
GLS: Simulator for Online Multi-Player Games

Wladimir Palant
University of Oslo

palant@ifi.uio.no

Carsten Griwodz
University of Oslo

griff@ifi.uio.no

Pål Halvorsen
University of Oslo

paalh@ifi.uio.no

ABSTRACT
One of the most difficult tasks when creating an online multi-
player game is to provide the players with a consistent view
of the virtual world despite the network delays. Most current
games use prediction algorithms to achieve this, however
measuring the effect of different approaches is difficult. To
solve this problem we introduce a simulator called GLS that
gives us a fully controlled environment and allows large-scale
experiments to evaluate different aspects of the algorithms.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia information systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces—Benchmarking, Ergonomics,
Evaluation/methodology

General Terms
Measurement, Experimentation, Human Factors

Keywords
games, simulation, latency, GLS

1. INTRODUCTION
Multi-player online games become increasingly popular

nowadays. It is simply more challenging to compete against
human players than it is to compete against the artificial in-
telligence the game developers build into their games. One
major problem developers of online games have to face is
the network latency that makes fast user interactions diffi-
cult. Especially first-person shooting games have high de-
mands on accuracy when displaying avatars of remote play-
ers. Shooting games require fast reactions from the players,
and the players require accurate positions of their opponents
without noticeable delay from the game in return.

Usually an approach is used that has been first standard-
ized in Distributed Interactive Simulation (DIS, [2]) stan-
dard in 1993. A technique called dead reckoning is used to
display realistic movement of remote objects and limit the
number of necessary position updates at the same time –
the current position is predicted using last received position

Copyright is held by the author/owner(s).
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
ACM 1-59593-447-2/06/0010.

update simply by assuming that the velocity and accelera-
tion have not changed since. The formula for the position
at which DIS will show a remote object is well-known (last
term is optional):

p = p0 + v0∆t +
1

2
a0∆t2

Here p0, v0 and a0 are the position, velocity and acceleration
of the remote object as received with the position update.
∆t is the time that passed since the position update was
sent (difference between current time and the timestamp of
the position update). In a similar way the orientation of the
remote object can be calculated, with the same assumption
that it did not change its angular velocity/acceleration (or
at least not too much).

Surprisingly, today the approach proposed by DIS in mid-
90s is still used in most multi-player online games with only
minor variations. Only a few other prediction algorithms
have been proposed, typically with a very limited area of ap-
plication (e.g. PHBDR [3]). One of the reasons are probably
the difficulties of evaluating prediction algorithms properly
and measuring the advantages of one prediction algorithm
over the other. Most papers are simply guessing what effect
something will have on the user, large scale experiments re-
quire many players so that those are expensive and rare ([4]
are some examples).

2. GAME LATENCY SIMULATOR
Here we introduce our Game Latency Simulator (GLS, [1])

that emulates a network game with an arbitrary number of
clients. Using this simulator for evaluation of prediction
algorithms gives us several advantages:

• Simulations can be run much faster than at real-time
speed

• Using a simplified world model where actions don’t
have unexpected side effects

• Algorithms can be swapped easily, even from the com-
mand line

• Can be run in batch mode with all important parame-
ters specified on command line or in configuration file

• Network is simulated as well so that its characteristics
can be adjusted easily

• Avoiding the clock synchronization over network prob-
lem, simultaneous events are defined trivially



Figure 1: Simulator’s graphical user interface

We chose to simulate the game BZFlag in GLS due to its
simplicity. It is a first-person shooting game with a very
simple goal – drive a tank and shoot as many other tanks as
possible. This made it easy to create good computer players
and produce results that are relevant. While our results still
need to be confirmed with human players, we are confident
that we will not see any qualitative difference there.

2.1 Execution modes
Every player has his own view of what is happening in

the game based on the position updates sent through the
(simulated) network. The simulator’s GUI (Figure 1) can
show all these views at the same time. It is useful when
we need to understand the numbers that we get from our
experiments. The main execution mode for the simulator is
batch mode however where we can speed up the processing
at 1000 times the real-time speed while still processing ev-
ery frame for every simulated client. The configuration file
defines all the necessary parameters, we can also override
parameters from the command line, for example the game
field size, maximum velocity, number of obstacles and the
simulation duration:

java batch.Main --field=Field(40,40)

--maxLinearVelocity=1.5

--obstacles=3

--event1=ShutdownEvent(180000)

2.2 Architecture
Internally GLS consists of a number of players sharing

the same simulation object (Figure 2). The simulation con-
tains a game field, an event manager and a network. The
game field usually is a rectangular field with a number of
rectangular obstacles. The event manager stores a queue of
events with the corresponding timestamps at which these
events should be triggered. This is also the component im-
plementing the main simulation loop which only ends when
the event queue is empty (as processing some of the events

Player 1

Predictor

UpdateAlgorithm

Player 2

Simulation

UpdateListener1

UpdateListener2

Field EventManager Network

UpdateListener3

Figure 2: Simulator architecture

always schedules a new event this should only happen af-
ter a ShutdownEvent object has been processed). Finally
the network is responsible for delivering position updates to
other players which is done by scheduling a NetworkEvent in
the EventManager for the timestamp at which the position
update should be delivered.

The players also hold references to some helper objects.
Those are usually the same for all players, a particular player
can be made to use a different helper object however. A pre-
dictor creates a guess for a remote object’s current position
based on the previously received position updates, this is the
position a player will use for his decision making. For own
position updates an update algorithm helper must be con-
sulted to decide whether a position update should be sent.
A DIS conform update algorithm will use a predictor to
create a prediction based on already sent position updates.
A new position update will only be sent if the prediction
deviates too much from the actual position. Our default
implementation can also take orientation into consideration
(pre-reckoning [5]).

The players support an arbitrary number of UpdateLis-
tener objects that will be called whenever the state of some
object changes in the player’s view. This interface is imple-
mented by the GUI to update its display as well as by all
evaluation modules which are basically aggregators for this
data.

3. REFERENCES
[1] GLS – Game Latency Simulator.

http://www.ifi.uio.no/forskning/grupper/nd/

projects/2004/mismoss/gls.html

[2] IEEE Standard for Distributed Interactive Simulation
– Application Protocols. IEEE Std 1278.1-1995

[3] Sandeep K. Singhal, David R. Cheriton. Using a
Position History-Based Protocol for Distributed
Object Visualization. Technical Report
STAN-CS-TR-94-1505, Department of Computer
Science, Stanford University. February 1994.

[4] Tristan Henderson. Latency and User Behaviour on a
Multiplayer Game Server. Proceedings of the Third
International COST264 Workshop on Networked
Group Communication, London, UK. 2001.

[5] Thomas P. Duncan, Denis Gračanin. Pre-Reckoning
Algorithm for Distributed Virtual Environments.
Proceedings of the 35th conference on Winter
simulation, New Orleans. December 07-10, 2003.


