clients that
have to be synchronized with each other and with the ser-
ver(s). This paper introduces a possible solution to the prob-
lem by defining the necessary level of consistency through
user’s perception of the game. While the resulting set of
requirements is somewhat difficult to formalize, it is not too
restrictive and leaves many options open, some of which are
discussed here. Ideally a game where all the requirements
are met will appear like a local game to the user.

1. INTRODUCTION

Many games offer you computer players you can compete
against. However, while beating computer players is usually
challenging, it easily becomes boring because the reactions
of your opponent are too predictable. Here lies the key to
popularity of multiplayer online games which typically bring
many users together in a shared virtual world. Still, bringing
people together alone is not enough. One important require-
ment to bind people to the game successfully is to provide
an illusion that other players are next to you regardless their
distance in the real world [1].

The connection latency on the internet does not make it easy
to create this illusion. To exemplify, we invented a simple
game in which we hoped to catch the essence of a first-person
shooting game and amplify all the issues caused by latency.
The first-person shooting genre was chosen because these
games rely heavily on fast action and thus they have the
highest requirements when it comes to hiding latency [2].

With this example game we explain a set of user-centered
consistency requirements. Other than previous approaches
to consistency in games we want to focus on the user’s game

Carsten Griwodz
University of Oslo

griff@ifi.uio.no

Pal Halvorsen
University of Oslo

paalh@ifi.uio.no

1 2 3 4 1 2 3 4
1 1
1 (A 8] - 9
3 A \/ 3 A V
4 {,_\\ 4 {A\
a) b)

Figure 1: Game scenario example: a) lag free view,
b) view owned by B

experience and make it comparable to offline games. In this
context consistency means the lack of network artifacts, i.e.,
the user can not distinguish between a local (lag free) game
and a game played over internet.

1.1 Relevant terminology

Local view: the game state as it is available to one partic-
ular game client, containing a subset of game objects with
their parameters like position and shape as well as general
information like game score — all of which might be incorrect.

View owner: the player a particular local view belongs to.
Typically every player has his own view.

Lag free view: a view for a theoretical client where all objects
are local. This is one possible definition for a "global" view.

1.2 Example game

Our game is played on a board that is shown in Figure 1. We
assume a board of infinite size, but action will typically hap-
pen in a small area of this board since all players are more
interested in winning than in avoiding each other. The play-
ers can make one move per second which is either moving
one field in their current viewing direction or turning 90°
in any direction. To "shoot" at another player, it is enough
to look into his direction, if somebody manages to do this
his opponent is dead immediately. Though there is a "view-
ing direction", we assume that the players know everything
happening on the board, i.e., there is no "dead angle".

In the game shown in Figure la), player A starts in field
(2,4) looking upwards, makes two moves forward and turns



=> \?
V
A\
A |<o
>
AN
A <o

a) b)

Figure 2: "Dead Man Shooting" situation: a) lag
free view, b) view owned by B

to face (and thus kill) player B. During all these maneuvers
player B sits still until the last moment where he decides to
move one field forward and avoid being killed. In the scheme
the different arrows represent the positions and orientations
of the players during the game while the thickness of the
lines indicates the time at which the event happened (the
thicker arrows stand for earlier positions than the thinner
ones). We put a letter at the first shown position of a player
to indicate which player it belongs to.

1.3 Effects of latency

This makes a pretty boring board game of course, the players
can always being hit. However, introducing latency shows a
number of interesting effects. If we assume that notifications
about players’ moves always arrive 2 seconds delayed at the
other players and then check what the same game looks like
for player B, we get Figure 1b) which gives us an entirely
different impression of the same game. Instead of playing
"sitting duck" and only avoiding a hit in the last moment,
the move from player B can now be interpreted as an attack
on A — here B only has to turn to kill A. Too bad that
according to the lag free view in Figure la), A has already
left the position where he is supposed to die.

As we see, due to latency players can get an entirely different
view of events happening in the game. We will often see
situations where players disagree on whether somebody is
currently dead or alive, an extreme example being the "Dead
Man Shooting" syndrome (Figure 2). If we observe the game
through the lag free view, we notice that both players turn
to shoot at each other at exactly the same moment so that
they both die. However, in the view of player B that receives
all moves from player A with 2 seconds delay this looks
differently — B manages to kill A before A gets a chance to
do the same. One second later he should receive the message
that A shot him as well — a player who he thinks already
dead. He has been shot by a "dead man".

1.4 Use of prediction

Current games typically use prediction to alleviate the ef-
fects of latency. Predicting the current position of a remote
object has the advantage that the predicted position is typi-
cally more accurate than the outdated position from the last
position update. Furthermore it allows game clients to dis-
play a smooth movement trajectory for the object between
position updates so that the frequency of position updates
can be reduced.

>
\

3/>>> 3
A

a) b)

Figure 3: Using prediction: a) the real movement
trajectory, b) predicted movement

However, the main drawback is that accuracy of prediction
results cannot be relied on. If the game uses prediction
and receives a position update that is totally different from
the expected (predicted) value, it will need to correct the
situation somehow. Usually, the displayed position of the
object is changed immediately to the one that is considered
correct at the moment.

In our game, there is only one meaningful way to predict
positions — assume that the player will move forward. It is
very unlikely that a player should stand still in this type of
game, and since the board is infinite, we have very limited
possibilities to predict when the player decides to make a
turn. Figure 3 shows the result this type of prediction will
produce when the player makes a movement that cannot be
predicted. The correction suddenly moves player’s displayed
position from (1, 2) to (2, 3) omitting the rotation — a "jump"
that cannot be explained with valid movement trajectories
and annoys the players.

2. RELATED WORK

As we have seen, latency in online games causes different
game clients to disagree on the ordering of events. If we
introduce latency hiding techniques, we might also see dis-
agreements on the events themselves. [1] shows that players
are in fact aware of these inconsistencies and find those very
annoying.

Bouillot and Gressier-Soudan [3] categorize existing approa-
ches to consistency in distributed interactive multimedia ap-
plications. For live synchronized media such as games they
list two main directions. Both start with the observation
that there is a "correct" ordering of events, e.g., the one
of the lag free view (other definitions are possible). It is
possible to determine this ordering either with synchronized
clocks or by introducing logical clocks [4].

The problem is that the clients on the internet are not om-
niscient so that client A will not know about an event that
happened on client B at least until this event had a chance
to propagate itself through the network. This means that if
the same ordering of events is to be enforced on all clients
(pessimistic approach), the clients will for example need to
delay processing of local events until all possibly preceding
events from other clients have been received ("local lag" [5]).
Especially, round-based games like Civilization solve consis-
tency problems successfully with this approach. Here, the
game is designed in such a way that for each round, mes-



sages from all players are collected before their effects are
displayed and the next round starts. In other online games
like MiMaze [6] a tolerable amount of local lag can only
solve some of the inconsistencies while a significant number
of packets will still arrive too late to be processed in order.

Introduction of local lag also means that the player player
has to wait before he can see his move executed. While this
ensures a globally consistent game view, the price is defi-
nitely too high — this delay might make playing the game a
torture [7]. Most of the time, this delay is also not even nec-
essary, something optimistic approaches like Timewarp [5]
take advantage of. Here, local events are allowed to be pro-
cessed immediately. However, if a remote event is received
that brings up an inconsistency in the event chain, the effects
of previously processed events are restored and the events
are reapplied in a different order.

A popular variation is the server-centric approach that al-
lows to maintain an absolutely consistent global view at a
very low cost. It does not even require synchronized clocks
on the clients, the "real" ordering of events is defined as
the order in which events arrive at the server. This way
the server’s view is consistent by definition, and the only
problem is to deliver this view to the clients.

On the other hand, there are also approaches that ignore
consistency entirely. In P2P scenarios the clients typically
process the events in the order they receive them and only
correct something when they receive more current data. The
hope is that the differences in the local views of the clients
will be of minor importance for the game and will not pre-
vent the players from enjoying it. The popularity of games
that use this type of approach shows that players can in fact
tolerate a reasonable level of inconsistency [8].

3. USER-CENTERED CONSISTENCY RE-
QUIREMENTS

In this paper, we want to introduce an approach that is dif-
ferent from all mentioned above. Instead of focusing on a
consistent global state, we want to keep each local state con-
sistent in itself without necessarily requiring it to be equal
or even similar to other local views. In our opinion, the
most important goal is to make the game appear consistent
to its consumer (the player). A perfect game is one where
the player cannot tell the difference between a local game
(without latency) and an online game.

Below, we define a set of requirements that have to be ful-
filled for each local view to reach this goal. All these re-
quirements are defined in terms of user perception and often
cannot be directly translated into an implementation, they
can be considered however when choosing between different
implementation approaches.

3.1 Physical consistency
Physical consistency: Any virtual world event
visible to a player has to be compliant with the
world’s physical model — within user’s perception
limits.

This is a very basic requirement, meant to ensure that the
physical model of the virtual world applies universally to

all contained objects regardless of whether those are local
or remote. Typically, this means that no object should ex-
ceed maximal allowed values for velocity and acceleration.
An example that violates this principle is given in Figure 3b)
where player A seemingly jumps from position (1, 2) to (2, 3)
while rotating at the same time — something that is "impos-
sible" according to game rules. This kind of unexplainable
behavior obviously irritates the user and should be avoided
whenever possible.

This requirement also rules out situations like Figure 2b),
i.e., a player who is displayed as dead should not be able
to shoot. "Resurrection" of players should be disallowed
as well, e.g., if a shot seemingly resulted in a hit, but the
answer from the server told the client that it was in fact a
miss, the situation should be resolved in some other way.

Note that the requirement of physical consistency still leaves
enough space for correcting actions, for example the physical
model can be violated for objects outside user’s perception
range. One has to be careful however since the user might
know about the position of objects he cannot see directly,
e.g., something that just moved out of his visual range tem-
porarily. Correcting actions that are visible to the user can
also violate the physical model if necessary — as long as those
violations are not recognizable. For example, the object can
have a velocity slightly above allowed maximum to allow the
correction to finish faster.

3.2 State consistency
State consistency: Any change in game state that
is important to more than one player has to be
signaled to either every player concerned with
reasonably low difference in arrival times or to
none of them.

Even though the local views are allowed to diverge signifi-
cantly there is a certain set of parameters that have to be
identical for all of them. One typical example is the game
score — if it were different on different clients for a longer pe-
riod of time the players would find out about this inconsis-
tency through game chat or other communication methods.
In some games, the score will also influence player’s strategy
causing behaviour that other players would consider incon-
sistent.

We call such parameters "important" for lack of a more ob-
jective description. Unfortunately it probably is not too
easy to identify the parameters for which inconsistencies be-
tween local views cannot be tolerated, and it is also highly
dependent on the game and the way it is played. In some
games, picking up a power-up would be "important" since
this power-up becomes unavailable for everybody else. In
other games, it is acceptable to let another player pick up
the same power-up again if the change did not propagate to
him yet — and then it is not too important to keep the list
of available power-ups perfectly in sync.

Identifying the set of "important" changes is the most diffi-
cult part of maintaining state consistency. Once the neces-
sary changes have been identified, distributing them should
be relatively easy — events of this type typically occur rel-
atively infrequently and have rather weak requirements on



1 2 3 4 1 2 3 4
: | Vs
2 v| 2 Y,
)l |9 v 3 v Y,
4 ? > 4 ? > WV,

a) b)

Figure 4: Reacting to an ambush: a) correct reac-
tion, b) unreasonable reaction

latency. Usually, even several seconds delivery time are ac-
ceptable.

3.2.1 World state consistency

Changes to the virtual world are mostly "important", at
least if they affect the decisions players make in the game.
For example, if somebody blows up a wall and gives every-
body a new shortcut or even access to a new area everybody
concerned should know about it as soon as possible. Oth-
erwise, some players might loose a chance others can take
simply because of different delivery latency for some impor-
tant information — this makes the game unfair.

3.2.2 Player state consistency

Other than world changes the changes to the players them-
selves (exact position, damage factors, shape changes, etc.)
are usually not subject to the state consistency requirement,
i.e. their impact on other players is limited. Typically, this
changes only when two or more players are engaged in a di-
rect combat. Here damage caused by hits has a huge impact
on strategy in the battle. The most important event is the
death of a player of course, it tells the attackers that they
can concentrate their efforts on other targets.

3.3 Reaction consistency
Reaction consistency: A player’s actions should
not appear unreasonable in other players’ views
unless those actions are also unreasonable in the
player’s own view.

Competing against somebody who makes stupid mistakes
is no fun, and any good game engine should do its best
to prevent turning reasonable decisions into those mistakes
simply due to technical limitations, above all latency. If
player A tries to ambush player B, B should turn around to
avoid being killed and maybe attack A himself (Figure 4a).
But, if B cannot see the ambush because he receives A’s
actions with 2 seconds delay his reaction might be the one
in Figure 4b), giving A an unjustifiable easy win.

Usually, problems like this occur when the position (or orien-
tation or velocity) of remote players is displayed incorrectly,
making the view’s owner misjudge the situation. State con-
sistency violations can have the same effect. The system’s
job in this case is to make sure that differences between local
views do not affect a player’s judgement in any way that is
relevant — at least in most cases.

4. CONCLUSION

As we have seen, most current approaches to ensure consis-
tency in games focus on the global state mostly ignoring the
local views. Our suggested approach is the opposite — try
to make sure that the local views are consistent since those
are what the players see. As long as the players cannot see
any inconsistencies it is not even necessary to keep any sort
of global state. We formulate three user-centered consis-
tency requirements meant to ensure that the user perceives
a game over internet in the same way as an offline game,
i.e., all latency-induced artifacts are hidden. Even though
these consistency requirements usually cannot be perfectly
fulfilled for internet, there is a number of techniques that
can be used to achieve satisfactory results. Unfortunately
we could not discuss these techniques here due to space lim-
itations.

Of course this paper is only a first step. The consistency
requirements need to be formalized further and ideally even
become measurable. We have to test them against more
game types and probably add some new criteria. Finally
more/better ways to meet these requirements are necessary,
ideally with measurements on their effectiveness. In partic-
ular we will continue our work on improving prediction and
convergence algorithms, as well as evaluate and compare
their performance.

5. REFERENCES

[1] Manuel Oliveira and Tristan Henderson. What online
gamers really think of the internet? In Proceedings of
NetGames ’03, pages 185-193, Redwood City,
California, 2003. ACM Press.

[2] Mark Claypool. The effect of latency on user
performance in real-time strategy games. Elsevier
Computer Networks, 49(1):52-70, September 2005.

[3] Nicolas Bouillot and Eric Gressier-Soudan. Consistency
models for distributed interactive multimedia
applications. SIGOPS Oper. Syst. Rev., 38(4):20-32,
2004.

[4] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558-565, 1978.

[5] Martin Mauve et al. Local-lag and timewarp: Providing
consistency for replicated continuous applications.
IEEE Transactions on Multimedia, 6(1):47-57,
February 2004.

[6] L. Gautier and C. Diot. Design and evaluation of
mimaze, a multi-player game on the internet. In
Proceedings of ICMCS 98, page 233, Washington, DC,
USA, 1998. IEEE Computer Society.

[7] Lothar Pantel and Lars C. Wolf. On the impact of
delay on real-time multiplayer games. In Proceedings of
NOSSDAV 02, pages 23-29, Miami, Florida, USA,
May 2002. ACM Press.

[8] Tristan Henderson. Latency and user behaviour on a
multiplayer game server. In Proceedings of NGC 01,
pages 1-13, London, UK, 2001. Springer-Verlag.



