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Abstract—Ethernet’s native routing algorithm, the Spanning
Tree Protocol, causes a major performance bottleneck when
network connectivity increases. Since the Spanning Tree Protocol
avoids deadlocks and infinitely looping packets by turning any
topology into a tree, it leaves a large portion of links unused and
thus wastes bandwidth. In this paper we address this weakness
by proposing a new routing algorithm that avoids disabling links
and prohibiting turns, and that guarantees shortest path routing.

Through the use of layered routing we show how to improve
performance with respect to both the Spanning Tree Protocol
and a more recent proposal called Tree-Based Turn-Prohibition.
The concept of layered routing is used to group virtual channels
into network layers, and assign a limited set of source/destination
address pairs to each layer. Extensive simulations show that we
are able to increase throughput by a factor of more than 3.5
compared to the Spanning Tree Protocol and a factor of 1.8
compared to Tree-Based Turn-Prohibition. Our concept relies
on features introduced in IEEE standards 802.1Q, 802.1D and
802.3x, as well as changes currently discussed in IEEE task forces.

I. INTRODUCTION

Ethernet is the dominating technology in local area and
wireless networks, and with the recent introduction of 10
Gigabit Ethernet it is attractive in both system and wide
area networking. Furthermore, the recent effort to standardise
Backplane Ethernet will allow Ethernet to be used in server
and I/O backplanes in the future.

There are, however, some challenges left before Ethernet
can compete with high performance technologies such as Ad-
vanced Switching Interconnect [1], InfiniBand [2] and Myrinet
[3]. These technologies all use credit-based flow control to
avoid frame loss, and implement virtual channels (layers) for
traffic isolation, advanced routing and QoS support. Flow
control is mandatory to avoid frame loss, and especially
important in a Storage Area Network where protocols such as
iSCSI[4] and ATA over Ethernet[5] are deployed. Flow control
also improves the performance of higher layer protocols such
as TCP [6], [7], [8]. Virtual channels have many purposes
and can be used for traffic segregation, QoS, and deadlock
free shortest path routing [9]. Ethernet currently supports flow
control and frame priorities , but lacks explicit support for
virtual channels [10]. Lack of virtual channels manifests itself
in many ways, the aspect of interest to us is efficient routing.

When designing a routing algorithm one of the base criteria
is that it must possess deadlock freedom. The combination
of topologies embedding loops and lossless flow control may
lead to deadlocks. This phenomenon occurs when a set of
packets are all stalled because all paths toward the destinations

are blocked by another packet in the set, forming cyclic
dependencies between channel (buffer) resources. Therefore,
the routing strategies must be chosen carefully in order to
avoid deadlock [11], [9].

Ethernet avoids deadlock through the use of the spanning
tree protocol (STP) [10]. The spanning tree protocol reduce
any topology to a tree by disabling links until we have no
cycles left. This removes the deadlock potential, but it also
removes a lot of bandwidth. Efficient topologies such as k-
ary n-mesh and k-ary n-cubes contain lots of loops, and if we
remove links the available bandwidth decrease.

In this paper we challenge Ethernet’s poor routing algorithm
and propose a deterministic, deadlock free, shortest path
routing algorithm called LASH, which yields a performance
increase by a factor of 3.8 when compared to the Spanning
Tree Protocol, and a factor of 1.6 when compared to the more
recent Tree-Based Turn-Prohibition algorithm [12].

In section II we give an overview of related work. In
section III we describe the LASH routing algorithm. Its
applicability to Ethernet is discussed in section IV, followed
by a performance evaluation in section V. We conclude in
section VI.

II. RELATED WORK

Several algorithms which use some form of minimal routing
have been suggested for the replacement of STP, such as
SmartBridge [13], STAR [14], and OSR [15]. Common for
all these strategies are that they do not address the deadlock
problem relative to flow control. Furthermore, SmartBridge is
not backwards compatible with existing Ethernet equipment,
STAR does not guarantee shortest paths, and OSR requires
changes to the Ethernet frame format or the use of tunnelling.

A more recent approach called Viking [16] has a broader
approach to the replacement of STP. In addition to targeting
minimal routing this scheme also provides load balancing
of links and fault-tolerance in the case of link failure. It
achieves all this within the limits of the current standard,
but it requires additional processes running at each end-node
and a high number of VLANs (Virtual Local Area Networks
[10]). Furthermore, as the VLAN principle does not support
a dedicated buffer per VLAN, the union of all VLANs may
deadlock if flow control is used.

Up*/Down* is one of the better known algorithms that can
replace STP. It was first described by Schroeder et. al in [17]
and can be used with any topology without the need for virtual
channels. This makes it suitable for a wide range of network
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technologies, including Ethernet [8]. It is a spanning tree
based routing algorithm that allows the use of all links only
constrained by turn prohibition [18], opposed to to the link
prohibition used in STP. Up*/Down* has a major drawback
in that it is vulnerable to hot spots around the root of the
spanning tree, and since it is a tree based algorithm it does not
necessarily allow for shortest path routing. Another drawback
is the lack of an upper bound on the number of turns that are
prohibited, which is dependent on the topology in question.

Some of the drawbacks of Up*/Down* are rectified by
Pellegrini et al. in [12]. They propose an algorithm called Tree-
based Turn-prohibition (TBTP), which avoids the hot spot
problem seen in Up*/Down* and on average it prohibits 10%
fewer turns. It also guarantees that a maximum of 50% of the
turns in a topology are prohibited, independent of the topology
in question.

The replacement of STP is currently being studied in
the IEEE 802.1aq Shortest Path Bridging group, where they
currently have suggested a solution based on multiple spanning
trees. In this scheme each switch has its own spanning tree
making shortest path routing possible, but it does not consider
the deadlock issue, which gives it the the same weakness as
Viking.

LASH avoids all of the above deficiencies by making
deterministic, deadlock free, shortest path routing possible
with only a very limited number of virtual channels. E.g. a
network of 32 switches would on average require only two
layers.

III. LAYERED SHORTEST PATH ROUTING

Layered shortest path routing (LASH) is a minimal deter-
ministic routing algorithm that guarantees shortest path routing
and in-order delivery for both regular and irregular topologies
[19]. The idea is that each virtual layer in the network has a set
of source/destination pairs 〈s, d〉 assigned to it, in such a way
that all 〈s, d〉 pairs are assigned to exactly one virtual layer. In
addition it makes sure that each virtual layer is deadlock free
by ensuring that the channel dependencies stemming from the
〈s, d〉 pairs of one layer do not generate cycles.

A. Layered Routing

Below we give a set of definitions for layered routing
that adhere to the established definitions and notation of cut-
through switching and graph theory.

Definition 1: A network I is represented by a strongly
connected directed graph, I = G(N,C). The vertices of I are
the set of nodes (switches) N , whereas the edges are the set of
unidirectional communication channels (possibly virtual), C.
A network channel ci interconnects the two nodes src(ci),
dst(ci) ∈ N , which are the source and destination of the
channel, respectively. A link is a set of channels cl1 , cl2 , ..., cln

such that either src(cli) = src(clj ) and dst(cli) = dst(clj ),
or src(cli) = dst(clj ) and dst(cli) = src(clj ) for all i and j.
Each channel c ∈ C is part of exactly one link. A subset of
the nodes N in the network are called compute nodes, these
nodes generate and consume data traffic.

Definition 2: A deterministic routing function R : N ×
C × N −→C takes a node ni, an input channel cij

and a
destination address nd as parameters, and returns the output
channel to be taken from node ni for packets entering its
channel cij

and whose destination is nd.
Definition 3: The channel dependency graph of a network

I with respect to a routing function R is a directed graph
in which the channels of I constitute the vertices, and the
dependencies constitute the arcs.

The following theorem is a straightforward adaptation of a
theorem due to Dally and Seitz [11].

Theorem 1: A network is free from deadlocks if the channel
dependency graph of its routing function is acyclic.

Definition 4: A network layer Li of network I is a subset
of the virtual channels in I such that each link has exactly
two channels in Li, one in each direction.

Definition 5: A set L of network layers {L1, . . . , Ln} is a
layering of a network I iff for 1 ≤ i ≤ n and 1 ≤ j ≤ n

• Li is a layer of I for all i,
• Li and Lj are disjoint for all distinct i and j,
• for each channel c in I there exists an Li such that c is

in Li.

The above two definitions allow us to view any layer of a
network as a bidirectional virtual network that is isomorphic
to the original physical network.

Definition 6: For a layering L of network I , and a routing
function R, we say that R is layered with respect to L if
R(n, ci, a) = cj implies that ci and cj are in the same layer
Lj ∈ L for all n, ci, a and cj . By Rk we denote the subrouting
function of R that is restricted to Lk ∈ L.
This means that a layered routing function will keep packets
in the layer that it was first injected into. Furthermore, Ri

contains all necessary information on the forwarding that can
take place in Li.

B. LASH Algorithm

The following algorithm can now be used to map 〈s, d〉
pairs onto virtual layers. We assume that a network I , and a
layering L of that network is given. Furthermore, we assume
that L has n layers. Let T (〈s, d〉) be the set of all layers that
can be used for transmission between s and d.

Step 1: Let T (〈s, d〉) = undefined for all 〈s, d〉 pairs and
let Ri be empty for all i such that 1 ≤ i ≤ n.

Step 2: Take a source and destination 〈s, d〉 pair that has
not yet been processed. For an arbitrary shortest
path between this pair find an existing layer Li such
that letting Ri be enriched to support the path, and
letting T (〈s, d〉) = {Li} will not close a cycle of
dependencies in the layered dependency graph of I .
If one exists, let T (〈s, d〉) = {Li}, otherwise leave
T (〈s, d〉) unchanged.

Step 3: If there are more 〈s, d〉 pairs that have not yet been
processed, go to Step 2.

Lemma 1: If the above algorithm results in a T (〈s, d〉)
which T (〈s, d〉) �= undefined for all 〈s, d〉 pairs, the layered
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network I is free from deadlock with respect to R and T .
Furthermore all packets are routed along shortest paths.

Proof: Shortest-path routing follows immediately from
Step 2.

Assume that the lemma is not true. Then, the algorithm must
in some case terminate with a deadlocked system. According
to theorem 1 a cycle in the layered dependency graph must
either have been there from the start of the algorithm or been
introduced at some point. From Step 1 we can deduce that
the layered dependency graph contains no dependencies, and
therefore no cycles, when the algorithm starts, and hence that
the cycle must have been introduced at a later stage.

The layered dependency graph is only altered by Step 2.
The cycle in the layered dependency graph must, therefore,
have appeared through the assignment of a layer to a 〈s, d〉
pair. By inspection of Step 2 we see that no such assignment
will take place if it closes a cycle in the layered dependency
graph. Thus, we have a contradiction, and the lemma follows.

The assignment of a path to a layer in Lemma 1 above is
done by a random selection, this might not be optimum and
could lead to insufficient traffic balancing. The advantage is
that it is straightforward to implement, but it could be replaced
by advanced schemes [20].

1) Required number of layers: An important issue in the
evaluation of layered routing is the number of layers that are
needed to grant shortest-path routing to every 〈s, d〉 pair. The
required number of layers depends on both network size and
connectivity. Note that the number of layers depends on the
number of switches in the network, not the number of compute
nodes (hosts). The number of compute nodes is only limited
by the number of ports on each switch. For networks with 16,
32 and 64 switches and any connectivity, covering all 〈s, d〉
pairs (i.e. all switches) requires a maximum of three, three,
and five layers, respectively. The average number of layers
required are two, two and three, respectively. Studies show
that that the number of required layers appears to follow a
logarithmic curve [19].

Another surprising outcome is that the variance in the
required number of layers is very small. For a set of 100
random topologies the difference between the most demanding
and the least demanding topology was never more than one
layer.

2) Computational Complexity: The complexity of the al-
gorithm is given by the number of 〈s, d〉 pairs |N |2 times
the number of layers n, times the complexity of checking
for cycles |N |, i.e. O(|N |3). This should not pose a problem
for modern hardware when working with reasonable sized
networks (< 256), and for larger networks optimisations might
be possible.

IV. ETHERNET COMPATIBILITY

Below we briefly present the the priority and flow control
mechanisms supported in Ethernet, and the changes necessary
to implement the LASH algorithm.
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Fig. 1. Ethernet frame formats.

A. IEEE 802.1Q as Virtual Channels

The IEEE 802.1Q standard introduces priority tagging of
Ethernet frames, where each frame can have a priority from
0-7, and each priority has dedicated buffering resources. We
will exploit this feature as virtual channels. Figure 1(a) shows
the format of a IEEE 802.1Q compliant Ethernet frame. The
3 bits labelled priority are used to indicate the priority of a
given frame. To enable the concept of virtual channels we
change the semantics of these three bits from priority to virtual
channel identifier, which allows for eight virtual channels.
Thus, we have support for eight virtual channels and our main
requirement for LASH routing is satisfied.

B. Flow Control

Ethernet supports a variant of on/off flow control as opposed
to credit-based flow control found in technologies such as Ad-
vanced Switching Interconnect [1], InfiniBand [2] and Myrinet
[3]. On/off flow control consists of on/off messages, called
pause frames (Figure 1(b)). When a downstream node has
available buffer space it sends an on message to the upstream
node indicating it is ok to transmit frames. Otherwise, it sends
an off message telling the upstream node to halt transmission.
A major drawback of Ethernet flow control is that it only
allows per-port flow control. This makes it impossible for
flow control on a per-priority basis. Not only does this limit
the performance of the priority scheme itself [7], but it
makes it impossible to support virtual channels in combination
with flow control. When flow control is enabled, the virtual
channels no longer have independent buffering resources.
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C. LASH Applied to Ethernet

Ethernet does not explicitly support the virtual channels that
LASH requires, but we will, as described above, use the eight
priority levels as eight virtual channels. Unfortunately, due
to the lack of per priority flow control, priorities can only
be used as virtual channels when flow control is disabled.
To remedy this we adopt a proposal, suggested by the IEEE
802.3ar Congestion Management Task Force1, to change the
Ethernet flow control mechanism to allow for per-priority flow
control. We need to change the granularity of the pause frame
in order to achieve per-priority flow control. The pause frame
must include a field which tells the receiver what priority it
should pause.

The introduction of a new pause frame is done by creating
a new OpCode to distinguish between pause frames. The new
frame will contain the same information as the old one (Figure
1(b), but with a different OpCode (Figure 1(c)) and with the
priority value embedded after the pause time. This makes
it possible to extract the priority constraint for a frame by
reading the priority value. Per-priority aware switches will
use the OpCode field to decide the type of frame received
and will then scan for the necessary information accordingly.
Per-port aware switches will use frames with OpCode = 1
as before, while frames with OpCode = 2 will be ignored.
As aforementioned, this change is currently considered by the
IEEE 802.3ar Congestion Management Task Force, but with
the goal of improving congestion management.

The priority information in the pause frame enables the
concept of virtual channels in combination with flow control.
The STP can now be replaced (or extended, see Section IV-D)
by LASH. Such a replacement can be either centralised or
distributed in nature. In the centralised approach, which is
similar to the way STP behaves today, all switches will go
through an election process where a master is selected based
on identity (or another property). The master switch will then
build and maintain a topology map based on information
collected from all other switches. The topology map is used
by the master switch to calculate and distribute routing tables.
After calculation these routing tables are considered fixed until
a topology change occurs and recalculation is triggered, which
is identical to how STP and TBTP function. In the distributed
case all switches will have to collect topology information and
calculate its own routing table in a deterministic fashion (i.e.
all switches must make the same decisions or will will run
into trouble). This process will then be repeated whenever the
topology changes.

As described in Section III-B1 LASH needs a modest
number of layers. A network with 16 switches will need 2
layers for routing, leaving us with 6 layers to use for other
purposes such as QoS. E.g. if we have a network with 16
switches we can have a maximum of three classes of service,
using a total of six layers. Two layers are required for LASH
routing, but as we need separate queues for each of the classes
of service we end up with a total of six layers.

1http://www.ieee802.org/3/ar/

D. Backwards Compatibility

To provide a convenient upgrade path LASH enabled
switches should be backwards compatible with older switches.
This should enable a gradual upgrade of network equipment,
where an island of LASH enabled switches can work together
with switches not supporting LASH. Backwards compatibility
can be achieved by requiring new switches to support both
STP and LASH, and dedicating virtual channel 0 to STP. How
frames are routed will then be determined by the type of switch
the source and destination refers to. LASH switches will route
according to LASH for all LASH destinations within its island,
and according to STP for all other destinations. STP switches
will route according to STP for all destinations.

V. PERFORMANCE EVALUATION

Our evaluation is based on the J-Sim framework[21], which
is used to implement a shared memory Ethernet switch that
is the building block of our networks. Our switches have
five ports, where one is connected to a computing node and
four are connected to the network. We have simulated both
irregular and regular networks with a size of 16 (not included)
and 32 switches. For each set of networks we have used the
average throughput and latency as the performance measure.
We have used a uniform destination distribution and a packet
arrival process governed by a normal approximation of the
Poisson distribution2. The average bit rate is parametrised and
increased in steps from 10 to 1000 Mbit/s (1% - 100% load).
The packet size is fixed at 1522 bytes which is the maximum
Ethernet frame size.

A. Throughput

In order to have a fair comparison between LASH and TBTP
we have included results where the TBTP algorithm is allowed
to use the same number of channels as LASH. This means that
the network traffic is spread over several layers instead of one.
These results are labelled TBTP3VL in Figure 2. Results for
STP are included as a reference.

Throughput results where generated for irregular networks
with 32 switches, a 4x8 mesh, and a 4x8 torus. Figure
2(a), 2(c) and 2(e) summarise the average throughput for the
different routing algorithms. It is evident that LASH achieves
the best performance; it outperforms both TBTP and STP
because all links are used, no turns are forbidden and all
frames are routed via shortest paths. We see an average
increase in throughput of 16% compared to TBTP3VL for
irregular networks (Figure 2(a)). For the 4x8 torus the increase
is 25% (Figure 2(e)) and for the 4x8 mesh an immense 83%
(Figure 2(c)). For TBTP3VL the improvement over TBTP
varies as the improvement yielded by more available layers
depends on the topology. An improvement of 25% and 20%
is achieved for irregular networks and the torus respectively.
On the 4x8 mesh the addition of more layers does not benefit
TBTP. The addition of further layers gives TBTP some room

2Simulations for other destination distributions and arrival processes have
yielded similar results.
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Fig. 2. Throughput and latency.
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for improvement, but as the number of turns allowed and the
available paths are still the same the performance increase is
limited.

B. Latency

Figure 2(b) shows the average network latency for irregular
topologies. As can been seems from the figure, LASH im-
proves latency when compared to the other alternatives. LASH
has an average latency of 450µs which is a 25% reduction
compared to the 600µs of TBTP3VL, and a 89% reduction
of that of TBTP. The latency plots for the torus and mesh
can be summarised as follows. Latency is reduced by 55%
between LASH and TBTP3VL for the torus, and by 52% for
the mesh. No turn prohibition and shortest path routing are
the reason for these improvements for LASH. For TBTP3VL
the addition of more layers leads to a reduction in latency
compared to only one layer. This is due to less head of line
blocking when several layers are available.

VI. CONCLUSION

We have described how to make virtual layers a reality in
Ethernet through a simple modification of the pause frame.
This modification makes it possible to use topology agnostic,
deadlock free and shortest path routing. Our proposed algo-
rithm improves throughput by more than 300% over that of
Ethernet with STP, and by more than 83% when compared
to other routing algorithms suggested for Ethernet. Bringing
per priority flow control and shortest path routing to Ethernet
gives it routing performance on par with highly specialised
network technologies; performance that is needed if Ethernet
is to succeed in the SAN and backplane area.
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