
Dealing with Software Model Quality in Practice
Experience in a Research Project

Jose Luis de la Vara
Simula Research Laboratory

Lysaker, Norway
jdelavara@simula.no

Huáscar Espinoza
Tecnalia

Zamudio, Spain
huascar.espinoza@tecnalia.com

Abstract—Although past research has resulted in different
means to deal with software model quality, creation of
adequate software models remains challenging. Any modelling
effort must be carefully analysed and planned before it starts,
and definition or adoption of modelling guidelines is usually
necessary. In addition, the amount of publications addressing
model quality in practice is low, and the knowledge about
others’ experience regarding model quality is limited. This
paper reports on our experience in dealing with software
model quality in the context of a project between industry and
academia. Such a project corresponds to a large-scale research
project in which modelling has been used both as part of the
necessary work for executing the project and for creating
project results. We present how we have dealt with model
quality in requirements modelling and in conceptual model
specification, as well as a set of lessons learned. The insights
provided can help both researchers and practitioners when
having to deal with software model quality.

Keywords-software model; quality; practice; requirements;
conceptual model; lessons learned

I. INTRODUCTION
Software model quality has been the focus of much

research during the last two decades. Starting from quality
needs for conceptual modelling [31], many researchers have
studied and provided specific means to deal with model
quality for business process management (e.g., [4]), model-
driven development (e.g., [33]), and requirements
engineering (e.g., [15]), among other fields. Other authors
have presented general, abstract frameworks (e.g., [36]).

Despite the results provided by the research community,
the creation of adequate software models is usually difficult
[10][23][27]. If a modelling effort is not carefully analysed
and planned, problems such as lack of homogeneity or
conceptual incorrectness in models can easily arise. These
problems can be even more difficult to solve when different
people and with different backgrounds (e.g., academia vs.
industry) collaborate in model creation [8][16]. It is
important to define or adopt means targeted at model quality.

Furthermore, the available knowledge about the state of
the practice on software model quality and thus about others’
experience in dealing with it is limited. Recent studies have
shown that the ratio of papers that have addressed software
model quality and presented insights from real projects is
very low. For example, a systematic review on UML model

quality [19] identified that only a 5% percentage of studies
had applied case study research. Although this percentage
has raised up to 35% in some study [35] and the problem
does not only affect research on software model quality but
also other software research fields (e.g., [12][25][37][38]),
more publications presenting insights into real modelling
efforts are necessary. Otherwise, it is difficult to meet the
acknowledged needs for more evidence-based [17] or for
more industry-driven and industry-oriented research [7], and
thus to increase research impact and maturity.

This paper aims to extend the available knowledge about
software model quality in practice by presenting our
experience in a project between industry and academia. Such
a project is called OPENCOSS [45], and corresponds to a
large-scale European research project that aims to devise a
common certification framework for the automotive,
avionics, and railway domains. Modelling has been and is an
important activity in OPENCOSS, both for analysing and
refining project needs and for creating its results.

We present different situations that have happened in the
project and in which we have had to address software model
quality. The situations presented are in the scope of
requirements modelling and of conceptual modelling
specification. For each situation, we outline the problems
faced and the decisions made. Having to face these situations
has allowed us to learn several lessons.

The contribution of the paper is two-fold. First, the
insights provided can help practitioners to gain awareness of
issues (i.e., situations or problems that can lead to a lower
model quality) that can arise in the modelling efforts in
which they participate, and of possible training needs to
better deal with such efforts. Second, researchers can benefit
by increasing their knowledge about the current state of the
practice on software model quality and about the degree of
awareness of research results in industry. Academia can also
use the results presented in this paper to define new research
efforts targeted at improving software model quality in
practice or at facilitating technology transfer. As an ultimate
result, the paper contributes to the maturity and rigour [26]
of research on software model quality.

The rest of the paper is organized as follows. Section II
presents the background. Sections III and IV describe
software model quality aspects related to requirements
modelling and conceptual model specification, respectively.
Section V summarises our insights by providing a set of
lessons learned. Finally, Section VI presents our conclusions.

II. BACKGROUND
This section introduces the OPENCOSS project, outlines

the software model quality framework used as a reference in
this paper, and reviews related work.

A. OPENCOSS
OPENCOSS is a FP7 European project that aims to (1)

devise a common certification framework that spans
different vertical markets for automotive, avionics, and
railway industries, and (2) establish an open-source safety
certification infrastructure. The ultimate goal of the project is
to bring about substantial reductions in recurring safety
certification costs and at the same time reduce certification
risks through the introduction of more systematic safety
assurance practices. The project deals with: (1) creation of a
common certification conceptual framework; (2)
compositional certification; (3) evolutionary chain of
evidence; (4) transparent certification process, and; (5)
compliance-aware development process. The project
consortium consists of 17 partners from nine countries, and
only four partners are from academia. Most of the partners
have been previously involved in software modelling
activities.

OPENCOSS consists of both research and development
activities. Software modelling has been used in such tasks
both for specification of project needs (e.g., requirements
[47]) and for specification of project results (e.g., a
conceptual model for safety assurance and certification
[46][48]).

B. Software Model Quality Framework
Different software model quality frameworks have been

proposed in the literature for the last two decades. Among
them, we use the framework proposed in [4] to indicate the
overall quality aspects for which issues were found in
OPENCOSS. Although the framework was proposed in the
scope of modelling of business process, it is generic and can
be adopted in other modelling activities. In addition, we
believe that this framework is simple and thus easy to use
and understand, but not simplistic.

The framework indicates six quality aspects of a model
and its creation process at which concrete guidance can be
targeted:
• Correctness, which is mainly related to the syntax and

semantics of a software model, according to some
reference framework (e.g., a metamodel or some
guidelines);

• Relevance, which is mainly related to the selection of
the relevant universe of discourse to be represented in a
model;

• Economic efficiency, which is mainly related to the
cost/benefit and feasibility of creating a software model;

• Clarity, which is mainly related to the need of a software
model to be readable, understandable, usable, and thus
useful;

• Comparability, which is mainly related to possible need
for determining similarities and differences between
software models, and;

• Systematic design, which is mainly related to the need
of well-defined relationships between different models
and to the possibility of making modelling auditable and
repeatable.

Examples of other software model quality frameworks
can be found in publications such as [22][31][32][36][39].

C. Related Work
As mentioned above, the current knowledge about

software model quality in industry is limited and we believe
that more publications reporting insights into the state of the
practice are necessary. Nonetheless, there are works that
have provided some insights.

Examples of software-related modelling techniques for
which insights into model quality in real projects have been
provided are the BPMN notation for business process
modelling [15][61], the EKD framework for organizational
modelling [56][57], the EPC notation for business process
modelling [9], the i* goal-oriented notation [18], the UML
language for software modelling [11][27], UML profiles for
modelling of real-time systems [28][29], and use cases for
requirements modelling [13]. Weaknesses identified in the
techniques in these works that can lead to a lower model
quality are concept redundancy (e.g., in BPMN),
understandability difficulties (e.g., in i*), and concept
overload (e.g., in UML).

Examples of other publications presenting specific
lessons learned or insights from practitioners related to
software model quality in the context of model-driven
development are [3][5][6][15][23][51][59]. The lessons
reported include the difficulty in applying a new modelling
technique, the importance of determining the different
concerns to model and of selecting suitable techniques for
each concern, the problems that some people can have for
thinking about abstract concepts, and practitioners’ possible
reluctance to adopt new guidance.

Some authors have presented more generic, general
insights into software model quality in practice. The aspects
reported include the need for training for practitioners before
using a modelling approach [8], the importance of modelling
experience [14], and the difficulties that can arise when clear
guidance does not exist [24]. Overall issues in the
collaboration between industry and academia in research
projects such as the need for involving all the relevant
stakeholders and the need for ask them for early feedback on
the solutions have been presented, for instance, in [21][60].
These issues are related to the modelling effort in
OPENCOSS.

Although they have not provided many insights into the
state of the practice, other works have provided valuable
guidance for software model quality for activities such as
specification of requirements (e.g., [1][52][55]),
identification of classes (e.g., [15][58]), creation of
conceptual schemas (e.g., [40][49][50]), or modelling of
business processes (e.g., [34] [53][54]).

Last but not least, extensive literature reviews related to
software model quality can be found in works such as
[19][32][35].

In summary, this paper contributes to widen the current
knowledge about software model quality in practice by
presenting specific situations and lessons learned. The paper
also supports the insights provided by other authors and thus
help to increase the amount of accumulated evidence for
these insights. In this sense, the degree of detail presented
can help others to analyse the extent to which the insights
presented are related to their own situations [26].

III. REQUIREMENTS MODELLING
This section presents the main situations during

requirements modelling in OPENCOSS in which we have
found issues regarding software model quality. Such
situations are: (1) definition of requirements levels; (2)
determination of styles for each level; (3) determination of
the granularity of the requirements at each level, and; (4)
adoption of guidelines for business process modelling.
Although these situation overlap to some extent, they
correspond to different model quality issues.

Table I shows the quality aspects most related to the
situations presented (correctness, CO; relevance, RE;
economic efficiency, EE; clarity, CL; comparability, CM;
systematic design, SD). Works that have provided similar
insights are [6][13][15][20][34][54][61].

The results of the OPENCOSS task in which these
situations were mainly encountered can be found in [47].
Such results correspond to a requirements specification for a
safety-related evidence management software tool. It must
be mentioned that when referring to software model quality
in this section we do not only refer to graphical models, but
also to text-based model specification.

The overall process adopted for the specification of
requirements is shown in Figure 1. It is mainly based on the
approaches proposed in [15][20].

TABLE I. QUALITY ASPECTS ADDRESSED IN REQUIREMENTS
MODELLING

 Software Model Quality Aspect

Si
tu

at
io

n

 CO RE EE CL CM SD
RM1 X X X X
RM2 X X X X
RM3 X X
RM4 X X X X X X

RM1. Definition of Requirements Levels
One of the first issues for requirements specification was

that the requirements elicited from different stakeholders
corresponded to needs at different abstraction levels. For
example, some stakeholders stated business goals such as
“Facilitate evidence combination” (which refers to the need
for better ways to link the pieces of safety evidence used for
safety assurance and certification), whereas others stated
very low-level requirements such as “I want to visualize
artefacts relationships in traceability matrices”.

The main consequence was that the initial requirements
specifications contained requirements at different abstraction
levels, as well as with different granularities. This situation
resulted in problems regarding relevance, clarity,

comparability, and systematic design in the specification of
requirements.

As a solution, we decided to adopt and tailor the
requirements abstraction model proposed in [20]. We
defined the following four requirement levels:
• Product level, which corresponds to the goals whose

achievement will be possible thanks to the development
of a system;

• Feature level, which corresponds to features that a
system must support in order to meet the goals of the
product level;

• Function level, which corresponds to the functions and
actions that a user should be able to do, and;

• Component level, which corresponds to the boundary
between requirements and design.

We also defined requirement as proposed in [15]:
requirements are activities, capabilities, or conditions,
external to a system, that the system must support, possess,
or meet, respectively, to fulfil stakeholders’ needs. Design
was considered to correspond to the internal characteristics
of a system, which cannot be observed by an external user.

RM2. Determination of Styles for Each Requirement Level
Once the requirement levels had been defined, the next

step was to determine the styles (i.e., formats) to be used at
each level. Without this decision, correctness, clarity,
comparability, and systematic design could be negatively
affected in the specification of requirements.

For product level and feature level requirements, we used
textual specifications (lists with descriptions), partially
supported by the Maps approach for goal modelling [55] to
facilitate goal and feature discovery and analysis (Figure 2).
For function level requirements, we used uses cases [44]. For
component level requirement, we used use case scenarios
[2], textual specification of functional and non-functional
requirements (in a template containing, among other parts, a
textual description according to the structure proposed in
[52]; Figure 3), and user interface mock-ups [30].

Analyse current situation

Determine product level
requirements

Determine feature level
requirements

Determine function level
requirements

Determine component
level requirements

Determine the impact on
current situation

Figure 1. Overall process for the specification of requirements

Facilitate evidence
combination

Facilitate evidence
change

management

Improve knowledge
about evidence

status

Start

By analyzing evidence
change impact

By detecting evidence
evaluation needs

By providing a
unified evidence

repository

By collecting evidence
from external tools

By supporting evidence
traceability specification

By detecting evidence
inconsistency

By identifying
evidence gaps

By indicating
evidence traceability

needs

By allowing synchronization
of evidence changes with

external tools

By reporting on evidence-related
required actions

Figure 2. Example of Map diagram

RM3. Determination of the Granulartity of the
Requirements at Each Level
Although requirement levels and styles for each level had

been defined, we still needed to provide more guidance
regarding the granularity that the requirements at each level
should have. Otherwise, correctness and comparability in the
specification of requirement could be hindered.

As general guidelines, and based on insights provided in
other works such as [15][52][55], we proposed that:
• Product level requirements should represent goals

corresponding to the business weaknesses, problems, or
needs to solve by means of OPENCOSS results and that
exist independently of the existence of these results
(e.g., “Facilitate evidence combination”);

• Feature level requirements should be characterised by
(a) representing an abstraction of the functionality of a
system, (b) corresponding to a system characteristic that
is valuable for customer stakeholders, and (c) not being
testable (i.e., a feature must be refined or broken down
in order to verify that a system supports it);

• As a rule of thumb, function level requirements should
be detailed and complete enough to kick-start system
design, but not detailed and complete enough so that, for
instance, two separate development teams implemented
a same system (specification) and that the systems for
both teams provided the same functionality and/or
services, and;

• Component level requirements should be specified in
such a detailed and precise way that would allow two
developments to implement two systems with (almost)
the same functionality and/or services, and at the same
time it should be possible to assign these requirements
to the system (architecture) components that will
provide such functionality and/or service.

Fig. 17–4 Syntactic requirements
pattern for documenting requirements

with a condition [Rupp 2009]

[<When?>
<Under what
conditions?>]

SHALL

SHOULD

WILL

THE SYSTEM
<system name> <object>

PROVIDE
<whom?> WITH THE

ABILITY TO
<process>

BE ABLE TO
<process>

<process>

[<additional
details about
the object>]

Figure 3. Text structure for requirements specification [52]

RM4. Adoption of Guidelines for Process Modelling
BPMN (Business Process Model and Notation; [41]) was

the notation used for business process modelling as a part of
the steps to take in the specification of requirements. This
notation was not only used in the task whose results are
reported in [47], but also in other OPENCOSS tasks for
modelling both the current business process regarding
activities such as safety assurance and certification and usage
scenarios for OPENCOSS results. We observed several
weaknesses in the business process models created, which
hindered all the six quality aspects of the framework
presented in Section II.B.

For example, we realised that different models created by
different people resulted in models whose comparability was
low. We also noticed the inadequate use of some BPMN
concepts (e.g., the lanes of the pools), mainly because of
insufficient knowledge about the notation. This affected
model correctness. Problems with economic efficiency were
detected as a result of the lack of a predefined approach for
modelling and of domain knowledge.

Although we could not impose much guidance on how to
create some models because we were not directly involved,
suggesting and later adopting some guidelines based on
those proposed in [15] significantly helped to mitigated the
negative effects on the quality aspects.

IV. CONCEPTUAL MODEL SPECIFICATION
This section presents the main situations in conceptual

model specification during OPENCOSS in which we have
found issues regarding software model quality. Such
situations are: (1) determination of the need for a new class;
(2) class refactoring; (3) class merging; (4) class removal; (5)
decision upon graphical modelling or textual speciation of
constraints; (6) software model reuse; and; (7) differentiation
between conceptual and implementation aspects.

 Table II shows the quality aspects most related to the
situations presented. Works that have provided similar
insights are [13][15][28][29][32][49][50][40].

The results of the OPENCOSS task in which these
situations were mainly encountered can be found in [46][48].
Such results correspond to a conceptual model for safety
assurance and certification in the form of a class diagram.
We have been involved in modelling in this task both in
model creation and in checking models created by others.

In the first case, other OPENCOSS partners reviewed our
models and we had to discuss with them the suitability of the
models and possible modifications. In the second case, we
had to check models created by OPENCOSS partners as well
as other models that we wanted to use as a reference such as
SACM (Structured Assurance Case Metamodel; [43]). This
metamodel corresponds to an OMG specification that
consists of an argumentation metamodel and of an evidence
metamodel. Initially we had the intention to almost simply
adopt these metamodels, but we later discovered several
weaknesses that made us believe in the need for creating
another conceptual model, although strongly based on this
OMG specification. We use SACM in the rest of this section
to show examples for some of the situations presented.

TABLE II. QUALITY ASPECTS ADDRESSED IN CONCEPTUAL MODEL
SPECIFICATION

 Software Model Quality Aspect
 CO RE EE CL CM SD

Si
tu

at
io

n

CM1 X X X
CM2 X X X
CM3 X X X X X
CM4 X X X X X
CM5 X X X
CM6 X X
CM7 X X X X X X

CM1. Determination of the Need for a Class
One of the issues that we had while specifying the

conceptual model was modellers’ lack of understanding
about when modelling of only one class was insufficient and
thus conceptually incorrect to represent safety assurance and
certification concepts. Some modellers also had problems to
decide if more than one class was necessary to represent
some notions. Two examples of these issues are presented.

The first example corresponds to the concept of safety
evidence. Safety evidence can be defined as the artefacts that
contribute to gain confidence in the safe operation of a
system [37]. Safety evidence also aims to show fulfilment of
the requirements of a safety standard in the context of safety
compliance and certification. In essence, artefacts are used as
safety evidence for claims about system safety.

Despite the fact that artefacts and safety evidence are not
the same, we did not find any model that had explicitly and
clearly differentiated them when reviewing related work
(e.g., [43]). For example, using an artefact as evidence for
several safety claims implies the existence of emerging
properties and relationships, different for each claim, such as
the confidence in the evidence for supporting a claim.
Therefore, and based on conceptual modelling principles
(e.g., [40]), artefacts and pieces of evidence are different
concepts and two classes are necessary in our conceptual
model (Figure 4).

Artefact Claim

Piece of
Evidende

Figure 4. Basic model of safety evidence

The second example correspond to the need for
modelling both the concrete relationships between the
artefacts managed in a safety assurance project and the types
of artefact relationships that a safety standard recommends or
prescribes to be created (Figure 5). For example, a safety
standard might require that traceability and thus relationships
are maintained between requirements and code.

Someone might think that a class would be enough to
represent both artefact relationships and artefact type
relationships. However, we think that this has negative
effects on model quality. For example, we consider that it
would not be adequate that a single class corresponding to
the merging of the characteristics (i.e., attributes and

relationships) of artefact relationship and artefact type
relationship. There would not exist any instance of that
single class for which all the attributes and relationships
would be instantiated. To our understanding, this is
conceptually incorrect and thus negatively affects, for
instance, semantic correctness, relevance, and clarity.

Figure 5. Basic model of artefact relationship reference artefact type

relationship

CM2. Class Refactoring
One of the needs that we had while creating the

conceptual model was to have to refactor some class. By
refactoring we refer to the situation in which a large set of
classes share a set of attributes or relationships and thus
modelling of a class (usually abstract) will facilitate, for
instance, maintenance of a model. We consider that this is a
common need in the creation of practically any conceptual
model or class diagram.

As an example, Figure 6 shows the Describable Element
abstract class that we specified for the conceptual model for
safety assurance and certification. After having modelled
many classes with the name and description attributes (e.g.,
Activity and Participant), we realised that including
Describable Element would contribute to economic
efficiency, clarity, and systematic design.

Figure 6. Describable element class

CM3. Class Merging
One of the weaknesses that we noticed in the models

created by others was the introduction of unnecessary classes
in a conceptual model or metamodel. In most of the cases,
this phenomenon indicates the need for merging classes,
because they correspond to the same concept. Figure 7
shows an example from SACM.

Structured Assurance Case Metamodel, v1.0 45

Constraints

• EvidenceGroup can not be an element of itself, either directly or indirectly through membership in other Evidence
Group.

Semantics

EvidenceGroup asserts a state of affairs that several evidence elements are grouped together and can be referred to
collectively. EvidenceGroup is a special subclass of EvidenceItem acting as a named container for evidence items that can
be used on both sides of an evidence relation. An EvidenceElement may be a member of more than one EvidenceGroup.

10.2 EvidenceAssertions Class Diagram

Figure 10.2 - EvidenceAssertions class diagram

10.2.1 EvidenceAssertion (abstract)
EvidenceAssertion represents various statements about the evidence items, such as documents and exhibits, and their
relations to the subject area claims.

Evidence Assertions are defined within the Evidence Metamodel and include the following categories:

• Statements related to various essential properties of Evidence Items.

• Properties of Documents as they are related to the quality of the evidentiary support that may be offered by these
documents, such as Primary or secondary, original or derived, Consistency, Completeness, Accuracy.

• Statements related to the Custody, Provenance, and Timing of Evidence Elements.

Figure 7. Example of candidate classes for merging [43]

In this case, we realised that some classes were
redundant: the same phenomenon could be modelled by
using and thus based on different SACM concepts. More
concretely, we found overlaps in the Provenance, Custody
Property, and Evidence Event classes of SACM. As a
solution, we specified a single class in our conceptual model,
called Assurance Asset Event, to merge the common aspects
of these three SACM classes.

CM4. Class Merging
Related to the previous situation but not exactly the

same, we observed cases in which classes had simply to be
removed from a conceptual model. The most frequent reason
that we noticed was that some information did not really
corresponded to a concept and thus to a class to be modelled
in a conceptual model, but to, for instance, a relationship
between two classes.

In the example shown in Figure 8, we understand that the
classes Created By, Approved By, Owned By, and
Performed By could and should have been modelled as
associations, not as classes. These classes do not have any
specific attributes or relationships. That is, they do not have
emerging properties, in contrast to the example explained in
CM1 regarding artefacts an their use as safety evidence.

Structured Assurance Case Metamodel, v1.0 75

13.4 Provenance Class Diagram
The Provenance Class Diagram focuses on the Provenance characteristics: who created the evidence element, or who
evaluated it, who approved it, and what organization owns the evidence element.

Figure 13.3 - Provenance Class Diagram

Property Meaning Verbalization

AtTime Time of generation Element is generated at time

EffectiveTime Effective time of the generated evidence element

CreatedBy N/A

PerformedBy The stakeholder who generated the evidence element Element is generated by stakeholder

ApprovedBy The person or organization who approved the
generation of the evidence element.

Generation of element is approved by
stakeholder

OwnedBy Organization which executed generation of the
evidence element.

Element is owned by stakeholder

CareOf The custodian of the evidence element within the
owner organization.

Person is custodian of element

AtLocation The location of the evidence document at which is
was generated.

Element is generated at location

UsingProcess The reference to a CollectionMethod object that
provides a definition of the process involved in the
generation of the document.

Element is transferred using method

Figure 8. Example of candidate classes for removal [43]

CM5. Decision upon graphical modelling or textual
specification of constraints

One aspect that we consider important and for which we
are not sure if a clear, objective criterion can be defined is
the decision upon graphically modelling some constraints

(e.g., by means of more relationships) or textually specifying
them (e.g., with OCL; Object Constraint Language; [42]).

Including constraints graphically in a model will make
the constraint more explicit in the model but at the same time
will increase its size. The understandability gained by
modelling the constraint could not pay off because of the lost
understandability as a result of making the model larger.

On the contrary, textually specifying constraints, outside
of a model, might result in a model whose restrictions might
become more difficult to perceive, despite the fact that
keeping the model smaller might facilitate its understanding.

In essence, we have not been able to find a completely
objective criterion to decide when to graphically model
constraints or when to textually specify them. The number of
elements of a model might be a possible indicator.
Nonetheless, regardless of the criteria adopted for this issue
in a modelling effort, we think that the alternative to adopt
should be that regarded as the most helpful for model
stakeholders to understand a model.

CM6. Software Model Reuse
A strategy that can definitely contribute to economic

efficiency in the specification of a conceptual model is the
reuse of models of fragments from models created by others.
This can be especially important and useful when aiming to
relate the results of a modelling effort with those from some
group such as the OMG. The reuse of a model would make
explicit its relationship with another model.

In OPENCOSS, we have tried to align the conceptual
model created with the results from the OMG System
Assurance Task Force. Apart from aiming to develop
compatible solutions, OPENCOSS will also try to
standardize its conceptual results. Such standardisation might
be done through this task force.

Another specification that has been used as a reference is
UML [44]. More concretely, and as an example, one
characteristic that we plan to reuse from this specification is
its mechanism for the dynamic specification of (data) types
and values. This mechanism is shown in Figure 9.

Data and process aspects of the conceptual model have
also taken into account models such as BPMN [41] or the
conceptual frameworks proposed in publications such as [15]
[40].

24 UML Superstructure Specification, v2.4.1

Figure 7.5 - Multiplicities diagram of the Kernel package

Figure 7.6 - Expressions diagram of the Kernel package

Expression
symbol : String

ValueSpecification

PackageableElement

OpaqueExpression
body : String {ordered, nonunique}
language : String {ordered}

LiteralSpecification InstanceValue

InstanceSpecificationLiteralNull LiteralStringLiteralInteger

LiteralBoolean LiteralUnlimitedNaturalLiteralReal

TypedElement

0..1

+ expression

*

+ operand

{subsets owner}

{ordered, subsets ownedElement}

*
+ instanceValue

1 + instance

Figure 9. UML mechanism for types and values definition [44]

CM7. Differentiation between conceptual and
implementation aspects

Last but not least, we have experienced some problems
when specifying the conceptual model because of the lack
of: (1) a common understanding of conceptual and of
implementation needs, and; (2) a clear understanding of their
difference and of the need for taking this differences into
account when creating the conceptual model.

We use Figure 10 as an example of what we mean by the
difference between conceptual and implementation aspects.
The figure has been taken from SACM, and specifies for
instance, that a document is an evidence item. We think that
this figure does really represent real-world phenomena (see
Figure 4), but a decision of how the implementation and thus
the tool representation of such phenomena should be.

Without a clear and explicit differentiation of the
conceptual and implementation aspects of a model, freedom
for determining the most suitable tool support for a
conceptual model in a given context is hindered, as well as
quality aspects such as semantic correctness or relevance.

Inclusion of implementation decisions in a model, and
when this is not its purpose, can also result in other problems
such an unnecessary growth in size and difficulties to
understand the application domain and the phenomena being
represented in the model.

Structured Assurance Case Metamodel, v1.0 39

10 Evidence Elements

10.1 Evidence Elements Class Diagram
This sub clause defines the key concepts of the SACM Evidence Metamodel. The elements in this sub clause are defined
as abstract classes and subsequent sub clauses elaborate the detail, while this sub clause provides a convenient outline of
the entire vocabulary focusing at the key noun concepts.

Figure 10.1 - EvidenceElements class diagram

10.1.1 EvidenceElement (abstract)
EvidenceElement class is the root element of the SACM Evidence Metamodel. All other classes in the SACM Evidence
Metamodel extend EvidenceElement. The main subclass of the EvidenceElement is EvidenceItem, which defines the
primary elements of the Evidence Metamodel. Other elements represent various secondary elements and dependent parts
of other evidence elements. The following elements are direct subclasses of EvidenceElement: EvidenceItem,
EvidenceAssertion, and ProjectElement.

Superclass

ModelElement

Associations

• provenance:Provenance[0..*]
Provenance properties of the EvidenceElement

Figure 10. Example of implementation detail in a model [43]

V. LESSONS LEARNED
This section presents the set of main lessons learned after

dealing with software model quality in the situations
presented in Sections III and IV. Such a set consists of 12
lessons.

Table III shows the situations presented in the two
previous sections from which the lessons have been learned.

LL1. The Top Priority of a Set of Modelling Guidelines
Should Be to Help Stakeholders Understand a Model

Among all the quality aspects of a model and its creation
process, we believe that probably the most important aspect
is clarity, and more concretely understandability.

Although the rest of aspects are also important, we think
that in a situation in which, for instance, a modelling
decision can be positive for understandability but negative
for another quality aspect, then understandability has a

higher priority. If the model stakeholders cannot understand
and thus validate a model, it will be useless.

It must be mentioned that we are assuming that any
model will always be syntactically correct, and that trying to
improve understandability in a model will not have a very
negative effect in other quality aspects (e.g., relevance).

LL2. Feedback from Model Stakeholders is Necessary for
Assessing Model Quality

Related to the previous lesson, our experience is that
modellers should always ask model stakeholders for
feedback. It is practically impossible that a modeller can
assess on his own quality aspects such as relevance. Model
stakeholders such as domain experts must indicate if they
consider that the quality of a model is acceptable or some
modification would improve a model.

LL3. Model Stakeholders Must Clearly and Explicitly Be
Determined

A basic need for any modelling effort is to identify, and
as soon as possible, the different stakeholders and types of
stakeholders of a model. Such stakeholders can be, for
instance, the people that participate in a modelling effort as
modeller, the representative experts whose domain or
phenomena are being modelled and thus who must validate
the model, and the people who will correspond to the users
of the model (e.g., the people responsible for creating the
instances of the model).

Each stakeholder will have different needs and
constraints, and not all the parts of or decision regarding a
model and its creation process might be relevant to them. For
example, we decided that the example shown in Figure 9
concerning UML type mechanism would not be relevant to
domain experts and that thus this fragment should not be
shown to them. It is a very specific way of modelling that
such experts might not easily understand.

TABLE III. SITUATIONS FROM WHICH THE LESSONS HAVE BEEN
LEARNED

Lesson Situations
LL1 RM2, RM3, RM4, CM1, CM4, CM5, CM6, CM7
LL2 RM1, RM3, CM1, CM5, CM6, CM7
LL3 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL4 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL5 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL6 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL7 RM1, RM4, CM1, CM4, CM6, CM7
LL8 CM6
LL9 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL10 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL11 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7
LL12 RM1, RM2, RM3, RM4, CM1, CM2, CM3, CM4, CM5,

CM6, CM7

With regard to the users, their involvement is especially
important when having to select the technology that will be
used to support model instantiation. For example, and in the
context of OPENCOSS, model users such as safety
assurance managers might not be familiar with modelling
technologies and tools, or with the creation of graphical
models (e.g., an object diagram). Therefore, a tool such as a
form-based interface, for which a model behind the interface
exists for information management purposes, could be more
usable for safety assurance managers.

LL4. It Is Important to Define and Try to Agree Before
Starting a Modelling Effort on The Modelling Guidelines to
Use

One of the issues that we have experienced in
OPENCOSS is that we did not define detailed guidelines for
many quality aspects of a model before starting model
creations. As a result, we observed that, for instance, models
created by different people were heterogeneous in aspects
such granularity or use of terms. This situation can also
happen when a model has a single creator.

Therefore, we recommend modellers to define or adopt
modelling guidelines before starting any modelling effort.
Based on our experience creating models both alone and
with others, the use of pre-defined guidelines definitely leads
to the creation of higher-quality models.

LL5. A Bad Decision Regarding Model Quality at Some
Moment Can Have a Negative Impact Later

We have observed that if a sloppy decision is made
during the creation of a model regarding its quality, then this
decision can have undesired consequences at later modelling
stages.

For example, we initially tried to directly adopt SACM in
OPENCOSS despite the fact that we knew that it had some
quality weaknesses. This turned to be a greater problem later
when having to address OPENCOSS-specific modelling
needs. Creating a model based on the original SACM
specification became practically impossible. As a result, we
had to re-execute some modelling activities, adapting some
parts of SACM or directly discarding its use, depending on
the case.

Therefore, modellers should carefully think about what to
model and how when creating a model, taking into account
different quality aspects and determining which aspect is the
most important when having to choose between two, or if
prioritisation of a quality aspect can have a negative effect on
another.

LL6. Making All the People Involved in Model Creation
Understand and Agree Upon Modelling Guidelines Might
Not Be Possible

One of the greatest challenges that we have faced in
OPENCOSS is to make all the people involved in model
creation (for the tasks presented in this paper) to follow a
same set of guidelines. Indeed, it turned not to be possible.
Some OPENCOSS partners had a different opinion about the
need or suitability of some guidelines, thus they did not
agree upon their use.

LL7. It Can Be Very Difficult to Manage to Make All The
People Involved in Model Creation Follow a Set of
Guidelines Correctly

Related to the previous lesson, we have also experienced
the situation in which some modellers did not follow all the
guidelines defined, not because of disagreement, but because
of, for instance, lack of attention or of use of a systematic
approach for modelling. We had to remind these people to
please use the guidelines in order to increase model quality,
in some case several times.

LL8. The Purpose of a Model Should Be Clearly and
Explicitly Specified

Another source of problems during model creation in
OPENCOSS was the lack of a common understanding of the
purpose of a specific model.

For example, modellers had to be reminded during
requirements modelling that we did not have to address
design aspects in the corresponding models. For the
conceptual model, some partners had to be reminded several
times that such a model should be simply a representation of
some real-world phenomena and thus technology-
independent. It should not contain implementation details.

These reminders resulted in an increased model quality.

LL9. Reuse of An Existing Model Might Not Always Be
Possible or Recommendable

As described in the previous section, and as an example,
we aimed to reuse SACM in the conceptual model, initially
directly and later by modifying it. In both cases, such reuse
led to many problems regarding model quality.

In essence, model reuse has to be carefully analysed
before making a final decision.

LL10. It Is Necessary Sometimes to Make Trade-Offs in
Model Quality to Ease Model Creation

Despite all the insights and recommendations that we
have provided in the paper, we have to acknowledge that in
some situations we realised that it would be better to make
others not to follow some guidelines. The modelling effort
would become too strict and difficult for them, and the effect
of not following such guidelines would not be very negative.

LL11. Modelling Leaders Need to Be Aware of The Fact
That Not Everyone Has The Same Knowledge and
Experience in Model Specification

A very important aspect of which modelling leaders must
be aware is that the same model quality cannot be expected
from every modeller.

First, every modeller does not have the same knowledge
of model quality, or of modelling in general. Second,
modellers’ lack of experience in modelling can also have
negative effects in a modelling effort, despite that fact that
their (theoretical) knowledge can be large.

LL12. It Is Necessary to Make Model Stakeholders Aware of
The Importance of Model Quality

Last but not least, and to some extent overlapping with
other lessons, we have realised the importance of making

everyone involved in a modelling effort (both modellers and
other model stakeholders) aware of the importance of model
quality, of modelling guidelines, and thus of the need for
following modelling guidelines.

A good strategy to this end is to show examples of how
the lack of care about model quality can result in models that
are difficult to understand, use, or maintain.

VI. CONCLUSION
This paper has presented our experience in dealing with

software model quality in the context of a large-scale
European research project between industry and academia.
The experience is based on two main activities: requirements
modelling and conceptual model specification.

In requirements modelling, we had to address quality
aspects regarding: (1) definition of requirements levels; (2)
determination of styles for each level; (3) determination of
the granularity of the requirements at each level, and; (4)
adoption of guidelines for business process modelling. For
conceptual model specification, we had to deal with: (1)
determination of the need for a new class; (2) class
refactoring; (3) class merging; (4) class removal; (5) decision
upon graphical modelling or textual specifiation of
constraints; (6) software model reuse, and; (7) differentiation
between conceptual and implementation aspects.

For each situation above, we have shown the quality
aspect at which the decisions made were targeted. The
quality aspects considered are correctness, relevance,
economic efficiency, clarity, comparability, and systematic
design.

Addressing the aspects above allowed us to learn a set of
12 lessons. Such lessons are related to the definition and
adoption of modelling guidelines, to the work of the people
involved in model creation, and to the involvement of model
stakeholders. In our opinion, the main meta-lessons learned
are that selecting adequate modelling guidelines is very
important but at the same time difficult, that all the model
stakeholders must be made aware of the adoption of
modelling guidelines in a project and ideally agree upon
them, and that problems can arise in collaborative modelling
efforts because of model stakeholders’ different backgrounds
and perspectives.

The insights presented can be very valuable and useful
for both academia and industry. They can help researchers
and practitioners to better know the needs and problems in
similar modelling situations and to define strategies to
address them. The insights can be especially relevant for
projects in which industry and academia have to collaborate,
given their different background, perspectives, and
sometimes priorities.

As future work, we plan to continue compiling and
reporting the issues found and the lessons learned regarding
software model quality in OPENCOSS and in other projects
in which we participate. This information can be very
valuable for others. We would also like to empirically assess
aspects of the software models created in OPENCOSS such
as their understandability. Finally, it would be relevant to
study how often and under what circumstances other people
have faced the issues reported in the paper.

ACKNOWLEDGMENT
The research leading to this paper has received funding

from the FP7 programme under the grant agreement n°
289011 (OPENCOSS) and from the Research Council of
Norway under the project Certus-SFI. We would also like to
thank the OPENCOSS partners that have participated in the
modelling activities reported in the papers, and QUAMES
2013 reviewers for their valuable suggestions for improving
the paper.

REFERENCES
[1] I.F. Alexander and R. Stevens,Writing Better Requirements,

Pearson, 2002
[2] I.F. Alexander and N. Maiden (eds.). Scenarios, Stories, Use

Cases, John Wiley and Sons, 2004
[3] B. Anda, et al., “Experiences from introducing UML-based

development in a large safety-critical project”, Empirical
Software Engineering, vol. 11(4), pp. 555-581, 2006

[4] J. Becker, et al., “Guidelines of Business Process Modeling”,
in BPM 2000, pp. 39-40

[5] L. Bendix and P. Emanuelsson, “Collaborative work with
Software Models - Industrial experience and requirements”, in
MBSE’09, pp. 60-68

[6] B. Berenbach, et al., Software and Systems Requirements
Engineering: in Practice, McGraw-Hill, 2009.

[7] L.C. Briand, “Embracing the Engineering Side of Software
Engineering”, IEEE Software, vol. 29(4), pp. 96, 2012

[8] L.C. Briand, et al., “Research-Based Innovation: A Tale of
Three Projects in Model-Driven Engineering”, in MoDELS
2012, pp. 793-809

[9] E.C.S., Cardoso, et al., “Requirements Engineering Based on
Business Process Models: A Case Study”, in EDOCW 2009,
pp. 320-327

[10] M.R.V. Chaudron, “Quality Assurance in Model-Based
Software Development - Challenges and Opportunities”, in
SWQD 2012, pp. 1-9

[11] M.R.V. Chaudron, et al., “How effective is UML modeling?
An empirical perspective on costs and benefits”, Software and
Sytems Modeling, vol. 11, pp. 571-580, 2012

[12] N. Condori, et al., “A systematic mapping study on empirical
evaluation of requirements specifications techniques”, in
ESEM 2009, pp. 502-505

[13] K. Cox and K.T. Phalp, “Practical experience of eliciting
classes from use case descriptions”, Journal of Systems and
Software, vol. 80(8), pp. 1286-1304, 2007

[14] I. Davies, et al., “How do practitioners use conceptual
modeling in practice?”, Data & Knowledge Engineering, vol.
58(3), pp. 358-38, 2007

[15] J.L. de la Vara, “Business process-based requirements
specification and object-oriented conceptual modelling of
information system”, PhD Thesis, Universidad Politécnica de
Valencia, 2011 (http://riunet.upv.es/handle/10251/11445)

[16] J.L. de la Vara, et al., “Towards Customer-Based
Requirements Engineering Practices”, in EmpiRE 2012, pp.
37-40

[17] T. Dybå, et al., “Evidence-Based Software Engineering for
Practitioners”, IEEE Software, vol. 22(1), pp. 58-65, 2005

[18] H. Estrada, et al., “An Empirical Evaluation if the i*
Framework in a Model-Based Software Generation
Environment”, in CAiSE 2006, pp. 513-527

[19] M. Genero, et al., “A Systematic Literature Review on the
Quality of UML Models”, J. Database Management, vol.
22(3), 46-70, 2011

[20] T. Gorschek and C. Wohlin, “Requirements Abstraction
Model”, Requirements Engineering, vol. 11(1), pp. 79-101,
2006

[21] T. Gorschek, et al., “A Model for Technology Transfer in
Practice”, IEEE Software, vol. 23(6), pp. 88-95, 2006

[22] C. Houy, et al. “Understanding Understandability of
Conceptual Models - What Are We Actually Talking about?”,
in ER 2012, pp. 64-77

[23] J. Hutchinson, et al., “Empirical Assessment of MDE in
Industry”, in ICSE’11, pp. 471-480

[24] M. Indulska, et al., “Business Process Modeling: Current
Issues and Future Challenges”, in CAiSE 2009, pp. 501-514

[25] M. Ivarsson and T. Gorschek, “Technology transfer decision
support in requirements engineering research: a systematic
review of REj”, Requirements Engineering, vol. 14(3), pp.
155-175, 2009

[26] M. Ivarsson and T. Gorschek, “A method for evaluating rigor
and industrial relevance of technology evaluations”,
Empirical Software Engineering Journal, vol. 16(3), pp. 365-
395, 2011

[27] C.F.J. Lange, et al., “In Practice: UML Software Architecture
and Design Description”, IEEE Software, vol. 23(2), pp.40-
46, 2006

[28] F. Lagarde, et al., “Improving uml profile design practices by
leveraging conceptual domain models”, in ASE 2007, pp.
445-448

[29] F. Lagarde, et al., “Leveraging Patterns on Domain Models to
Improve UML Profile Definition”, in FASE 2008, pp. 116-
130

[30] S. Lauesen and M.B. Harning, “Virtual Windows: Linking
User Tasks, Data Models, and Interface Design”, IEEE
Software, vol. 20(2), pp. 58-65, 2003

[31] O.I. Lindland, et al., “Understanding Quality in Conceptual
Modeling”, IEEE Software, vol. 11(2), 42-49, 1994

[32] B. Marín, et al., “A Quality Model for Conceptual Models of
MDD Environments. Adv. Software Engineering 2010”,
Advanced Software Engineering, 2010

[33] B. Marín, et al., “Using a Functional Size Measurement
Procedure to Evaluate the Quality of Models in MDD
Environments”, TOSEM (accepted paper), 2012

[34] J. Mendling, et al., “Seven process modelling guidelines
(7PMG)”, Information and Software Technology, vol. 52(2),
pp. 127-136, 2010

[35] P. Mohagheghi, et al., “Definitions and approaches to model
quality in model-based software development - A review of
literature”, Information and Software Technology, vol. 51,
pp.1646–1669, 2009

[36] D.L. Moody, “The method evaluation model: a theoretical
model for validating information systems design methods”, in
ECIS 2003, pp. 1327-1336

[37] S. Nair, et al., “Classification, Structuring, and Assessment of
Evidence For Safety: A Systematic Literature Review”, in
ICST 2013

[38] S. Nair, et al., “A Review of Traceability Research at the
Requirements Engineering Conference”, in RE’13 (accepted
paper)

[39] H.J. Nelson, et al., “A conceptual modeling quality
framework”, Software Quality Journal, vol. 20, pp.201-228,
2012

[40] A. Olivé, Conceptual Modeling of Information Systems,
Springer, 2007

[41] OMG, Business Process Model and Notation (BPMN)
Specification v.2.0, 2011 (http://bpmn.org)

[42] OMG, Object Constraint Language (OCL) Version 2.0, 2006
(www.omg.org/spec/OCL/2.0/)

[43] OMG, Structured Assurance Case Metamodel (SACM) -
Version 1.0, 2013 (http://www.omg.org/spec/SACM/)

[44] OMG, Unified Modeling Language (UML) - Version 2.4.1,
2011 (http://uml.org)

[45] OPENCOSS project, http://opencoss-project.eu
[46] OPENCOSS project, “Deliverable D4.3 - Intermediate

Common Certification Language: Conceptual Model”, 2012
[47] OPENCOSS project, “Deliverable D6.2 - Detailed

requirements for evidence management of the OPENCOSS
platform”, 2012

[48] OPENCOSS project, “Deliverable D4.4 - Common
Certification Language: Conceptual Model”, 2013

[49] J. Parsons and Y. Wand, “Choosing Classes in Conceptual
Modeling”, Communications of the ACM, vol. 40(6), pp. 63-
69, 1997

[50] J. Parsons and Y. Wand, “Emancipating Instances from the
Tyranny of Classes in Information Modeling. ACM
Transactions on Database Systems, vol. 25(2), pp. 228-268,
2000

[51] S. Pilemalm, et al. “Practical Experiences of Model-Based
Development: Case Studies from the Swedish Armed Forces”,
Systems Engineering, vol. 15(4), pp. 407-421, 2012

[52] K. Pohl, Requirements Engineering, Springer, 2010
[53] J. Recker, “Opportunities and constraints: the current struggle

with BPMN. Business Process Management Journal, vol.
16(1), pp. 181-201, 2010

[54] J. Recker, Evaluations of Process Modeling Grammars:
Ontological Qualitative and Quantitative Analyses Using the
Example of BPMN, Springer, 2011

[55] C. Rolland, “Capturing System Intentionality with Maps”, in
Conceptual Modelling in Information Systems Engineering,
pp. 141-158 Springer, 2007

[56] J. Stirna, et al., “Participative Enterprise Modeling:
Experiences and Recommendations”, in CAiSE 2007, pp.
546-560

[57] J. Stirna and A. Persson, “Anti-patterns as a Means of
Focusing on Critical Quality Aspects in Enterprise
Modeling”, in EMMSAD 2009, pp. 497-418

[58] D. Svetinovic, et al., “Concept Identification in Object-
Oriented Domain Analysis: Why Some Students Just Don't
Get It”, in RE’05, pp. 189-198

[59] M. Torchiano, et al. “Relevance, benefits, and problems of
software modelling and model driventechniques - a survey in
the Italian industry”, Information and Software Technology
(accepted paper), 2013

[60] C. Wohlin, et al., “The Success Factors Powering Industry-
Academia Collaboration”, IEEE Software vol. 29(2), pp. 67-
73, 2012

[61] M. zur Muehlen and D.T. Ho, “Service Process Innovation: A
Case Study of BPMN in Practice”, in HICSS-41 2008

