Considerations of SCTP Retransmission Delays for Thin Streams

Jon Pedersen', Carsten Griwodz"? and P4l Halvorsen'+?
'Dept. of Informatics, University of Oslo, Norway
2Simula Research Laboratory, Norway
Email: {jonped, griff, paalh} @ifi.uio.no

Abstract

The popularity of distributed interactive applications
has exploded in the last few years. For example, mas-
sive multi-player online games have become a fast growing,
multi-million industry with a very high user mass support-
ing hundreds or thousands of concurrent players. Today,
such games are usually client-server applications that use
TCP for time-dependent communication. Similar multime-
dia applications also choose TCP frequently. Very thin data
streams are sent over each of these TCP connections, which
means that they consume very little bandwidth. TCP has
several shortcomings with respect to the latency require-
ments of such thin streams because of its retransmission
handling [7].

An alternative to TCP may be SCTP [13] which was
developed to answer the requirements for signaling trans-
port. SCTP has subsequently also been considered more ap-
propriate than TCP for congestion controlled streaming of
other time-dependent data. Important reasons are its main-
tenance of packet boundaries and partial reliability.

In this paper, we evaluate the performance of the Linux
SCTP implementation for thin streams. Like others before,
we identify latency challenges. We also propose some en-
hancements for reducing the latency compared to the origi-
nal Linux implementation. We argue for separate handling
of thin and thick data streams in SCTP.

Keywords: SCTP, thin streams, latency reduction

1 Introduction

Distributed interactive applications have historically ei-
ther been developed for use with transport protocols that
can provide per-stream QoS guarantees, or with protocols
that at least allow the sender of the application to determine
timing of the data transmission. The QoS protocols for the
first approach have not become widely available. The use
of UDP, a protocol that provides for the second approach,

has been widely criticized for its lack of congestion con-
trol mechanisms. This is perhaps the strongest criticism
although all the required mechanisms can be implemented
on top of UDP at the applications level, and although the
acclaimed application layer framing principle [3] seems to
encourage its use for certain multimedia applications that
can benefit from increased control over their traffic.

Although it is currently an established opinion that band-
width is no longer a limiting factor in the Internet, conges-
tion control remains in demand also for streaming applica-
tions. One reason is that access networks are not yet free
from bandwidth problems. For this and other reasons, dis-
tributed interactive applications are today built over TCP.

In parallel, alternative congestion controlled protocols
are being developed. One of them, the stream control trans-
mission protocol (SCTP) [13], is on the standards track of
the IETF. SCTP was developed to answer the requirements
for signaling transport identified by RFC2719 [10]. It of-
fers services like acknowledged error-free non-duplicated
transfer of user data, data fragmentation to conform to dis-
covered path MTU size, packet boundary maintainance, se-
quenced delivery of user messages within multiple streams,
options for order-of-arrival delivery of individual user mes-
sages, and optional bundling of multiple user messages into
a single SCTP packet. An extension allows for partial relia-
bility. Several of these services are valuable in a scenario
with time-dependent data, and SCTP may be considered
more appropriate for congestion controlled streaming than
TCP. However, TCP and SCTP implementations are being
developed with throughput-bound applications in mind, not
for latency-critical, low bandwidth streams.

RFC2719 includes the following requirement concern-
ing latency for network management messages in section
4.2.1: "MTP Level 3 peer-to-peer procedures require re-
sponse within 500 to 1200 ms. This value includes round
trip time and processing at the remote end. Failure to meet
this limitation will result in the initiation of error procedures
for specific timers, e.g., timer T4 of ITU-T Recommenda-
tion Q.704”. Since SCTP is meant to address this challenge,
among others, we wondered how well this requirement is



total time | total #bytes | total #packets | average packet size | bandwidth requirement

1855 s| 44974424 372711 120 bytes 0.194 Mbps

Table 1. Anarchy Online packet statistics
(New Reno with FACK, 100 ms delay, 1% loss)

fulfilled and whether it means that the protocol is an appro-
priate choice for very low data rate (thin) streams such as
games traffic as well.

There are several kinds of games, but hardly any con-
sume bandwidth greedily. Some of them require latencies
below 150 ms to work appropriately which is difficult to
achieve with TCP [7], and if SCTP fulfills the requirements
of RFC2719, it may also work well for such games. We
have therefore taken a look at the 2.6.15 Linux SCTP im-
plementation lksctp. Initial results from a master thesis [11]
that we present in this paper show that SCTP has severe
problems with very low bandwidth streams as they are gen-
erated by games. This was unexpected because we would
not expect signaling traffic to have a high volume, and
SCTP was after all designed to address the requirements
of signaling traffic. We have thereafter considered possible
remedies for the existing latency problems.

We are not the first ones to notice the latency problems
of SCTP. Brennan and Curran [2] performed a simulation
study for greedy traffic and identified weaknesses in fast
retransmit procedure. Their modifications would seem to
increase delays for thin streams, however. Problems with
carrying time sensitive data over SCTP were presented by
Basto and Freitas [1]. The traffic that they considered was
loss-tolerant, and they proposed the use of SCTP’s partial
reliability extensions [12]. Ladha et al. [8] examine several
approaches to detect spurious retransmissions and propose
fixes that would increase throughput but also increase the
latency of individual lost packets.

Grinnemo and Brunstrom [6] discuss the problem of
minRTO, among other things, and propose a reduction to
fulfill the requirements of RFC4166 [5], an RFC on the ap-
plicability of SCTP for telephony. The RFC itself discusses
problems and solution approaches in its sections 3.2.1 and
3.3. Section 3.3 proposes to choose the path within a multi-
homed association that experiences the shortest delay, an
approach that is impractical for our scenario. Section 3.2.1
considers both reductions of the minRTO and the removal
of exponential back-off, but warns of both alternatives. Re-
moving delayed SACK is mentioned without stating any
side-effects. In our scenario, however, it is unreliable to
rely on client-side changes. On the contrary, we propose the
removal of exponential back-off under the condition that a
connection consumes very little bandwidth, and we propose
the general reduction of minRTO.

2. Transport protocols and thin streams

SCTP, like TCP, is designed for carrying elastic traffic
from greedy sources. This implies that the mechanisms as-
sume that a sender will always try to send data as quickly as
the flow control and congestion control mechanisms of the
transport protocol permit. Also most protocol variations for
TCP are targeted at high-rate applications like high-quality
video streaming or content download. However, several ap-
plications have very thin data streams, i.e., they consume
very little bandwidth. They may still have stringent latency
requirements. Mechanisms in the transport protocol that
rely on a permanently filled pipe may fail in this situation.

To look at an example for such traffic, we have ana-
lyzed a one hour packet trace, containing all packets from
one of a few hundred game regions in Funcom’s popular
MMORPG Anarchy Online [7]. Each machine in the cen-
tralized server cluster manages one or more regions, i.e., no
region spans several machines. Furthermore, Anarchy On-
line keeps point-to-point, default (New Reno) TCP connec-
tions open, from one or more Linux servers to every client.
Figure 1 and table 1 show some statistics gathered from the
packet traces, and in figure 1(a), we see that the average
RTT is somewhat above 250 ms with variations up to one
second, i.e., these RTTs make the game playable [4]. How-
ever, looking at the maximum application delay (time for
receiving a successful acknowledgment) which may include
several retransmissions as a result of packet loss, we have
extreme worst case delays of up 67 (!) seconds (6 retrans-
missions). Obviously, we cannot distinguish between lost
packets and lost acknowledgments in this server-sided trace,
but we can see the potential for several second-long delays
in delivering packets to the application on the client side.
Furthermore, figure 1(b) shows that, on average, less than
one packet is sent per RTT. Combined with the measured
RTTs, we see that the number of packets per second is low,
below 4 packets per second. Additionally, each packet con-
tains only small game events like position updates etc, and
looking at table 1, we see that each packet is small (about
120 bytes on average). Thus, considering that each stream
has very few packets per second and that each packet is very
small, this demonstrates how thin the individual streams are.
We further observe that it is not the loss rate itself that is un-
acceptable (it is slightly below 1 %), but the occasional huge
delays when multiple retransmissions are needed.

Our results shows that it is important to distinguish be-
tween thick and thin streams, and we define the terms as
follows. If the situation that the application has less data
to send than supported by the transport protocol is an ex-
ception during the lifetime of a connection or if it does not
occur at all, we consider the transported stream thick. At
the opposite end of the option space are streams that hardly
generate any traffic at all, and we called these streams thin.



100 T

T T T T

T T
max RTT ——
max application delay -------—

avg RTT -
250ms mark

time in seconds

0 20 40 60 80 100 120 140 160 180
connections sorted by max values

(a) RTT versus maximum application delay

0.8

0.6

04

number of packets per RTT

0.2

0 20 40 60 80 100 120 140 160 180
connection RTTs sorted by packets/RTT

(b) Packets per RTT with standard deviation

Figure 1. Anarchy Online packet trace analysis

For this paper, we define the term thin formally and consider
a stream thin whenever four or fewer packets of the connec-
tion are in flight (concurrently on the wire). This means that
a stream can be temporarily thin.

In summary, the connections are so thin that 1) they
hardly ever trigger fast retransmissions but mainly retrans-
mit due to timeout and 2) TCP’s congestion control does not
apply, i.e., the TCP stream does not back off. We have seen
earlier [7] that such streams are generally suffering badly
from loss in TCP when multiple losses occur. Given the
application area that SCTP is designed for, we have investi-
gated whether SCTP performs better for thin streams.

3 Comparison of SCTP and TCP New Reno
performance

To compare the performance of Linux’s SCTP imple-
mentation lksctp and Linux’s implementation of TCP New
Reno for thin streams, we have compared their performance
in several experiments. The thin streams in these experi-
ments had a bandwidth of 400 bytes/second that were sent
in four write operations of 100 bytes each. The round-trip
time was varied. We then used emulation to investigate the
end-to-end delays that were experienced in case of random
packet loss. We consider it reasonable to investigate random
packet loss instead of using cross-traffic in this scenario be-
cause the streams are so thin that the protocol does not react
to congestion anyway. The application generates packets at
a rate so low that the minimum packet rate of the transport
protocol is only exceeded for very high RTTs. Transient
congestion that is induced by cross-traffic will typically not
persist for long enough that the evaluated connection can
detect it. Persistent congestion will appear identical to ran-
dom packet loss to the connection. For lower RTTs, the
connection will not back off when congestion is detected
because it is already sending at the minimal rate.

In SCTP, every 100 byte write operation creates a chunk.
Every chunk has a sequence number (TSN) and can either
be sent individually or bundled with other chunks into a
packet. SCTP has two ways to trigger a retransmission of
a chunk; after a retransmission timeout with a minimum
retransmission timeout (minRTO) of 1000 ms and after the
retrieval of 4 packets containing selective acknowledgments
(SACKSs) that indicate a loss of the chunk and trigger a
retransmission of the chunk. It TCP it is not guaranteed
that the boundaries of the write operations are maintained,
but completeness and order of the transfer is. Sequence
numbers indicate the reception of a connection’s data up
to a number of bytes. Also TCP has two ways to trigger
a retransmission timeout after a minRTO of approximately
200 ms and after the retrieval of at least 3 packets contain-
ing acknowledgments that indicate the loss of a byte range
and trigger entering in a fast retransmit phase. These val-
ues show immediately that a single, random loss would be
handled more slowly by SCTP under most circumstances.
The details are not quite as straight-forward, however, and
warrant a closer look.

3.1 Duplicate acknowledgments

The conditions that must be met to trigger a retrans-
mission by arriving acknowledgments for thin streams are
stricter for SCTP than for TCP. Whereas TCP requires 3 du-
plicate ACKs to initiate a retransmission, SCTP requires 4
duplicate SACKs. For thick streams, this is a reasonable
choice. This number can actually be higher for TCP, as
Linux’ TCP implements the Eifel algorithm [9], which is
not standardized yet for SCTP. In any case, the Eifel algo-
rithm can only increase the number of dupACKs required
to initiate retransmission. It is meant to reduce unnecessary
retransmissions, but not primarily to avoid the redundancy,
but to avoid the reduction of cwnd that is associated with



RTT | Type Number | Frequency| Min| Max| Avg
(ms) (ms)| (ms)| (ms)
0 | Retransmission timeout 282 76.2 % | 999.1(1256.6(1005.5
Fast retransmit 24 6.5 %|1024.4 1280.4 | 1088.4
Reported lost and bundled 34 92%| 464.0| 744.0| 592.7
Unsolicited bundling 30 8.1%| 231.8| 744.0| 274.7
100 |Retransmission timeout 275 43.0 % (1039.9|1612.1|1049.8
Fast retransmit 23 3.6 %|1126.5(1386.2(1173.1
Reported lost and bundled 27 4.2 % | 460.0|1356.1| 689.3
Unsolicited bundling 314 49.1%| 15.3| 532.0{ 51.2
200 |Retransmission timeout 266 40.1 % | 996.2|1460.1|1144.6
Fast retransmit 35 5.3 %|1228.4(1740.7|1274.2
Reported lost and bundled 24 3.6%| 487.9| 976.0| 780.7
Unsolicited bundling 338 51.0%| 28.0| 888.0| 172.8
400 |Retransmission timeout 242 27.9 % | 1343.0 [ 1660.1 [ 1352.0
Fast retransmit 31 3.6 %|1427.2(1943.6 | 1496.2
Reported lost and bundled 26 3.0%| 780.0|1430.1|1011.1
Unsolicited bundling 567 65.5%| 11.8| 832.0| 213.4

Table 2. SCTP Cumulative retransmission
statistics, first retransmission

a timeout. SCTP’s approach to the problem is to wait for
a higher number of duplicate SACKs by default. For thin
streams that are oblivious to congestion control, neither ap-
proach is useful.

It is important to note that SCTP does not implement fast
retransmit semantics. Once fast retransmit has been initi-
ated, all following ACKSs that report the segment as miss-
ing are ignored until either an ACK for the retransmitted
segment is received or a retransmission timeout expires.
This is not the case for SCTP. Here, every fourth dupli-
cate SACK triggers a retransmission of the same chunk. For
thick streams, this means that the sending rate is halved suc-
cessively several times. On the other hand, it is not forced to
enter slow start when a chunk is lost a second time as TCP
must. Additionally, SCTP can perform new RTT measure-
ments and calculate a new RTO. Instead of staying in ex-
ponential back-off after a retransmission timeout, the timer
can be restarted by a SACK that arrives late. This allows a
recalculation of the RTO value, the retransmission timer is
reset to the new RTO value, and the exponential back-off is
collapsed. The effect of this collapse can be seen in figure 2,
where it becomes clear that retransmission timeouts do not
exhibit the exponential growth that is seen in TCP.

3.2 Retransmission timeouts

The conditions that must be met to trigger a retransmis-
sion timeout differ for SCTP and TCP as well. By the defi-
nition of the minRTO as 1000 ms for SCTP and 200 ms for
TCP it is quite clear that the condition triggers much later
for SCTP than for TCP. When streams are thin, SCTP does
thus have bigger problems than TCP. Almost all retransmis-

3000 ~ + 9

2500 1

1000 I

ms

2.retr
3.retr
2.retr
4.retr

L L L N N
E i 888 ©F B
- o - o - o o - o o
RTTOms RTT 100 ms RTT200ms RTT 400 ms

Figure 2. SCTP retransmissions by timeout

sions are triggered by a retransmission timeout unless it is
delayed by late restarts and 4 SACKSs have the chance to
trigger a fast retransmit before the timer expires. With a
minRTO of 1000 ms, this leads to average retransmission
delays above 1000 ms. Even in TCP New Reno, most re-
transmissions are triggered by timeout as 3 duplicate ACKs
can not be sent within 200 ms. The various combinations
of SACK, DSACK and FACK mechanisms do not make
any difference as too few packets are in flight. Aside from
the larger minRTO, SCTP does not take late restarts of the
retransmission timer into account when calculating a new
RTT value, while TCP New Reno does. The development
of TCP’s RTO values is therefore more stable than SCTP’s,
which tends to overestimate the RTO value and thereby de-
lay the expirations of the retransmission timer.

Another interesting observation that can be made from
the figure is the effect of SCTP’s use of delayed acknowl-
edgments. When no loss is detected, SCTP uses delayed
acknowledgments by default. In case of thick streams, this
reduces the overhead of reverse traffic by sending only one
acknowledgment for two received packets until loss is de-
tected. However, the delay of the acknowledgment is nec-
essarily limited by a timer, which in the case of lksctp is
fixed to 200 ms. Since the average packet inter-arrival time
in case of thin streams such as our game traffic example is
higher than 200 ms, most packets are eventually acknowl-
edged but the acknowledgments are usually 200 ms late.
Since SCTP is unaware of the reason for the delay, the
200 ms delay is added to the estimated RTT, such that the re-
transmission timeout calculation is based on a measurement
that is 200 ms too high. Using our thin streams, this occur-
rence is only broken under two conditions. The first con-
dition arises in case of a packet loss, which triggers imme-
diate sending of a SACK chunk by the receiver. If this oc-
curs, the RTO gets closer to the RTT. The second is the loss
of a packet with a SACK chunk. When this happens, the
RTO value grows, because the SCTP implementation con-
siders the first arriving SACK that acknowledges the sample



packet. The sample is not even discarded when the arriving
SACK chunk acknowledges data that was sent later than the
sample packet, and as a result, the RTO value grows.

3.3 Bundling

The picture becomes less clear when lksctp’s aggressive
use of chunk bundling for thin streams is considered. SCTP
bundles the earliest outstanding chunks after a retransmis-
sion timeout as long as there is room in the packet according
to the Path MTU. As messages in thin streams are typically
small, several messages can be bundled into one packet
in SCTP. A similar effect occurs in TCP, where message
boundaries are not preserved, and a triggered retransmission
sends up to one PathMTU worth of data if sufficiently much
data is in flight. If SACK reports indicate several gaps with
intermediate correctly arrived sequences of chunks, SCTP
is in contrast to TCP able to bundle and retransmit the miss-
ing chunks in a single packet without additional overhead.
As TCP is byte-oriented, a retransmitted sequence of bytes
must be contiguous.

In the thin stream scenario, we care very little about spu-
rious retransmissions because our main concern is the end-
to-end latency of individual messages. If these spurious re-
transmissions happens in the form of bundling, we consider
this advantageous. Bundling does not increase the num-
ber of packets in the network, unnecessary retransmissions
of chunks consume little additional bandwidth and do not
increase routing costs at all. Looking at table 2, we see
that the number of retransmissions due to unsolicited chunk
bundling is growing considerably with the RTT of a connec-
tion. We can see that at an RTT of 400 ms, 65.5 % of all re-
transmissions are due to unsolicited chunk bundling. Nearly
all of these retransmissions are spurious. If this would hap-
pen with greedy traffic, it would obviously be highly un-
desirable. In the thin stream scenario, we do not have to
conclude this automatically. At the cost of larger packets,
we can observe a linear decrease in the number of retrans-
missions that are triggered by timeouts. Obviously, the ag-
gressive chunk bundling hides some losses completely from
the receiving side. This is good considering improved aver-
age message latency for these chunks. On the other hand,
acknowledgments for those packets whose loss is hidden
are taken into account in the computation of the RTO value,
which is then growing.

3.4 Summary

Since SCTP is designed to address the demands of time-
critical and probably thin signaling traffic, we would have
expected that lksctp would handle packet loss in this sce-
nario better than TCP. Actually, we saw that lksctp performs
worse than TCP.

Considering SCTP’s high minRTO, we would expect
that dupACKs are the fastest trigger for retransmissions in
thin as well as thick streams. However, for the game traffic
that we have investigated, this is not the case. The packet
rate is so low that an expiring minRTO timer is still the most
frequent reason for retransmissions. In spite of this consid-
erable overestimation of the RTT, the packet rate of game
streams is still so low that expiration of the RTO timer is
the most frequent reason for retransmissions.

Unsolicited retransmission by chunk bundling can im-
prove the average end-to-end latency slightly. A two-fold
price is paid for this but it may not be too high in case
of thin streams. One is the waste of bandwidth, the other
is the increase of the retransmission timeout for those few
chunks that are selected for the RTO computation and that
also are lost and recovered by unsolicited retransmission by
bundling.

4. Enhancements

The investigation in section 3 shows us that the lksctp
implementation in the Linux kernel is currently not better
suited for games traffic than the TCP implementation. We
have also seen that the implementation in its current state
is not able to fulfills the requirements for signaling traffic
that were defined by RFC2719 [10]. However, the advan-
tages like maintenance of message boundaries and proac-
tive retransmission by bundling of chunks, still make SCTP
attractive for distributed interactive application. We would
therefore like to introduce variations into SCTP which solve
or improve some of its problems for thin streams.

There are several ideas for enhancing SCTP for thin
streams that should be evaluated after the comparison with
TCP New Reno. For example, since the number of SACKs
are small and rarely have the chance to trigger a fast retrans-
mit, a way to make use of fewer SACKs to trigger a fast re-
transmit should be considered. Furthermore, as the packets
are relatively small, ways to put more data into one packet
should be considered. Additionally, we consider the ideas
that were mentioned in RFC4166 [5], reduction of the min-
RTO and removal of exponential back-off. The RFC warns
that these variations have negative side-effects by increas-
ing the danger of spurious retransmissions and reduction of
the congestion window. We expect that this would not be a
relevant problem in our particular scenario of thin streams.
We would therefore like to apply these approaches, but only
in case of thin streams. To do this, we are first facing the
problem of identifying a stream as thin.

4.1 Thin stream detection

We define a stream as thin when fewer packets are in
flight or have been reported missing than are necessary to



trigger a fast retransmission. This is a conservative condi-
tion that prevents the stream from any other means of re-
covery from packet loss than waiting for the retransmission
timeout (unless packet duplication occurs). For SCTP these
are 4 packets, but the implementation does not easily yield
the number of packets in flight. SCTP assigns sequence
numbers to chunks and not to packets. As SCTP is message-
oriented. It will, in contrast to TCP, not hold packets in the
transmission queue and retransmit the same packet. Instead,
SCTP manages chunks that are identified by a transmis-
sion sequence number (TSN) and bundles them as it sees
fit when retransmitting. Thus, we additionally need means
of keeping track of the number of packets in flight in order
to determine whether a stream is thin or not.

We solve this issue by maintaining a list that holds the
highest TSN for every packet that is in flight, as well as a
counter of packets. If a packet is successfully received in
the absence of loss, the highest TSN in the packet corre-
sponds to the cumulative TSN of a SACK that is generated
to acknowledge it. In presence of loss, the sender will find
gap ack blocks in the SACKs that it receives. From the ar-
rival of the SACK, the sender can conclude that a packet has
left the network. The missing packets are still counted as in
flight as they could arrive out of order.

The packets in flight handling must be performed for
every association, i.e., the number of packets in flight is
the same independent of the transport destination address
in a multi-homed association. The reason for this is that
the transmission queue and the cumulative TSN are shared
between all destination transport addresses. Thus, it is the
association that takes care of SACKSs, independently of the
destination address that the chunks are sent to. The associ-
ation manages the transmission queue and if necessary re-
transmits chunks to another transport destination address.

We can at all times use the counter for packets in flight
as an estimate for the number of packets that actually are in
flight, and we can determine whether the thin stream varia-
tions or the original SCTP mechanisms should be applied.
Thus, we can now differentiate between stream types, and
we have therefore evaluated the following enhancements
targeted for thin streams.

4.2 Modified retransmission timer

As timeouts are a frequent cause of retransmission in the
thin stream scenario, we first look at approaches for reduc-
ing the retransmission latency related to the timeout value.

4.2.1 Minimum RTO

To avoid too early timeouts, SCTP has a rather high min-
imum retransmission timeout value (1000 ms). Neverthe-
less, in the thin stream scenario, our tests show that almost

all retransmissions are due to timeouts. Therefore, we ex-
perimented with a minRTO of 200 ms equal to Linux TCP’s
minRTO value.

However, when the minimum RTO is reduced, the rela-
tive effect of delayed SACKSs on the RTO calculation that
was described in section 3.2 grows, as shown in figure 3(a).
When removing the receiver side SACK timer, the RTO cal-
culation is greatly reduced according to a lower measured
RTT as shown in figure 3(b). Thus, although receiver side
enhancements are harder to apply in a real system (as a huge
amount of client machines must be updated), we performed
measurements to see the effect on retransmission delay.

In addition, SCTP performs a retransmission timer
restart with the current RTO at the time an incoming SACK
acknowledges some, but not all outstanding chunks. In thin
streams, late arrivals of such SACKSs will occur often, and
has not only the positive effects described in section 3.2. A
late timer restarts also the first retransmission timer, increas-
ing the average latency. We avoid this by adjusting the new
expiration time before the timer is restarted, by subtracting
the time since the old timer was started from the new one.
Thus, no more than one RTO will elapse before the oldest
unacknowledged chunk is retransmitted by a timeout.

4.2.2 Removal of exponential back-off

If there are too few SACKSs to trigger a fast retransmit or
no new packets are sent to let the receiver discover loss,
retransmissions could be triggered by subsequent retrans-
mission timeouts without any intervening fast retransmits.
At this point, an exponential back-off of the retransmission
timer is performed, leading to an exponential growth of the
retransmission delay when there are occurrences of multiple
loss. However, as the stream is so thin, the loss is not neces-
sary an indication of heavy congestion. Therefore, we have
experimented with a removal of the exponential back-offs
when the stream is thin.

4.3 Modified fast retransmit

Despite the high minRTO value, fast retransmissions
hardly ever appear in the thin stream scenario because not
enough packets are sent to get the 4 SACKs needed before
the retransmission timer expires. As retransmissions trig-
gered by other causes than timeouts usually are preferable,
the probability of reordered packets in thin streams is low
and the amount of data sent is small, we allow a fast retrans-
mit to be triggered by the first indication that a chunk is lost.
This means that if the stream is thin, then a fast retransmit
should be triggered by only one SACK. This may lead to
more packets and reordering, but the receiver will probably
still improve total performance by dropping a spurious re-
transmission than let the sender wait for several SACKs to
discover possible reorderings.



1200 T T

Calculated RTO |

Measured RTT ~ +
Real RTT -

1000

800

ms

600

400

200 [ e A A P +

0 50 100 150 200
RTO samples

(a) RTO calculated by SCTP

ms

800 T T T T

T T T
Calculated RTO
Measured RTT ~ +

Real RTT -
700 q

600 i
500 H i
400 | «
300 |- i

R T R
200 [ L o L L L L L L

0 20 40 60 80 100 120 140
RTO samples

(b) RTO calculated by SCTP without delayed SACKs

Figure 3. RTO values for thin streams

2500 LI — LI — LI — T

2000 4

1500 q

S

ms

RN

b—

1.retr
2.retr
3.retr
1.retr
2.retr
3.retr
1.retr
2.retr
3.retr
1.retr
2.retr
3.retr

orig. SCTP +reduced +mod timer +no SACK delay
RTO&FR restart

Figure 4. Effects of proposed enhancements

4.4 Modified chunk bundling

SCTP uses as described in section 3.3 an aggressive
bundling strategy in case of timeouts. However, in case of
fast retransmits, only chunks marked for fast retransmit is
sent. Therefore, to always allow SCTP to take advantage
of free space in a packet, we have changed this to apply ag-
gressive bundling also for fast retransmit. Similarly, if room
in a packet, we bundle not acknowledged chunks with new
chunks.

4.5 Evaluation

To see the effects of the proposed thin stream enhance-
ments, we ran tests using the same test setup as in the pre-
vious section. The test results (see figure 4 and table 3) are
compared against the test results of the original SCTP pro-
tocol.

In the first experiment, we combined a minRTO
reduction and the modified fast retransmit (denoted
+reduced RTO+FR). The first observation is that compared

Test Scenario Type Number (Min |[Max [Avg
orig. SCTP Timeout 266 996.2 |1460.1|1144.6
Fast retransmit | 35 1228.4|1740.7|1274.2
+reduced RTO+FR | Timeout 197 435.8 |732.0 626.7
Fast retransmit | 284 460.3 |731.2 |472.3
+mod timer restart | Timeout 331 436.0 1696.0 [525.0
Fast retransmit | 288 460.2 |464.3 |462.3
+no SACK delay | Timeout 633 255.7 |448.0 [282.9
Fast retransmit | 1 463.0 |463.0 [463.0

Table 3. First retransmission, RTT = 200

to the original SCTP implementation, the number of fast re-
transmits has drastically increased and the number of re-
transmissions triggered by timeouts is reduced. We also
see a large reduction in the average retransmission latency -
for any number of retransmissions. The next test addition-
ally included the timer restart modification (denoted +mod
timer restart). We now see that the delay is further reduced,
but we have a few extra retransmissions. In the last experi-
ment, we also removed the SACK timer delay (denoted +no
SACK delay). Our results show that this has a huge impact,
together with the new minRTO, on the latency, but it will
also trigger several spurious retransmission (and it require
receiver side modifications).

In summary, all our enhancements improve upon the
original lksctp implementation with respect to retransmis-
sion delay in a thin stream scenario. Note also that it is
not only the average latency that is reduced, but the large
maximum peeks are also greatly reduced. This means that
in a time dependent application like an interactive online
game, the perceived gaming experience will be greatly im-
proved. However, all these enhancements do not come for
free. We do see an increased number of retransmissions, but
as these streams require so little amount of resources in the
first place (small and few packets), an extra overhead of a



few more packets is negligible compared to the improved
service at the application level.

5. Conclusions

We investigated the use of SCTP for thin streams. Our
investigation started with the assumption that SCTP should
exhibit considerably reduced latencies for thin streams than
TCP, since it was designed with time-critical signaling traf-
fic in mind. We found that this was not the case, and ex-
plored in some details the mechanisms that are responsible
for the high latencies. Subsequently, we explored modifica-
tions of SCTP in order to overcome the problem.

We noticed that one highly effective way of improv-
ing SCTP performance requires the removal of delayed ac-
knowledgments in combination with a reduction of the min-
imal retransmission timeout whenever a stream is thin. The
benefit is achieved indirectly, as retransmissions for thin
streams will not be triggered by duplicate acknowledgments
unless other changes are made as well. The change allows
the protocol to retransmit packets 1000 ms earlier than with
the original minRTO, and the protocol does not pay the
200 ms penalty in the RTO computation any more that is
due to delayed acknowledgments. We defined a simple test
that indicates whether a stream is thin, such that the changes
are only applied in this situation, thereby limiting the over-
head of the improvement to the case that can most benefit
from it.

We have also seen that the computation of the RTO value
is highly unstable, and it remains unstable after out pro-
posed changes. The reason is that the first arriving acknowl-
edgment for a sample chunk that contributes to the RTO es-
timation is taken into account without any means of detec-
tion whether it is an acknowledgment of the original trans-
mission. For our situation where retransmission latency
matters, this should definitely be addressed; timestamps or
a flag that indicates first transmission may be remedies. We
do see benefits in SCTP’s aggressive bundling and unso-
licited retransmission of chunks when latencies are high and
we consider an even more aggressive variation, but the in-
stability of the RTO value should be addressed in conjunc-
tion with these changes.

Other authors’ concern about spurious retransmissions
is shared by us in general, but not for our specific sce-
nario. Various proposed fixes would increase the average
end-to-end message latency in thin streams. The partial or-
dering and partial reliability extensions to SCTP provide the
means to overcome the latency problem, of course. But we
would like to recall that SCTP was designed for signaling,
and that latency increases are counterproductive in this sce-
nario. Since a distinction of thin and thick streams is easily
possible, we propose to consider the high-bandwidth and
low-bandwidth applications of SCTP separately.

Thus, even though SCTP has many useful mechanisms
for timely delivery of data, they fail in particular when an
application sends only the most essential, latency critical
data to avoid being blocked by congestion. For those low-
rate signaling streams, the proposed enhancements will pro-
vide good means for reduced retransmission delays, while
not affecting high bandwidth streams at all.

References

[1] V. Basto and V. Freitas. SCTP extensions for time sensitive
traffic. In Proceedings of the International Network Confer-
ence (INC), Samos Island, Greece, July 2005.

[2] R. Brennan and T. Curran. SCTP congestion control: Initial
simulation studies. In Proc. of the International Teletraffic

Congress (ITC 17), Salvador de Bahia, Brazil, Sept. 2001.
[3] D. D. Clark and D. L. Tenenhouse. Architectural consid-

erations for a new generation of protocols. In Proceed-
ings of the ACM International Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 200-208. ACM Press,

1990.

[4] M. Claypool. The effect of latency on user performance
in real-time strategy games. Elsevier Computer Networks,
49(1):52-70, Sept. 2005.

[5] L. Coene and J. Pastor-Balbas. Telephony Signalling Trans-
port over Stream Control Transmission Protocol (SCTP) Ap-

plicability Statement. RFC 4166 (Informational), Feb. 2006.

[6] K.-J. Grinnemo and A. Brunstrom. Performance of SCTP-
controlled failovers in M3UA-based SIGTRAN networks.
In Proc. of the Advanced Simulation Technologies Confer-
ence (ASTC), Arlington, VA, USA, Apr. 2004.

[7] C. Griwodz and P. Halvorsen. The fun of using TCP for an
MMORPG. In Proceedings of the International Workshop
on Network and Operating System Support for Digital Au-
dio and Video (NOSSDAV), Newport, RI, USA, May 2006.
ACM Press.

[8] S.Ladha, S. Baucke, R. Ludwig, and P. D. Amer. On making
SCTP robust to spurious retransmissions. ACM Computer
Communication Review, 34(2):123-135, 2004.

[9] R. Ludwig and M. Meyer. The Eifel Detection Algorithm
for TCP. RFC 3522 (Experimental), Apr. 2003.

[10] L. Ong, I. Rytina, M. Garcia, H. Schwarzbauer, L. Coene,
H. Lin, L. Juhasz, M. Holdrege, and C. Sharp. Framework
Architecture for Signaling Transport. RFC 2719 (Informa-

tional), Oct. 1999.

[11] J. Pedersen. Evaluation of SCTP retransmission delays.
Master’s thesis, Department of Informatics, University of
Oslo, Oslo, Norway, May 2006.

[12] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Con-
rad. Stream Control Transmission Protocol (SCTP) Partial
Reliability Extension. RFC 3758 (Proposed Standard), May
2004.

[13] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, 1. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. RFC
2960 (Proposed Standard), Oct. 2000. Updated by RFC
3309.



