Software and Numerical Methods for the

Incompressible Navier-Stokes Equations

Kent-Andre Mardal

May 7, 2003

Acknowledgements

This is my thesis for the degree Doctor Scientiarum at the Department of Infor-
matics, University of Oslo. The work has been conducted in the period from May
2000 to May 2003 and was financed by the BeMatA program of the Research
Council of Norway. I would like to thank the Simula Research Laboratory and
the Department of Informatics for excellent working conditions and financial
support.

I want to thank my two supervisors, Professor Hans Petter Langtangen and
Professor Aslak Tveito for an interesting project, the time and effort they have
invested, and their visions. Hans Petter has shaped much of my view and
appreciation of software development. This thesis would not have been possible
without Diffpack. Professor Ragnar Winther has also been an important person
with his knowledge on multigrid and finite element methods. Many thanks
for several good discussions, pool games, etc.: Ola Skavhaug, Trygve Kastberg
Nilssen, Joakim Sundnes, Ariel Almendral, Glen Terje Lines, Audrey Huerta,
Tom Thorvalsen and the others from Scientific Computing.

My friends and family, mum and dad, have always been supportive. I will
also like to thank the best things that have ever happened to me: Nancy, Natalie
and Niklas.

Oslo, April 2003 Kent-Andre Mardal

ii

Contents

This thesis contains five individual papers and a short introduction.

Paper I Numerical Methods for Incompressible Viscous Flow, Hans Petter
Langtangen, Kent-Andre Mardal and Ragnar Winther. Selected review
paper for the 25th Anniversary Issue of the journal Advances in Water
Resources, vol 25, 1125-1146, 2002.

Paper II Mized Finite Elements, Kent-Andre Mardal and Hans Petter
Langtangen. In Langtangen and Tveito (eds): Advanced Topics in Com-
putational Partial Differential Equations — Numerical Methods and Diff-
pack Programming, Lecture Notes in Computational Science and Engi-
neering, Springer, 2003.

Paper II1 A Robust Finite Element Method for Darcy-Stokes Flow, Kent-
Andre Mardal, Xue-Cheng Tai, and Ragnar Winther. STAM Journal on
Numerical Analysis, vol 40, 1605-1631, 2002.

Paper IV Systems of PDEs and Block Preconditionering, Kent-Andre
Mardal, Joakim Sundnes, Hans Petter Langtangen and Aslak Tveito. In
Langtangen and Tveito (eds): Advanced Topics in Computational Partial
Differential Equations — Numerical Methods and Diffpack Programming,
Lecture Notes in Computational Science and Engineering, Springer, 2003.

Paper V Uniform Preconditioners for the Time Dependent Stokes Prob-
lem, Kent-Andre Mardal and Ragnar Winther. Submitted to Numerische
Mathematik.

The five papers are self-contained. Therefore, some information is repeated.
There are also some differences in the notation used in the papers.

iii

iv

Introduction

This thesis is concerned with numerical methods for partial differential equations
(PDEs) and their realization in software. The focus is on the incompressible
Navier-Stokes equations and both the mathematics and the implementation are
covered.

This introduction is organized as follows. First, some general remarks on
the modeling of our physical reality by PDEs are made. In particular, we try
to motivate the study of the Navier-Stokes equations and associated numerical
methods. Then, we give a short outline of the papers included in this thesis.
Paper I is a review of numerical methods for the incompressible Navier-Stokes
equations and serves as an introduction to and overview of the topic. This
introduction is therefore rather short.

Many of the laws in nature can be expressed by PDEs. We have the diffusion
equation in thermal physics, the wave equation in, e.g., acoustics, the equation
of elasticity in solid mechanics, the Schrédinger equation in quantum mechanics,
the Maxwell’s equations in electromagnetism, the Einstein’s equation in general
relativity and the Navier-Stokes equations in fluid dynamics. Solutions by pen-
cil and paper are normally only feasible in very simplified applications. Instead,
approximations are computed with numerical methods on computers. The ef-
ficiency and accuracy of a given numerical method vary among the equations
and it is often necessary to design the method for the purpose. In some cases
it is possible to buy or download reliable software. Diffpack is one example of
software for solving PDEs [11] and it is used extensively in this thesis. One
goal with this thesis is to extend Diffpack with state-of-the-art discretization
techniques and solution algorithms for computational fluid dynamics (CFD).

In this thesis we will mostly be concerned with the Navier-Stokes equations,
describing the motion of fluids, gases and in some cases solids. These equations
are of fundamental importance in science and engineering. For instance, solving
these equations is necessary to find an optimal shape design of aircrafts, cars
and ships. Another application is the simulation of heating systems. Around
25% of the total production of electrical energy in Norway is used for heating.
Alternative or more efficient heating of houses may therefore save a lot of money.
In [10] we describe a simulator for certain low temperature heating systems.
Another application appears in medicine, where the computation of blood flow
in heart and body may give a better understanding of arterial diseases [21].
Also, solids like metal and rock can be described by the Navier-Stokes equations.

Some applications are aluminum extrusion [20] and the evolution of mountain
belts like Himalaya as a result of tectonic plate drifting [6].

Needless to say, the examples are different in many aspects, e.g., the viscos-
ity parameter u vary from ~ 10_5£% in air to ~ 1020% in rock. Many of the
applications need additional features like turbulence models, coupling to a heat
equation, moving geometries, free surfaces, or nonlinear viscosities. Neverthe-
less, a fast and accurate solver for the Navier-Stokes equations is needed as a
core in the numerical engine for all these problems.

We will mostly be concerned with the incompressible Navier-Stokes equa-
tions. All materials are compressible, but incompressibillity is often a good
approximation. Even air flow is incompressible up to 1/3 of the speed of sound.
Many authors use the Navier-Stokes equations as a short term for the incom-
pressible Navier-Stokes equations and we will adopt to this habit. The equations
are on the form:

%—:-}-V-Vv = —éVp-l—uVQv-I-g, in €, (1)
V-v = 0, inQ, (2)

where v and p are the unknown velocity and pressure, respectively, p is the
viscosity, g is the density, and g denotes the body forces. Additionally, boundary
and initial conditions are needed. Equation (1) comes from Newton’s second
law of motion, while equation (2) states that the fluid is incompressible.

These equations are hard to understand, although they have been studied
extensively for at least a century. In fact, even proving the existence of a solution
to these equations (in a certain sense) has been ranked by the Clay Mathematics
Institute of Cambridge as one of the seven hardest problems in this millennium.
A solution of this problem gives a $1 million price [5].

Despite of the theoretical difficulties, these equations are routinely solved
numerically by today’s scientists and engineers. The advantage and danger with
numerical methods are that they will ” always” compute an answer. The question
is how accurate and efficient the computations are. A variety of methods and
software packages exists, each with its strengths and weaknesses. The problem
is that different methods compute significantly different answers. Additionally,
it is often not known what the answer should be. A quote given in Turek [25]
describes what practitioners from automotive industry (unofficially) say:

”There is no software available which can provide a guaranteed lift
and drag coefficient on a car-body with an error tolerance of less than
20%; often the sign of the lift cannot even be predicted. Hence, we
stopped flow around objects and use simulation tools for interior flow
problems only, for instance for modeling heating devices or acoustic
behavior in car cabins. Here, we are content with a qualitatively
good prediction!”

It should be noted that this quote is valid even for flow with low Reynolds
numbers. In fact, Schifer et al. [23] conducted a benchmark for flow around

a cylinder with Reynolds number 20 and 100. They compared the simulation
results from various implementations of discretization techniques and solution
methods. The solutions computed by 17 research groups differed by 20% in
the computation of the lift coefficient. This problem is ”simple”, compared to
applications in industry. Still, it is not satisfactory solved, at least not with all
the methods.

There is no simple answer to why common methods computed different an-
swers in the benchmark. Many discretization techniques were used in space and
time, with both operator splitting and fully coupled solvers. Some of the tech-
niques have a more sound mathematical foundation than others. Mixed finite
elements, with streamwise upwinding or Petrov-Galerkin stabilization for high
Reynolds numbers, are key components in the mathematical understanding of
robust discretizations'!. However, it is far from the Babuska-Brezzi condition
and the Stokes problem, for which most of the theory for mixed elements has
been developed, to the computation of the lift coefficient in flow around a cylin-
der using a limited amount of computer resources. This general uncertainty,
summarized by the quote from Turek [25], is our motivation behind making the
CFD tools in Diffpack flexible, such that different methods can be tested and
compared. We try to have particular focus on the robustness of the methods.

A part of the explanation of the differences in the computation of the lift
coefficient could be that the resolution of the meshes was not sufficiently fine.
All, or at least most, of the methods should compute the proper lift coefficient,
given enough unknowns. Today, we may solve linear systems with 10¢ — 107
unknowns on a normal workstation. Given an efficient solution algorithm, such
a system may be solved in less than a minute. Multigrid is a very promising
and general strategy for solving such systems and is often an (order) optimal al-
gorithm?. Although efficient multigrid methods for the Navier-Stokes equations
have been implemented in many cases, it is still a problem to construct such
solvers in general. This remains a hot topic, even though efficient algorithms
in special cases have been demonstrated almost since multigrid was developed
in the 1960-1970s. As a general rule of the thumb, multigrid is more efficient
than the classical Conjugate-Gradient like methods (or Krylov methods) with
standard algebraic preconditioners [4], if the number of unknowns is larger than
10 [16, 25]. In the benchmark [23], the number of unknowns was 10 — 107 and
the results clearly favored multigrid techniques. Moreover, in the nonstationary
3D case, they were not able to compute reliable reference solutions. More un-
knowns or better methods are needed. Applications in industry require accurate
and efficient computations of far more advanced CFD problems. Hence, it is
clear that efficient methods like multigrid will play a critical role in the future.
Also, it must be combined properly with adaptivity, domain decomposition, etc.

1 This does not mean that mixed elements are needed. Pressure stabilization techniques
satisfy a slightly more complicated Babuska-Brezzi condition and the penalty method uses
reduced integration to mimic mixed elements. More details can be found in Paper I and the
references therein.

2 An optimal algorithm solves the problem in O(n) operations, where n is the number of
unknowns. A more detailed discussion of optimal algorithms can be found in Paper IV.

Multigrid methods for CFD can be found in, e.g., Turek [25]. An overview of
multigrid methods in general can be found in Brandt [2]. Iterative methods are
dealt with in [9].

The focus in this thesis is finite element methods and iterative solution tech-
niques for the Navier-Stokes equations, and simplified versions of these equa-
tions. Particular emphasis is placed on the robustness of the methods and on
implementational issues. Many aspects related to the Navier-Stokes equations
are not covered, such as adaptivity, flow with high Reynolds numbers, stream-
wise upwinding/Petrov-Galerkin methods, turbulence models, parallelization,
boundary conditions, etc.

Summary of the Papers

Paper I: Numerical Methods for Incompressible Viscous Flow. The
purpose of this paper is to give an overview of numerical methods for the incom-
pressible Navier-Stokes equations. This is a vast field and the paper is by no
means complete. The focus is to show the relations between seemingly different
methods. First, we cover mixed element methods and their relations with com-
mon stabilization techniques such as pressure stabilization, the penalty method
and artificial compressibility. Then, various operator splitting techniques, both
algebraic and in time, are discussed. The framework called the basic iteration
on the pressure Schur complement [25] shows the relations between different
methods such as projection methods, pressure correction schemes, the Uzawa
algorithm, and the Vanka smoother. Finally, the connection between operator
splitting and block preconditioning is presented. A more comprehensive review
of methods can be found in the 1200 pages textbook [8].

This paper is an overview and not much new is described. However, we
extend the framework in [25] such that it includes the block preconditioning in,
e.g., Paper IV, V, and [22].

The efficiency of the block preconditioner has only been tested in the aca-
demic examples in Paper V. The next step is the fully nonlinear Navier-Stokes
equations. The block preconditioning should also be compared with the basic
iteration on the Schur complement, which is easy to implement in the framework
described in Paper IV. Moreover, standard operator splitting schemes such as
the projection method can be reused as preconditioners by using the auxiliary
space method as in Paper IV and Paper V. Finally, it would be interesting to
implement the problem in the benchmark [23].

Paper II: Mixed Finite Elements. This paper describes the basic mathe-
matical concepts of mixed finite element methods and the usage of such methods
in the Diffpack programming environment. The following two model problems
are considered: the Stokes problem,
—pAv+Vp = g, (3)
V-v = 0, 4)
and the mixed formulation of the Poisson equation,

v—JAVp = 0, (5)

V-v = g. (6)

Several elements have been implemented: Crouzeix-Raviart, Mini, P, — Py,
Rannacher-Turek, Raviart-Thomas and Taylor-Hood (see, e.g., [3, 7, 25] for
mathematical descriptions). The new element in Paper III has also been imple-
mented. These elements can be used on general unstructured grids, within the
framework of multigrid methods.

Most of the applications of the elements in this thesis have been academic,
in the sense that simple geometries are used. Further work can be to compare
the elements with standard methods in real-life applications. It would, for
instance, be interesting to check whether mixed elements actually improve the
accuracy compared to standard finite elements, with a given amount of computer
resources. We are also currently extending Diffpack with the Nedelec element
[19] which is popular in electro-magnetism.

Paper ITI: A Robust Finite Element Method for Darcy-Stokes Flow.
This paper introduces a new element, applicable for Darcy-Stokes flow, and
compares it with several other mixed elements. The equations for Darcy-Stokes
flow read

voSAVEYD = g (™)
V-v = 0, (8)

where € is a physical parameter in [0, 1]. For € close to 1, this problem is similar
to the Stokes problem (3)-(4), but with an lower order term, v. On the other
hand, if ¢ — 0 the problem reduces to the mixed formulation of the Poisson
equation (5)-(6). If € > 0, standard Stokes elements can be used. However,
the numerical experiments in this paper show that the accuracy decreases as €
decreases. The new element is robust with respect to €. Some implications for
time dependent flow are described in [15].

The element made here is new. There are also some new experiments show-
ing that common Stokes elements handle low viscosity (e.g., 107%) differently.
Mixed elements with continuous pressure seem more robust, although not as
robust as the new element.

A natural extension of this work is to let € vary spatially, such that the Darcy
character of the flow dominates in some parts of the domain, while Stokes flow
governs the rest. It is not clear that the element handles this situation.

Paper IV: Systems of PDEs and block preconditioning. This paper
describes the block preconditioning tools in Diffpack. Block preconditioning is
a simple, but general, idea. Let us assume that we have the system of equations,

A B b'd c
e nl[3]-[a] 0
A diagonal block preconditioner is then on the form,
M o0
M o], @0

An important point is that if the matrices A, B, C and D come form the
discretization of PDEs, we might know how to construct preconditioners for A
and D, while a preconditioner for the fully coupled system is not known. If
A and D ”"dominate” the matrix system, it is reasonable to assume that they
” dominate” the preconditioner. We would then make M ~ A~ and N ~ D1,
A more rigorous mathematical theory for block preconditioning can be found in
[1].

The software described here is new, and together with the multigrid software
in [16], several fast preconditioners have been implemented. Optimal precondi-
tioners are implemented for the Stokes problem (3)-(4) and the mixed Poisson
equation (5)-(6). The preconditioner for the mixed Poisson problem uses the
auxiliary space technique of Xu [26], which enables multigrid methods on stan-
dard elements to be reused for mixed elements®. Additionally, an optimal block
preconditioner for a simplified version of the equations for the electrical activity
in the heart [24] is described. These equations read,

% = V-(0;Vv) + V- (0;Vue),

0 = V. (Uz'vv) +V- ((Ui + Ue)vue)a

where v is the transmembrane potential, u, is the extracellular potential, and
o; and o, are the intra- and extracellular conductivities, respectively.

Future work here is an implementation of the framework described in Pa-
per I. We are also currently working on extending the block preconditioner to
thermally driven flow. The optimality of the preconditioner in the case of the
equations for the electrical activity in the heart and the mixed Poisson equations
should also be proven theoretically.

Paper V: Uniform Preconditioners for the Time Dependent Stokes
Problem. In this paper we study preconditioners for the system (7)-(8). How-
ever, the €? is not a physical parameter, it equals the time stepping parameter,
At. The optimal preconditioner, robust with respect to At, is on the form,

L 0
0 M+A‘N |- (11)

The preconditioners L and M are made as multigrid sweeps on second order
elliptic equations and NN may be a lumped mass matrix. Hence, the building
blocks are standard preconditioners. This preconditioner resembles the pre-
conditioner made for the iteration on the pressure Schur complement in [25],
although this was discovered later. The preconditioner can also be (and was
originally) motivated by the numerical error estimates with the Mini element in
Paper III.

The uniformity of the preconditioner in At is new. There are also some new
At-uniform inf-sup conditions.

3Some properties must be satisfied.

In future work we would like to extend this preconditioner to the fully non-
linear and non-symmetric Navier-Stokes equations as described in Paper I. Tt
would also be interesting to check whether a similar preconditioner can be made
for the new element in Paper II1. The numerical results in Paper IV suggest that
this might be possible.

During the work of this thesis some more papers were written. The paper
[16] is about the multigrid software in Diffpack, which was used in Paper IV, V
and [24]. The paper [24] is about the block preconditioner for the heart prob-
lem described in Paper IV. The paper [13] is about making Python interfaces to
Diffpack programs. The motivation behind using Python is to ease the debug-
ging and verification of complex C++ programs such as a Diffpack simulator.
Several of the results in this thesis and related results have been presented as
talks and proceedings at conferences [10, 12, 14, 15, 17, 18] .

Bibliography

[1] D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning discrete ap-
proximation of the Reissner Mindlin plate problem. Matematical Modeling
and Numerical Analysis, 1996.

[2] A. Brandt. Multiscale scientific computation review 2001. In T. J. Barth,
T. F. Chan, and R. Haimes, editors, Multiscale and Multiresolution Meth-
ods: Theory and Applications. Springer, 2001.

[3] F. Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods.
Springer-Verlag, 1991.

[4] A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Addison-
Wesley Pitman, 1995.

[5] C. L. Fefferman. Existence & smoothness of the Navier-Stokes equations.
See URL http://www.claymath.org/Millennium Prize_Problems/.

[6] P. Fullsack. An arbitrary Lagrangian-Eulerian formulation for creeping
flows and its application in tectonic models. Geophys. J. Int., 120:1-23,
1995.

[7] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes
Equations. Springer-Verlag, 1986.

[8] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element
Method. Wiley, 1998.

[9] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer-Verlag, 1994.

[10] A. Kristoffersen and K.-A. Mardal. Solving heat distribution in room using
mixed finite element for coupling the Navier-Stokes equations and the heat
equation. In H. I. Andersson and B. Skallerud, editors, Second National
Conference on Computational Mechanics (MekIT’03), 2003.

[11] H. P. Langtangen. Computational Partial Differential Equations - Nu-
merical Methods and Diffpack Programming. Textbooks in Computational
Science and Engineering. Springer-Verlag, 2nd edition, 2003.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. P. Langtangen and K.-A. Mardal. A software framework for mixed finite
element programming. In P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and
A. G. Hoekstra, editors, Proceedings of the 2nd International Conference
on Computation al Science, Lecture Notes in Computer Science. Springer,
2002.

H. P. Langtangen and K.-A. Mardal. Using Diffpack from Python scripts.
In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Compu-
tational Partial Differential Equations — Numerical Methods and Diffpack
Programming. Springer-Verlag, 2003.

K.-A. Mardal and H. P. Langtangen. An efficient parallel iterative approach
to a fully implicit mixed finite element formulation for the Navier-Stokes
equations. In Computational Fluid Dynamics Conference Proceedings (EC-
COMAS CFD 2001), 2001.

K.-A. Mardal, H. P. Langtangen, and R. Winther. Error estimates for the
linear Navier-Stokes equations. In H. I. Andersson and B. Skallerud, editors,
Second National Conference on Computational Mechanics (MekIT03),
2003.

K.-A. Mardal, H. P. Langtangen, and G.W. Zumbusch. Software tools for
multigrid methods. In H. P. Langtangen and A. Tveito, editors, Advanced
Topics in Computational Partial Differential Equations — Numerical Meth-
ods and Diffpack Programming. Springer-Verlag, 2003.

K.-A. Mardal and H.P. Langtangen. An effective iterative approach to a
fully implicit mixed finite element formulation for the Navier-Stokes equa-
tions. In Harald Osnes Jostein Hellesland and Geir Skeie, editors, Pro-
ceedings of the 13th Nordic Seminar on Computational Mechanics, pages

89-93, 2000.

K.-A. Mardal, R. Winther, and H.P Langtangen. An optimal iterative
approach to the time-dependent Stokes problem. In Tenth Conference
Virtual Proceedings, Copper Mountain Conferences on Multigrid Methods,
Copper Mountain, CO, USA, 2001. URL: http://www.mgnet.org/mgnet-
c¢m2001.html.

J. C. Nedelec. Mixed finite elements in R3. Numerische Mathematik,
35:315-341, 1980.

K. M. Okstad and T. Kvamsdal. An object-oriented finite element program
for simulation of aluminium extrusion. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equations
— Numerical Methods and Diffpack Programming. Springer-Verlag, 2003.

A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid
dynamics: Problems, models and methods. Computing and Visualisation
in Science, 2:163-197, 2000.

10

[22] T. Rusten and R. Winther. A preconditioned iterative method for saddle-
point problems. SIAM J. Matriz Anal., 1992.

[23] M. Schéfer and S. Turek. Benchmark compuations of laminar flow around
cylinder. In E.H. Hirschel, editor, Flow Simulation with High-Performance
Computers II. Vieweg, 1996.

[24] J. Sundnes, G. Lines, K.-A. Mardal, and A. Tveito. Multigrid block pre-
conditioning for a coupled system of partial differential equations modeling
the electrical activity in the heart. Computer Methods in Biomechanics
and Biomedical Engineering, 5:397-411, 2002.

[25] S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer-
Verlag, 1999.

[26] J. Xu. The auxiliary space method and optimal multigrid preconditioning
techniques for unstructured grids. Computing, 56:215-235, 1996.

11

12

Numerical Methods for Incompressible Viscous Flow

H. P. Langtangen, K.-A. Mardal and R. Winther

Selected review paper for the 25th Anniversary Issue of the journal
Advances in Water Resources, vol 25, 1125-1146, 2002.

Numerical Methods for
Incompressible Viscous Flow

Hans Petter Langtangen® Kent-Andre Mardal
Dept. of Scientific Computing, Simula Research Laboratory and
Dept. of Informatics, University of Oslo

Ragnar Winther
Dept. of Informatics, University of Oslo and
Dept. of Mathematics, University of Oslo

May 5, 2003

Abstract

We present an overview of the most common numerical solution strate-
gies for the incompressible Navier—Stokes equations, including fully im-
plicit formulations, artificial compressibility methods, penalty formula-
tions, and operator splitting methods (pressure/velocity correction, pro-
jection methods). A unified framework that explains popular operator
splitting methods as special cases of a fully implicit approach is also
presented and can be used for constructing new and improved solution
strategies. The exposition is mostly neutral to the spatial discretization
technique, but we cover the need for staggered grids or mixed finite el-
ements and outline some alternative stabilization techniques that allow
using standard grids. Emphasis is put on showing the close relationship
between (seemingly) different and competing solution approaches for in-
compressible viscous flow.

1 Introduction

Incompressible viscous flow phenomena arise in numerous disciplines in science
and engineering. The simplest viscous flow problems involve just one fluid in
the laminar regime. The governing equations consist in this case of the incom-
pressible Navier—Stokes equations,

ov

1
E+U-Vv:—EVp+l/Vzv+g, (1)

*Corresponding author. Email: hpl@ifi.uio.no.

and the equation of continuity, also called the incompressibility constraint,
V-v=0. (2)

In these equations, v is the velocity field, p is the pressure, g is the fluid density,
g denotes body forces (such as gravity, centrifugal and Coriolis forces), v is
the kinematic viscosity of the fluid, and ¢ denotes time. The initial conditions
consist of prescribing v, whereas the boundary conditions can be of several types:
(i) prescribed velocity components, (ii) vanishing normal derivatives of velocity
components, or (iii) prescribed stress vector components. The pressure is only
determined up to a constant, but can be uniquely determined by prescribing the
value (as a time series) at one spatial point. Many people refer to the system
(1)—(2) as the Navier—Stokes equations. The authors will also adapt to this
habit in the present paper.

Most flows in nature and technological devices are turbulent. The transition
from laminar to turbulent flow is governed by the Reynolds number, Re = Ud/v,
where U is a characteristic velocity of the flow and d is a characteristic length of
the involved geometries. The basic Navier-Stokes equations describe both lam-
inar and turbulent flow, but the spatial resolution required to resolve the small
(and important) scales in turbulent flow makes direct solution of the Navier-
Stokes equations too computationally demanding on today’s computers. As an
alternative, one can derive equations for the average flow and parameterize the
effects of turbulence. Such common models models for turbulent flow normally
consist of two parts: one part modeling the average flow, and these equations
are very similar to (1)—(2), and one part modeling the turbulent fluctuations.
These two parts can at each time level be solved sequentially or in a fully cou-
pled fashion. In the former case, one needs methods and software for the system
(1)—(2) also in turbulent flow applications. Even in the fully coupled case the
basic ideas regarding discretization of (1)—(2) are reused. We also mention that
simulation of turbulence by solving the basic Navier-Stokes equations on very
fine grids, referred to as Direct Numerical Simulation (DNS), achieves increasing
importance in turbulence research as these solutions provide reference databases
for fitting parameterized models.

In more complex physical flow phenomena, laminar or turbulent viscous flow
is coupled with other processes, such as heat transfer, transport of pollution,
and deformation of structures. Multi-phase/multi-component fluid flow mod-
els often involve equations of the type (1)—(2) for the total flow coupled with
advection-diffusion-type equations for the concentrations of each phase or com-
ponent. Many numerical strategies for complicated flow problems employ a
splitting of the compound model, resulting in the need to solve (1)—(2) as one
subset of equations in a possibly larger model involving lots of partial differen-
tial equations. Hence, it is evident that complex physical flow phenomena also
demand software for solving (1)—(2) in a robust fashion.

Viscous flow models have important applications within the area of water
resources. The common Darcy-type models for porous media flow are based
on averaging viscous flow in a network of pores. However, the averaging in-
troduces the permeability parameter, which must be measured experimentally,

often with significant uncertainty. For multi-phase flow the ad hoc extensions
of the permeability concept to relative permeabilities is insufficient for satisfac-
tory modeling of many flow phenomena. Moreover, the extensions of Darcy’s
law to flow in fractured or highly porous media introduce considerable modeling
uncertainty. A more fundamental approach to porous media flow is to simulate
the viscous flow at the pore scale, in a series of network realizations, and com-
pute the relation between the flow rate and the pressure differences. This is an
important way to gain more insight into deriving better averaged flow models
for practical use and to better understand the permeability concept [6, 80]. The
approach makes a demand for solving (1)—(2) in highly complex geometries, but
the left-hand side of (1) can be neglected because of small Reynolds numbers
(small characteristic length).

Water resources research and engineering are also concerned with free surface
flow and currents in rivers, lakes, and the ocean. The commonly used models
in these areas are based on averaging procedures in the vertical direction and
ad hoc incorporation of viscous and turbulent effects. The shortcomings of
averaged equations and primitive viscosity models are obvious in very shallow
water, and in particular during run-up on beaches and inclined dam walls. Fully
three-dimensional viscous flow models based on (1)—(2) with free surfaces are
now getting increased interest as these are becoming more accurate and com-
putationally feasible [1, 24, 33, 69, 72, 79].

Efficient and reliable numerical solution of the incompressible Navier—Stokes
equations for industrial flow or water resources applications is extremely chal-
lenging. Very rapid changes in the velocity field may take place in thin bound-
ary layers close to solid walls. Complex geometries can also lead to rapid local
changes in the velocity. Locally refined grids, preferably in combination with er-
ror estimation and automatic grid adaption, are hence a key ingredient in robust
methods. Most implicit solution methods for the Navier-Stokes equations end
up with saddle-point problems, which complicates the construction of efficient
iterative methods for solving the linear systems arising from the discretization
process. Implicit solution methods also make a demand for solving large systems
of nonlinear algebraic equations. Many incompressible viscous flow computa-
tions involve large-scale flow applications with several million grid points and
thereby a need for the next generation of super-computers before becoming engi-
neering or scientific practice. We have also mentioned that Navier—Stokes solvers
are often embedded in much more complex flow models, which couple turbu-
lence, heat transfer, and multi-specie fluids. Before attacking such complicated
problems it is paramount that the numerical state-of-the-art of Navier—Stokes
solvers is satisfactory. Turek [84] summarizes the results of benchmarks that
were used to assess the quality of solution methods and software for unsteady
flow around a cylinder in 2D and 3D. The discrepancy in results for the lift-
ing force shows that more research is needed to develop sufficiently robust and
reliable methods.

Numerical methods for incompressible viscous flow is a major part of the
rapidly growing field computational fluid dynamics (CFD). CFD is now emerg-
ing as an operative tool in many parts of industry and science. However, CFD

is not a mature field either from a natural scientist’s or an application engi-
neer’s point of view; robust methods are still very much under development,
many different numerical tracks are still competing, and reliable computations
of complex multi-fluid flows are still (almost) beyond reach with today’s meth-
ods and computers. We believe that at least a couple of decades of intensive
research are needed to merge the seemingly different solution strategies and
make them as robust as numerical models in, e.g., elasticity and heat conduc-
tion. Sound application of CFD today therefore requires advanced knowledge
and skills both in numerical methods and fluid dynamics. To gain reliability in
simulation results, it should be a part of common practice to compare the results
from different discretizations, not only varying the grid spacings but also chang-
ing the discretization type and solution strategy. This requires a good overview
and knowledge of different numerical techniques. Unfortunately, many CFD
practitioners have a background from only one ”numerical school” practicing a
particular type of discretization technique and solution approach. One goal of
the present paper is to provide a generic overview of the competing and most
dominating methods in the part of CFD dealing with laminar incompressible
viscous flow.

Writing a complete review of numerical methods for the Navier—Stokes equa-
tions is probably an impossible task. The book by Gresho and Sani [27] is a
remarkable attempt to review the field, though with an emphasis on finite el-
ements, but it required over 1000 pages and 48 pages of references. The page
limits of a review paper demand the authors to only briefly report a few aspects
of the field. Our focus is to present the basic ideas of the most fundamental so-
lution techniques for the Navier—Stokes equations in a form that is accessible to
a wide audience. The exposition is hence of the introductory and “engineering”
type, keeping the amount of mathematical details to a modest level. We do not
limit the scope to a particular spatial discretization technique, and therefore
we can easily outline a common framework and reasoning which demonstrate
the close connections between seemingly many different solution procedures in
the literature. Hence, our hope is that this paper can help newcomers to the
numerical viscous flow field see some structure in the jungle of Navier—Stokes
solvers and papers, without having to start by digesting thick textbooks.

The literature on numerical solutions of the Navier—Stokes equations is over-
whelming, and only a small fraction of the contributions is cited in this paper.
Some books and reviews that the authors have found attractive are mentioned
next. These references serve as good starting points for readers who want to
study the contents of the present paper in more detail. Fletcher [21] contains
a nicely written overview of some finite element and finite difference techniques
for incompressible fluid flow (among many other topics). Gentle introductions
to numerical methods and their applications to fluid flow can be found in the
textbooks [3, 20, 28, 58, 59] (finite differences, finite volumes) and [60, 65, 66, 89]
(finite elements). More advanced texts include [15, 26, 27, 30, 61, 25, 84, 86].
Readers with a background in functional analysis and special interest in math-
ematics and finite element methods are encouraged to address Girault and
Raviart [25] and the reviews by Glowinski and Dean [16] and Rannacher [63].

Readers interested in the efficiency of solution algorithms for the Navier—Stokes
equations should consult Turek [84]. Gresho and Sani’s comprehensive book
[27] is accessible to a wide audience and contains thorough discussions of many
topics that are weakly covered in most other literature, e.g., questions related
to boundary conditions. The book’s extensive report on practical experience
with various methods is indispensable for CFD scientists, software developers,
and consultants. An overview of CFD books is available on the Internet [36].
Section 2 describes the natural first approach to solving the Navier—Stokes
equations and points out some basic numerical difficulties. Necessary conditions
to ensure stable spatial discretizations are treated in Section 3. Thereafter we
consider approximate solution strategies where the Navier—Stokes equations are
transformed to more common and tractable systems of partial differential equa-
tions. These strategies include modern stabilization techniques (Section 4.1),
penalty methods (Section 4.2), artificial compressibility (Section 4.3), and oper-
ator splitting techniques (Section 5). The latter family of strategies is popular
and widespread and are known under many names in the literature, e.g., pro-
jection methods and pressure (or velocity) correction methods. We end the
overview of operating splitting methods with a framework where such meth-
ods can be viewed as special preconditioners in an iterative scheme for a fully
implicit formulation of the Navier—Stokes equations. Section 7 mentions some
examples of existing software packages for solving incompressible viscous flow
problems, and in Section 8 we point out important areas for future research.

2 A Naive Derivation of Schemes

With a background from a basic course in the numerical solution of partial differ-
ential equations, one would probably think of (1) as some kind of heat equation
and try the simplest possible scheme in time, namely an explicit forward step

vt — o ¢ e_ 1o 2,¢ ¢

T—Fv-v'v ——EVp +vViv' 4+ g¢°. (3)
Here, At is the time step and superscript £ denotes the time level. The equation
can be trivially solved for v+, after having introduced, e.g., finite elements [27],
finite differences [3], finite volumes [20], or spectral methods [11] to discretize
the spatial operators. However, the fundamental problem with this approach is
that the new velocity v*! does not, in general, satisfy the other equation (2),
i.e., V- vt £ 0. Moreover, there is no natural computation of p‘*!.

A possible remedy is to introduce a pressure at p‘*! in (3), which leaves two

unknowns, vt and pf*!, and hence requires a simultaneous solution of

A
vttt 4 ?th“l = o' = Atw' Vol + AV’ + Atg, (4)
V-t = 0. (5)

We can eliminate v‘*! by taking the divergence of (4) to obtain a Poisson

equation for the pressure,
Vipttl = Aitv - (v* — Atwt - Vol + At Vit 4 Atgh). (6)

However, there are no natural boundary conditions for pt*'. Hence, solving
(6) and then finding v**! trivially from (4) is therefore not in itself a sufficient
solution strategy. More sophisticated variants of this method are considered in
Section 5, but the lack of explicit boundary data for pt*! will remain a problem.

More implicitness of the velocity terms in (1) can easily be introduced. One
can, for example, try a semi-implicit approach, based on a Backward Euler
scheme, using an “old” velocity (as a linearization technique) in the convective
term v - Vo:

A
(1+ Atv" -V — AwV?)ottt + ?thHl = o'+ Atgtt, (7)
v-ottt = 0. (8)

This problem has the proper boundary conditions since (7) and (8) have the
same order of the spatial operators as the original system (1)—(2). Using some
discretization in space, one arrives in both cases at a linear system, which can
be written on block form:

o S]] ®

The vector u contains in this context all the spatial degrees of freedom (i.e.,
grid point values) of the vector field v**t!, whereas p is the vector of pressure
degrees of freedom in the grid.

A fully implicit approach, using a backward Euler scheme for (1), where the
convective term v -V is evaluated as v*+1-Vo‘*+! leads to a nonlinear equation
in v*!. Standard Newton or Picard iteration methods result in a sequence of
matrix systems of the form (9) at each time level.

In contrast to linear systems arising from standard discretization of, e.g., the
diffusion equation, the system (9) may be singular. Special spatial discretization
or stabilizing techniques are needed to ensure an invertible matrix in (9) and
are reviewed in Section 3 and 4. In the simplest case, IN is a symmetric and
positive definite matrix (this requires the convective term v- Vo to be evaluated
explicitly at time level £, such that the term appears on the right-hand side
of (7)), and @ is a rectangular matrix. The stable spatial discretizations are
designed such that the matrix QTqQ is non-singular. It should be noted that
these conditions on IN and @ lead to the property that the coefficient matrix in
(9) is symmetric and non-singular but indefinite. This indefiniteness causes some
difficulties. For example, a standard iterative method like the preconditioned
conjugate gradient method can not be directly used. In fact, preconditioners
for these saddle point problems are much more delicate to construct even when
using more general solvers like, e.g., GMRES and may lead to breakdown if

not constructed properly. Many of the time stepping procedures for the Navier-
Stokes system have been partially motivated by the desire to avoid the solution
of systems of the form (9). However, as we shall see later, such a strategy will
introduce other difficulties.

3 Spatial Discretization Techniques

So far we have only been concerned with the details of the time discretization.
Now we shall address spatial discretization techniques for the systems (4)—(5)
or (7)—(8).

3.1 Finite Differences and Staggered Grids

Initial attempts to solve the Navier—Stokes equations employed straightforward
centered finite differences to the spatial operators on a regular grid, with the
pressure and velocity components being unknown at the corners of each cell.
Two typical terms in the equations would then be discretized as follows in a
uniform 2D grid:

[Bp] T i (10)

oz irj 2Azx

and

0%u)"’ N uf g —2uf; +ub iy,
[6y2 :| ij - Ay? ’
where Az and Ay are uniform spatial cell sizes, qbf’ ; means the numerical value
of a function ¢ at the point with spatial index (7, j) at time level £.

Two types of instabilities were soon discovered, associated with this type
of spatial discretization. The pressure can be highly oscillatory or even un-
determined by the discrete system, although the corresponding velocities may
be well approximated. The reason for this phenomenon is that the symmetric
difference operator (10) will annihilate checkerboard pressures, i.e., pressures
which oscillate between 1 and -1 on each grid line connecting the grid points.
In fact, if the vertices are colored in a checkerboard pattern, then the pressure
at the black vertices will not be related to the pressure at the white vertices.
Hence, the pressure is undetermined by the discrete system and wild oscillations
or overflow will occur. This instability is related to whether the system (9) is
singular or not. There is also a ”softer” version of this phenomenon when (9) is
nearly singular. Then the pressure will not necessarily oscillate, but it will not
converge to the actual solution either.

The second type of instability is visible as non-physical oscillations in the
velocities at high Reynolds numbers. This instability is the same as encountered
when solving advection-dominated transport equations, hyperbolic conservation
laws, or boundary layer equations and can be cured by well-known techniques,
among which upwind differences represent the simplest approach. We shall not

-

|
: |
- & — e — @ .+
|

|
|

,,,,,,,,,,, |

o \ 1 \

I
: : ' I
f.f.+.+.+
| ' .

I
|

,,,,,,,,,,, |

o \ % \

|
| |
- & — e — @ .+
I

I
|

|

|

|
—_

1

1

1

|

|
—_

|

1

1

1

|
—_

|

|

1

1

1
—_

|

|

Figure 1: Example on a staggered grid for the Navier—Stokes equations, where
p and v = (u,v) are unknown at different spatial locations. The e denotes p
points, — denotes u points, whereas | denotes v points.

be concerned with this topic in the present paper, but the interested reader can
consult the references [9, 20, 21, 27, 59, 71] for effective numerical techniques.

The remedy for oscillatory or checkerboard pressure solutions is, in a finite
difference context, to introduce a staggered grid in space. This means that the
primary unknowns, the pressure and the velocity components, are sought at
different points in the grid. Figure 1 displays such a grid in 2D, and Figure 2
zooms in on a cell and shows the spatial indices associated with the point values
of the pressure and velocity components that enter the scheme.

Discretizing the terms —0p/dx and 8%u/0y? on the staggered grid at a point
with spatial indices (i,j + %) now results in

41 =P
[ap] o litdaty ~ P
ox i,j—i—% Az
and . . .
£ —
[3%] Ot B 1 B A
2 2)
0y 1 vy Ay

The staggered grid is convenient for many of the derivatives appearing in the
equations, but for the nonlinear terms it is necessary to introduce averaging.
See, for instance, [3, 21, 20, 28] for more details regarding discretization on
staggered grids.

Finite volume methods are particularly popular in CFD. Although the final
discrete equations are similar to those obtained by the finite difference method,
the reasoning is different. One works with the integral form of the equations
(1)—(2), obtained either by integrating (1)—(2) or by direct derivation from basic
physical principles. The domain is then divided into control volumes. These
control volumes are different for the integral form of (2) and the various com-
ponents of the integral form of (1). For example, in the grid in Figure 1 the
dotted cell, also appearing in Figure 2, is a typical control volume for the in-
tegral form of the equation of continuity, whereas the control volumes for the

¢
ij+s T , ® T Y1+

Figure 2: A typical cell in a staggered grid.

components of the equation of motion are shifted half a cell size in the various
spatial directions. The governing equations in integral form involve volume/area
integrals over the interior of a control volume and surface/line integrals over the
sides. In the computation of these integrals, there is freedom to choose the type
of interpolation for v and p and the numerical integration rules. Many CFD
practitioners prefer finite volume methods because the derivation of the discrete
equations is based directly on the underlying physical principles, thus resulting
in “physically sound” schemes. From a mathematical point of view, finite vol-
ume, difference, and element methods are closely related, and it is difficult to
decide that one approach is superior to the others; these spatial discretization
methods have different advantages and disadvantages. We refer to textbooks
like [3] and [20] for detailed information about the finite volume discretization
technology.

Staggered grids are widespread in CFD. However, in recent years other ways
of stabilizing the spatial discretization have emerged. Auxiliary terms in the
equations or certain splittings of the operators in the Navier—-Stokes equations
can allow stable pressure solutions also on a standard grid. Avoiding staggered
grids is particularly convenient when working with curvelinear grids. Much
of the fundamental understanding of stabilizing the spatial discretization has
arisen from finite element theory. We therefore postpone the discussion of par-
ticular stabilization techniques until we have reviewed the basics of finite ele-
ment approximations to the spatial operators in the time-discrete Navier—Stokes
equations.

3.2 Mixed Finite Elements

The staggered grids use different interpolation for the pressure and the velocity,
hence we could call it mixed interpolation. In the finite element world the analog
interpolation is referred to as mixed elements. The idea is, basically, to employ
different basis functions for the different unknowns. A finite element function
is expressed as a linear combination of a set of prescribed basis functions, also
called shape functions or trial functions [88]. These basis functions are defined
relative to a grid, which is a collection of elements (triangles, qaudrilaterals,
tetrahendra, or boxes), so the overall quality of a finite element approximation
depends on the shape of the elements and the type of basis functions. Normally,
the basis functions are lower-order polynomials over a single element.

One popular choice of basis functions for viscous flow is quadratic piecewise
polynomials for the velocity components and linear piecewise polynomials for
the pressure. This was in fact the spatial discretization used in the first re-
port, by Taylor and Hood [76], on finite element methods for the Navier—Stokes
equations.

The Babuska-Brezzi (BB) condition [8, 25, 27, 30] is central for ensuring
that the linear system of the form (9) is non-singular. Much of the mathemat-
ical theory and understanding of importance for the numerical solution of the
Navier-Stokes equations has been developed for the simplified Stokes problem,
where the acceleration terms on the left-hand side of (1) vanish:

0

1 .
—QVp+1/VZU+g, (11)
Vv = 0. (12)

We use the Galerkin method to formulate the discrete problem, seeking
approximations

d
vmﬁ:Ziv[. (13)

r=1 i=1
m
prp=> piLi, (14)
i=1

where N = N;e,, N; and L; are some scalar basis functions and e, is the unity
vector in the direction r. Here d is the number of spatial dimensions, i.e., 2 or
3. The number of velocity unknowns is dn, whereas the pressure is represented
by m unknowns. Using N; as weighting function for (11) and L; as weighting
function for (12), and integrating over Q, one can derive a linear system for the
coefficients v} and p; :

n m
ZNU’U;-+ZQ%1)J- = fl, i=1,...,dn,r=1,...,d (15)
7j=1 7j=1
d n
YN @u; =0, i=1,...,m (16)
r=1 j=1

10

where

Q
1 [0L 1 [ON; 1/
o= — | —NjdQ=—- | —L;dQ+ — N;Ljn,dT, 18
1] QanrJ QQaflfr] QdQZJT ()
o= / g"NIdQ. (19)
Q
We shall write such a system on block matrix form (like (9)):
N 0 o Q'
ERBRARE RS}
_ _ (20)
Here NN is the matrix with elements N;;, Q" has elements Q7;, and
w=(vi,...,00,v8 . . 0208)T p= (1, ,00)T . (21)

The N matrix is seen to be dn x dn, whereas @ is m X dn. In (20)-(21) we have
assumed that d = 3. Moreover, we have multiplied the equation of continuity
by the factor —1/p to obtain a symmetric linear system.

We shall now go through some algebra related to the block form of the Stokes
problem, since this algebra will be needed later in Section 5.6. Let us write the
discrete counterpart to (11)—(12) as:

Nu+Qp = f, (22)
QT'u=0. (23)

The matrices IN and @ can in principle arise from any spatial discretization
method, e.g., finite differences, finite volumes, or finite elements, although we
will specifically refer to the latter in what follows. First, we shall ask the ques-
tion: What conditions on IV and @ are needed to ensure that u and p are
uniquely determined? We assume that IN is positive definite (this assumption
is actually the first part of the BB condition, which is satisfied for all ”standard”
elements). We can then multiply (22) by N ! to obtain an expression for u,
which can be inserted in (23). The result is a linear system for p:

—Q"N"'Qp=Q"N"'f. (24)
Once the pressure is known, the velocities are found by solving
Nu = (f - Qp).

To obtain a uniquely determined u and p, QT N 1Q, which is referred to as
the Schur complement, must be non-singular. A necessary sufficient condition
to ensure this is Ker(Q) = {0}, which is equivalent to requiring that

sup/ pV -0 >0, (25)
v JQ

11

for all discrete pressure p # 0, where the supremum is taken over all discrete
velocities on the form (13). This guarantees solvability, but to get convergence
of the numerical method, one also needs stability. This is where the famous BB
condition comes in: L
infsupf?p# >v>0. (26)
p ¢ l®lllpllo
Here, v is independent of the discretization parameters, and the inf is taken
over all p # 0 on the form (14). The condition (26) is stated in numerous books
and papers. Here we emphasize the usefulness of (26) as an operative tool for
determining which elements for p and v that are “legal”, in the sense that the
elements lead to a solvable linear system and a stable, convergent method. For
example, the popular choice of standard bilinear elements for v and piecewise
constant elements for p voilates (26), whereas standard quadratic triangular
elements for v and standard linear triangules for p fulfill (26).
Provided the BB condition is fulfilled, with v not depending on the mesh,
one can derive an error estimate for the discretization of the Navier-Stokes
equations:

15 = vlls + [Ip = pllo < Ch*[|vllkrr + B [Iplli), (27)

This requires the exact solutions v and p to be in [H¥1(Q)]? and H!*1(Q),
respectively. The constant C is independent of the spatial mesh parameter h.
The degree of the piecewise polynomial used for the velocity and the pressure
is k and [, respectively, (see e.g. [29] or [25]). Since (27) involves the H! norm
of v, and the convergence rate of v in L2 norm is one order higher, it follows
from the estimate (27) that k =1 + 1 is the optimal choice, i.e., the velocity is
approximated with accuracy of one higher order than the pressure. For example,
the Taylor-Hood element [76] with quadratic velocity components and linear
pressure gives quadratic and linear Ly-convergence in the mesh parameter for
the velocities and pressure, respectively (under reasonable assumptions), see [5].

In simpler words, one could say that the computer resources are not wasted.
We get what we can and should get. Elements that do not satisfy the BB
condition may give an approximation that does not converge to the solution,
and if it does, it may not converge as fast as one should expect from the order
of the elements.

Numerous mixed finite elements satisfying the BB condition have been pro-
posed over the years. However, elements not satisfying the BB condition may
also work well. The element with bilinear velocities and constant pressure,
which does violates the BB condition, is popular and usable in many occasions.
A comprehensive review of mixed finite elements for incompressible viscous flow
can be found in [27].

4 Stabilization Techniques

Staggered grids or mixed finite elements can be challenging from an implemen-
tational point of view, especially when using unstructured, adaptive and/or

12

hierarchical grids. Therefore, there has been significant interest in developing
stabilization techniques which allow standard grids and equal order interpola-
tion of v and p.

The singularity of the matrix (9) can be circumvented by introducing a
stabilization matrix eD and possibly a perturbation of the right hand side, ed,

{CJ;” —?D][;]:[—]:d]’ (28)

where € is a parameter that should be chosen either from physical knowledge
or by other means. It can also be a spatially local parameter, which can be im-
portant for anisotropic meshes and boundary layer problems. There are mainly
three methods used to construct eD, all based on perturbed versions of the
equation of continuity,

Vv = Vp, (29)
Vv = —ep, (30)
Vv = —e% . (31)

The approach (29) was derived with the purpose of stabilizing pressure os-
cillations and allowing standard grids and elements. Section 4.1 deals with this
approach. The equations (30) and (31) were not derived as stabilization meth-
ods, but were initiated from alternative physical and mathematical formulations
of viscous incompressible flow, as we outline in Sections 4.2 and 4.3.

4.1 Pressure Stabilization Techniques

Finite elements not satisfying the BB condition often lead to non-physical os-
cillations in the pressure field. It may therefore be tempting to introduce a
regularization based on V?p, which will smooth the pressure solution [8]. One
can show that the BB condition can be avoided by, e.g., introducing a stabiliza-
tion term in the equation of continuity as shown in (29). It is common to write
this perturbed equation with a slightly different perturbation parameter;

V-v = eh®V?p, (32)

where € is a constant to be chosen. Now the velocities and the pressure can be
represented with equal order, “standard” finite elements. We have introduced
an O(h?) perturbation of the problem, and there is hence no point in using
higher-order elements. Consistent generalizations that also apply to higher-
order elements have been proposed, a review can be found in Gresho and Sani
[27] and Franca et al. in [30]. The idea behind these methods is that one observes
that by taking the divergence of (11) we get an equation that includes a V?p
term like in (32),

1_.
EVZp:V-(l/VZ'U) +V-g. (33)

13

This divergence of (11) can be represented by the weak form
1
/ (—EVﬁ +vV?% +g)-VL; d2 =0,
Q

where the pressure basis functions are used as weighting functions. The left-
hand side of this equation can then be added to (16) with a local weighting
parameter eh? in each element. The result becomes

d n m
ZZQ;ZU; —GZDijpj =—ed;, t1=1,...,m, (34)

r=1j=1 j=1

where
Dy = Y hx [VL;-VL;dQ, (35)
K Qx
0y = QureSn [ot 2Lisg (36)
Y Y K Qg J 6157‘
OL;
(- 2 Tt 0 .

d; ;h,{ /Q 9 6de (37)

The sum over K is to be taken over all elements; Qg is the domain of element
K and hg is the local mesh size. We see that this stabilization is not symmetric
since szj #* Q;z, however it is easy to see that a symmetric stabilization can be
made by an adjustment of (15), such that

1 A
/(—EVﬁ+ vV +g) - VANTdQ
Q

is added to (15) with the same local weighting parameter. The use of second-
order derivatives excludes linear polynomials for N . Detailed analysis of sta-
bilization methods for both Stokes and Navier—Stokes equations can be found
in [82].

One problem with stabilization techniques of the type outlined here is the
choice of ¢, since the value of € influences the accuracy of the solution. If € is
too small we will experience pressure oscillations, and if € is too large the accu-
racy of the solution deteriorates, since the solution is far from divergence free
locally, although it is divergence free globally [27]. The determination of e is
therefore important. Several more or less complicated techniques exist, among
the simplest is the construction of ’optimal bubbles’ which is equivalent to the
discretization using the MINT element [8, 27]. Problems with this approach have
been reported; one often experiences O(h) pressure oscillations in boundary lay-
ers with stretched elements, but a fix (multiply € with a proper factor near the
boundary layer) is suggested in [54]. An adaptive stabilization parameter cal-
culated locally from properties of the element matrices and vectors is suggested
in [78]. This approach gives a more robust method in the boundary layers.

14

4.2 Penalty Methods

A well-known result from variational calculus is that minimizing a functional
J(v) = / |Vo|?dQ
Q

over all functions v in the function space H'(f2), such that v|sq = g where g is
the prescribed boundary values, is equivalent to solving the Laplace problem

V2u=0inQ, u=gondQ.

The Stokes problem (11)—(12) can be recast into a variational problem as follows:
Minimize
J(w) :/ o(WVw: Vw — g -w) d2
Q
over all w in some suitable function space, subject to the constraint
V-w=0.

Here, Vw : Vw =), > w, w,, is the “inner product” of two tensors (and
wy,s means Ow,/0z,;). As boundary conditions, we assume that w is known
or the stress vector vanishes, for the functional J(w) to be correct (extension
to more general conditions is a simple matter). This constrained minimization
problem can be solved by the method of Lagrange multipliers: Find stationary
points of

A

J(w,p) =J(w)—/QpV-'wdQ

with respect to w and p, —p being the Lagrange multiplier. The solution (w), p)
is a saddle point of J,

J(w,q) < J(w,p) < J(v,p)

and fulfills the Stokes problem (11)—(12).
The penalty method is a way of solving constrained variational problems
approximately. One works with the modified functional

J(w) = J(w) + %)\2 /Q (V - w)2dQ,

where A is a prescribed, large parameter. The solution is governed by the
equation

%)\V(V w)+vViv=g. (38)

or the equivalent mixed formulation,
V' + L = g, (39)
V-'u+§p = 0. (40)

15

For numerical solution, (38) is a tremendous simplification at first sight;
equation (38) is in fact equivalent to the equation of linear elasticity, for which
robust numerical methods are well known. The penalty method does not seem
to need mixed elements or staggered grids and is hence easy to implement.

The governing equation (38) is only an approximation to (11)—(12), where
the latter model is obtained in the limit A = co. A too low A leads to mass loss,
whereas a large A value leads to numerical difficulties (known as the locking
problem in elasticity). Because of the large A parameter, explicit time dis-
cretization leads to impractical small time steps, and implicit schemes in time
are therefore used, with an associated demand of solving matrix systems. The
disadvantage of the penalty method is that efficient iterative solution of these
matrix systems is hard to construct. The discrete approximations of the sys-
tem (38) will be positive definite. However, as A approach infinity the system
will tend to a discrete Stokes system, i.e., a discrete version of (39)-(40) with
% = 0. Hence, in the limit the elimination of the pressure is impossible, and
this effect results in bad conditioning of the systems derived from (38) when
A is large. The dominating solution techniques have therefore been variants of
Gaussian elimination. However, progress has been made with iterative solution
techniques, see Reddy and Reddy [68].

The penalty method has a firm theoretical basis for the Stokes problem
[64]. Ad hoc extensions to the full Navier—Stokes equations are done by simply
replacing equation (2) by

p=-AV-.v
and eliminating the pressure p. This results in the governing flow equation
0 A
8—?+0-VU=EV(V-U)+VV20+9. (41)

In a sense, this is a nonlinear and time-dependent version of the standard linear
elasticity equations.

One problem with the penalty method and standard elements is often re-
ferred to as locking. The locking phenomena can be illustrated by seeking a
divergence-free velocity field subject to homogeneous Dirichlet boundary condi-
tions on a regular finite element grid. For the standard linear elements the only
solution to this problem is v = 0. In the case of the penalty method we see that
as A = 00, v = 0 is the only solution to (41) unless the matrix associated with
the A term is singular. One common way to avoid locking is, in a finite element
context, to introduce selective reduced integration, which causes the matrix asso-
ciated with the A term to be singular. The selective reduced integration consists
in applying a Gauss-Legendre rule to the A term that is of one order lower than
the rule applied to other terms (provided that rule is of minimum order for
the problem in question). For example, if bilinear elements are employed for v,
the standard 2 x 2 Gauss-Legendre rule is used for all integrals, except those
containing A, which are treated by the 1 x 1 rule. The same technique is known
from linear elasticity problems when the material approaches the incompressible
limit. We refer to [34, 64] or standard textbooks [65, 66, 89] for more details.

16

The use of selective reduced integration is justified by the fact that under
certain conditions the reduced integration is equivalent to consistent integration,
which is defined as the integration rule that is obtained if mixed elements were
used to discretize (39)- (40) before eliminating the pressure to obtain (38).
This equivalence result does, however, need some conditions on the elements.
For instance, the difference between consistent and reduced integration was
investigated in [19], and they reported much higher accuracy of mixed methods
with consistent integration when using curved higher-order elements.

The locking phenomena is related to the finite element space and not to
the equations themselves. For standard linear elements the incompressibility
constraint will affect all degrees of freedom and therefore the approximation
will be poor. Another way of circumventing this problem can therefore be to
use elements where the incompressibility constraint will only affect some of the
degrees of freedom, e.g., the element used to approximate Darcy-Stokes flow
[55] .

The penalty formulation can also be justified by physical considerations
(Stokes’ viscosity law [23]). We also mention that the method can be viewed as a
velocity Schur complement method (cf. pressure Schur complement methods in
Section 5.8). The Augmented Lagrangian method is a regularization technique
closely related to the penalty method. For a detailed discussion we refer to the
book by Fortin and Glowinski [22].

4.3 Artificial Compressibility Methods

If there had been a term Op/0t in the equation of continuity (2), the system
of partial differential equation for viscous flow would be similar to the shallow
water equations (with a viscous term). Simple explicit time stepping methods
would then be applicable.

To introduce a pressure derivative in the equation of continuity, we consider
the Navier—Stokes equations for compressible flow:

ov _ 1 9

E+U-VU = —QVp+1/V v+g, (42)
0o _
ot +V-(ov) = 0. (43)

In (42) we have neglected the bulk viscosity since we aim at a model with small
compressibility to be used as an approximation to incompressible flow. The
assumption of small compressibility, under isothermal conditions, suggests the
linearized equation of state

p=p(0) = po+ci(o— o), (44)

where ¢ = (0p/do)o is the velocity of sound at the state (0o, po). We can now
eliminate the density in the equation of continuity (43), resulting in

dp
E+c§gov-v:0. (45)

17

Equations (42) and (45) can be solved by, e.g., explicit forward differences in
time. Here we list a second-order accurate leap-frog scheme, as originally sug-
gested by Chorin [13]:

vt —ott ¢ lo ¢ 2,0, ¢
-V = ——V \% 46
9AT +v°- Vo o pt+vVivt+ g (46)
041 _ 01
p p
A7 = —clooV-vt. (47)

This time scheme can be combined with centered spatial finite differences on
standard grids or on staggered grids; Chorin [13] applied a DuFort-Frankel
scheme on a standard grid. When solving the similar shallow water equations,
most practitioners apply a staggered grid of the type in Figure 1 as this give a
more favorable numerical dispersion relation. Peyret and Taylor [59] recommend
staggered grids for slightly compressible viscous flow for the same reason.

Artificial compressibility methods are often used to obtain a stationary solu-
tion. In this case, one can introduce a = goc3 and use a and At for optimizing
a pseudo-time evolution of the flow towards a stationary state. A basic problem
with the approach is that the time step At is limited by the inverse of ¢, which
results in very small time steps when simulating incompressibility (cg — ©0).
Implicit time stepping in (42) and (45) can then be much more efficient. In fact,
explicit temporal schemes in (46)—(47) are closely related to operator splitting
techniques (Sections 5 and 5.6), where the pressure Poisson equation is solved
by a Jacobi-like iterative method [59]. Therefore, the scheme (46)—(47) is a
very slow numerical method unless the flow exhibits rapid transient behavior
of interest. Having said this, we should also add that artificial compressibility
methods with explicit time integration have been very popular because of the
trivial implementation and parallelization.

5 Operator Splitting Methods

The most popular numerical solution strategies today for the Navier—Stokes
equations are based on operator splitting. This means that the system (1)—(2)
is split into a series of simpler, familiar equations, such as advection equa-
tions, diffusion equations, advection-diffusion equations, Poisson equations, and
explicit/implicit updates. Efficient numerical methods are much easier to con-
struct for these standard equations than for the original system (1)—(2) directly.
In particular, the evolution of the velocity consists of two main steps. First we
neglect the incompressibility condition and compute a predicted velocity. There-
after, the velocity is corrected by performing ”a projection” onto the divergence
free vector fields.

18

5.1 Explicit Schemes
To illustrate the basics of operator splitting ideas, we start with a forward step
in (1):
At
vt =t — Atwt - Vol — ?fo + At V2t + Atgt. (48)

The problem is that v**! does not satisfy the equation of continuity (2), i.e.,
V - vt £ 0. Hence, we cannot claim that v‘*! in (48) is the velocity at
the new time level £ + 1. Instead, we view this velocity as a predicted (also
called tentative or intermediate) velocity, denoted here by v*, and try to use the
incompressibility constraint to compute a correction v°¢ such that v+ = v*+v°.
For more flexible control of the pressure information used in the equation for
v* we multiply the pressure term Vpt by an adjustable factor j3:

B

zﬁ:M—AwﬁvM—szﬂ+Awww+Amﬁ (49)

The v**! velocity to be sought should fulfill (48) with the pressure being eval-
uated at time level £ + 1 (cf. Section 2):

At
vt = vt — Atvt - Vol — Z2Vptt! 4 At Vel + Atgl.
0

Subtracting this equation and the equation for v* yields an expression for v°¢:

. At
c 41 v* = _?V(pé—i-l _ ,Bpe) .

That is,
. At
vl =w __Q V@E 1—Bp‘“])

We must require V - ! = 0 and this leads to a Poisson equation for the
pressure difference ¢ = ptt! — Bpt:

2_&_*
V=Vt (50)

After having computed ¢ from this equation, we can update the pressure and
the velocity:

ptt = B+ o, (51)
A
vt = - ?thﬁ. (52)

An open question is how to assign suitable boundary conditions to ¢; the
function, its normal derivative, or a combination of the two must be known at
the complete boundary since ¢ fulfills a Poisson equation. On the other hand,
the pressure only needs to be specified (as a function of time) at a single point

19

in space, when solving the original problem (1)—(2). There are two ways of ob-
taining the boundary conditions. One possibility is to compute dp/dn from (1),
just multiply by the unit normal vector at the boundary. From these expressions
one can set up d¢/0n. The second way of obtaining the boundary conditions is
derived from (52); if v¢*! is supposed to fulfill the Dirichlet boundary conditions
then

At
Volaa = ?(U”l —v")[s0 =0, (53)

since v* already has the proper boundary conditions. This relation is valid on all
parts of the boundary where the velocity is prescribed. Because ¢ is the solution
of (50), &¢/On can be controlled, but these homogeneous boundary conditions
are in conflict with the ones derived from (1) and (52) [61]. We see that the
boundary conditions can be derived in different ways, and the surprising result
is that one arrives at different conditions. Additionally we see that after the
update (52) we are no longer in control of the tangential part of the velocity at
the boundary. The problem with assigning proper boundary conditions for the
pressure may result in a large error for the pressure near the boundary. Often
one experiences an O(1) error in a boundary layer with width ~ v/ Atv. This
error can often be removed by extrapolating pressure values from the interior
domain to the boundary. We refer to Gresho and Sani [27] for a thorough
discussion of boundary conditions for the pressure Poisson equation.
The basic operator splitting algorithm can be summarized as follows.

1. Compute the prediction v* from the explicit equation (49).

2. Compute ¢ from the Poisson equation (50).

3. Compute the new velocity v**! and pressure pt*! from the explicit equa-
tions (51)—(52).

Note that all steps are trivial numerical operations, except for the need to solve
the Poisson equation, but this is a much simpler equation than the original
problem (1)—(2).

5.2 Implicit Velocity Step

Operator splittings based on implicit difference schemes in time are more robust
and stable than the explicit strategy just outlined. To illustrate how more
implicit schemes can be constructed, we can take a backward step in (1) to
obtain a predicted velocity v*:

B
0
Alternatively, we could use the more flexible §-rule in time (see below). Equation

(54) is nonlinear, and a simple linearization strategy is to use v’ - Vo* instead
of v* - Vo*,

v* + Atv* - Vo* + At=Vpf — AtwV2e* + Atgttl = ot (54)

B

v* + Atwt - Vo* + AtEVpg — AtwV2v* + Atgtt = ot (55)

20

Also in the case we keep the nonlinearity, most linearization methods end up
with solving a sequence of convection-diffusion equations like (55). The v‘*!
velocity is supposed to fulfill

At
v+ Aol - Vo't + —VptT — AtV 4+ Atgtt = ot
0

The correction v° is now vt —v*, ie.,
c c At c 4 c 2,,c
v = s(v°) + ?V@ s(v°) = At(—v" - Vo + vV30°9). (56)

Note that so far we have not done anything ”illegal”, and this system can be
written as a mixed system,

v¢ —s(v°) + %V(ﬁ =0, (57)
V.-v°=V-v*. (58)

It is then common to neglect or simplify s, such that the problem changes into
a mixed formulation of the Poisson equation,

v° — %w —0, (59)
V-v°=V-.v*. (60)

Elimination of v°¢ yields a Poisson equation like (50),
V= 2V.p*. (61)
At

The problems at the boundary that were discussed in the previous section apply
to this method as well. Different choices of and approximations to s give rise
to different methods. We shall come back to this point later when discretizing
in space prior to splitting the original equations.

To summarize, the sketched implicit operator splitting method consists of
solving an advection-diffusion equation (55), a Poisson equation (61), and then
performing two explicit updates (we assume that s is neglected):

ot = v*—v%qs, (62)
pt = ppt+ 4. (63)

The outlined operator splitting approaches reduce the Navier—Stokes equations
to a system of standard equations (explicit updates, linear convection-diffusion
equations, and Poisson equations). These equations can be discretized by stan-
dard finite elements, that is, there is seemingly no need for mixed finite elements,
a fact that simplifies the implementation of viscous flow simulators significantly.

21

5.3 A More Accurate Projection Method

In Brown et al. [10] an attempt to remove the boundary layer introduced in the
pressure by the projection method discussed above is described, cf. also [17, 52].
Previously, in Sections 5.1 and 5.2, we neglected the term s(v°¢), since the scheme
was only first order in time. This resulted in a problem with the boundary
conditions on ¢. If the scheme is second-order in time, we can not remove this
term. In [10] a second-order scheme in velocity and pressure is described. In
addition, many previous attempts to construct second-order methods for the
incompressible Navier-Stokes equations are reviewed there. In order to describe
the approach let us start to form a centered scheme at time level £+ 1/2 for the
momentum equation:
vitl — gt v
VT = o VT oV (e o) g, (64)
V.ot = 0. (65)

Here the approximation [v - Vo]¢+!/2 is assumed to be extrapolated from the
solution on previous time levels. A predicted velocity is computed by

,U*,Z-{—l _ ,U*,Z

N = —[v- Vo]tH/2 4 gvz (HtHL by 4 gttl/2, (66)

Note that, since we now use v** instead of v* as the initial solution at level £,
v* follows its own evolution equation. The initial conditons v** = v° should
be used. Subtracting (66) from (64) we obtain an equation for the velocity
correction, v& ¢+l = ptFl — gt

,vc,2+1 _ ,Uc,l
At

Note that this is a diffusion equation for v¢ with a gradient, —Vp, as a forcing
term. If we assume that this implies that v° is itself a gradient we can conclude
that

+ Vpl+1/2 — %VQ (,Uc,f—i-l + ,Uc,é) . (67)

,Uf-‘rl _ ,U*,Z—i-l — ,UC,E-‘rl — v(ﬁf—‘rl, (68)

for a suitable function ¢**!. From V - v*t! = 0 we get
—V2H = —v - oni (69)

To solve this equation, it remains to assign proper boundary conditions to ¢¢+!.
From the discussion in Section 5.1 we know that the boundary conditions on
¢ can be determined such that v'*! fullfill the normal components (or one
tangential component), i.e.

S—an =n- (> — ot)eg = 0. (70)

We have now fixed the normal components of the boundary conditions on v**1,

but we have lost control over the tangential part. In [10] they therefore propose

22

to use an extrapolated value for é”l to determined the tangential parts of v*
such that .
t- 'U*’Z+1|BQ —t- (Ul+1 + V¢l+1)|ag, (71)

where t is a tangent vector (in 3D both tangent vectors must be used).
A the relation between p and ¢ is computed by inserting (68) into (67) to
get the pressure update,

p(f+1 — ¢€+1At_ ¢Z _ gv2(¢e+1 + ¢IZ) . (72)

To summerize this approach a complete time step consists of
1. Evolve v* by (66) and the boundary conditions given by (70) and (71).
2. Solve (69) for ¢**! using the boundary condition (70).
3. Compute v**! and p**! using (68) and (72).

We refer to Brown et al. [10] for more details. A critical and nonobivious step,
seems to be the correctness of the derivation of (68) from (67). This may depend
on the given boundary conditions.

5.4 Relation to Stabilization Techniques

The operator splitting techniques in time, as explained in (5.1) and (5.2), seem
to work quite well in spite of their simplicity compared to the original coupled
system (1)—(2). Some explanation of why the method works can be found in
[62, 63, 73, 74]. The point is that one can show that the operator splitting
method from Section (5.2) is equivalent to solving a system like (1)—(2) with
an old pressure in (1) and a stabilization term AtV2p on the right-hand side
of (2). This stabilization term makes it possible to use standard elements and
grids. Other suggested operator splitting methods [63] can be interpreted as a
Atdp/ 0t stabilization term in the equation of continuity, i.e., a method closely
related to the artificial compressibility scheme from Section 4.3.

5.5 Fractional Step Methods

Fractional step methods constitute another class of popular strategies for split-
ting the Navier—Stokes equations. A typical fractional step approach [2, 4, 10,
20, 87] may start with a time discretization where the convective term is treated
explicitly, whereas the pressure and the viscosity term are treated implicitly:

B
0
0. (74)

v — vt £ At V! = AV 4 A V2ot 4 Atgttt, (73)

VY - ,Ué—i-l

23

One possible splitting of (73)—(74) is now

v* —vt + Atv' - Vot = 0, (75)
v = vt 4+ AV 4 Atgtth (76)
At
,UE+1 — ’U** _ ?vpf—}-l’ (77)
v-uttt = 0. (78)

Notice that combining (75)—(77) yields (73). Equation (75) is a pure advec-
tion equation and can be solved by appropriate explicit methods for hyperbolic
problems. Equation (76) is a standard heat conduction equation, with implicit
time differencing. Finally, (77)—(78) is a mixed Poisson problem, which can be
solved by special methods for mixed Poisson problems, or one can insert v¢*!
from (77) into (78) to obtain a pressure Poisson equation,

2€+1_£ et
Vep _Atv v (79)

After having solved this equation for p*!, (77) is used to find the velocity v¢*!
at the new time level. Using (79) and then (77) instead of solving (77)—(78)
simultaneously has the advantage of avoiding staggered grids or mixed finite
elements. However, (79) requires extra pressure boundary conditions at the
whole boundary as discussed previously.

The fractional step methods offer flexibility in the splitting of the Navier—
Stokes equations into equations that are significantly simpler to work with. For
example, in the presented scheme, one can apply specialized methods to treat the
v-Vv term because this term is now isolated in a Burgers equation (75) for which
numerous accurate and efficient explicit solution methods exist. The implicit
time stepping in the scheme is isolated in a standard heat or diffusion equation
(76) whose solution can be obtained very efficiently. The last equation (79) is
also a simple equation with a wealth of efficient solution methods. Although
each of the equations can be solved with good control of efficiency, stability,
and accuracy, it is an open question of how well the overall, compound solution
algorithm behaves. This is the downside of all operator splitting methods, and
therefore these methods must be used with care.

More accurate (second-order in At) fractional step schemes than outlined
here can be constructed, see Glowinski and Dean [16] for a framework and
Brown et al. [10] for review.

5.6 Discretizing in Space Prior to Discretizing in Time

The numerical strategies in Sections 5.1-5.4 are based on discretizing (1)—(2)
first in time, to get a set of simpler partial differential equations, and then dis-
cretizing the time-discrete equations in space. One fundamental difficulty with
the this approach is that we derive a second-order Poisson equation for the pres-
sure itself or a pressure increment. Such a Poisson equation implies a demand
for more boundary conditions for p than what is required in the original system

24

(1)—(2), as discussed in the previous section. The cause of these problematic,
and unnatural, boundary conditions on the pressure is the simplification of the
system (57)-(58) to (59)-(60), where the term s(v°), containing AtrV2v¢, is
neglected. If we keep this term the system (57)-(58) is replaced by

(1 - AtrV?)v° — %w& =0, (80)
V-v°=V-v*. (81)

This system is a modified stationary Stokes system, which can be solved under
the correct boundary conditions on the velocity field v¢. However, this system
can not easily be reduced to a simple Poisson equation for the pressure increment
¢. Instead, we have to solve the complete coupled system in v€ and ¢, and when
this system is discretized we obtain algebraic systems of the form (9). Hence,
the implementation of the correct boundary conditions seems to be closely tied
to the need to solve discrete saddle point systems of the form (9).

Another attempt to avoid constructing extra consistent boundary conditions
for the pressure is to first discretize the original system (1)-(2) in space. Hence,
we need to discretize both the dynamic equation and the incompressibility con-
ditions, using discrete approximations of the pressure and the velocity. This
will lead to a system of ordinary differential equations with respect to time,
with a set of algebraic constraints representing the incompressibility conditions,
and with the proper boundary conditions built into the spatial discretization.
A time stepping approach, closely related to operator splitting, for such con-
strained systems is to first facilitate an advancement of the velocity just using
the dynamic equation. As a second step we then ”project” the velocity onto
the space of divergence free velocities. The two steps in this procedure are
closely related to the approach discussed in Sections 5.1 and 5.2. For example,
equation (55) can be seen as a dynamic step, while (59)-(60), or simply (61),
can be seen as the projection step. However, the projection induced by the
system (59)-(60) is not compatible with the boundary conditions of the original
system (and this may lead to large error in the pressure near the boundary).
In contrast, the projection introduced by the system (80)-(81) has the correct
boundary conditions.

In order to discuss this approach in greater detail let us apply either a
finite element, finite volume, finite difference, or spectral method to discretize
the spatial operators in the system (1)—(2). This yields a system of ordinary
differential equations, which can be expressed in the following form:

Mu+Kuu = —-Qp+Au+f (82)
Q"u = 0. (83)

Here, u is a vector of velocities at the (velocity) grid points, p is a vector of pres-
sure values at the (pressure) grid points, K is a matrix arising from discretizing
v -V, M is a mass matrix (the identity matrix I in finite difference/volume
methods), @ is a discrete gradient operator, QT is the transpose of Q, rep-
resenting a discrete divergence operator, and A is a discrete Laplace operator.

25

The right-hand side f contains body forces. Stable discretizations require mixed
finite elements or staggered grids for finite volume and difference methods. Al-
ternatively, one can add stabilization terms to the equations. The extra terms
to be added to (82)—(83) are commented upon in Section 5.8.

We can easily devise a simple explicit method for (82) by using the same
ideas as in Section 5.1. A tentative or predicted discrete velocity field u* is
computed by

Mu* = Mv' + At(-K (ub)ut — BQp* + Aul + fY). (84)

A correction u® is sought such that w/*!' = w* + u¢ fulfills Q7w = 0.
Subtracting u* from uft! yields

u® = —AtM~'Q¢, ¢ =p“t —pp. (85)

Now a projection step onto the constraint Q7 u!t! = 0 results in an equation

for ¢:)
Tar—1 _ T, *
Q'MQ¢p=Qu". (86)

This is a discrete Poisson equation for the pressure. For example, employing
finite difference methods in a spatial staggered grid yields M = I and QTQ is
then the standard 5- or 7-star discrete Laplace operator. The matrix QT M ~'Q
is a counterpart to matrices arising from V2 in the Poisson equations for ¢ in
Sections 5.1 and 5.2.

Having computed ¢, the new pressure and velocity values are found from

p sp’ + ¢, (87)
utl = w - AtMT'Q¢. (88)

£+1

5.7 Classical Schemes

In this subsection we shall present a common setting for many popular classical
schemes for solving the Navier-Stokes equations. We start with formulating
an implicit scheme for (82) using the f-rule for flexibility; § = 1 gives the
Backward Euler scheme, § = 1/2 results in the trapezoidal rule (or a Crank-
Nicolson scheme), and 6 = 0 recovers the explicit Forward Euler scheme treated
above. The time-discrete equations can be written as

Nutt + AtQptt = gq, (89)
Tutt = o (90)
where
N = M +6AtR(u), (91)
R(uY) = K(u')-A, (92)
g = (M- (1-6)AtRu"))u’ + At (93)

26

are introduced to save space in the equations. Observe that we have linearized
the convective term by using R(u’) on the left-hand side of (89). One could, of
course, resolve the nonlinearity by some kind of iteration instead.
To proceed, we skip the pressure or use old pressure values in (89) to produce
a predicted velocity u*:
Nu* = q — fAtQp*. (94)

The correction u® = u‘*' — u* is now governed by

Nu®+AtQép = o0, (95)
QT’U,C — QT’U,*, (96)

The system (95)—(96) for (u®, ¢) corresponds to the system (80)—(81). Elimi-
nating u° gives

. 1 X
Q'N Qo= —A—tQTu : (97)

We shall call this equation the Schur complement pressure equation [84].
Solving (97) requires inverting N, which is not an option since N ™" is dense

< -1
and IV is sparse. Several rough approximations N to N~ have therefore
been proposed. In other words, we solve

TR ! I 7 .
Q'N Q¢__At u*. (98)
The simplest approach is to let N be an approximation to M only, i.e., N = I
in finite difference methods and N equal to the lumped mass matrix M in finite
element methods. The approximation N = I leaves us with a standard 5- or
7-star Poisson equation. With § = 0 we recover the simple explicit scheme from
the end of Section 5.6, whereas § = 1 gives an implicit backward scheme of the
same nature as the one described in Section 5.2.

To summarize the algorithm at a time level, we first make a prediction u*
from (94), then solve (98) for the pressure increment ¢, and then update the
velocity and pressure by

u =u' —AINT'Qo, p™t! =ppit¢. (99)

Let us now comment upon classical numerical methods for the Navier-Stokes
equations and show how they can be considered as special cases of the algorithm
in the previous paragraph. The history of operator splitting methods starts in
the mid and late 1960s. Harlow and Welch [31] suggested an algorithm which
corresponds to § = 0 in our set up and centered finite differences on a staggered
spatial grid. The Poisson equation for ¢ hence becomes an equation for p¢*!
directly. Chorin [14] defined a similar method, still with 8 = 0, but using
a non-staggered grid. Temam [77] developed more or less the same method
independently, but with explicit time stepping. Hirt and Cook [32] introduced
B = 11in our terminology. All of these early contributions started with spatially

27

discrete equations and performed the splitting afterwards. The widely used
SIMPLE method [58] consists of choosing 8 # 0

N = diag(N) = diag(M + 0AtR(u’))

when solving (98). A method very closely related to SIMPLE is the segregated
finite element approach, see e.g. Ch. 7.3 in [35].

Most later developments follow either the approach for the current subsection
or the alternative view from Sections 5.1 and 5.2. Much of the focus in the
history of operator splitting methods has been on constructing second- and
higher-order splittings in the framework of Sections 5.1, 5.2, 5.3, and 5.5, see
e.g. [2, 4] and [10].

We remark that the step for u* is unnecessary if we solve the system (95)—
(96) for (u, ¢) correctly, basically we then solve the “exact” system (89)—(90).
The point is that we solve (95)—(96) approximately because we replace IV in
(95) by N when we eliminate u® to form the pressure equation (98). The
next section presents a framework where the classical methods from the current
section appear as one iteration in an iterative solution procedure for the fully
implicit system (89)—(90).

5.8 Fully Implicit Methods

Rannacher [63] and Turek [84] propose a general framework to analyze the effi-
ciency and robustness of operator splitting methods. We first consider the fully
implicit system (89)—(90). Eliminating u‘*! yields (cf. the similar elimination
for the Stokes problem in Section 3.2)

QTNTIQp' = Q"N (100)
which we can call the Schur complement pressure equation for the implicit sys-
tem. Notice that we obtain the same solution for the pressure in both (100) and
(89)—(90). The velocity needs to be computed, after p**! is from (89), which
requires an efficient solution of linear systems with IN as coefficient matrix
(Multigrid is an option here).

Turek [84] suggests that many common solution strategies can be viewed
as special cases of a preconditioned Richardson iteration applied to the Schur
complement pressure equation (100). Given a linear system

Bp‘t!' =1,
the preconditioned Richardson iteration reads
p£+1,k+1 — pf-‘rl,k _ C—I(Bpl-‘rl,k _ b), (101)

where C ! is a preconditioner and % an iteration counter. The iteration at a
time level is started with the pressure solution at the previous time level:

£+1,0

ptth0 =pt.

28

Applying this approach to the Schur complement pressure equation (100) gives
the recursion

1

—Q"N'q). (102)

plrhktl — pttk _ Cfl(QTNAQle,k -5

We now show that the operator splitting methods from Section 5.7, based on
solving u* from (94), solving (98) for ¢, and then updating the velocity and
pressure with (99), can be rewritten in the form (102). This allows us to interpret
the methods from Section 5.7 in a more general framework and to improve the
numerics and generate new schemes.

To show this equivalence, we start with the pressure update (99) and insert
(98) and (94) subsequently:

P o= o (103)
= P +Q'N QT Q" (104)
= P+ QN QT QT (NI - AN 1Qp), (105)

L Q"N g). (106)

_ ¢ TR Ay— T nr—1 .8
= p-(@QN Q@' N Q-

We have assumed that § = 1, since this is the case in the Richardson iteration.
Equation (106) can be generalized to an iteration on p‘*!:

p£+1,k+1 _ pe+1,k _ (QTN*Q)A(QTNAQPHM _ ﬁQTN—lq) . (107)
We see that (107) is constistent with (106) for the first iteration k¥ = 1 if
ptt10 = pt. Moreover, we notice that (107) is identical to (102), provided we
choose the preconditioner C as QTN Q. In other words, classical operator split-
ting methods from Section 5.7 can be viewed as one preconditioned Richardson
iteration on the fully implicit system (89)—(90) (though formulated as (100)).
If we perform more iterations in (107), we essentially have an Uzawa algorithm
for the original fully implicit system (89)—(90). Using more than one iteration
corresponds to iterating on the pressure in (94), i.e., we solve (94) and (98) more
than once at each time level, using the most recent pressure approximation to
p‘tlin (94).

The various choices of N outlined in Section 5.7 resemble various classical
operator splitting methods when used in the preconditioner C = QTNQ in
the framework (107). This includes explicit and implicit projection methods,
pressure correction methods, SIMPLE variants, and also Uzawa methods and
the Vanka smoother used in Multigrid methods [83].

With the classical operator splitting methods reformulated as one iteration
of an iterative method for the original fully implicit system, one can more easily
attack the fully implicit system directly; the building blocks needed are fast
solvers for N1 and (QT NQ) ', but these are already available in software for
the classical methods. In this set up, solving the fully implicit mixed system

29

(89)—(90) is from an implementational point of view not more complicated than
using a classical operator splitting method from Section 5.7 method repeatedly.
This is worth noticing because people tend to implement and use the classical
methods because of their numerical simplicity compared with the fully implicit
mixed system.

Noticing that (107) is an Uzawa method, we could introduce inexact Uzawa,

methods [18], where N ! is replaced by N " in the right-hand side of (107)
(with some additional terms for making (107) consistent with the original linear
system). This can represent significant computational savings. One view of
such an approach is that one speeds up solving the predictior step (94) when
we iterate over the predictor-correction equations in the classical methods.

The system (82)—(83) can easily be augmented with stabilitzation terms,
resulting in a modification of the system (89)—(90):

Nut! + AtQpt! = ¢, (108)
Tuttt —eDp = -—ed. (109)

Eliminating u‘*! yields
(AtQTN'Q+eD)p't' =Q" N g+ ed. (110)

With this stabilization one can avoid mixed finite elements or staggered finite
difference/volume grids.

Let us now discuss how the preconditioner C' can be chosen more generally.
If we define the error in iteration k as e* = p/*1* — p!*1 one can easily show
that e* = (I —CB)e* . One central question is if just one iteration is enough
and under what conditions the iteration is convergent. The latter property is
fulfilled if the modulus of the eigenvalues of the amplification matrix I — CB
are less than unity. Hence, the choice of C is important both with respect to
efficiency and robustness of the solution method.

Turek proposes an efficient preconditioner C~! for (101):

C™' =agBy' +apBp' + axk By, (111)
where
e Bp is an optimal (reactive) preconditioner for Q"MQ,
e Bp is an optimal (diffusive) preconditioner for Q7 AQ,
e By is an optimal (convective) preconditioner for Q7 KQ,

Both Br and Bp can be constructed optimally by standard methods; Bpgr
can be constructed by a Multigrid sweep on a Poisson-type equation, and Bp
can be made simply by an inversion of a lumped mass matrix. However, no
optimal preconditioner is known for Bg. It is assumed that eD does not change
the condition number significantly and it is therefore not considered in the
preconditioner.

30

It is also possible to improve the convergence and in particular the robustness
by utilizing other iterative methods than the Richardson iteration, which is the
simplest iterative method of all. One particular attractive class of methods is
the Krylov (or Conjugate Gradient-like) methods. Methods like GMRES are
in principle always convergent, but the convergence is highly dependent on the
condition number of CB. The authors are pursuing these matters for future
research. If approximate methods (Multigrid or Krylov solvers) are used for
N1 too, we have a nested iteration, and for the outer Krylov method to behave

as efficiently as expected, it is necessary to solve the inner iterations accurately.
~ 1
Inexact Uzawa methods would hence be attractive since they only involve IN

in the inner iteration.

There is also a link between operator splitting methods and fully implicit
methods without going through the Schur complement pressure equation. In
[70] they considered preconditioners for the Stokes problem of the form

N u
PEIIFEH] a1
and this lead to preconditioners like
C 0
[o] , (113)

where C; should be an approximation of the inverse of N and C5 of QT N7 Q.
This ”operator splitting” preconditioner was proved to be optimal provided
that C; and C» were optimal preconditioners for N and QTN “1Q, respec-
tively. This preconditioner has been extended to the time-dependent fully cou-
pled Stokes problem in [7] and a preconditioner similar to the one proposed by
Turek in (111) is considered in [56].

6 Parallel Computing Issues

Laminar flow computations in simple geometries, involving a few thousand un-
knowns, can now be carried out routinely on PCs or workstations. Nevertheless,
more demanding flows met in industrial and scientific applications easily require
a grid resolution corresponding to 10% —10° unknowns and hence the use of par-
allel computers. The suitability of the methods for solving the Navier-Stokes
equations on parallel computers is therefore of importance.

The operator splitting methods from Section 5 reduce the Navier-Stokes
equations to a sequence of simpler problems. For example, the explicit scheme
from Section 5.1 involves explicit updates, in the form of matrix-vector products
and vector additions, and the solution of a Poisson equation. Vector additions
are trivial to parallelize, and the parallel treatment of products of sparse matri-
ces and vectors is well known. Several methods have been shown to be successful
for parallel solution of the Poisson equation, but Multigrid seems to be partic-
ularly attractive as the method is the most effecient solution approach for the

31

Poisson equation on sequential computers and its concurrent versions are well
developed and can be realized with close to optimal speed-up. Using Multigrid
as a preconditioner for a Conjugate Gradient method does not alter this picture,
since the outer Conjugate Gradient method just involves inner products of vec-
tors, vector additions, and matrix-vector products. In conclusion, the classical
explicit operator splitting methods are very well suited for parallel computing.

The implicit operator splitting methods require, in addition to explicit up-
dates and the solution of a Poisson equation, also the solution of a convection-
diffusion equation. Domain Decomposition methods at the partial differential
equation level can split the global convection-diffusion equation into a series of
smaller convection-diffusion problems on subdomains, which can be solved in
parallel. The efficiency of this method depends on the convergence rate of the
iteration, which shows dependence on the nature of the convection. To achieve
sufficient efficiency of the iteration, the Domain Decomposition approach must
be combined with a coarse grid correction [75]. Alternatively, the convection-
diffusion equation can be viewed as a linear system, with non-symmetric co-
efficient matrix, to be solved in parallel. Using a Conjugate Gradient-like
method, such as GMRES og BiCGStab, combined with Multigrid as precon-
ditioner, yields a solution method whose parallel version is well established and
can be realized with close to optimal speed-up. Other popular precondition-
ers may be more challenging to parallelize well; incomplete factorizations fall
in this category. The overall performance of the parallel convection-diffusion
solver depends on choices of numerical degrees of freedom in the linear solver,
but these difficulties are present also in the sequential version of the method. To
summarize, the implicit operator splitting methods are well suited for parallel
computers if a good Multigrid or Domain Decomposition preconditioner can be
found for the corresponding sequential problem.

The classical fully implicit method for the Navier-Stokes equations normally
applies variants of Gaussian elimiation as linear solver (after a linearization of
the nonlinear system of algebraic equations by, e.g., some Newton-like method).
Parallel versions of sparse and banded Gaussian elimination procedures are be-
ing developed, but such methods are much more difficult to implement efficiently
on parallel computers than the iterative solvers discussed above.

Solving the fully implicit system for the Navier-Stokes equations by iterative
strategies (again after a linearization of the nonlinear system), basically means
running an iterative method, like Richardson iteration or a Krylov solver, com-
bined with a suitable preconditioner. In the case we choose the preconditioner
to be typical steps in operator splitting methods, as described in Section 5.8,
fully implicit methods parallelize with the same efficiency as the corresponding
implicit operator splitting methods.

The pressure stabilization technique from Section 4.1 is actually a way of
formulating the equation of continuity and get rid of the mixed finite element
or staggered grid requirement. This approach is typically used in combination
with operator splitting or fully implicit methods, and the extra stabilization
terms do not change the parallelization of those methods.

Penalty methods lead to a kind of transient, nonlinear equation of elastic-

32

ity. After discretizing in time and resolving the nonlinearity, we are left with
a partial differential equation or linear system of the same nature as the equa-
tion of elasticity. The problem, however, is that the Lame constant A in this
equation is large, which makes it hard to construct efficient iterative methods.
Large-scale computing with penalty methods is relevant only if efficient iterative
methods for the sequential problem can be constructed. When these methods
are based on Domain Decomposition and/or involve vector operations, matrix-
vector products, and Multigrid building blocks, parallelization is feasible, see
Reddy et al. [67] for a promising approach.

The classical artificial compressibility method from Section 4.3 is a purely
explicit method, just containing explicit updates, and is hence trivial to par-
allelize well. Also when implicit time discretizations are used, we get matrix
systems that can, in principle, be solved in a parallel fashion using the same
methods as we described for the implicit operator splitting approach.

7 Software

Development of robust CFD software is a complicated and time consuming task.
Most scientists and engineers who need to solve incompressible viscous fluid flow
problems must therefore rely on available software packages. An overview of
CFD software is available on the Internet [37], and here we shall just mention
a few widely distributed packages.

PHOENICS [50], which appeared in 1981, was the first general-purpose tool
for CFD and is now probably the most widely used CFD software. The numeri-
cal foundation is the finite volume method in the notation of Patankar [58]. The
user can add code and solve equations that are not supported by the package.
FLUENT [46] is another general-purpose CFD package that addresses laminar
and turbulent incompressible flow, also in combination with combustion and
multiple phases. The spatial discretization employs a finite volume technique
applicable to unstructured meshes. FIDAP [43] is a general-purpose fluid flow
package quite similar to FLUENT, but it applies finite elements for the spatial
discretization. CFX [39] is another modern, general-purpose package address-
ing complex flow problems in the process and chemical industries, including
turbulence, multi-phase flow, bubble-driven flow, combustion, flames, and so
on. Flow-3D [45] offers special techniques for and specializes in incompressible
viscous free surface flow, but the package can be used for more standard external
and confined flows as well. Another general-purpose CFD package is CFD2000
[38], which uses finite volumes on curvelinear grids and handles incompressible
as well as compressible flows, with turbulence, heat transfer, multiple phases,
and chemical reactions. CFD++ is a finite volume-based solver with particu-
lar emphasis on turbulent flow. It handles many different types of grids and
flow regimes (from incompressible to hypersonic). ANSYS/FLOTRAN [44] is
a CFD package contained in the ANSYS family of finite element codes. The
tight integration with other ANSYS codes for heat transfer, elasticity, and elec-
tromagnetism makes it feasible to perform multi-physics simulations, e.g., fluid-

33

structure interactions and micro-electro-mechanical systems (MEMS). The CFD
software mentioned so far covers advanced, commercial, general-purpose tools
that offer a complete problem solving environment, with user-friendly grid gen-
eration and visualization facilities in addition to the numerical engines.

FEATFLOW [42] is a free package implementing the framework from Sec-
tion 5.8, with finite elements in space, Multigrid for solving linear and nonlinear
systems, and an emphasis on computational efficiency and robustness. FEM-
LAB is a package built on top of Matlab and offers easy set-up of incompressible
flow problems, also coupled with heat transfer, electromagnetism, and elastic-
ity. Fastflo [41] is a code of a similar nature. Mouse [48] is a modern finite
volume-based software library, packed with ready-made CFD programs. Some
flexible, general-purpose, programmable environments and libraries with impor-
tant applications to CFD are Diffpack [40], FOAM [47], Overture[49], and UG
[51].

The quality and robustness of the numerics even in advanced packages, es-
pecially when simulating complex multi-fluid flows, may be questionable as we
know that our understanding of how to solve the building block (1)—(2) is still
limited. More benchmark problem initiatives [84] are needed to classify flow
cases and methods whose numerical results are reliable.

The complexity of CFD applications makes a demand for flexibility, where
different splitting approaches, different space and time discretizations, different
linear and nonlinear system solvers, and different governing equations can be
freely combined. Much of the current CFD software, written as large, stand-
alone Fortran 77 programs, lacks this freedom of choice because of an inflexible
software design. There is now a growing interest in methodologies for better
design of CFD software based on, e.g., object-oriented programming techniques
[40, 47, 53, 48, 57, 49, 81, 85].

8 Future Directions of Research

During the last decades there has been tremendous progress in computational
fluid dynamics. Even if some of the most basic tools are well understood by
now, there are still challenging problems related to numerical methods for in-
compressible Navier—Stokes equation. In fact, the simplified Stokes problem
(11)—(12), especially when (11) is augmented with a time derivative dv/dt, is
not fully understood when it comes to stable discretizations [56], efficient so-
lution of the resulting linear systems (in an implicit formulation), as well as a
priori and a posteriori error estimates. It therefore seems fruitful to still address
simplified versions of the Navier—Stokes equations to develop and understand
numerical methods.

The most popular time stepping methods for the Navier—Stokes equation
are not fully implicit. As explained in Section 5.1, an operator splitting strat-
egy can be used to essentially decouple the updating of the velocity and the
pressure. However, the choice of boundary conditions for the pressure in these
procedures is problematic. The pressure is closely tied to the incompressibility

34

condition for the velocity, and any decoupling therefore has drawbacks. As in
many other fields, engineers prefer to work with robust and stable numerical
engines, even at a cost of decreased computational efficiency. This usually im-
plies that fully implicit codes are preferred in industry. Hence, we think that
fully implicit schemes, like the ones discussed in Sections 5.2 and 5.8 should
be further developed. The study of efficient preconditioners, which are robust
with respect to physical and numerical parameters, seems essential. An attrac-
tive framework would be to reuse the experience and knowledge built up around
(classical) operator splitting schemes as preconditioners for the more robust fully
coupled and implicit scheme. For efficiency, Multigrid cycles should be used in
such preconditioners, but the optimal combination of Multigrid building blocks
(smoothers, cycling strategies etc.) are not yet known for fully implicit formu-
lations. In addition, the use of parallel computational techniques, like Domain
Decomposition algorithms, is essential for performing fine scale simulations. As
the gap between CPU power and memory access efficiency increases, it might
be questionable whether today’s numerics are well suited for the coming gener-
ation of high-performance computers. This calls for paying closer attention to
the interplay between hardware and numerics.

Another topic which will be essential for doing fine scale computations is
the development of adaptive algorithms using suitable error estimators. In par-
ticular, for simulations in complex geometries such tools will be unavoidable
[63, 84]. The ultimate goal is to allow the engineer to specify an error tolerance
and let adaptive algorithms and error estimators find the corresponding dis-
cretization parameters and solution strategies. This will be an important goal
because we cannot expect that sufficient numerical and physical comptenence
will be present among all users when CFD becomes a cheap, widely accessible,
and apparently simple-to-use tool.

We have already mentioned the particular need for robust Navier—Stokes
solvers when such solvers are embedded in complex fluid models, involving
multi-species fluids, turbulence, heat transfer, chemical reactions, and coupling
to structural deformations. Many of the future scientific water resources appli-
cations of incompressible viscous flow will involve such composite models. For
example, a better understanding of consolidation of porous media may be based
on studying coupled models of Navier-Stokes equations and the equations of
elasto-visco-plasticity at the pore level. Geologists are especially interested in
cracking mechanisms, where the desire is to simulate deformation, contact, and
fracture of sand grains embedded in a viscous fluid. The science of reactive
porous media flow has many open questions, and fundamental studies may ben-
efit from simulating pore level multi-phase flow coupled with chemistry models,
in particular in the vicinity of rock “walls”. Fortunately, the computing technol-
ogy necessary for realizing such studies is the same that is needed for complex
flow problems found in, e.g., the car industry and physiology.

35

9 Concluding Remarks

We have in this paper presented a basic introduction to some well-known and
widely used numerical methods for the incompressible Navier—Stokes equations.
The emphasis has been on the fundamental underlying ideas for discretizing the
system of partial differential equations. By hiding the details of the spatial dis-
cretization (finite elements, finite differences, finite volumes, spectral methods),
we hope to better explain the close relationship between different numerical
schools, in particular finite differences/volumes and finite elements; most of the
schools apply the same fundamental reasoning and arrive in most cases at the
same algebraic equations (modulo effects from different treatment of boundary
conditions). Naturally, our main emphasis is on advancing the equations in
time and especially how to split the equations into more tractable systems. The
methods covered herein include artificial compressibility, penalty function for-
mulations, fully implicit schemes, and operator splitting techniques (and their
aliases projection methods, fractional step methods, pressure correction strate-
gies).

As an extension of the introduction to operator splitting methods we have
proposed a framework, inspired by Rannacher [63] and Turek [84], where many
classical and popular methods can be viewed as certain preconditioned iterative
methods applied to a robust, fully implicit formulation of the Navier—Stokes
equations. This opens up the possibility of a more general view of the classical
methods and for constructing an endless series of new solution strategies, all
of them trying to solve the fully implicit system iteratively. One such strategy
pursued by the authors has been outlined.

Due to page limitations, several important topics had to be left out or only
briefly commented upon. Such topics include, among others, detailed infor-
mation about finite element, finite difference, and finite volume discretization
techniques, spectral methods, higher-order temporal schemes, “upwind” tech-
niques for high Reynolds number flow, discretizing boundary conditions, least-
squares finite element formulations, vorticity-streamfunction formulations, grid
generation techniques, as well as adaptivity methods based on error estimation
and control. Relevant textbooks for references and further reading about these
subjects are [15, 20, 27, 30, 61, 84, 86, 89].

The lack of a discussion of special methods for high Reynolds number flow,
where a careful treatment of the convective term v - Vv is important, may
give the impression that these flow regimes are beyond scope of the presented
solution methods. This is not true; the same basic solution strategies can still
be applied, but then in combination special spatial discretization techniques
for the convective term (typically upwind differencing or Petrov-Galerkin finite
element methods). More sophisticated approaches for highly convective flow
apply special space-time integrations, and this may affect the operator splitting
strategies. Within a fractional step approach (as in Section 5.5), the convection
term is isolated in a Burgers equation, such that the treatment of high Reynolds
number flow is then limited to an advanced numerical treatment of a Burgers
equation.

36

No numerical experiments have been presented in this paper. Results of ex-
tensive numerical investigations with different solution strategies for the Navier—
Stokes equations can be found in textbooks, see [27, 84] in particular. The Vir-
tual Album of Fluid Motion [42, 84] contains an exciting collection of animations
for numerous flow configurations.

Finally, we mention that incompressible viscous flow can also be computed
by means of lattice gas or lattice Boltzman methods [12]. These methods are
statistical in nature and involve collisions of a large number of particles moving
in a lattice. The approach is particularly attractive for simulation of complex
multi-phase flows where the qualitative flow behavior is in focus. When com-
putational accuracy is important, and only one fluid is flowing in the laminar
regime, discretization of the Navier—Stokes equations as outlined in the present
paper seems to be the most efficient and robust solution strategy.

Acknowledgements. The authors thank Dr. Torgeir Rusten for numerous
fruitful discussions and useful input to the present manuscript.

References

[1] S. Aliabadi and T. Tezduyar. 3D simulation of two-fluid and free-surface
flows with the stabilized-finite-element/interface-capturing method. In
S. Atluri and P. O’Donoghue, editors, Modeling and Simulation Based En-
gineering; Proceedings of International Conference on Computational En-
gineering Science, Atlanta, Georgia. 1998.

[2] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method
for the incompressible Navier-Stokes equations based on an approximate
projection. STAM J. Sci. Comp., 17(2):358-369, 1996.

[3] J. D. Anderson. Computational Fluid Dynamics — The Basics with Appli-
cations. McGraw-Hill, 1995.

[4] J.B. Bell, P. Colella, and H. M. Glaz. A second order projection method for
the incompressible Navier-Stokes equations. J. Comp. Phys., 85:257-283,
1989.

[5] M. Bercovier and O. Pironneau. Error estimates for finite element method
solution of the Stokes problem in the primitive variables. Numer. Math.,
pages 211-224, 1979.

[6] M. J. Blunt. Effects of heterogeneity and wetting on relative permeability
using pore level modeling. SPE Journal, pages 70-87, 1997.

[7] J. H. Bramble and J. E. Pasciak. Iterative techniques for time dependent
stokes problems. Math. Applic, 1997.

[8] F. Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods.
Springer, 1991.

37

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. N. Brooks and T. J. R. Hughes. A streamline upwind/Petrov-Galerkin
finite element formulation for advection domainated flows with particular
emphasis on the incompressible Navier-Stokes equations. Comput. Meth.
Appl. Mech. Engrg., pages 199-259, 1982.

D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods
for the incompressible navier—stokes equations. J. Comp. Physics, pages
464-499, 2001.

C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral meth-
ods in Fluid Dynamics. Springer Series in Computational Physics. Springer,
1988.

S. Chen and G. D. Doolen. Lattice boltzmann method for fluid flows.
Annual Rev. Fluid Mech., pages 329-364, 1998.

A. J. Chorin. A numerical method for solving incompressible viscous flow
problems. J. Comp. Phys., 2:12-26, 1967.

A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math.
Comp., 22:745-762, 1968.

T. Chung. Computational Fluid Dynamics. Cambridge University Press,
2001.

Edward J. Dean and Roland Glowinski. On some finite element methods
for the numerical simulation of incompressible viscous flow. In M. D. Gun-
zburger and R. A. Nicolaides, editors, Incompressible computational fluid
dynamics; Trends and advances. Cambridge University Press, 1993.

W. E and J.-G. Liu. Finite difference schemes for incompressible flows in
the velocity-impulse density formulation. J. Comput. Phys., 1997.

H. C. Elman and G. Golub. Inexact and preconditioned Uzawa algorithms
for saddle point problems. SIAM J. Num. Anal., 31:1645-1661, 1994.

M. S. Engelman, R. I. Sani, P. M. Gresho, and M. Bercovier. Consistent
vs. reduced integration penalty methods for incompressible media using
several old and new elements. Int. J. Num. Meth. in Fluids, 2:25-42, 1982.

J. H. Ferziger and M. Perié. Computational Methods for Fluid Dynamics.
Springer, 1996.

C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Vol I
and II. Springer Series in Computational Physics. Springer, 1988.

M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary-Value Problems. North-Holland,
Amsterdam, The Netherlands, Series: Studies in Mathematics and its Ap-
plications, Vol 15, 1983.

38

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

E. Fukumori and A. Wake. The linkage between penalty function method
and second viscosity applied to Navier-Stokes equation. Computational
Mechanics, 1991.

S. Gignard, S. T. Grilli, and R. Marcer V. Rey. Computation of shoaling
and breaking waves in nearshore areas by the coupling of bem and vof
methods. In M. Dahlen and A. Tveito, editors, Proc. 9th Offshore and
Polar Engng. Conf. (ISOPE99), Vol. III, pages 304-309. 1999.

V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes
Equations. Springer, 1986.

R. Glowinski. Numerical Methods for Nonlinear Variational Problems.
Springer, 1984.

P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element
Method. Wiley, 1998.

M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in
Fluid Dynamics: A Practical Introduction. STAM, 1997. Also available in
German: Numerische Simulation in der Strémungsmechanik: Eine Prax-
isorienterte Finfiirung, Vieweg Lehrbuch Scientific Computing, 1995.

M. Gunzburger. Finite Element Methods for Viscous Incompressible flows.
Academic Press, 1989.

M. D. Gunzburger and R. A. Nicolaides. Incompressible computational fluid
dynamics; Trends and advances. Cambridge University Press, 1993.

F. H. Harlow and J. E. Welch. Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface. The physics of
fluids, 8:2182-2189, 1965.

C. W. Hirt and J. L. Cook. Calculating three-dimensional flows around
structures and over rough terrain. J. Comp. Phys., 10:324-340, 1972.

L. W. Ho and E. M. Rnquist. Spectral element solution of steady incom-
pressible viscous free-surface flows. Finite Elements in Analysis and Design,
pages 207-227, 1994.

T. J. R. Hughes, W. K. Liu, and A. Brooks. Finite element analysis of
incompressible viscous flows by the penalty function formulation. J. Comp.
Phys., 30:1-60, 1979.

Fluent Inc. FIDAP theory manual.
See e.g. http://fortuitous.ncsa.uiuc.edu/fidapdocumentation/.

Internet. CFD Online’s book page.
http://www.cfd-online.com/Books/.

39

[37] Internet. CFD online’s software overview.
http://www.cfd-online.com/Resources/soft.html.

[38] Internet. CFD2000 software package.
http://www.adaptive-research.com/.

[39] Internet. CFX software package.
http://www.software. aeat.com/cfr/.

[40] Internet. Diffpack software package. hitp://www.diffpack.com.

[41] Internet. Fastflo software package.
http://www.nag.co.uk/simulation/Fastflo /fastflo.html.

[42] Internet. FEATFLOW software package. http://wwuw.featflow.de.

[43] Internet. FIDAP software package.
hitp://www.fluent.com/software/fidap/.

[44] Internet. FLOTRAN software package.
http://www.ansys.com/products/flotran.htm.

[45] Internet. Flow-3D software package. http://www.flow3d.com.

[46] Internet. FLUENT software package.
http://www.fluent.com/software/fluent/.

[47] Internet. FOAM software package. http://www.nabla.co.uk.

[48] Internet. Mouse software package.
http://fire8.vug.uni-duisburg.de/MOUSE/.

[49] Internet. Overture software package. hitp://www.llnl.gov/casc/Overture/.

[50] Internet. PHOENICS software package.
http://218.210.25.174 /phoenics /d_polis /d_info/phover.htm.

[51] Internet. UG software package.
http://cox.iwr.uni-heidelberg.de/ ug/.

[52] J. Kim and P. Moin. Application of a fractional-step method to incom-
pressible navier—stokes equations. J. Comput. Phys., 1985.

[53] H. P. Langtangen. Computational Partial Differential Equations — Numer-
ical Methods and Diffpack Programming. Lecture Notes in Computational
Science and Engineering. Springer, 1999.

[54] Rainald Lohner. Design of incompressible flow solvers: Practical aspects.
In M. D. Gunzburger and R. A. Nicolaides, editors, Incompressible compu-
tational fluid dynamics; Trends and advances. Cambridge University Press,
1993.

40

[55] K.-A. Mardal, X.-C. Tai, and R. Winther. Robust finite elements for Darcy-
Stokes flow. (Submitted), 2001.

[56] K.-A. Mardal and R. Winther. Uniform preconditioners for the time de-
pendent Stokes problem. (In preparation), 2002.

[57] O. Munthe and H. P. Langtangen. Finite elements and object-oriented
implementation techniques in computational fluid dynamics. Computer
Methods in Applied Mechanics and Engineering, 190:865-888, 2000.

[58] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in compu-
tational methods in mechanics and thermal sciences. McGraw-Hill, 1980.

[59] R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow.
Springer Series in Computational Physics. Spriver, 1983.

[60] O. Pironneau. The Finite Element Methods for Fluids. John Wiley & Sons,
1989.

[61] A. Quarteroni and A. Valli. Numerical Approzimation of Partial Differen-
tial Equations. Springer Series in Computational Mathematics. Springer,
1994.

[62] R. Rannacher. On chorin’s projection method for incompressible Navier-
Stokes equations. In Proc. Oberwolfach Conf. Navier-Stokes Equations:
Theory and Numerical Methods, 199.

[63] R.Rannacher. Finite element methods for the incompressible Navier-Stokes
equation. 1999.
hitp://www.iwr.uni-heidelberg.de/sfb359/Preprints1999.html.

[64] J. N. Reddy. On penalty function methods in the finite element analysis of
flow problems. Int. J. Num. Meth. in Fluids, 18:853-870, 1982.

[65] J. N. Reddy. An Introduction to The Finite Element Method. McGraw-Hill,
1993.

[66] J. N. Reddy and D. K. Gartling. The Finite Element Method in Heat
Transfer and Fluid Dynamics. CRC Press, 1994.

[67] M. P. Reddy and J. N. Reddy. Multigrid methods to accelerate the conver-
gence of element-by-element solution algorithms for viscous incompressible
flows. Comp. Meth. Appl. Mech. Engng., 132:179-193, 1996.

[68] M. P. Reddy, J. N. Reddy, and H. U. Akay. Penalty finite element analysis of
incompressible flows using element-by-element solution algorithms. Comp.
Meth. Appl. Mech. Engng., 100:169-205, 1992.

[69] M. Rudman. A volume-tracking method for incompressible multi-fluid flows
with large density variations. Int. J. Num. Meth. Fluids, pages 357-378,
1998.

41

[70] T. Rusten and R. Winther. A preconditioned iterative method for saddle-
point problems. SIAM J. Matriz Anal., 1992.

[71] R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths. The cause and
cure (?) of the spurious pressures generated by certain FEM solutions of
the incompressible Navier-Stokes equations: part 1 (part 2). Int. J. Num.
Meth. in Fluids, 1:17-43, 1981.

[72] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface
and interfacial flow. Annual Rev. Fluid Mech., pages 567-603, 1999.

[73] J. Shen. On error estimates of the projection methods for the Navier-Stokes
equations: First-order schemes. SIAM J. Numer. Anal., 1996.

[74] J. Shen. On error estimates of the projection methods for the Navier-Stokes
equations: Second-order schemes. Math. Comp, 1996.

[75] B. Smith, P. Bjgrstad, and W. Gropp. Domain Decomposition — Parallel
Multilevel Methods for FElliptic Partial Differential Equations. Cambridge
University Press, 1996.

[76] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations
using the finite element method. J. Comp. Phys., 1:73-100, 1973.

[77] R. Temam. Sur ’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires. Arc. Ration. Mech. Anal.,
32:377-385, 1969.

[78] T. E. Tezduyar. Adaptive determination of the finite element stabiliza-
tion parameters. In Computational Fluid Dynamics Conference Proceeding,
2001.

[79] T.E. Tezduyar, S. Aliabadi, and M. Behr. Interface-capturing technique
(EDICT) for computation of unsteady flows with interfaces. Computer
Methods in Applied Mechanics and Engineering, 155:235—-248, 1998.

[80] K. E. Thompson and H. S. Fogler. Modeling flow in disordered packed beds
from pore-scale fluid mechanics. AIChE Journal, 43(6):1377, 1997.

[81] M. Thuné, E. Mossberg, P. Olsson, J. Rantakokko, K. Ahlander, and
K. Otto. Object-oriented construction of parallel PDE solvers. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools for
Scientific Computing, pages 203—226. Birkhauser, 1997.

[82] L. Tobiska and R. Verfiirth. Analysis of a streamline diffusion finite element
method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal.,
1996.

42

[83]

[84]

[85]

[86]

[87]

[88]

[89]

S. Turek. A comparative study of time-stepping techniques for the incom-
pressible Navier-Stokes equations: From fully implicit non-linear schemes
to semi-implicit projection methods. Int. J. Num. Meth. in Fluids, 22:987—
1011, 1996.

S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer,
1999.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach
to computational continuum mechanics using object orientated techniques.
Computers in Physics, 12(6):620-631, 1998.

P. Wesseling. Principles of Computational Fluid Dynamics. Springer Series
in Computational Mathematics. Springer, 2001.

S. 0. Wille. Nodal operator splitting adaptive finite element algorithms
for the navier—stokes equations. Int. J. Num. Meth. Fluids, pages 959-975,
1998.

O. C. Zienkiewicz and K. Morgan. Finite Elements and Approximation.
Wiley, 1983.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method (3 vol-
umes). McGraw-Hill, 5th edition, 2000.

43

I1

Mixed Finite Elements

K.-A. Mardal and H. P. Langtangen

In Langtangen and Tveito (eds): Advanced Topics in Computational Partial
Differential Equations — Numerical Methods and Diffpack Programming,
Lecture Notes in Computational Science and Engineering, Springer, 2003.

Mixed Finite Elements

K.-A. Mardal®? and H. P. Langtangen'-?

! Simula Research Laboratory
2 Department of Informatics, University of Oslo

Abstract. This chapter explains the need for mixed finite element methods and
the algorithmic ingredients of this discretization approach. Various Diffpack tools
for easy programming of mixed methods on unstructured grids in 2D and 3D are
described. As model problems for exemplifying the formulation and implementa-
tion of mixed finite elements we address the Stokes problem for creeping viscous
flow and the system formulation of the Poisson equation. Efficient solution of the
linear systems arising from mixed finite elements is treated in the chapter on block
preconditioning.

4.1 Introduction

In this Chapter we will study two fundamental mathematical models in
physics and engineering: the Stokes problem for slow (creeping) incompress-
ible viscous fluid flow and the Poisson equation for, e.g., inviscid fluid flow,
heat conduction, porous media flow, and electrostatics. The Stokes problem
cannot be discretized by a straightforward Galerkin method as this method
turns out to be unstable in the sense of giving non-physical oscillations in
the pressure. Mixed finite element methods, however, result in a stable so-
lution. In this chapter we use the term mixed finite elements, when the dif-
ferent physical unknowns utilize different finite element basis functions. In
the Stokes problem, one example is quadratic elements for the velocity and
linear elements for the pressure. The Poisson equation, on the other hand,
does not need mixed finite element methods for a stable solution. However, if
the main interest regards the gradient of the solution of the Poisson equation,
the mixed formulation seems more natural because the gradient is one of the
unknowns.

In the past, two particular difficulties have prevented widespread applica-
tion of mixed finite element methods: (i) lack of convenient flexible implemen-
tations of the methods on general unstructured grids and (ii) the difficulty
of constructing efficient solvers for the resulting linear systems. This chap-
ter pays attention to the first issue, while a companion chapter [15] deals
with the second. Actually, the methods and software from this chapter have
applications far beyond the two model problems on which this exposition is
focused. To the authors knowledge, Diffpack is at the time of writing the only
software package that supports easy and flexible programming with mixed
finite element methods on unstructured grids, coupled with state-of-the-art

154 K.-A. Mardal and H. P. Langtangen

iterative schemes, like multigrid, for optimal solution of the linear systems
[15].

4.2 Model Problems

4.2.1 The Stokes Problem

The Stokes problem can be formulated as follows:

—uV?u+Vp = fin 2, (equation of motion),
V-u =0 in {2, (mass conservation),
u = h on 082,

W N =

(4.1)
(42)
(43)
Qu (1.4)

on 4

+pn=0o0n 02y .
Here, w is the velocity of the fluid, p is the pressure in the fluid, f represents
body forces and n is the unit normal vector pointing out of 2. The bound-
ary 02 = 0f2g U 082y, where 02 and 0f2) are the parts with essential
and natural boundary conditions, respectively. The Stokes equation is the
stationary linearized form of the Navier-Stokes equations and describes the
creeping (low Reynolds number) flow of an incompressible Newtonian fluid.

4.2.2 The Mixed Poisson Problem

The Poisson equation

-V - (AVp) =g in £, (4.5)
p=hon 002g, (4.6)

0
a% =k on 902y, (4.7)

appears in many physical contexts. The boundary 92 = 92 U 92y, where
02 and 02y are the parts with essential and natural boundary condi-
tions, respectively. The A is here assumed to be a scalar function such that
Amin < AMx) < Mnaz, where Ay and A,q. are positive real numbers and
x € 2. One interpretation regards porous media flow, where (4.5) arises
from a conservation equation combined with Newton’s second law. The mass
conservation equation reads V - u = g, where u is some flux and g denotes
the injection or production through wells in groundwater flow or oil recovery.
Newton’s second law can be expressed by Darcy’s law u = —AVp, where A
denotes the mobility. This equation can be established as an average of the
equation of motion in Stokes problem over a large number of pores. In porous
media flow we are primarily interested in w, which is usually computed by

4.3. Mixed Formulation 155

solving the Poisson equation and computing u = —AVp numerically. The nu-
merical differentiation implies a loss of accuracy. The mixed formulation of
the Poisson equation allows us to approximate the velocity w as one of the un-
knowns. When applying mixed finite element methods the Poisson equation
is reformulated as a system of partial differential equations (PDEs):

1
Ut Vp=0in 2 (Darcy’s law), (4.8)
V-u=gin 2 (mass conservation), (4.9)
p=h on 002y, (4.10)
g—z:u-n:konaﬁE. (4.11)

Notice that the essential boundary conditions in (4.6) appear as natural con-
ditions in this formulation, while the natural conditions in (4.7) are essential.

Although the Stokes problem and the Poisson equation have seemingly
similar mathematical structure, they require different types of mixed finite
element methods. Knowing how to solve these two classes of problems should
provide sufficient information to solve a wide range of systems of PDEs by
mixed finite element methods.

The present chapter is organized as follows. In Section 4.3, we present the
basic theory of mixed systems in an abstract setting. This abstract theory
will introduce the Babuska-Brezzi conditions, i.e., the conditions that the
mixed elements should meet. In Section 4.4, we present finite element spaces
appropriate for solving our model problems and the corresponding software
tools. We present the implementation of the simulators in Sections 4.5 and
4.6. Efficient iterative schemes, with multigrid, are described in [15]. The
mixed finite element method is analyzed in [3,9].

4.3 Mixed Formulation

In this section we shall derive the finite element equations for our two model
problems. First, we apply the weighted residual method [9] to the systems
of PDEs and derive the resulting discrete equations. Thereafter, we present
continuous mixed variational formulations, which can be discretized by intro-
ducing appropriate finite-dimensional function spaces [9]. The discretization
of our problems needs to fulfill the discrete version of the Babuska-Brezzi
conditions, which motivates the special finite elements presented in Section
4.4.

4.3.1 Weighted Residual Methods

The Stokes Problem. The starting point of a weighted residual formulation
is the representation of the unknown scalar fields in terms of sums of finite

156 K.-A. Mardal and H. P. Langtangen

element basis functions. In the Stokes problem we need to use different basis
functions for the velocity components and the pressure. Hence, we may write

d n,
uxbd=> Y vje'Nj, (4.12)

r=1j=1
p

prp=S L, (1.13)
j=1

We use u for the continuous vector field, while v is the vector consisting of
the velocity values at the nodal points. The N; and L; denote the j-th basis
functions for the velocity and the pressure, respectively. The {e"} are the
unit vectors in Cartesian coordinates and d is the number of space dimen-
sions. The number of nodes for the velocity and the pressure are n, and n,,
respectively. Notice that the nodal points of the velocity and pressure fields
do not necessarily coincide. The unknowns {v}} and {p;} are represented as
vectors,

v=[v],03,...,00 0%, .., ol], (4.14)
pP= [p17p27' .. apnp] . (415)

The numbering used in (4.14) and (4.15) is only one of many possible
numberings, which are described in Section 4.4.4.

Inserting the approximations ¥ and p in the equation of motion and the
equation of continuity results in a residual since neither © nor p are in general
exact solutions of the PDE system. The idea of the weighted residual method
is to force the residuals to be zero in a weighted mean. Galerkin’s method
is a version of the weighted residual method where the weighting functions
are the same as the basis functions N; and L;. Application of Galerkin’s
method in the present example consists of using IV; as weighting function
for the equation of motion and L; as weighting function for the equation
of continuity. In this way we generate dn, + n, equations for the dn, + n,
unknowns in d space dimensions. The second-order derivative term in the
equation of motion is integrated by parts. This is also done with the pressure
gradient term Vp. The resulting weighted residual or discrete weak form is
as follows:

N; .
/(ww-w\a _ gﬂp> a0 = /f’"Ni 40, r=1,...,d, (4.16)
2 o)
/Liv-@dnzo. (4.17)
2

Notice that we have assumed open boundary conditions, g—z + pn = 0. The
notation 9" means the r-th component of v,

" =1v-€" :vaNi, (4.18)

4.3. Mixed Formulation 157

with a similar interpretation for the other quantities with superscript 7.
Inserting the finite element expressions for © and p in (4.16)—(4.17), gives
the following linear system:

Ty

ZA”]-I—ZB”;DJ—C i=1,...,np, r=1,...,d, (4.19)

ZZB;Z’U;—O i=1,...,np, (4.20)

r=1j=1
where

0" =Y viNj, (4.21)

j=1
=Y _piL; (4.22)

j=1

ON; ON;
4.23
ON;

BT = L 0, 4.24
; / O Ly (4.24)

2
o= / fTN;dR2. (4.25)

2

The Poisson Problem. The expansions (4.12)—(4.13) are natural candidates
when formulating a weighted residual method for the Poisson equation ex-
pressed as a system of PDEs (4.8)-(4.9). A Galerkin approach consists of
using N; as weighting functions for (4.8) and L; as weighting functions for
(4.9). The pressure gradient term in (4.8) is integrated by parts, resulting in
the following system of discrete equations:

ZA1]UJ+ZBZJPJ—O i=1,...,ny, r=1,....d, (4.26)

Ny

ZZB;ZU;—gi i=1,...,np, (4.27)

r=1j=1

158 K.-A. Mardal and H. P. Langtangen

where

"= viNy, (4.28)
J=1
J=1

Ay = / NN d22, (4.30)
[0}

. ON;

B == | 3ur L;dQ, (4.31)

[0}

4.3.2 Mixed Elements, Do We Really Need Them?

It is natural to ask whether mixed finite elements are actually needed. What
will happen if one just discretizes the problem with a standard technique?
One will then often experience non-physical pressure oscillations. The reason
is that the pressure is not uniquely determined. This ambiguity comes in
addition to the fact that the pressure is only determined up to a constant.

In this Section, the problem is presented from a purely algebraic point of
view, to motivate that a naive discretization may lead to trouble (see also
[18]). A typical discretization of the above described problems results in a
matrix equation of the form:

v A BT [v f]
A = = . 4.33
{p] {B 0 } {p] L] (4.33)
When is A invertible? The matrix is of dimension (n +m) x (n+ m), where
n is the length of the vector v and m is the length of p. A is an n x n matrix,

which is invertible for the problems considered here, and B is m x n. We may
therefore multiply the first equation by A~* and obtain

v=A"'f-A'B'p. (4.34)
We insert (4.34) in the second equation of (4.33) and get,
Bv=B(A™'f-A"'B"p) =g,
or in other words, we must solve

—-BA'BTp=g—-BA"'f.

4.3. Mixed Formulation 159

Hence, the system (4.33) is invertible if BA™' BT is. The BA™' BT is usually
called the pressure Schur complement. Since B is a m X n matrix it is not
obvious that BA™'BT is invertible. In fact, if the matrices come from a
discretization where the velocity and the pressure are approximated with the
same type of elements, then the pressure Schur complement is singular. This
may result in pressure oscillations. The following algebraic analogy of the
Babuska-Brezzi conditions ensure an invertible matrix A,

vTAv >0, Vv € Kernel(B), (A is sufficiently invertible), (4.35)

and
Kernel(BT) = {0}. (BA™'B7 is invertible). (4.36)

Although, it is not easy to deduce pressure oscillations from this algebraic
discussion, it should be clear that a naive discretization does not necessarily
lead to a well posed (at least non-singular) numerical problem.

We also supply the discussion with the following remark on standard
linear elements approximation of fields with zero divergence. This is often
refereed to as the locking phenomenon in elasticity theory (see, e.g., [2]).

Remark: The Locking Phenomenon. In the Stokes problem the approximate
solution of the velocity should be divergence free, and it is not obvious that
standard linear elements will give a good approximation under this constraint.
In fact, an example of extremely poor approximation properties can be con-
structed with linear continuous elements and homogeneous Dirichlet bound-
ary conditions. The only divergence free function satisfying these conditions
is ® = 0, regardless of the mesh parameter h. (This result depends on the
geometry of the triangulation, but it will often hold.) Hence, regardless of
the equation we want to solve, the constraint, div o = 0, enforces © = 0.

These phenomena clearly shows that a careful discretization of our model
problems is needed. We will now address the abstract properties that should
be met by the mixed elements. The following conditions will ensure a well-
posed discrete problem (i.e., there exist a unique solution depending contin-
uously on the data).

4.3.3 Function Space Formulation

Both our problems can be viewed within the same abstract setting. Let H
and P be suitable Hilbert spaces for u and p, respectively. Then both these
model problems can be formulated as follows:

Find (u,p) € H x P such that

a(u,w) +b(p,w) = (f,w), VYwec H,
b(q,u) =(9,9), VgqeP.

The analysis of the mixed finite elements is related to this specific structure
of the problem. We will need the following spaces:

(4.37)

160 K.-A. Mardal and H. P. Langtangen
— L*(2)={w|[w?d? < o0}
2

- H)={w| ‘ |gikg(pf’éw)%m < oo}, where k = |a| and
8|a|wi

Dow; = =
v Ox{*t - - - 0xy?

~ H(div;2) ={w € L*(2) | V-w € L*(2)}

These spaces are Hilbert spaces of vector functions, the corresponding spaces
for scalar functions, L?(£2) and H'({2), are also used. Note that the deriva-
tives are in distribution sense.

The Stokes Problem. The bilinear forms associated with the Stokes problem
are:

a(u,w) = /uVu - Vwd{2, (4.38)
Q
b(p,w) = —/pV ~wdf?. (4.39)
0
(4.40)
The product Vu - Vw is the “scalar tensor product”
d 4 s w;

Suitable function spaces for this model problem are H = H'(2) and P =
L?(02). The linear forms (the right-hand sides of (4.37)) are:

ou

(fiw)=[| f-wd+ (pw - — — pn - w)ds, (4.41)
([34 on

(9,9) =0, (4.42)

where (9% —pn) is known at the (parts of the) boundary with natural bound-
ary condition.

The Poisson Problem. The bilinear forms in the mixed formulation of the
Poisson equation read:

a(u,w) = /Aflu ~wdf2, (4.43)
?)

b(q,u):/Vq~'zul.(2:—/qV~udQ+/Q pu-n. (4.44)

0 0 N

4.3. Mixed Formulation 161

The natural conditions here are the essential boundary conditions (4.6) As we
see from (4.44), we have two possible choices for b(-,-). The first alternative
is b(p, w) = (Vp, w). We must then require that p € H'(2) and u € L*(12).
Another formulation is b(p,w) = —(p,V - w) + fQN pu - n, where we have
used integration by parts. We must then require that u € H (div; £2) and that
p € L?(£2). The difference between H (div; £2) and H'(£2) will be important
in the construction of the finite elements and the preconditioner in [15]. The
linear forms for the Poisson problem (the right-hand sides of (4.37)) are,

(f,w)= [pn-wds, (4.45)
4

(9.9)= [g-qdf2. (4.46)
/

4.3.4 The Babuska-Brezzi Conditions

In the previous section we saw that the fields w and p had different regularity
requirements. The discrete analogy should reflect these differences and we
therefore use elements designed for the problem at hand. Any combination of
elements will not work. Let us assume that we have chosen two sets of basis
functions {IN;} and {L;} that span H}, and Py, respectively. We will in the
following assume that H;, C H and P, C P. The norms in Hj and P, can
then be derived from H and P, respectively. The Galerkin formulation of the
problem can be written on the form:

Find (’f],f)) € H;, x Py, such that

a(v,m) +b(p,m) = (f,m), Vm e Hy,

b(n,v) =(g,n), VneP,.
This is just an abstract formulation of (4.19)-(4.20) and (4.26)-(4.27). The
matrix equation of this problem is on the form (4.33). From the above defi-

nitions of the H and P we have that a(-,-) and b(-,) are bounded for both
model problems, i.e.,

(4.47)

a(u,v) < Clu|gl|v|g, Yu,veH, (4.48)
b(q,v) < Cllqllpllvlla, Vv e H,qeP. (4.49)

However, the two following conditions will in general not be fulfilled. The
elements must be ”designed” to meet them.

Condition 1. There exists a constant « (independent of h) such that a(-,-)
is H-elliptic on Hp:

a(w,w) > a|w||3y, Ve Hy. (4.50)

162 K.-A. Mardal and H. P. Langtangen

This property is trivially satisfied for the Stokes problem. Elements for the
mixed Poisson problem are designed to meet this condition.

Condition 2. There exists a constant § (independent of h) such that

bt
0< B:= inf sup M,
w|ulldlp

(4.51)
4€Ph w,eH),

The condition 2 is often called the Babuska-Brezzi condition or the inf-sup
condition. These two conditions (in addition to (4.48) and (4.49)) are nec-
essary for a well-posed discrete problem [3]. The algebraic analogies of the
conditions 1 and 2 are (4.35) and (4.36), respectively. However, there is an
important difference. The conditions are designed to ensure optimal accuracy.
Hence, for (v, p) found by (4.47) we have,

lw =@l + [lp = pllp < lo —ulle + inf llp—qlp). (452)

inf
vEH),
To get optimal accuracy, we must have 8 > 0 independently of & (see, e.g.,
[3]). This is not needed to ensure that the algebraic system in (4.33) is in-
vertible. The 8 may then decrease towards zero as the grid is refined.

Regularization of Stokes problem. We can avoid the Babuska-Brezzi condi-
tions by perturbing the problem. We restate the problem as:
find (0¢,p°) such that

o) 4 D) = (), w0 € (4.53)

b(q7ﬁ6) - €C((j,ﬁ = (ga (j)a V(j € Ph>

where € should be small. With this perturbation of the original problem, we
get the non-singular matrix equation,

v B A BT vE B .f
LRt v | A R PR E
There are mainly three methods used to construct e M, all based on perturbed
versions of the equation of continuity,

V-v=eVp, (4.55)
V-v=—ep, (4.56)
p
o= —el 4.
Vo= - (4.57)

The approach (4.55) was derived with the purpose of stabilizing pressure os-
cillations and allowing standard grids and elements (see, e.g., [8]). The € is
usually ah?, where o can be tuned. This approach is usually preferred and
does in fact satisfy a slightly more complicated version of the Babuska-Brezzi
conditions, regardless of the choice of elements. The equations (4.56) and

4.4. Some Basic Concepts of a Finite Element 163

(4.57) were not derived as stabilization methods, but were initiated from al-
ternative physical and mathematical formulations of viscous incompressible
flow. They are usually referred to as the penalty method and the artificial
compressibility method, respectively [7]. The penalty method allows for elim-
ination of the pressure and is usually used together with reduced integration.
A Navier-Stokes solver using the penalty method is implemented in Diffpack
and is described in [9]. The regularization techniques have relations to com-
mon operator splitting techniques [17].

4.4 Some Basic Concepts of a Finite Element

This Section presents the basics of a general finite element. We will focus on a
definition that should be easy to use in a general implementation with mixed
elements on a general unstructured mesh. This will be needed later when we
implement the finite elements appropriate to our model problems. For further
reading about the finite element method, see [2,3,10,9]. Detailed information
on finite element programming in Diffpack can be found in [9,13].

4.4.1 A General Finite Element

Consider a spatially varying scalar field f(z), where z € 2 c R? The
field f(x) has the following approximate expansion f(x) in a finite element
method:
f@) ~ f@) =3 asNy(@). (458)
j=1

If f also depends on time, we write
fla,t) = f(z,t) =Y a;(t)N;(x) . (4.59)
j=1

We refer to N;(x) as the basis functions in global coordinates and «; are the
coefficients in the expansion, or the global degrees of freedom of the discrete
scalar field. The choice of basis functions N;(z) is problem dependent, and we
”should” choose them based on the regularity requirements of the differential
equation. The basis functions are piecewise polynomials and we can therefore
deduce the following (see page 67 in [10]):

Vi C HY(2) & V), € C°(02), (4.60)
Vi C L*(2) & Vi, c CH0D), (4.61)
where C?(£2) is the space of continuous functions and C~1(£2) is the space

of discontinuous functions (with finite discontinuities). A vector element can
often be made as a superposition of scalar elements.

164 K.-A. Mardal and H. P. Langtangen

Central to the finite element method is the partition of (2 into non-
overlapping subdomains 2., e =1,...,E, 2=, U---Ug. In each subdo-
main {2, we define a set of basis functions with support only in (2. and the
neighboring subdomains. The basis functions are associated with a number
of local degrees of freedom. A subdomain, along with its basis functions and
degrees of freedom, defines a finite element, and the finite elements through-
out the domain define a finite element space. The finite element space has a
global number of degrees of freedom. These degrees of freedom can be the
values of the unknown functions at a set of points (nodes). From an imple-
mentational point of view, a great advantage of the finite element method is
that it can be evaluated locally and thereafter be assembled to a global lin-
ear system. We therefore focus on a local consideration of the finite element
method. Similar definitions of finite elements and more information can be
found in [2,10,9].

For each {2, there is a parametric mapping M_ ! from the physical sub-
domain to a reference subdomain:

E=M1(z), z=ME), €2, cR? xecn cR®. (4.62)

The (2, domain is often called the reference domain. The mapping of this
reference domain to the physical coordinate system is defined by a set of
geometry functions G;(&), i.e., M, is defined in terms of some G; functions.
Normally, we associate the term reference element with the reference domain
together with its degrees of freedom and basis functions.

Definition 3. An isoparametric element is a finite element for which the
basis functions and the geometry functions coincide.

However, most mixed elements are not isoparametric. Diffpack therefore has
a very general definition of a finite element. This definition is implemented
in ElmDef which is the base class for all the elements.

Definition 4. A reference element is characterized by a reference subdomain
2, with a set of n, points p1,...pn,, referred to as geometry nodes, such
that the mapping M, from the reference domain (2, onto the corresponding
physical domain (2. has the form

X f) = ZgGk(f)Ik . (463)
k=1

Here zj, are the coordinates in physical space corresponding to the geome-
try node p;. Moreover, the geometry function G;(§) has the property that
Gj(pi) = 6;j, where d;; is the Kronecker delta. The (transposed) Jacobi ma-
trix element J;; of the mapping M, is then given by

0Gr(&)
Z 3& (4.64)

4.4. Some Basic Concepts of a Finite Element 165

where xfc is the j-th component of xj.

If the element is non-isoparametric we must also specify the basis func-
tions. We define a number n;y of basis functions Nfef, ... N[L;{c with np as-
sociated nodes at points ¢i,...¢qp, in the reference domain. These may in
principle be chosen arbitrarily, designed for different purposes. A global basis
function is then defined in terms of a mapping of the corresponding refer-
ence basis function. We can define a global element by using the geometry
mapping M, in (4.62);

NY' () = NP (M () = NP ().
Definition 5. The restriction of a finite element scalar field, as in (4.58), to
a finite element in the reference domain is given by

Ny f

f@)o, => BiN;j(©), €= (&,....8a) € 2.
j=1

Here ; are the local expansion coeflicients, corresponding to the local degrees
of freedom. The local basis functions are N; (&) and nyy is the number of local
basis functions.

Finite element applications usually require the derivatives with respect to
the physical (global) coordinates, ON;/Jz,. The relation between derivatives
with respect to local and global coordinates is given by

ON; ON;

67@_ ij%jv

where J;; is given in (4.64).

The basis functions in the isoparametric elements are exactly the geom-
etry functions, and the degrees of freedom are represented in the geometry
nodes. This means that we get the physical elements (shape of the element
and the expressions for the basis function in physical coordinates) by applying
the parametric mapping M. (&) on the reference elements. Non-isoparametric
elements might also be defined in terms of a mapped reference element. How-
ever, such elements might also have other non-equivalent definitions, as we
will see for the elements used in H (div; £2).

4.4.2 Examples of Finite Element Spaces

This section describes some typical mixed elements and their implementation.
We also list the error estimates for each element. These estimates are used
later in the Sections 4.6.3 and 4.6.5 to verify the simulators. We assume that
the triangulation is shape-regular and quasi-uniform. To clarify the notation
introduced in the previous section we apply it to some well-known finite
elements.

166 K.-A. Mardal and H. P. Langtangen

The Linear Triangle. The popular linear 2D triangular element is defined as
follows. Let the reference domain be,

QT = {(51762) | 0 S 51 S 17 52 S 51} . (465)

Moreover, ng = nyy = ny = 3, G; = N; and

Ni(&1,62) =16 — &, (4.66)
Na(&1,&2) = &, (4.67)
N3(&1,62) = &2 (4.68)

The geometry and basis function nodes are the corner points of the triangle;
p1 = (0,0), po = (1,0) and ps = (0,1). This element is named ElmT3n2D
in Diffpack. The Figure 4.1 shows the element. The basis function nodes
are indicated by the black circles. More details on the local side and node

Fig. 4.1. Sketch of the 2D linear triangle element.

numbering can be found in [11].

The 2D Piecewise Constant Element. The 2D piecewise constant element over
a triangle is defined by 2, in (4.65), np, = nyy = 1, ng = 3, N1(&1,&2) =1
for all &,& € 2., while G; and p; are identical to the expressions for the
standard linear triangle element, described above. The location of the basis
function node is arbitrary, but an obvious choice is ¢g; = (1/3,1/3). The name
in Diffpack is E1mT3gn1bn2D, which refers to its basic properties. It is a triangle
element, E1mT, with three geometry nodes, 3gn, and one basis function node,
ibn, in 2D, 2D. The Figure 4.2 shows the element.

As we stated in Section 4.3, our model problems require delicate com-
binations of finite element spaces, i.e, they must satisfy the Babuska-Brezzi
conditions (2). Some appropriate mixed elements are presented here and we
also discuss the implementation of these.

Mixed Elements for the Stokes Problem. We will now describe the
mixed Stokes elements implemented in Diffpack. The Mini and Taylor-Hood

4.4. Some Basic Concepts of a Finite Element 167

Fig. 4.2. Sketch of the 2D piecewise const element.

elements satisfy the Babuska-Brezzi conditions (4.50)-(4.51) with H = H*(£2)
and P = L?(2). The Crouzeix-Raviart element is non-conforming and the
| - [1 (2) norm has to be replaced with the element-wise norm || - || g,1(0)
[5].

The Taylor-Hood element. When solving Stokes problem or Navier-Stokes-
type of equations for the pressure and velocity fields, mixed finite element
methods are traditionally used. A possible choice is to let the geometry be
described by six nodes in a triangle reference element. The velocity compo-
nents may then use basis functions that coincide with the geometry functions
(ng = np = npy, ¢; = p; and N; = G;). The pressure field, on the other hand,
is based on an element where the geometry is the same as for the velocity field,
but where the basis functions are linear. For such an element, we see that the
basis function nodes are identical to a subset of the geometry function nodes,
the corner nodes. The corresponding basis functions are the same as in the
linear triangle element (4.66)-(4.68). Both the velocity and the pressure ele-
ments are continuous (more regularity than strictly needed for the pressure).
For sufficiently regular (u,p) we have the following approximation result for
k=1,2 (e.g., [9]).

= ol g1y + Ip = B2y < CHF(lullgge) + Ipllicey)s (4.69)
Ip = Dllar oy < CHPH(lull i) + ol () (4.70)

If 2 is convex we have,
= llpegay < CH* (lullpess gy + IPliee) . (471)

The constant C' is here and in the following used as a generic constant inde-
pendent of the mesh size h.

These elements are implemented in Diffpack as E1mTén2D (continuous quadratic

polynomials) and E1mT6gn3bn2D (continuous linear polynomials). The same el-
ements exist on quadrilaterals and is implemented as E1mB9n2D and E1mB9gn4bn2D.
The Figure 4.3 shows the degrees of freedom in the element. In this and the
following examples we have basis function nodes for both the pressure and
the velocity. The black circles are velocity nodes, while the black squares
denote nodes for both the pressure and the velocity.

168 K.-A. Mardal and H. P. Langtangen

Fig. 4.3. Sketch of the 2D Taylor-Hood element; Quadratic velocity and linear
pressure elements.

The Mini element. Another approximation can be obtained by using the
so-called Mini element [1]. The starting point is continuous linear elements
for both the pressure and the velocity. This combination does not satisfy the
Babuska-Brezzi conditions, but if we enrich the velocity space with the so-
called “bubble” function, it does. Let the triangle be numbered such that e;
are the edges at the opposite side of the vertex v;. Let A; be a linear function
such that A;(v;) = 1, while A;(2;) = 0 Vz; on e;. The function A\ A2 A3 is the so
called bubble function. The bubble function is zero on the edge of the element
and has therefore support only in one element. The degrees of freedom are
the nodes at the vertices and the center of the triangle. Hence, this element is
simply a linear triangle element with one additional (bubble) basis function
and the associated basis function node. Hence, ny = 3, nyy = ny = 4. The
basis functions in the reference element are

Ni(&1,&) = Gi(&1, &), fori <3, (4.72)
Ny(€1,82) = 27(1 = &1 — £2)6162, (4.73)

where the geometry functions, G;, are defined by the linear triangle element
(page 166). The corresponding basis function nodes read,

¢ = pi, fori<3, (4.74)
g4 = (1/3,1/3). (4.75)
We have the following error estimate (e.g., [9]) for the Mini element:
lu = 2llao) + P = Dllez2) < Chlllullm2(2) + IPla) - (4.76)
If 2 is convex we have,
lu =)l L2(0) < CR2(Jullaz() + [Pl ai(a) - (4.77)

We note that the approximation results rely on the linear polynomials, whereas
the bubble functions give stability.

These elements are available in Diffpack as ElmT3gn4bn2D and should be
used together with linear pressure elements, E1lmT3n2D. The degrees of freedom
is shown in figure 4.4.

4.4. Some Basic Concepts of a Finite Element 169

Fig. 4.4. Sketch of the 2D Mini velocity element and the linear pressure element.

Definition 6. A finite element space V}, is a conforming approximation of V'
if it is a subspace of V. A non-conforming finite element space approximation
of V is an outer approximation, that is, the finite element space is not a
subspace of V.

The Crouzeiz-Raviart elements. The Crouzeix-Raviart element is linear and
continuous at the midpoints of the triangle edges [5]. The midpoints are the
only points where it is continuous. Hence, this element is not in H*(£2). It is
not conforming and H'(£2) is therefore replaced with H} (£2). The element
has three basis functions and three associated basis function nodes, n, =
nys = 1y = 3. The basis functions in the reference element are,

Ni(&1,&) =1 — 26,
Na(€1,82) = 2(&1 + &) — 1,
N3(&1,&) =1 —2¢,

and the corresponding basis function nodes are

q1 (1/270)»
22 = (1/2,1/2),
qs = (071/2).

The error estimates for this element are [5],

lu = 0|1 (), < Ch(llulla2o) + [IPlH(2), (4.78)
Ip = Bll < Ch([|ull 202y + Pl (2)) - (4.79)

If {2 is convex we have,

[u =9 L20) < Ch2(||u||H2(n) + Il (2)) - (4.80)

It is implemented as ElmT3gn3bn2D and is used with the discontinuous
constant pressure element EImT3gnibn2D. The degrees of freedom is shown in
figure 4.5. The white circle shows the pressure node. Note that this element
only work with essential boundary conditions.

170 K.-A. Mardal and H. P. Langtangen

Fig. 4.5. Sketch of the 2D Crouzeix—Raviart element.

Mixed Elements for the Poisson Problem. This section describes mixed
elements suitable for the mixed Poisson problem. They satisfy the Babuska—
Brezzi conditions (4.50)-(4.51) with H = H(div;2) and P = L?*(£2). In
H (div; £2) continuity is only needed in the normal direction on the sides of the
elements [3]. The following elements are designed to meet this requirement.

The Raviart—Thomas elements. A popular choice of elements is the Raviart-
Thomas element [19] of order 0 for the velocity approximation ¢ and discon-
tinuous piecewise constants for p. The Raviart-Thomas elements are designed
to approximate H (div; £2). They are continuous only in the normal direction
across the elements boundaries. The Raviart-Thomas elements of order 0 are
on the form:

a+dx

N, = | b+dy in3DandN¢:(Zi§x> in 2D. (4.81)
c+dz Y

The constants a, b, ¢, d are determined such that

(1ifi=

where IN; are the basis functions and m; are the normal vectors associated
with the side ¢ and j, respectively. This yields a global definition of the
elements.

Using (4.81)-(4.82) to the reference element geometry we get the following
basis functions in the reference element. The element has three basis functions
and three associated basis function nodes, ny, = nyy = ny = 3. The &
components are,

Ni(&1, &) = =&,
No(€1,&) = —V2¢1,
N3(&1,&) =1—&1,

4.4. Some Basic Concepts of a Finite Element 171

and the £ components read,

Nl(é.laéé) =1 _527
Ny(&1,&) = —V2&,
N3(&1,&) = =&

The basis function nodes are,

q = (1/2,0),
a2 = (1/2,1/2),
qs = (O7 1/2) .

While the previously mentioned elements is used such that the vector field is
composed by scalar elements,
’lAJ = Z aiva,
i

the Raviart-Thomas element is a vector element in the sense that
i

Moreover, these vector elements need to satisfy (4.82) globally, and this is not
necessarily the case. We wish to define these elements in terms of a mapped
reference element, because this is a very flexible strategy.

Following the basic concept of scalar elements we wish to use the defi-
nition for the reference element to map the reference element to the global
element. However, the usual geometry mapping M, does not preserve the con-
tinuity in the normal direction and the mapped elements will therefore not
be in H(div; £2). A slightly modified mapping does preserve the continuity
in the normal direction, but unfortunately the mapping can not be defined
componentwise by scalar elements. We remember the geometry mapping:

x=M,(¢).

In order to make elements that are continuous in the normal direction of the
mapped reference element, we must assume that the geometry mapping is
affine. Affine mappings can be expressed by

r=M.(§) =x.+ B.E.
for some matrix B, and a fixed point x. in physical space. The mapped

reference element can then be defined as:

1
N(z) = det B

This mapping is implemented in MxMapping. The element is a vector element
and this is reflected in the code:

B. N/ (M 1(x)). (4.83)

172 K.-A. Mardal and H. P. Langtangen

mfe.N(d,i);
mfe.dN(d,i,k);

Here, MxFiniteElement uses MxMapping to compute the basis function and its
derivatives. Notice that this is in contrast to the standard use of vector ele-
ments composed by scalar elements,

mfe(d) .N(i);
mfe(d) .dN(i,k);

An example of use can be found in PoissonMx.cpp. To check whether the
element requires the special mapping one can check the boolean variable
special mapping in ElmDef or MxFiniteElement. Vector fields based on these
elements require a special initialization. This is described in section 4.6.4

The 2D Raviart-Thomas reference element is shown in Figure 4.6 and we
refer to [3,19] for more information. We have the following approximation
properties [6]:

[w—0|L20) < chllull g (o) (4.84)
Ip = Blirzce) < c(hllpllar o) + P2 IplH2co) - (4.85)

Figure 4.6 shows the degrees of freedom in the element.

Fig. 4.6. Sketch of the 2D Raviart-Thomas element for the mixed formulation of
the Poisson equation.

A Mized Poisson Element Which is Robust for Stokes Problem All the pre-
vious elements discussed have been designed either for the Stokes problem or
the mixed Poisson problem. We will now introduce a new element described
in [16] which has good approximation properties in both cases. We will refer
to this as the "robust” element, in lack of a better name. The polynomial
space is defined by:

V(I)={veP::V-ve Py (v-n).cPy, VET)},

4.4. Some Basic Concepts of a Finite Element 173

where E(T) is the set of edges in triangulation. This element is designed
such that the normal components on the faces are continuous, as is needed
in H (div; £2). The tangential components are not continuous, but their mean
value are. Hence, the element is conforming in H (div; §2), but non-conforming
in H'(£2). The element has nine basis functions and nine associated basis
function nodes, ny = nyy = 1y = 9. The & components of the basis functions
in the reference element read,

Ni(€1,6) =286 +96& — 7547 +66° — 186%¢,

No(€1,&) =6& — 36816 — 6617 +366°6 + 246,78,

N3(€1,&) = 6& —51&& — 13.56,% +6&,° + 54£,%€6, + 48&,%6s,

Ny(&1,&2) = \/5(T5E +486& + 1867 —9&° — 45678 — 484,°6),
Ns(&1,62) = V2(—3& + 18616 + 967 — 6&° — 186°¢ — 246°%),
No(€1,62) = V2(8.561 — 36816 — 246° + 1567 + 2766 +486,%6),

No(€1,&) = 05— T& + 28 + 27616 + 25567 — 186, — 186,76 — 486,%6,,
Ng(é1,6) =6& — 1266 — 1867 +126° +24£,°6,

No(£1,86) =15 —36 —2& + 15616 — 4562 +66,° — 186,%¢,,

&
=

d the & components are,

Ni(61,6) =15 -2& =36+ 1566 — 456 +66° — 186,%6,

Na(&1,&) = =68 + 1266 + 1867 — 126° — 2467,

N3(&1,62) = 0.54+286 —T& +27.061& +25.567 — 186, — 486,76, — 186,2%¢,,
Ny(61,6) = V2(8.58 — 36616 — 248" +158° +486,°6 +276,°6),
Ns(£1,&) = V2 (=3& + 18616 + 967 — 667 — 246,%€6) — 186,%E,),

No(&1,82) = V2 (=T.5& +48&1& + 1867 — 96° — 486,°¢, — 456,°¢,),
N7(€1,6) = 6& —51&& — 135867 +66° +486,7¢ + 546,°6,

Ng(€1,&) = —6& + 36160 +6&° — 246°6, — 36126,

No(&1,82) =2& + 9618 — 7587 +6&° —186,°%¢,.

174 K.-A. Mardal and H. P. Langtangen

The corresponding basis function nodes are,

q1 = (1/4’ 0):
g2 = (2/4,0),
g3 = (3/4,0),
qs = (3/4,1/4),
qs5 = (2/4’ 2/4)a
g6 = (1/4,3/4),
a7 = (0,3/4),
s = (0,2/4),
q9 = (0,1/4),

We have the error estimates for the mixed Poisson equation,

lw— 9| p2(0) < Ch?|[ul|pr2(0), (4.86)
[div (w = 0)||r2(0) < Ch|divul[m (o), (4.87)
P = Pllr2(2) < Ch(lIpllar (@) + hllullg2(0) - (4.88)

The corresponding estimates for Stokes problem reads,
lw = 0|lg o) < Chllullg20),
lp = blliz22) < Ch(lpllar(2) + lullg20) -

The element is implemented in Diffpack as E1mT3gn9bn2Du and E1mT3gn9bn2Dv
and should be combined with the piecewise constant pressure elements, ElmT3gn1bn2D.
Figure 4.7 shows the basis function nodes.

Fig. 4.7. The degrees of freedom of the robust element.

4.4. Some Basic Concepts of a Finite Element 175

Remark: Stokes elements for the Poisson problem The mixed elements for
the Poisson problem considered above were such that v € H/(div;{2) and
p € L?(£2). One alternative approach is to seek an approximation where
v € L*(2) and p € H'(£2). Several of the above mentioned Stokes elements
have continuous pressure elements and one might therefore suspect that these
elements could be used. This is indeed true, at least for the Mini element and
the Taylor-Hood element. Some numerical experiments in Section 4.6.5 show
the behavior of these elements (c.f. also [16]). However, usually the highest
level of accuracy is wanted in the velocity (or else one would not use the
mixed formulation) and therefore this formulation is not often used.

4.4.3 Diffpack Implementation

The definition of the reference element is provided by a subclass of ElmDef.
This definition is based on parameters (variables) in the base class ElmDef as
well as virtual functions defined in ElmDef. For example, ny, nyy and ny are
integers in the class ElmDef having the names nne basis, nbf and nne_geomt,
respectively. The virtual function geomtFunc defines the geometry functions
G;(£), while the virtual function basisFunc defines the basis functions N;(€).
The derivatives ON;/0¢; and 0G,/0¢; are provided by the virtual functions
dLocBasisFunc and dLocGeomtFunc, respectively. Notice that the derivatives
refer to the reference coordinates £. It is the derivatives with respect to the
physical coordinates that are of interest. Class BasisFuncAtPt is designed
for evaluating and storing the geometry and basis functions, their global
derivatives and the (transposed) Jacobi matrix determinant, at a particular £
point. This class relies on information from ElmDef and the global coordinates
of the geometry nodes of the element.

Class FiniteElement is designed to offer the programmer easy access to the
global element: the basis functions, their global derivatives, and the Jacobi
determinant, evaluated at a point £ in the reference domain {2,. (correspond-
ing to a physical point @ in (2,). Class FiniteElement is naturally based on
a layered design where it gains its information from BasisFuncGrid, ElmDef,
BasisFuncAtPt and GridFE objects. In the case of mixed finite elements, one
needs a FiniteElement object for each type of basis functions. This is provided
by the class MxFiniteElement, which contains an array of pointers (handles) to
FiniteElement objects and much of the same interface as class FiniteElement.
Scalar finite element fields are represented by FieldFE and rely on informa-
tion from FiniteElement, BasisFuncGrid and GridFE objects. FieldFE objects
are designed to represent the solution field and can be evaluated and differ-
entiated at arbitrary points.

The initial version of Diffpack was written for isoparametric elements.
Hence, most of the virtual functions in the ElmDef have a default implemen-
tation in class ElmDef for isoparametric elements (if the function will depend
on the element shape, the default version assumes a box shape).

176 K.-A. Mardal and H. P. Langtangen

For instance, the Mini element is implemented in a subclasses E1lmT3gn4bn2D,
which is a subclass of E1mT3n2D, which is a subclass of the base class for all
elements, ElmDef. In this case EImT3n2D supply the information related to the
geometry of the element. All that was needed to implement E1lmT3gn4bn2D was
the basis functions and the location of the basis function nodes.

The information on the elements, in particular the geometry nodes, their
connectivity and boundary indicators [9,4], is represented by class GridFE in
Diffpack. Class BasisFuncGrid contains the basis function nodes, their con-
nectivity, the boundary indicators at basis function nodes etc. In addition,
class BasisFuncGrid has a GridFE object (or rather a pointer or handle to such
an object) such that a BasisFuncGrid object has complete information of all
the geometry and basis function nodes and their relevant associated data.

When working with isoparametric elements, class BasisFuncGrid simply
uses the GridFE object for looking up information on basis function nodes and
degrees of freedom in scalar fields. For a user it is then only necessary to create
a GridFE object. When other classes are initialized with a GridFE object, and
they need information on the basis functions (class FieldFE is an example),
it is assumed that the elements are isoparametric and a BasisFuncGrid object
is easily constructed internally in these classes. None of the terms related to
the distinction between basis and geometry functions need to be familiar to
the user in the isoparametric case. In particular, class BasisFuncGrid is not
apparent at all, see for example [9].

If non-isoparametric elements are applied, the user must allocate and ini-
tialize a BasisFuncGrid for each scalar field. In this way, the extra complexity
associated with the details of non-isoparametric elements is only visible when
it is really needed. One should notice that this design goal is readily achieved
due to our usage of abstract data types and object-oriented programming.

The GridFE and BasisFuncGrid classes organize the global topology of the
geometry and basis function information. The (local) definition of the basis
functions are provided by an ElmDef subclass.

4.4.4 Numbering Strategies

Having performed the mixed finite element discretization, we end up, as usual,
with a system of linear algebraic equations. The book-keeping of element
degrees of freedom and linear system degrees of freedom is non-trivial in
mixed methods and is described in the following.

The special numbering. It is assumed that isoparametric elements are used
and that there are m unknowns per node and a total of n nodes. In other
words, one needs to use the same element type for all the unknown fields
that enter a system of partial differential equations. Problems for which this
is a suitable approach, involve the Navier equations of elasticity, the incom-
pressible Navier-Stokes equations treated by a penalty function approach,

4.4. Some Basic Concepts of a Finite Element 177

and simultaneous (implicit) solution of pressures and concentrations (satu-
rations) in multi-phase porous media flow. The geometry and basis function
nodes coincide, and it is natural to number the degrees of freedom of the
linear system in this sequence:

U, ud, Uy, Ul (4.89)
where uf is the degree of freedom of scalar field no. j at node ¢. Given a global
node ¢ and a scalar field number j, the global degree of freedom number is
m(i — 1) + j. The DegFreeFE class in Diffpack takes care of computing the
global degree of freedom number according to this formula.

At the element level, the structure of the special numbering is the same as
at the global level. That is, if 7 is a local node and j is the field number, the
associated local degree of freedom of the merged fields is m(i — 1) + j. This
information is very important since the local numbering is fundamental when
setting up the elemental matrix and vector contributions in the integrands
functions in Diffpack. The book [9] contains some relevant examples. As an
example on the special numbering, consider the 2 x 2 grid of bilinear elements

1 2 3

Fig. 4.8. Sketch of a 2 x 2 grid, with bilinear elements, and the corresponding
numbering of elements and nodes.

in Figure 4.8. If there is only one scalar field, the degrees of freedom number-
ing in the linear system naturally follows the nodal numbering. A measure of
the associated matrix bandwidth could be the largest difference between two
degree freedom numbers in the same element. Here this is 4 (e.g. 5 — 1 =4
in the first element). With two unknown scalar fields, (") and u(?, there
are two ways of structuring the degrees of freedom in the linear system. The
suggestion above results in

1,2 1,2 1,2
UL, UT, U, Us, - ..y Uy, Uy (4.90)

and depicted in Figure 4.9. Instead of numbering the local degrees of freedom

178

K.-A. Mardal and H. P. Langtangen

1314 1516 1718
78 9,10 11,12
12 34 5.6

Fig. 4.9. The special numbering of degrees of freedom in the linear system arising
from two unknown scalar fields over the grid in Figure 4.8.

at each node consecutively, we could first number all the degrees of freedom
of scalar field one and then number the degrees of freedom of scalar field two:
ul, ud, .. uk ud ol (4.91)

n

The numbering on a 2 x 2 grid is displayed in Figure 4.10. The impact of the

7,16 8,17 9,18

4,13 6,15

1,10 2,11 312

Fig. 4.10. A possible numbering of degrees of freedom in the linear system arising
from two unknown scalar fields over the grid in Figure 4.8.

two numberings on the bandwidth of the coefficient matrix should be clear:
9 in the first case and 13 in the second case. On a grid with ¢ x g elements
the corresponding figures read 2¢ + 5 and ¢? 4 3q + 3!

The general numbering. The general numbering is based on the following
strategy. At the element level, a field-by-field numbering like (4.91) is used
for the element degrees of freedom,

1 1 1 2 2 m m
UPyUgy ooy Uy y Uy e v oy Uy e ooy Up e oy Uy

4.4. Some Basic Concepts of a Finite Element 179

where now n is the number of nodes in the element and m is the number of
unknown scalar fields. More generally, if we have n; degrees of freedom for
field no. j, we order the unknowns like this:

1 1 1 2 2 m m
Uy, Uy, ..o, U UTyeeoy U ey Uy, U

9 ny?) no? 9 Nm *

The corresponding global numbering is constructed from a simple (and gen-
eral) algorithm that yields a reasonable small bandwidth: For each element
we run through each local degree of freedom and increase the corresponding
global number by one, provided the local degree of freedom has not been given
a global number in a previously visited element. Such numbering of the de-
grees of freedom applied to a single scalar field is exemplified in Figure 4.11.
In element 1 we go through the local nodes 1-4 and assign corresponding

1 2 5

Fig.4.11. The general numbering applied to a single scalar field over the grid in
Figure 4.8.

global degree of freedom numbers 1-4. In element 2, the first local degree of
freedom was already treated in element 1. The next local degree of freedom
(local node no. 2) has not been treated before and can therefore be given
the global degree of freedom number 5. The reader is encouraged to continue
the algorithm and understand how the rest of the degree of freedom numbers
arise.

Let us extend the general number example on a 2 x 2 grid to the case
where we have two scalar fields as unknowns. In the first element we then run
through the local degrees of freedom 1-4 of the first scalar field and generate
corresponding global numbers 1-4. Then we run through the four degrees of
freedom of the second scalar field and assign them to the global numbers
5-8. Proceeding with element two, the two nodes on the left have already
been treated in element 2 so the second degree of freedom of scalar field
no. 1 is assigned the global number 9, while the fourth degree of freedom of
scalar field no. 1 corresponds to the global number 10. The second scalar field
contributes with two new degrees of freedom, 11 and 12. Also in this case the

180 K.-A. Mardal and H. P. Langtangen

reader should understand the rest of the global degree of freedom numbers.
Figure 4.12 shows the numbering.

1315 1416 178
3 4
37 48 10,12
1 2
15 26 011

Fig.4.12. The general numbering applied to two scalar fields over the grid in
Figure 4.8.

Finally, we consider an example involving different number of degrees of
freedom in different fields. Again we focus on the grid in Figure 4.8, but now
we have two scalar fields with bilinear elements and one scalar field with
piecewise constant elements. The location of the degree of freedom for the
constant value in an element could be the centroid. (This example could cor-
respond to bilinear elements for a vector field and piecewise constant elements
for a scalar field.) Figure 4.13 shows the complete numbering.

1517 1618 2021
19 22
3,7 48 11,13
9 14
15 26 10.12

Fig. 4.13. The general numbering applied to two scalar fields with 9 nodes and one
scalar field with 4 nodes over the grid in Figure 4.8.

As one can see, the general numbering requires quite some book-keeping.
This is performed by the DegFreeFE object. However, the programmer must

4.5. Some Code Examples 181

explicitly deal with the local degrees of freedom numbering when setting up
the element matrix and vector, but this is quite simple, as one applies either
the special numbering or the field-by-field numbering on the element level.
The complicated details arise when going from the element to the global
degrees of freedom numbering, but class DegFreeFE hides the book-keeping
from the programmer. Some program examples appear later and illustrates
the usage of various Diffpack tools.

4.5 Some Code Examples

In this Section we will build simulators appropriate for mixed systems, step
by step. We begin with a simple demonstration program for the number-
ing schemes in Section 4.4.4 for scalar and vector fields. Then the usage of
BasisFuncGrid and special vs. general numbering in a Poissoni-like (cf. [9])
solver is shown. The next step concerns a simple version of a Stokes-problem
solver before we end up with a sophisticated block/multigrid solver for the
Stokes problem.

4.5.1 A Demo Program for Special Versus General Numbering

Section 4.4.4 presents a series of examples, Figures 4.8-4.13, on various degree
of freedom numbering strategies. Here we shall make a simple demo program
that produces these numberings. The program is found in

$NOR/doc/mixed/src/numbering/numbering. cpp

Assume we have a finite element grid stored in a GridFE object grid. Making
a DegFreeFE object directly from the grid, with one unknown per node,

DegFreeFE dof (grid, 1);

results in a standard numbering of the unknowns, which coincides with the
nodal numbering (cf. Figure 4.8). If we have two fields over the grid, i.e.,
two unknowns per node, we just alter the second parameter to the DegFreeFE
constructor:

DegFreeFE dof (grid, 2);

The resulting degree of freedom numbering corresponds to the special num-
bering (cf. Figure 4.9).

The general numbering requires a slightly different initialization procedure
of the DegFreeFE object. Now we must explicitly define a BasisFuncGrid for the
basis functions over the grid and tie a finite element field to this BasisFuncGrid
object:

BasisFuncGrid f_grid (grid);
FieldFE f (f_grid, "f");

182 K.-A. Mardal and H. P. Langtangen

Notice that the field will here be isoparametric. Having the field £ we can
initialize the DegFreeFE object:

DegFreeFE dof (f);

The corresponding numbering of the degrees of freedom is shown in Fig-
ure 4.11. Notice that sending a field, instead of a grid, as argument to a
DegFreeFE constructor implies the general numbering of the degrees of free-
dom.

With two scalar fields, having the same number of degrees of freedom, the
fields must be attached to a FieldsFE collector prior to initializing the degree
of freedom handler:

BasisFuncGrid u_grid (grid);
FieldFE u (u_grid, "u");
FieldFE v (u_grid, "v");
FieldsFE collection (2, "coll");
collection.attach (u, 1);
collection.attach (v, 2);

DegFreeFE dof (collection);

The degree of freedom numbering is depicted in Figure 4.12.

Our final example concerns two fields with isoparametric elements, like
u and v above, plus one field having (possibly) non-isoparametric elements.
In other words, we address the general case with several fields and different
elements in the different fields. The set-up is the same:

BasisFuncGrid u_grid (grid);
FieldFE u (u_grid, "u");
FieldFE v (u_grid, "v");

BasisFuncGrid p_grid (grid);
p_grid.setElmType (p_elm); // can change to non-isoparametric elm
FieldFE p (p_grid, "p");

FieldsFE collection (3, "coll");
collection.attach (u, 1);
collection.attach (v, 2);
collection.attach (p, 3);

DegFreeFE dof (collection);
Figure 4.13 displays the associated degree of freedom numbering.

4.6 Programming with Mixed Finite Elements in a
Simulator

Programming with mixed finite elements is closely related to programming
with isoparametric elements. The structure of the class that represents the
simulator is the same in the two cases. The basic differences are

4.6. Programming with Mixed Finite Elements in a Simulator 183

— Class FEM is replaced by its subclass MxFEM.

— Class FiniteElement is replaced by MxFiniteElement, which contains a set
of FiniteElement objects, each corresponding to the element type of a
field involved in the partial differential equations being solved.

— integrands is replaced by

void integrandsMx (ElmMatVec& elmat, MxFiniteElement& mfe)

— Similarly, integrands4side is replaced by integrands4sideMx, makeSystem
is replaced by makeSystemMx (with a slightly different argument list).

— The programmer must explicitly declare a BasisFuncGrid or

VecSimplest (BasisFuncGrid)

for each field type that corresponds to a primary unknown.

— All the BasisFuncGrid objects must be explicitly created and initialized
by the programmer (but the initialization is trivial, just call a function
with the element type for each field). The creation of DegFreeFE, FieldFE
and FieldsFE objects must be based on a BasisFuncGrid object as input
rather than on a straight GridFE object.

4.6.1 A Standard Solver with Some New Utilities

Consider the Poissont class from [9, ch. 3.1]. Now we change the test problem
a bit such that we have a numerical solution that coincides with the exact
solution regardless of the number of elements. The test problem for this
purpose reads V2u = 0 in [0, 1]¢, with du/On = 0 on the boundary, except
at £1 = 0 where u = 0 and at 1 = 1 where u = 1. The exact solution is then
given as u(x1,...,zq) = 1. This should be reproduced by any grid.

The test problem is implemented in class Laplacel whose directory is
found in $NOR/doc/mixed/src. This class is a slight edit of Poisson1 where
we basically have thrown away the flux computations, fixed the domain, and
changed the analytical solution and the £i11EssBC function. Of course, the
define and scan functions are significantly changed.

Our first task is to extend class Laplacel to allow for a general node num-
bering, just for the purpose of explaining how one introduces BasisFuncGrid
objects in a solver and how the DegFreeFE object must be initialized. The
following modifications to class Laplacel must be performed:

— inclusion of a BasisFuncGrid object in the class:

Handle (BasisFuncGrid) bgrid;

— definition of a menu item for the type of numbering

184 K.-A. Mardal and H. P. Langtangen

— creation of the unknown field from the BasisFuncGrid object!:
bgrid.rebind (new BasisFuncGrid (*grid));
u.rebind (new FieldFE (*bgrid, "u"));

— creation of the DegFreeFE object in two ways, depending on whether the
user has chosen the special or general numbering:

if (numbering == "special")
dof .rebind (new DegFreeFE (*grid, 1));
else

dof .rebind (new DegFreeFE (*u));

— of reasons to be explained later, the £i11EssBC function needs to be rewrit-
ten

These extra statements are conveniently placed in a subclass of Laplace1:

class LaplacelGN : public Laplacel

{
public:
Handle(BasisFuncGrid) bgrid;
LaplacelGN () : Laplacel() {}
“LaplacelGN () {3}
virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan ();
virtual void fillEssBC ();
};

The source code is placed in a subdirectory LaplacelGN of Laplacel?.
The redefinition of £i11EssBC is perhaps not obvious. If we use the familiar
constructions for setting boundary conditions, e.g.,

if (grid->boNode (i, 1)) // i=geometry node, bo.ind.=1
dof->fillEssBC (i, 1.0);

a wrong solution is computed in the case of a general numbering. The reason
is that using the node counter i in dof->fillEssBC(i,1.0) implies that the
numbering of the unknowns in the linear system coincides with the numbering
of the geometry nodes. Instead of the node number i we should use the global
degree of freedom number corresponding to this node®. This number is in
general computed by

idof = dof->fields2dof (i, 1);

! The field has a BasisFuncGrid which contains a GridFE object, making the access
to all grid information complete from a field object.

2 We have run AddMakeSrc .. to tell the makefile for Laplace1GN that the source
depends on files in the parent directory.

3 The numbering of the geometry nodes and the linear system degrees of freedom
with a general numbering differ even when there is only one unknown scalar field.

4.6. Programming with Mixed Finite Elements in a Simulator 185

Moreover, we should for the case of generality in the non-isoparametric case
ask BasisFuncGrid if a basis function node is subject to the boundary condi-
tion:

if (bgrid->essBoNode (i, 1))
dof->fillEssBC (idof, 1.0);

With isoparametric elements this can be simplified to

if (grid->boNode (i, 1))
dof->fill1EssBC (idof, 1.0);

i.e. asking the geometry nodes for essential boundary conditions. (If there is
only one unknown per node, we have idof=i, of course.)

The next natural extension of class Laplacel1GN is LaplacelMx that allow for
the mixed versions of FEM and FiniteElement. This class is essentially a merge
of classes Laplacel and LaplacelGN, where FEM and FiniteElement are replaced
by MxFEM and MxFiniteElement. In addition, we need a FieldsFE collection of
all fields that enter as unknowns in the linear system. Notice that changing
the elements even in the standard formulation of the Poisson problem has an
effect. The Crouzeix-Raviart element is often used in to compute the pressure
in porous media flow, because of better results than standard elements.

The new parts of the code contain the construction of a Handle (FieldsFE)
collection object, which is used in many of the mixed finite element utilities:

collection.rebind (new FieldsFE (1 /*no of fields*/, "collection"));

collection->attach (*u, 1);
dof .rebind (new DegFreeFE (*collection));

The collection object is needed when making the linear system:

makeSystemMx (*dof, *lineq, *collection, 1);

The final argument 1 represents the field number in collection whose grid
should be used for the numerical integration. (Usually, this should be the
field that has the BasisFuncGrid with the highest order elements).

The integrands routine is replaced by integrandsMx and works with an
array of FiniteElement objects, one entry for each unknown field in the
collector collection of fields. Here things are as simple as possible, i.e., only
one unknown field.

void LaplacelMx:: integrandsMx (ElmMatVec& elmat,

const MxFiniteElement& mfe)
{
int i,j,q;
if (mfe.size() != 1)
errorFP("LaplacelMx:: integrandsMx",
"Wrong size of MxFiniteElement");

const FiniteElement& fe = mfe(1);
const real detJxW = mfe.detJxW();

)

The rest of the routine is identical to Laplacel::integrands.

186 K.-A. Mardal and H. P. Langtangen

4.6.2 A Simulator for the Stokes Problem

The linear system arising from the Stokes problem can be written on the
form (4.19)—(4.20). In our first implementation of the Stokes problem we
shall assemble a single merged linear system, suitable for direct methods.
The linear system is then not of the form (4.19)—(4.20), because the degrees
of freedom and equations are merged according to the general numbering.
However, at the element level, the discrete equations are on the form (4.19)—
(4.20) with n, being the number of velocity nodes and n, the number of
pressure nodes in an element.

The simulator is realized as a class Stokes. Its basic contents are, as
usual, handles to a GridFE, LinEqAdmFE, DegFreeFE, FieldFE, and SaveSimRes
objects. In addition we need some new data structures for mixed methods:
BasicFuncGrid objects for specifying basis function nodes in mixed elements
and FieldsFE objects for collecting unknown fields for book-keeping of the
global set of degrees of freedom in the DegFreeFE object.

An outline of the class Stokes is listed next.

class Stokes : public MxFEM

{
protected:
Handle (GridFE) grid; // underlying finite element grid
Handle (BasisFuncGrid) v_grid, p_grid;
Handle (FieldFE) P; // Pressure
Handle (FieldsFE) v; // Velocity
Handle(FieldsFE) coll; // (v_1, ..., v_d, p)
Handle (DegFreeFE) dof;
Vec(real) linsol;
Handle (LinEqQAdmFE) lineq;
Handle (SaveSimRes) database;
Ptv(real) v_inlet; // velocity at inlet

Test_case test_case;
Handle (FieldFE) error;

// used to partition scan into manageable parts:
void scanGrid();

virtual void scanData();

virtual void initFieldsEtc();

virtual void numbering();

// standard functions:

virtual void fillEssBC ();

virtual void fillEssBC4V (DegFreeFE& dof);
virtual void fillEssBC4P (DegFreeFE& dof, int P);

virtual void calcElmMatVecMx
(int e, ElmMatVec& elmat, MxFiniteElement& mfe);

virtual void integrandsMx
(ElmMatVec& elmat, const MxFiniteElement& mfe);

void makeSystemMx

4.6. Programming with Mixed Finite Elements in a Simulator 187

DegFreeFE& dof,
LinEqAdmFE& lineq,
FieldsFE& all_unknowns,

int itgrule_manager, // one of the all_unknowns components
bool compute_A = true,
bool compute_RHS = true

);

public:

Handle (FieldsFunc) usource;

Stokes ();

~“Stokes ();

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void defineData (MenuSystem& menu, int level = MAIN);
virtual void scan ();

virtual void solveProblem ();
virtual void saveResults ();
virtual void resultReport ();

The coll field contains all the unknown scalar fields and is required in some
mixed finite element routines. The v field is simply the velocity field as a
vector field suitable for dumping to a simres database and used later for
visualization purposes.

The first non-trivial part of the code in class Stokes concerns initialization
of the data structures. First we compute the grid, then the basis function
grids, followed by the fields, then the degree of freedom handler, and finally
the linear system. The element used in each basis function grid can be set on
the menu. A typical initialization of a basis function grid object is then like

v_grid.rebind (new BasisFuncGrid (*grid));
String v_elm_tp = menu.get ("v element");
v_grid->setElmType (v_grid->getElmType(), v_elm_tp);

with similar code for p_grid. The string v element is read from the input
file, where the Crouzeix-Raviart velocity elements and the constant pressure
element is specified as,

set u element
set p element

E1lmT3gn3bn2D
E1lmT3gnibn2D

The field objects for the velocity and the pressure are created from the basis

function grids:

v.rebind (new FieldsFE (xv_grid, nsd, "v"));
p.rebind (new FieldFE (*p_grid, "p"));

188 K.-A. Mardal and H. P. Langtangen

The next step is to create a collector of all unknown vector and scalar fields.

coll.rebind (new FieldsFE (nsd+1,"collector"));
for (int k=1; k<=nsd; k++)
coll->attach (v()(k), k);
coll->attach (*p, nsd+1);
dof .rebind (new DegFreeFE (*coll));

In the last line the dof is made from the FieldsFE object coll. This causes
the general numbering to be used.

A central function is fi11EssBC. The following code segment assigns the
essential boundary conditions (by calling up functors for the exact v at the
boundary):

const int v_nno = v_grid->getNoNodes();
int idof, ij;

Ptv(real) x (nsd), values(nsd);
dof.initEssBC ();

// boundary indicators: Assume the default ones from PreproBox

// we assume that the v_x and v_y basis func nodes coincides such
// that we can use the same loop for all velocity components

for (i=1; i<= v_nno; i++) {
if (v_grid->essBoNode(i)) {
v_grid->getCoor(x,1i);
v_anal->valuePt(values,x) ;
for (int d=1; d<= nsd; d++) {
idof = dof.fields2dof(i,d);
dof.fillEssBC(idof, values(d));
}
}
}

In this example we have splitted the fillEssBC function in two functions,
£fi11EssBC4V and fillEssBC4P. The reason is that we want to reuse these
functions in the block solvers [15] that are derived from this class. The state-
ments should be obvious from the previous material on the LaplacelGN and
LaplacelMx solvers.

The heart of any Diffpack finite element simulator is the integrands func-
tion. In the present case this routine is more complicated than in scalar
PDE problems. The discrete equations (4.19)—(4.20) interpreted at the ele-
ment level have the suitable form for direct implementation in an integrands
routine, as we have already stated in Section 4.4.4 that the numbering of
equations and degrees of freedom at the element level is always of the field-
by-field form. We exemplify this in 2D, while the following code also works
in 3D. The element equations consist of n, equations from the x components
of the equation of motion, then n, equations from the y component (these
two correspond to r = 1 and r = 2 in (4.19)). The last n, equations stem
from the continuity equation (4.20). The unknowns are the n, nodal values

4.6. Programming with Mixed Finite Elements in a Simulator 189

of o', the n, nodal values of 92, and the n, nodal values of p. The element
equations can be partitioned like this in 2D:

A 0 B! U, c®
0 A B*||v, |=]c?]|,
(BHT (BT 0 p 0

with A = {4;;}, B" = {B};}, (B"T = {Bj;} and c' = {c!}. In integrands
it is convenient to generate four block matrices: the upper left matrix, corre-
sponding to the Laplace term VZ2v,

(54)

The upper right matrix, corresponding to the pressure term —Vp,

B!
()
The lower left matrix, corresponding to the divergence term V - v,
((BY) (B*)7) .

Finally, the lower right matrix, which is 0. With the above formulas we are
ready to present the gory details of the integrands function:

void Stokes:: integrandsMx (ElmMatVec& elmat, const MxFiniteElement& mfe)
{
const int nsd
const int nvxbf
const int nvbf nvxbf*nsd;
const int npbf mfe(nsd+1) .getNoBasisFunc() ;
const real detJxW = mfe.detJxW();
real nabla;
Ptv(NUMT) values(nsd);
Ptv(NUMT) x(mnsd);
mfe.getGlobalEvalPt (x) ;
if (usource.ok()) usource->valuePt(values,x,DUMMY);
else values.fill(0.0);
int i,j,k,d,s;
int ig,jg;

mfe.getNoSpaceDim() ;
mfe (1) .getNoBasisFunc();

// upper left block matrix, the term -Laplace(u)*mfe(U).N(i)

for (d = 1; d <= nsd; d++){
for (i = 1; i <= nvxbf; i++) {

ig = (d-1)*nvxbf+i;

for (j = 1; j <= nvxbf; j++) {
jg = (d-1)*nvxbf+j;
nabla = 0;
for (k = 1; k <= nsd; k++)

nabla += mfe(d).dN(i,k)*mfe(d).dN(j,k);

elmat.A(ig,jg) += nablaxdetJxW;

190 K.-A. Mardal and H. P. Langtangen

}
elmat.b(ig) += values(d)+*mfe(d) .N(i)*detJxW;
}
}

// upper right block matrix, the term (dp/dx)#*mfe(U).N(i)
for (s = 1; s <= nsd; s++)
for (i = 1; i <= nvxbf; i++) {
ig = (s-1)*nvxbf+i;
for (j = 1; j <= npbf; j++) {
jg = nvbf+j;
elmat.A(ig,jg) -= mfe(s).dN(i,s)*mfe(nsd+1) .N(j)*detIxW;
}
}

// lower left block matrix, the term du/dx*mfe(P).N(i),
// eq.no. nubf+i
for (d=1 ; d<= nsd; d++)
for (i = 1; i <= npbf; i++) {
ig = nvbf+i;
for (j = 1; j <= nvxbf; j++) {
jg = (d-1)*nvxbf+j;
elmat.A(ig,jg) -= mfe(nsd+1) .N(i)*mfe(d).dN(j,d)*detIxW;
}
}
}

Notice that both mfe(d) hold the N; functions and their derivatives (because
d <= nsd), whereas mfe(nsd+1) holds the L; functions. The program admin-
istration takes place in solveProblem:

void Stokes:: solveProblem ()
{
fillEssBC ();
makeSystemMx (*dof, *lineq, *coll, 1);
1linsol.£i11(0.0);
lineq->solve();
dof->vec2field (linsol, *coll);

database->dump (*v) ;
database->dump (*p) ;
}

The contents of solveProblem follows the set-up from the examples in [9],
except that we call makeSystemMx and use the coll collection of fields, con-
taining both v and p, both in makeSystemMx and when storing the solution of
the linear system (linsol) back in the fields (dof->vec2field).

At last, we compute the Ly, L1 and L., norms of the error in both velocity
and pressure. This is accomplished with some functions defined in ErrorNorms,

ErrorNorms: :Lnorm (*v_anal, // supplied function (see above)
*v, // numerical solution
DUMMY, // point of time

L1_error, L2_error, Linf_error, // error norms
GAUSS_POINTS); // point type for numerical integr.

4.6. Programming with Mixed Finite Elements in a Simulator 191

s_o <<oform("L2 error of v=%12.5e \n", L2_error);

ErrorNorms: :Lnorm (*p_anal, // supplied function (see above)
*p, // numerical solution
DUMMY, // point of time

L1_error, L2_error, Linf_error, // error norms
GAUSS_POINTS); // point type for numerical integr.

s_o <<oform("L2 error of p=/412.5e \n", L2_error);

The complete source code is found in

$NOR/doc/mixed/src/Stokes

4.6.3 Numerical Experiments for the Stokes Simulator

In this section we investigate the behaviour of the error in terms of the mesh
size h. We manufacture a non-polynomial smooth solution, simply by chosing
some solutions (u,p) and then compute f. Low-order polynomial solutions
are avoided because these often lead to super convergence. Notice that u
must be divergence free and that [o Pdf2 = 0. The manufactured solutions
and the corresponding data read,

u= . ,
sin(zy)y
p = cos(ry) —a,
a :/ cos(xy) dS2,
Q
p=1,
f=—-Au+ Vp.

We use this solution instead of a physical relevant problem, to verify the
implementation. It is recommended to always do such study of error behavior
to eliminate bugs before advancing to more challenging physical problems.
We measure the errors,

€T2(0) = [lu — ?[|L2(0). (4.92)
o) = Ilp = Bllr2(e) - (4.93)
(4.94)

The estimated errors are listed in Table 4.1. The Crouzeix-Raviart element
and the Mini element show second order accuracy for the velocity and first
order accuracy for the pressure, as expected from (4.76)-(4.77) and (4.79)-
(4.80). The Taylor-Hood elements are better for smooth solutions, we get
third order for the velocity and second order for the pressure, again in com-
plete agreement with (4.69)-(4.71). The results listed below are made with

192 K.-A. Mardal and H. P. Langtangen

v-element error\h| 272 273 271 27°
Crouzeix-Raviart S’L’g(m 2.68e-3|7.00e-4|1.78e-4|4.47e-5
Crouzeix-Raviart Eiz(m 2.18e-2(9.75e-3|4.53e-3|2.19¢e-3
Taylor-Hood Szz(n) 3.52e-4|4.39e-5|5.49¢-6|6.85e-7
Taylor-Hood €12(0) 2.06e-3|4.66e-4|1.14e-4|2.85e-5
Mini 7200 |1.63e-3|3.98e-4]9.84e-5|2.45e-5
Mini 4.59e-2|1.55e-2|5.51e-3|1.96e-3

L2(@)

Table 4.1. Error obtained with different elements.

the solver described in [15]. That is, we have used the SymMinRes solver with
a multigrid block preconditioner. It is worth noting that using a Krylov
method, like SymMinRes, without a preconditioner leads to very slow conver-
gence. Moreover, a standard preconditioner, e.g., RILU, actually often results
in breakdown, because the system is indefinite. Instead block preconditioners,
together with multigrid techniques from [14], should be used. In fact, optimal
preconditioners are constructed in [15].

4.6.4 A Simulator for the Mixed Poisson Problem

We will now describe a mixed Poisson simulator, which is very similar to the
Stokes simulator, but where we need to use some other elements. We have
mentioned earlier that the Raviart-Thomas element and the robust element
are implemented in Diffpack. Typical Stokes elements can also be used, but
then lower accuracy of the velocity is obtained. The H (div; {2) elements are
vector elements, in the sense that the degrees of freedom correspond to vec-
tors. These elements require special initialization. Therefore, we use a boolean
variable special mapping to distinguish vector elements from the other ele-
ments. The initialization of the velocity fields reads,

if (special_mapping) {

u_x.rebind (new FieldFE (*u_bx, "u_x"));

u_y.rebind (new FieldFE (*u_by, u_x->values (), "u_y"));
} else {

u_x.rebind (new FieldFE (*u_bx, "u_x"));

u_y.rebind (new FieldFE (*u_by, "u_y"));

Hence, in the case of vector elements, the same vector of unknowns, u_x->values(),
is used both in the ux field and the u_y field. However, these fields can be
used as usual, e.g., a collection of all the fields is made as:

fields_all.rebind (new FieldsFE (3, "u-collector"));
fields_all->attach (*u_x, 1);

fields_all->attach (*u_y, 2);

fields_all->attach (*p, 3);

4.6. Programming with Mixed Finite Elements in a Simulator 193

The fields_all object is suitable for post-processing. In the simulator for
the Stokes problem we based the DegFreeFE on coll which is similar to the
fields_all object made here. However, because ux and u_y share the same
unknowns we would then end up with too many degrees of freedom. Instead
only one of the velocity fields is used to initialize the DegFreeFE.

fields_numbering.rebind (new FieldsFE (2, "u-collector"));
fields_numbering->attach (*u_x, 1);
fields_numbering->attach (*p, 2);

dof _numbering.rebind (new DegFreeFE (*fields_numbering));

The degrees of freedom in the Raviart-Thomas and the robust element are
vectors (normal and tangential) rather than scalar values, and therefore the
£i111EssBC routine is slightly different. We need to know the normal direction
on a side, as well as the value in a given point. To achieve this we make a
loop that goes through all local nodes in all elements,

void PoissonMx:: fillEssBC4V (DegFreeFE& dof) {
. // initialization
if (special_mapping) {

for (e=1; e<= no_elms; e++) {
nl = v_grid.getNoNodesInElm(e) ;
for (1=1; 1<= nl; 1++) {
idof = dof.loc2glob(e,1);
dof .dof2fields(idof, i, f);
if (v_grid.essBoNode (i)) {
v_grid.getCoor (x, 1i);
dof.fillEssBC (idof, uanalcomp->valuePt (x,e,1));
}
}
}

The element number and the local node can be used to compute the nor-
mal vector by MxMapping. This is done in the uAnalVecComp functor holding a
pointer to the analytical solution uAnal functor anal funcs. The uAnal con-
tains the analytical solution in vector form, while the uAnalVecComp computes
the value in either the normal or tangential direction. The code reads,

real uAnalVecComp:: valuePt (const Ptv (real) & p,
int elm_no, int loc_node, real t) {
Ptv (real) values;
anal_funcs->valuePt (values, p);
MxFiniteElement mfe (data->fields_all ());
mfe.setItgRuleManager (1);
mfe.refill (elm_no);
MxMapping & mxmapping = mfe.map ();
Ptv(real) dummy(2); dummy = O;
Ptv(real)& vector = dummy;

if (data->special_mapping) {
if (data->u_bx->getElmType () == "ElmT3gn3bn2Du") {
int side = loc_node;
vector = mxmapping.getNormalVector (side);
return values.inner(vector);

194 K.-A. Mardal and H. P. Langtangen

The integrandsMx function also needs to be modified slightly. When using
vector elements, the basis functions mfe.N(1,i) and mfe.N(2,i) correspond to
the same entry in the element matrix. We manage this by using an additional
integer D, which is set to one in case of vector elements, while it is set to d
(as usual) for standard elements. The (div ¥, L;) term then reads,

// lower left block matrix, the term du/dx*mfe(P).N(i), eq.no. nubf+i
for (d=1 ; d<= nsd; d++) {

if (special_mapping) D = 1;

else D = d;

for (1 = 1; i <= npbf; i++)

for (j = 1; j <= nuxbf; j++)
elmat.A(nUbf+i, (D-1)*nuxbf+j) += mfe.N(3,i)*mfe.dN(d,j,d)*detIxW;

}

A suitable makeSystemMx is,

makeSystemMx (*dof_numbering, *lineq, *fields_all, 1);

This variant of makeSystemMx makes a matrix based on the numbering of
dof numbering, but base the mixed elements on fields_all
We can estimate the error with a varity the functions in ErrorNorms. Func-
tions suitable for our purpose are,
ErrorNorms: :HdivNorm(*uanal, *fields_u, Hdiv_error_norm,
L2_part_error, div_part_error, inf_error, DUMMY, false);

ErrorNorms: :Lnorm(*panal, *p, DUMMY, L1_error_of_p,
L2_error_of_p, Linf_error_of_p);

The complete source code is found in

$NOR/doc/mixed/src/PoissonMx

4.6.5 Numerical Experiments for the Mixed Poisson Simulator

To verify the program we construct a simple problem with a known analytical
solution,

A=1, (4.95)
p = cos(x xy), (4.96)
v = Vp, (4.97)
F=V-v. (4.98)

We have changed the sign of p to obtain symmetry. Krylov solvers that utilize
the symmetry, like SymMinRes and Symmlqg, are much more efficient than the
methods that do not, e.g, BiCGStab and Orthomin. In addition to the norms
of the errors in (4.92)-(4.93), we also measure the H (div; {2) norm,

€1IJ-I(div;_Q) = [lu — V|| (divs2) (4.99)

4.6. Programming with Mixed Finite Elements in a Simulator 195

The Table 4.2 shows the errors associated with the Raviart-Thomas element,
the robust element and the Mini element. Both the Raviart-Thomas element
and the robust element are designed for this problem and we get linear con-
vergence of the velocity error in H (div; £2) and L?(£2), whereas the pressure
converges linearly in L?(§2), as expected from (4.84)-(4.85) and (4.86)-(4.88).
On the other hand, the Mini element approximation does not converge in
H(div; 2). However, the velocity shows linear convergence in L?(§2) and we
have quadratic convergence of the pressure in L?(£2) (c.f [16]).

v-element error\h | 2772 2773 271 275
Raviart-Thomas|e¢s (g0, 0)| 1-00e-1 | 5.05e-2 | 2.53e-2 | 1.26e-2
Raviart-Thomas szg(m 6.72e-2 | 3.36e-2 | 1.68e-2 | 8.39e-3
Raviart-Thomas 5122 @) 1.60e-2 | 7.69e-3 | 3.74e-3 | 1.85e-3

Robust EH (div;)| 6-41€-2 | 3.22e-2 | 1.62e-2 | 8.08e-3

Robust €72(0) |9-8le-3|1.49e-3 | 3.79e-4 | 9.65e-5
Robust 522 2) 1.48e-2 | 7.34e-3 | 3.66e-3 | 1.83e-3
Mini EH (div;2) |1-26e+0|1.32e+0[1.35e+0|1.36e+0
Mini 522(0) 4.82e-2 | 2.42e-2 | 1.22e-2 | 6.09e-3
Mini €%, 2) 2.89e-2 | 8.75e-3 | 2.58e-3 | 7.42e-4

Table 4.2. Error obtained with different elements.

Acknowledgements

The authors are grateful to Professor R. Winther for many useful discussions.

196 K.-A. Mardal and H. P. Langtangen
References
1. D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element method for the

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

stokes equations. Calcolo, 1984.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer-Verlag, 1994.

F. Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods. Springer-
Verlag, 1991.

. A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solving

partial differential equations; Diffpack. In M. Dachlen and A. Tveito, editors,
Mathematical Models and Software Tools in Industrial Mathematics, pages 61—
90. Birkhauser, 1997.

M. Crouzeix and P.A. Raviart. Conforming and non—conforming finite element
methods for solving the stationary stokes equations. RAIRO Anal. Numér,
1973.

R. S. Falk and J. E. Osborn. Error estimates for mixed methods. R.A.I.R.O.
Numerical Analysis, 1980.

C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Vol I and II.
Springer Series in Computational Physics. Springer-Verlag, 1988.

L. P. Franca, T. J. R. Hughes, and R. Stenberg. Stabilized finite element
methods. In M. D. Gunzburger and R. A. Nicolaides, editors, Incompressible
Computational Fluid Dynamics; Trends and Advances. Cambridge University
Press, 1993.

V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equa-
tions. Springer-Verlag, 1986.

C. Johnson. Numerical solution of partial differential equations by the finite
element method. Studentlitteratur, 1987.

H. P. Langtangen. Tips and frequently asked questions about Diffpack. World
Wide Web document: Diffpack v1.4 Report Series, SINTEF & University of
Oslo, 1996.

URL: hitp://www.nobjects.com/diffpack/reports.

H. P. Langtangen. Computational Partial Differential Equations - Numerical
Methods and Diffpack Programming. Textbooks in Computational Science and
Engineering. Springer, 2nd edition, 2003.

H. P. Langtangen. Details of finite element programming in Diffpack. The Nu-
merical Objects Report Series #1997:9, Numerical Objects AS, Oslo, Norway,
October 6, 1997. See ftp://ftp.nobjects.com/pub/doc/NO97-09.ps.gz.

K.-A. Mardal, H. P. Langtangen, and G.W. Zumbusch. Multigrid methods
in diffpack. In Computational Partial Differential Equations using Diffpack.
Springer, 2003.

K.-A. Mardal, J. Sundnes, and H.P Langtangen. Systems of PDEs and block
preconditionering. Springer, 2003.

K.-A. Mardal, X.-C. Tai, and R. Winther. Robust finite elements for Darcy—
Stokes flow.

R. Rannacher. Finite element methods for the incompressible Navier-Stokes
equation. 1999.

http://www.iwr.uni-heidelberg.de/sfb359/Preprints1999.html.

P. A. Raviart. Mixed finite element methods. In D. F. Griffiths, editor, The
Mathematical Basis of Finite Element Methods. Clarendon Press, Oxford, 1984.

4.6. Programming with Mixed Finite Elements in a Simulator 197

19. P. A. Raviart and J. M. Thomas. A mixed finite element method for 2-order
elliptic problems. Matematical Aspects of Finite Element Methods, 1977.

I11

A Robust Finite Element Method for Darcy-Stokes Flow

K.-A. Mardal, X.-C. Tai and R. Winther

In SIAM Journal on Numerical Analysis, vol 40, 1605-1631, 2002.

A ROBUST FINITE ELEMENT METHOD FOR
DARCY-STOKES FLOW

KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

ABSTRACT. Finite element methods for a family of systems of sin-
gular perturbation problems of a saddle point structure are dis-
cussed. The system is approximately a linear Stokes problem when
the perturbation parameter is large, while it degenerates to a mixed
formulation of Poisson’s equation as the perturbation parameter
tends to zero. It is established, basically by numerical experiments,
that most of the proposed finite element methods for Stokes prob-
lem or the mixed Poisson’s system are not well behaved uniformly
in the perturbation parameter. This is used as the motivation
for introducing a new “robust” finite element which exhibits this

property.

1. INTRODUCTION

Let O C R? be a bounded and connected polygonal domain with
boundary 0f2. In this paper we shall consider finite element methods
for the following singular perturbation problem:

(I —e?A)u—gradp =f inQ,
(1.1) divu =g in,
u =0 on 0.

Here ¢ € (0,1] is a parameter, while A = diag(A, A) is the Laplace
operator on vector fields. The vector field f and scalar field g represent
the data. The problem (1.1) only admits a solution if the function g
has mean value zero on 2 and “the pressure” p is only determined up
to addition of a constant.

We note that when ¢ is not too small, and g = 0, this problem is
simply a standard Stokes problem, but with an additional non—harmful
lower order term. However, if f = 0 and ¢ approaches zero then the
model problem formally tends to a mixed formulation of the Poisson
equation with homogeneous Neumann boundary conditions.

When ¢ = 0 the first equation in (1.1) has the form of Darcy’s law for
flow in a homogeneous porous medium, where u is a volume averaged
velocity. In fact, the system (1.1) can be regarded as a macroscopic

1991 Mathematics Subject Classification. Primary 65N12, 65N15, 65N30.
Key words and phrases. singular perturbation problems, Darcy—Stokes flow, non-
conforming finite elements, uniform error estimates.
This work was partially supported by the Research Council of Norway (NFR),
under grants 128224/431, 133755/441, and 135420/431.
1

2 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

model for flow in an “almost porous media,” where u and p represents
volume averaged velocity and pressure, respectively. The zero order
velocity term in the first equation of (1.1) then typically represents a
Stokes drag. An attempt to derive Darcy’s law from volume averaged
Stokes flow is for example discussed in [16]. Generalizations of the
system (1.1) have also been proposed in the modeling of macrosegre-
gation formation in binary alloy solidification, cf. [13]. Systems of the
form (1.1) may also arise from time discretizations of the Navier—Stokes
equation, where the parameter € corresponds to the square root of the
time step, cf. [3]. However, the study of such time discretizations is
not the motivation for the present paper.

The purpose of the present paper is to discuss a finite element method
for the model problem (1.1) with convergence properties that are uni-
form with respect to the perturbation parameter . In §2 we will intro-
duce some notations and discuss various properties of the model (1.1).
Discretizations of the model problem by the finite element method is
described in §3. In particular, we will state stability conditions which
are uniform with respect to the parameter €, and show, by numeri-
cal experiments, that the standard discretizations, proposed either for
e = 1 or € = 0, do not satisfy these stability conditions. A new noncon-
forming finite element discretization is then proposed in §4. We show
that this new discretization is uniformly stable, and, as a consequence
we establish, in §5, error estimates which are uniform in & under the
assumption that proper regularity estimates hold for the solution. In
§6 we then study the asymptotic smoothness of the solution of (1.1)
as € tends to zero. Based on these regularity results we show that,
for fixed data f and g, a uniform O(h'/?) error estimate in a suitable
energy norm can be derived.

In the final section of this paper we study an elliptic system which
formally is a generalization of (1.1). This system is given by

(1.2) (I —e?A)u—d2grad(divu—g) =f inQ,
) u =0 on 09,

where ¢,6 € (0,1]. By introducing p = 6=?(divu — ¢) this system can

be alternatively written on the mixed form

(I —&?A)u—gradp =f inQ,
(1.3) divu —6%p =g inQ,
u =0 on 0.

Note that this system also has meaning when § = 0, and in this case
the system reduces to (1.1).

The symmetric and positive definite system (1.2) is discretized by
a straightforward finite element approach utilizing the new noncon-
forming velocity space constructed earlier in this paper, i.e. the mixed

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 3

system (1.3) is not introduced in the discretization. We show, by nu-
merical experiments and theory, that under the assumption of suffi-
ciently regular solutions, we obtain error estimates which are uniform
both in € and §.

2. PRELIMINARIES

We will use H™ = H™(Q) to denote the Sobolev space of scalar
functions on with m derivatives in L? = L?(Q), with norm || - |-
Furthermore, the notation || - || x is used to indicate that the norm is
defined with respect to a domain K different from 2. The seminorm
derived from the partial derivatives of order equal m is denoted |- |,
ie. |- =1|-I2—1"I3_, The space H* = H*(Q) will denote the
closure in H™ of C§°(£2). The dual space of HJ* with respect to the L?
inner product will be denoted by H ™. Furthermore, LZ will denote
the space of L? functions with mean value zero. A space written in
boldface denotes a 2—vector valued analog of the corresponding scalar
space. The notation (-,-) is used to denote the L? inner product on
scalar, vector, and matrix valued functions.

Below we shall encounter the intersection and sum of Hilbert spaces.
We therefore recall the basic definitions of these concepts. If X and Y
are Hilbert spaces, both continuously contained in some larger Hilbert
spaces, then the intersection X NY and the sum X + Y are themselves
Hilbert spaces with the norms

2l xy = (|2l% + [12113)"°
and

el = _inf(llefB + Iyll2) 2
=TTy

r€X,yeYy

Furthermore, if X NY is dense in both X and Y then (X NY)* =
X*+Y*. We refer to [4, Chapter 2| for these results.

If ¢ is a scalar field then grad g will denote the gradient of ¢, while
div v denotes the divergence of a vector field v. We shall also use the
diffential operators

—0dq/0
curlg = (8qq/{9xf2> and rotv = 0v;/0xs — Oy /0x;.

Note that, due to Green’s theorem, these definitions lead to the follow-
ing “integration by parts formula”

(2.1) /curlq-vdx:/qrot'vdx—l—/ q(v-t)dr,
Q Q 89

where t is the unit tangent vector in the counter clockwise direction on
012, and 7 is the arclength.

4 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

The gradient of a vector field v is denoted Dwv, i.e. Dv is the 2 x 2
matrix with elements

(D’U)i’j = 8’0,’/8.Tj 1 S ’L,_] S 2.

Hence, for any u € H? and v € H we have
—(Au,v) = (Du,Dv) = / Dwu : Dv dz,
Q

where the colon denotes the scalar product of matrix fields. Recall also
the identity

(2.2) A = grad div — curlrot,

which can be verified by a direct computation. As a consequence, we
obtain the identity

(2.3) (Du, Dv) = (divu,divv) + (rot u,rotv) Yu € H', v € Hj.

In addition to the function spaces introduced above we will also use
the space H (div) = H (div; Q) consisting of all vector fields in L? with
divergence in L2, i.e.

H(div) = {v € L? : divw € L*}.

Similarly,

H(rot) = {v € L? : rotv € L?},
and the norms of these spaces are denoted by || -||aiv and || - ||z, respec-
tively. Furthermore, Hy(div) is the closed subspace of H(div) consist-
ing of functions with vanishing normal component on the boundary,
i.e.

Hy(div) ={ve H(div) :v-n =0 on 00},
where n is the unit outward normal vector.
Throughout this paper a.(-,-) : H' x H' — R will denote the bilin-

ear form

a.(u,v) = (u,v) +&°(Du, Dv).

A weak formulation of problem (1.1) is given by:
Find (u,p) € H} x L3 such that

a:(u,v) + (p,dive) =(f,v) VveH,

(24) (divu,q) =(g,9) Vg € L§.

Here we assume that data (f,g) is given in H~' x L2.

The problem (2.4) has a unique solution (u,p) € Hg x L3. This
follows from standard results for Stokes problem, cf. for example [11].
However, the bound on (u,p) € Hy x L3 will degenerate as € tends
to zero. In fact, for the reduced problem (2.4) with & = 0 the space
H; x L% is not a proper function space for the solution. However, the
theory developed in [6] can be applied in this case if we seek (u,p)
either in Hy(div) x L3 or in L? x (H'N L}), and with data (f, g) in the

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 5

proper dual spaces. These results are in fact consequences of standard
results for the Poisson equation.

The fact that the regularity of the solution is changed when ¢ be-
comes zero strongly suggests that e-dependent norms and function
spaces are required in order to obtain stability estimates independent
of . Furthermore, since the reduced problem is well posed for two com-
pletely different choices of function spaces, this indicates that there are
at least two different choices of e-dependent norms. In present paper
we will study the problem (1.1) with respect to an e-dependent norm
which reduces to the norm in Hy(div) x L2 when ¢ = 0. Our goal is
to derive discretizations which are uniformly stable with respect to ¢
in this norm. This appears to be the proper choice if we want to study
discretizations which also can be generalized to non-mixed approxima-
tions of elliptic problems of the form (1.2).

Remark. When we refer to the reduced system corresponding to (1.1)
we refer to the system (1.1) with ¢ = 0 and the boundary condition
u = 0 replaced by u-m = 0. This system has a weak formulation given
by (2.4), but with the solution space H{ replaced by Hy(div). O

The space Hy(div) Ne - Hy, with norm || - || given by

[vllZ = llvllg + Il div]l + [Dv]lg,

is equal to H| as a set for € > 0, but equal to Hy(div) for ¢ = 0. The
system (2.4) can alternatively be written as the system

+()- ()

where the coefficient operator A, is given by
I—-¢?A —grad
(2.5) A = < div 0)

Let X, be the product space (Hy(div) Ne - H}) x L2 and X the
corresponding dual space with respect to the L?—inner product. This
space can also be expressed as

X*=(H '(rot) +e 'H ') x Lj.
Here the + sign has the interpretation as the sum of Hilbert spaces,
and the space H *(rot) is given by
H '(rot) ={ve H ':rotve H '}
The operator A, can be seen to be an isomorphism mapping X, into
X. Furthermore, the corresponding operator norms
[Acllexe,xzy and (AT 2o, x0)

are independent of €. In fact, with the definitions above, this is also
true for € € [0, 1], i.e. the endpoint € = 0 can be included.

The uniform boundedness of A, is straightforward to check from the
definitions above, while the uniform boundedness of the inverse can be

6 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

verified from the two Brezzi conditions, cf. [6]. For the present problem
these conditions read:
There are constants «g, 5y > 0, independent of ¢, such that

(g, divv)

(2.6) sup > wpllglle Vg € Lg,
veHo(div)Ne- H} o]l

and

(2.7) az(v,v) > Bollv[|? Vv € Z,

where Z = {v € H} : divv = 0}.

Since it is well known, cf. for example [11, Chapter 1, Corollary 2.4],
that condition (2.6) holds for € = 1 it also holds for all € € [0, 1] with
the same constant ag. Furthermore, condition (2.7) holds trivially with
/BO =1fore e [0,]_]

3. UNIFORMLY STABLE DISCRETIZATIONS

The purpose of this section is to discuss finite element discretizations
of the system (1.1). In particular, we shall be interested in discretiza-
tions which are stable uniformly in the parameter ¢ € (0, 1].

Let V, C H} and Q) C L2 be finite element spaces, where h € (0, 1]
is a discretization parameter. The weak formulation (2.4) leads to the
following corresponding finite element discretization:

Find (up,pr) € Vi X Qp such that

ac(up, v) + (pp,dive) = (f,v) Yv eV,
(divus, q) = (g,9) Vg € Q.

Remark. Below we shall also encounter several examples of noncon-
forming approximations of (2.4), i.e. the space Vj, € Hj. In all these
examples the bilinear form a.(,-) is understood to be the sum of the
corresponding integrals over each element. No extra jump terms are
added. The same remark applies to the energy norm, | -||.. O

The discretization (3.1) is stable in the sense of [6] if proper discrete
analogs of the conditions (2.6) and (2.7) holds. These conditions are:

(3.1)

Stability conditions.
The discretization (3.1) is said to be uniformly stable if there exist
constants «, 5 > 0, independent of ¢ and A, such that

(¢,divv)

(3.2) sup ———= > al|lq|lo Vg € Q,
vevi |Vl

and

(3.3) a.(v,v) > ﬁ|\|’u|\|§ Vv € Z,

where Z, = {v € V,,: (divw,q) =0 Vq € Qp}.

For the case ¢ = 1, or more precisely for &€ bounded away from zero,
the second condition is obvious. In this case there are several choices of
pairs of finite element spaces which satisfies (3.2) with « independent

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 7

of h. We mention for example the Mini element proposed in [1] or the
P, — Py element, i.e. we choose continuous quadratic velocities for V},
and the corresponding space of piecewise constants for @y, cf. [10]. For
a general review of stable Stokes elements we refer to [8].

However, most of these spaces do not lead to discretizations which
are stable uniformly in . The main reason for this is that when ¢
approaches zero the second condition is no longer obvious. In fact, for
the reduced problem with ¢ = 0 the condition (3.3) requires

lo[l5 > Bllvllay, Vv € Zn.
Hence, we must have
(3.4) |divollo < ¢|lv|lo Vv € Z,

for a suitable constant ¢ independent of h, and this condition does not
hold for the common conforming stable Stokes elements.

Example 3.1 We consider the problem (1.1) with 2 taken as the
unit square. The domain is triangulated by first dividing it into h X h
squares. Then, each square is divided into two triangles by the diag-
onal with a negative slope. The system is then discretized using the
P, — P, element with respect to this triangulation, i.e. V;, C Hj con-
sists of piecewise quadratic functions, while @), C L3 is the space of
discontinuous piecewise constants. This discretization is known to be
stable when & > 0 is fixed, cf. [10]. However, our purpose here is to
investigate how the convergence behave as € becomes small.

We consider the system (1.1) with the function g chosen to be identi-
cal zero, while f = u—e?Au—grad p, where u = curlsin®(rx,) sin?(7zy)
and p = sin(7z,). Hence, in this example the solution is independent
of e.

In Table 3.1 below we have computed the relative L? error in the
velocity u, i.e. e(h) = ||u — up||o/||u||o, for different values of € and h.
A third order Gauss-Legendre rule, cf. [17], was used here, and in all the
other examples of this section, to perform the necessary integrations.
For each fixed ¢ the convergence rate with respect to h, v, is estimated
by assuming e(h) = ch”, and by computing a least squares fit to this
log—linear relation.

le\h]] 2% | 23 | 2% | 2° [2% [rate |
1 [[3.84e-2[4.75e-3 [6.41e-4 | 1.04e-4 [2.11e-5 || 2.72

272 |1 6.15e-2 | 1.73e-2 | 4.65e-3 | 1.20e-3 | 3.05e-4 | 1.92
274 || 4.55e-1 | 2.10e-1 | 6.78¢-2 | 1.86e-2 | 4.79¢-3 || 1.67
278 1 9.31e-1 | 9.68e-1 | 9.43e-1 | 8.14e-1 | 5.32e-1 || 0.19
0 | 9.35e-1|9.84e-1 | 1.00 1.01 1.02 || -0.03

TABLE 3.1. The relative L? error in velocity obtained
by the P, — P, element.

8 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

When ¢ = 1 the convergence seems to be at least quadratic with
respect to h in this case. However, the convergence deteriorates as e
becomes smaller, and for ¢ = 0 there is no convergence.

Table 3.2 is based on the corresponding relative errors in the energy
norm, i.e. the norm || - ||, for velocity and the L? norm for pressure.
For simplicity only the estimated convergence rates are given.

€ 1 [272[27%] 278 0
rate, velocity || 1.84 | 1.01 | 0.70 | -0.79 | -1.03
rate, pressure || 1.06 | 1.01 | 1.09 | 0.13 | -0.20
TABLE 3.2. Estimated convergence rates for the velocity
and pressure, measured in the energy norm, for the P —
P, element.

These results indicate a similar degenerate behavior with respect to
e. In fact, when ¢ = 0 the norm, ||uy||., seems to grow like h~! as h
approach zero. This must be due to the fact that only the projection
of divuy, into piecewise constants is controlled by the method in this
case. [

Ezxample 3.2 We repeat the experiment above, but with the differ-
ence that we use the nonconforming Crouzeix—Raviart element instead
of the P, — P, element, i.e. V}, consists of piecewise linear vector fields
which are continuous at the midpoint of each edge of the triangulation,
while @, C L2 is the space of piecewise constants. It is well known
that for any fixed ¢ > 0 this element leads to a stable discretization,
cf. [10].

In Table 3.3 we have again computed the relative L? error in the
velocity u for different values of ¢ and h.

le\h]] 22 | 23 | 2% | 2° [2% [rate |
1 [[1.83e-1]4.89e-2[1.26e-2 | 3.19¢-3 | 8.02e-4 | 1.96

272 [12.19¢-1 | 6.89¢-2 | 1.91e-2 | 4.96e-3 | 1.26e-3 || 1.87
274 [/ 6.42e-1 | 3.86e-1 | 1.53e-1 | 4.58-2 | 1.21-3 | 1.45
278 [19.51e-1| 1.00 1.01 | 9.43e-1 | 7.44e-1 | 0.08
0 [9.53e-1] 1.01 1.04 1.05 1.06 | -0.04

TABLE 3.3. The relative L? error in velocity obtained
by the nonconforming Crouzeix—Raviart element.

The L? convergence appears to be quadratic when ¢ is large. How-
ever, also in this case the convergence deteriorates as € decreases, and
for the reduced problem, with ¢ = 0, the observed values for the relative
error is monotonically increasing.

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 9

The corresponding estimates of the the convergence rates in energy
norm decreases from approximately linear convergence to no conver-
gence as is shown by Table 3.4.

€ 1 [272 274] 278 0
rate, velocity | 0.98 | 0.97 | 0.74 | 0.03 | -0.03
rate, pressure || 1.00 | 0.93 | 0.98 | 0.12 | -0.03
TABLE 3.4. Estimated convergence rates for the veloc-
ity and pressure, measured in the energy norm, for the
Crouzeix—Raviart element.

In fact, the divergence of the Crouzeix-Raviart element in the case
¢ = 0 is not surprising. Since the divergence free vector fields in this
case can be realized as the curl operator applied to the corresponding
Morley space, this behavior of the Crouzeix-Raviart element is closely
tied to the divergence of the Morley element for the Poisson equation,
cf. [14]. O

The two examples above show that the P, — P, element and the
nonconforming Crouzeix-Raviart element, which both are known to be
stable for ¢ = 1, fail to give methods which converge uniformly in ¢.
The divergence of the P, — Py element for £ = 0 is basically due to the
fact that the estimate (3.4) does not hold, and therefore the method
is unstable, while the divergence of the Crouzeix-Raviart method is
caused by the inconsistency of the method.

Ezxample 3.3 We repeat the experiment above once more, but this
time the system (1.1) is discretized by using the Mini element, i.e.
V., C H} consists of linear combinations of piecewise linear functions
and cubic bubble functions with support on a single triangle, while
Qn C L2 is the space of continuous piecewise linear functions.

In Table 3.5 below we have computed the relative error in the veloc-
ity, with respect to the energy norm || - ||, for different values of ¢ and
h.

[e\h[[272]2%] 27 | 275 | 2% Jrate|
1 [[3.01]1.65]8.42e-11]4.22e-1]2.11e-1[0.96
2 112.70 [1.55 | 7.80e-1 | 3.90e-1 | 1.95¢-1 || 0.96
4 11'3.711.67|7.89e-1 | 3.87e-1 [1.92e-1 || 1.07
-8 '7.32]4.28] 2.79 1.64 |6.51e-1]0.84
0 ||[7.441476] 3.70 3.39 3.30 [|0.28

TABLE 3.5. The relative error in velocity, measured in
the energy norm, for the Mini element.

DN N DO

When £ = 1 the convergence seems to be linear with respect to h.
This agrees with the theoretical results given in [1]. The convergence

10 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

deteriorates as € becomes smaller, and for ¢ = 0 there seems to be
essentially no convergence in the energy norm.

An interesting observation can be made for the Mini element if we
consider the corresponding errors for the pressure p. In Table 3.6 below
we study the relative error given by ||p — prllo/||2o-

A 27 [2% [27 [25 [2° [rate]
1 8.78 2.81 | 8.85e-1|2.95e-1|1.02e-1 | 1.61
272 11 6.09e-1 | 1.84e-1 | 5.62e-2 | 1.85e-2 | 6.40e-3 || 1.64
27411 6.08e-2 | 1.51e-2 | 3.88e-3 | 1.21e-3 | 4.07e-4 | 1.81
278 |1 3.58¢e-2 | 9.93e-3 | 2.34e-3 | 4.10e-4 | 6.00e-5 | 2.30
0 | 3.59-2 | 1.02e-2 | 2.75e-3 | 7.23e-4 | 1.87e-4 || 1.90

TABLE 3.6. The relative L? error in the pressure ob-
tained by the Mini element.

The surprising observation is that for the pressure the convergence
seems to be uniform with respect to €. In fact, the convergence rate
seems to improve as € tends to zero and for £ small the convergence
with respect to h appears to be quadratic. This is a striking difference
to what we observed in Examples 3.1 and 3.2. In both these cases the
error in the pressure diverges as € tend to zero, cf. Tables 3.2 and 3.4.

What we have observed here is not special to the present example.
The Mini element leads to a discretization which is uniformly stable

with respect to € in a proper e—dependent norm different from || - ||..
If we define the solution space X, by
(3.5) X.=(L’ne-Hy) x (H' NL}) +e ' L%,

then it can be shown that the Mini element will in fact produce a
uniformly stable discretization in the corresponding energy norm. This
norm degenerates to the norm of L? x H' as € tends to zero, cf. the
discussion in Section 2 above. In order to confirm this behavior we
computed the relative error in velocity once more, but this time we
used the L? norm instead of || - ||.. The results are given in Table 3.7.

e\ 22 [2% | 2% | 25 | 25 [rate]
1 [3.54e-1[1.03e-1] 2.64e-2 | 6.60e-3 | 1.65¢-3 || 1.95

~2 113.16e-1 | 8.79¢-2 | 2.20e-2 | 5.48¢-3 | 1.37e-3 || 1.97
—4 11.90e-1 | 4.60e-2 | 1.07e-2 | 2.59¢-3 | 6.42¢-4 || 2.06
—8 '1.81e-1|7.23e-2 | 2.87e-2 | 8.70e-3 | 1.74e-3 || 1.64
0 | 1.82e-1]7.66e-2]3.59¢-2|1.76e-2 | 8.75¢-3 || 1.09

TABLE 3.7. The relative L? error in velocity obtained
by the Mini element.

DN DN D

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 11

We observe that as ¢ decreases from one to zero the corresponding
convergence rate decreases from approximately two to one. However,
there is no sign which indicates that the behavior will deteriorate below
linear convergence. To complete the picture we have also computed
the estimated convergence rares for the pressure in H'. The results are
given in Table 3.8.

e [1 [22[2%[2°] 0 |
rate || 0.61 | 0.64 | 0.86 | 0.99] 0.99 |

TABLE 3.8. Estimated convergence rates for the H' er-
ror of the pressure obtained by the Mini element.

The estimated convergence rate is clearly below one when ¢ = 1,
while it improves towards one as ¢ is decreased. This is consistent with
the fact that the norm of the pressure component of the product space
(3.5) is weaker than the H' norm for each € > 0, but approaches the
H' norm as ¢ apprach zero.

The results above seem to confirm that the Mini element leads to
a uniformly convergent discretization as long as the error is properly
measured. However, as motivated in Section 2 above, in the present
paper we are interested in a discretization of the system (1.1) which
has a uniform behavior when the error is measured in (Hy(div) Ne -
H|}) x L%. Therefore, for our purpose here, the Mini element should
not be regarded as a uniformly stable element. [

Let us recall that if a standard conforming Stokes element is not
uniformly stable with respect to e, then this instability must be caused
by the failure of the second stability condition (3.3), or equivalently
(3.4). Note that the stability condition (3.4) will be trivially satisfied
if the spaces V, X @) are constructed such that all elements of Z),
are divergence free, i.e. Z, C Z. In fact, nearly all proposed finite
element methods for the reduced problem will have this property. This
is for example true for the Raviart-Thomas spaces, cf. [15], and for
the Brezzi-Douglas—Marini spaces of [7]. However, in all these cases
the spaces V}, will only be a subspace of Hy(div) and not of H{, due
to the fact that only the normal components of the elements of V,
are required to be continuous across element edges. It is therefore not
clear that these spaces will be useful for problems of the form (1.1)
with € > 0.

Ezample 3.4 We repeat the calculation done in the three examples
above, but now we use the lowest order Raviart—Thomas space for
the discretization. Hence, for ¢ = 0 we will expect to obtain linear
convergence with respect to h. On the other hand, for ¢ > 0 the method
is nonconforming and there seems to be no reason to expect that the
method is convergent in this case. In Table 3.9 we have computed the

12 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

estimated convergence rates with respect to h for the relative L? errors
of the velocity w and the pressure p for different values of ¢.

£ 1 [272278278 0
rate, velocity | -0.07 | -0.07 | 0.28 | 0.97 | 0.97
rate, pressure || -0.04 | 0.08 [0.86 | 1.01 | 1.01

TABLE 3.9. Estimated convergence rates for the L? er-
rors of the velocity and pressure for the Raviart—Thomas
element.

As expected, the method appears to be divergent for ¢ > 0. [J

4. A ROBUST NONCONFORMING FINITE ELEMENT SPACE

The four examples presented above illustrate that none of the stan-
dard elements, proposed for the case ¢ = 1 or ¢ = 0, will lead to a
discrization of the problem (1.1) with uniform convergence properties
with respect to €, when the error is measured in the norm of the space
(Hy(div)Ne- H}) x L2. The purpose of the rest of this paper is there-
fore to construct and analyze a new finite element space which has this

property.

4.1. The finite element space. In order to describe the new finite
element space we will first define the proper polynomial space, or shape
functions, on a given triangle. Let T C R? be a triangle and consider
the polynomial space of vector fields on T' given by

V(T)={velP: :divveP;, (v-n).ecP, Veec&(T)}

Here P, denotes the set of polynomials of degree k£ and £(T') denotes
the set of the edges of T'. Furthermore, n is the unit normal vector on
the edge e. Below we will also use t to denote the unit tangent vector
on e, while 7 denotes the arc length along e.

The space P2 is a vector space of dimension twenty. Furthermore,
the conditions

divvePy, and (v-n)l.eP; Vee&(T),

represent at most eleven linearly independent constraints on this space.
Therefore we must have

dim V/(T) > 9.
In fact, we shall show that dim V' (T') = 9.

Lemma 4.1. The space V (T) is a linear space of dimension nine. Fur-
thermore, an element v € V(T) is uniquely determined by the following
degrees of freedom:

o [(v-n)rFdr k=0,1 forallee&(T).

o [(v-t)dr forallee&(T).

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 13

v N

>

Vo

FIGURE 4.1. The degrees of freedom of the new noncon-
forming element.

Proof. Since V(T') is a vector space of dimension > 9 it is enough to
show that elements of V(T") are uniquely determined by the given nine
degrees of freedom. Assume that v € V(T) with all the degrees of
freedom equal zero. In particular, this implies that

(v-n)lsr =0.

As a consequence of this

/divvdx:/ v-ndr =0.
T aT

Hence, since divv € Py, we conclude that v is divergence free.
However, since v € P is divergence free we must have v = curlw
for a suitable scalar function w € P,. Furthermore, since

(gradw-t)|. = (v-n)l.=0

for each edge e, we conclude that gradw -t = 0 on O7T. Since w is
uniquely determined only up to a constant, we can therefore assume
that w =0 on 0T

Hence, w is of the form w = pb, where p € P; and b is the cubic
bubble function with respect to 7', i.e. b = A A\gA3, where \;(z) are the
barycentric coordinates of x with respect to the three corners of 7'. In
particular, 3_2‘6 does not change sign on e. Furthermore,

8 ob

|8T - _‘6T7

/ —dT—/—dT—/'v-thz() Ve € £(T).

We can therefore conclude that p has a root in the interior of e. How-
ever, if p € P; with a root in the interior of each edge of T then
p=w=0.]

and

Let {75} be a shape regular family of triangulations of €2, where A is
the maximal diameter. Furthermore, let £, be the set of edges of 7.

14 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

Define a finite element space of vector fields V},, associated with the
triangulation 7, as all functions v € V}, such that

ev|lreV(T) forall T €T,
° fe(’v -n)7* dr is continuous for k = 0,1 for all e € &,
e [(v-t)dr is continuous for all e € &,

Here we assume that v is extended to be zero outside €2, i.e. if e is an
edge on the boundary of €2 then we require

/(’U"n)deTZO k=0,1 and /(’U't)dT:O.

It follows from Lemma 4.1 that any function v € V}, is uniquely deter-
mined by the two lowest order moments of v-n and by the mean value
of v - t for all interior edges, cf. Figure 4.1.

If v € V, then the normal component v - n is continuous for all
interior edges. Therefore, V;, C Hy(div). However, the tangential
component of v is not continuous, only the mean value with respect to
each edge is continuous. Therefore, V,, ¢ H;. In addition to the space
V,, we let Q, C L2 denote the space of scalar piecewise constants with
respect to the triangulation 7.

In the rest of this paper V}, and), will always refer to the finite ele-
ment spaces just introduced. The corresponding nonconforming finite
element approximation of the system (1.1) is defined by the system
(3.1).

4.2. Properties of the new finite element space. It follows from
the definition of V}, that divV,, C Q. Hence, if we define Z, C V}, as
the weakly divergence free elements of V,, i.e.

Zy={veV,:(divv,q) =0 Vqe Qn},

then these elements are in fact divergence free.
Remark. Tt can be seen that

(4.1) Zy, = curl W,

where W, is an associated nonconforming H?-element. Locally, on each
triangle W), consists of all P, polynomials which reduces to a quadratic
on each edge. In addition, W, C Hj and the normal derivatives of
functions in W}, are continuous on the average on each edge. The finite
element space W), is precisely described and analyzed in [14]. The
identity (4.1) was actually the main motivation for the construction of
the space V},. More precisely, the spaces W}, V,, and @), are related
such that the sequence

div

0 — W,/R =24 v, > Qn

v
e

is exact. In particular, divV, = Q. O

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 15

Define an interpolation operator ITj : Hj — V}, by

/(Hh'v-n)deTz/('v-n)deT k=0,1

/e(l'[hv-t)dT:/e('v-t)dT

for all e € &,. In addition, let P, : L2 — Qj, be the L?>—projection. From
the definition of the operator II; we easily verify the commutativity
property

(4.2) divIT,v = Pydive for all v € Hy.

In fact, for all T" € T,

/divﬂhvda::/ (Hhv-n)dT:/ (’u-n)dT:/divvdx
T or or T

and hence (4.2) follows.
Since)y, is the space of piecewise constants the L?-projection P
onto @)y, satisfies

(4.3) lw = Pawllo < chl|wllx

for all w € H'NLE, where ¢ > 0 is independent of 4 and w. The opera-
tor I}, is well defined on H}, it is locally defined on each triangle, and
it preserves linear functions locally. Furthermore, the polynomial space
V(T) is invariant under affine Piola transformations. More precisely,
let T € T, and ¢(x) = Bz + ¢ an affine map of T onto a reference
triangle T. Then the Piola transform, v — v, where

9(%) = (det B)"'Bu(z), = ¢(x),

maps V(T) onto V(T'). Therefore, approximation estimates for the
operator II, can be derived from standard scaling arguments utilizing
the shape regularity of {7,}. In particular, there exists a constant
¢ > 0, independent of h such that

(4.4) I ||aiy < ||TT4v|

1h < ol

In addition, from the Bramble-Hilbert lemma we can further conclude
that

(4.5) ITLv — v|jn < ch* ||| for0<j<1<k<2
and for all v € H} N H*. Here || - ||;, denotes the piecewise H—norm
oI5 =Y l[0l[5 1
TET;,

In fact, if T is a reference triangle, and IT : H*(T) — V(T) the
corresponding interpolation operator, then for all v € H(T')

1/2 1/2

1107 < erllolyor < calloll 21017

16 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

where ¢, and ¢, only depends on T. Hence, from a scaling argument
we also obtain the low order estimate

(4.6) 1w — vl < ch?||v]|d/?||v])2

for all v € H}.

Next we will verify the stability conditions (3.2) and (3.3) for the
product space V}, x (0. However, due to the fact that we are consider-
ing a nonconforming finite element approximation of the system (1.1),
where V}, € H{, the norm || - || has to be properly modified. For each
v € V), we define

ol = lolldy +€* Y 1 Dvll3 1
TET,
Note that for € = 0 this norm is simply equal to || - ||qiv, While for e =1
it is equivalent, uniformly in A, to the piecewise H'-norm || - ||1 .

Lemma 4.2. There exists a constant oy > 0, independent of h, such
that

> aillgle for all g € Qn.
vevr [ollin

Proof. This follows by a standard argument from the properties of
the interpolation operator II, and the corresponding continuous re-
sult (2.6). In fact, since for any v € H} and g € Q;, we have

(g, divII,v) = (¢,divv)
and
[Tl < alvly,
we can take oy = p/cy. O

The following uniform stability result is an immediate consequence
of the previous lemma.

Theorem 4.1. The pair of spaces (Vi, Q) satisfies the uniform sta-
bility conditions (3.2) and (3.3), but with the norm || - ||. replaced by

Proof. The norms || - ||1,» and | - ||1,» are equivalent on V}, and || - ||
decreases as € decreases. It follows from Lemma 4.2 that condition (3.2)
holds. Since Z;, C Z the second condition (3.3) holds with 8 =1. O

&,h-

5. ERROR ESTIMATES FOR SMOOTH SOLUTIONS

Since our new finite element space (V}, @Q)y) satisfies the proper sta-
bility conditions (3.2) and (3.3), uniformly with respect to ¢, it seems
probable that the corresponding finite element method will in fact have
uniform convergence properties. In the present section we shall inves-
tigate this question under the assumption that the solution (u,p) of
the continuous problem is sufficiently smooth, while the effect of the

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 17

e—dependent boundary layers will be taken into account in the next
section.

We will start the discussion here with a numerical example which is
completely similar to Examples 3.1-3.3.

Ezxample 5.1 We redo the computations done in Examples 3.1-3.3,
but this time we use the finite element spaces constructed above. In
all the numerical examples with the the new element we used a fifth
order Gauss-Legendre method, cf. [17], as integration rule.

In Table 5.1 we have computed the estimated convergence rates with
respect to h for the velocity and the pressure.

€ 1 [22]2%]28] 0
rate, velocity in L? || 1.93[1.94[1.94 [1.90 [1.92
rate, velocity in || - || || 0.98 | 0.99 | 1.05 | 1.72 | 1.92
rate, pressure in L° | 0.98 | 1.00 | 1.00 | 1.00 | 1.00
TABLE 5.1. Estimated convergence rates for the velocity
and the pressure for the new nonconforming element.

o

We observe that the convergence rates in L? appears to be close to
quadratic in velocity and linear in pressure uniformly with respect to
e € [0, 1], while the convergence in the energy norm appears to be at
least linear for each € > 0. In fact, as € approaches zero the convergence
rate tends to two. This improved convergence is partly due to the fact
that the exact solution w is divergence free in this case.

To make a direct comparison between the P, — P, element, the
Crouzeix—Raviart element, the Mini element, and the new element
when ¢ is small compared to A, we have plotted the errors in veloc-
ity for the different methods as functions of o, where h = 277. Here
we have chosen € = 278, The errors are plotted, in a logarithmic scale,
in Figure 5.1.

To the left the L? errors are plotted, while the errors in the energy
norm are depicted to the right. We observe that the Mini element
and the new element bahaves comparably with respect to the L? norm,
while the new element clearly is superior to all the other methods with
respect to the energy norm. [J

The rest of this section will be devoted to establishing error estimates
for the new nonconforming finite element method. Throughout this
section we will assume that w € H? N H, where (u,p) is the weak
solution of (2.4). For convenience we also introduce the notation || - |4
for the norm on Vj, associated the bilinear form a,, i.e.

lvllz = llvllg+ > 1Dy

TETs

0,1

18 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

10 : : : 10°
10° B
10°
10" b E
=1 ~ =~ -
10 ~ -
S 100 - - —————— - - -
> ~
N
N
107 N
N
N\
A
A
,3 —
10°H — P2 P0
= = Mini
— New element
— — Crouzeix—-Raviart
10’4 I I I 10’4 L L L
2 3 4 5 6 2 3 4 5 6

FIGURE 5.1. The errors in velocity, measured in the L2
norm and the energy norm, as functions of o =

—log(h)/ log(2).

For any v € V},, we define the consistency error E, »(u,v) by

Eshuv—e Z/rotu v -t dr.

ecéy

Here, if T~ and T, are two triangles, sharing an edge e, then [w]| =
[w]e = w|p, —w|r_ denotes the jump of w across e, while ¢ is the unit
tangent vector along e corresponding to the clockwise direction on 7.
Since [v - n]. = 0 for any v € V, it follows from (2.2) and Green’s
theorem, in particular from (2.1), that

ac(u,v) + (p,dive) = (f,v) + Ecp(u,v) VveV,
)

(5.1) (divu,q) = (g.q) Vg e L2

where the term E. j, appears due to the fact that V,, ¢ Hj.
In the error analysis below we will need proper estimates on the
consistency error E, ;. The following bounds are therefore useful.

Lemma 5.1. If u € H? N H} then

sl f Hroculy

e, hY2|| rot |2 rot w;

vev, [0la),

where ¢ > 0 1s independent of € and h.

Proof. Let e € &, and v € H, + V. Since the mean value with respect
to e of v -t is zero, it follows from a standard scaling argument, cf. for
example [5, Section 8.3] or [14, Section 4] for similar arguments, that

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 19

for any ¢ € H*
[oolv-tldr <infy,er |6 — Aloell[v -t — ulllo
(5.2) < { ch|l . (0hr + v]ir,)
-~ 1/2 1/2
ch'? 6o ollola. (ol + [v]ir).

Here 7" and 7Ty denote the two triangles meeting the edge e and €2, =
T_UT,. Since

|E. p(u,v)| < € Z |/(rot u) [v-t]dr|,

ecéy, €

the desired estimate follows by applying the estimate (5.2) with ¢ =
rot w, summing over all edges, and using the fact that

Z \’u\iT < e %a.(v,v).

ecéy,

O

Let (wp,pn) € Vi X Qp, be the approximation of (u,p) derived from
the discrete system (3.1). From (3.1) and (5.1) we obtain

(5.3) ae(u — up,v) + (p — pr, divo) = E, p(u, v)
for all v € V},. Furthermore,
divuy, = P, divu = divII,u.

Therefore, taking v = IT,u — u;, in (5.3) we obtain

a:(u — up, Hpu — up) = E, p(u, Iu — up).
Since a, is an inner product we further have

T — up? < ||lu — pul]? + 2a.(u — up, Tu — up)
< |lu — w2 + 2B, 4 (u, hu — uy),

Hence, we conclude that

E; p(u,
(5.4) [— ulle < 2(||u — Mhullo + sup |Eep(u, v)|
veEV), ||'U||a

).
From this basic bound we easily derive the following error estimate.

Theorem 5.1. If u € H>N H} and p € H' N L then the following
estimates hold:

lu — wuplo + €l ot(u — wp)lo < e(h* + eh)|ullz,
| div(u — wp)||o < ch|| divul
P = pallo < ch([plly + (€ + R)[[ull2).
Here ¢ > 0 is a constant independent of € and h.
Remark: Here, and below, the differential operators D and rot, ap-

plied to vector fiels in Vj,, are defined locally on each triangle of the
triangulation 7,. O

20 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

Proof. The first estimate is a direct consequence of (4.5), (5.4), and
Lemma 5.1. The second estimate follows from the bound (4.3), and
the fact that divwu, = P, divu.

In order to establish the third estimate we first observe that (4.3)
implies that

(5.5) lp = Pupllo < chllpll:.

Hence, it only remains to estimate P,p—py. However, from the modified
inf-sup condition (3.2), c¢f. Theorem 4.1, we obtain

Pp— di
| Pup — pallo < o' sup (Pup — pn, div o)
veVi lv

&,h

Furthermore, for any v € V}, we have

(Pnp — pp,dive) = (p — py,divo)
= _as(u — Up, ’U) + Eg,h(u’ ’U),

which implies that

. E, LU,V
(P = pnsivo)] < (Ju =l + sup ZHE o,
veVh a
or
_ E.p(u,v
(5.6) | Pp — pallo < o' (||lu — uslla + sup M)

vevi, vl
From the previous estimates we therefore obtain
[1Pap — pallo < c(h? + eh)|[ull2,

and together with (5.5) this establishes the desired estimate on the
error ||[p — palfo- O

Remark: As an alternative to the estimates given in Theorem 5.1
above we can also obtain

(5.7) lu — wnllo + €| rot(w — un)lo < ch(||ully + &||u|l2)
and
(5.8) I — prllo < ch(llplly + [Jull: + €l|ul]2).

These modifications are obtained if we use the estimate
[w — Ipullo < chllully,

obtained from (4.5), in (5.4) instead of the corresponding quadratic es-
timate. Even if the modified estimates are weaker for uniformly smooth
solutions, they are sometimes preferable for more singular solutions. [J

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 21

6. BOUNDARY LAYERS AND UNIFORM ERROR ESTIMATES

In general, we cannot expect that the norm ||ul|s of the solution
of (1.1) is bounded independently of €. In fact, as € approach zero
even || rot ul|y should be expected to blow up. Hence, the convergence
estimates given in Theorem 5.1 will deteriorate as £ becomes small.
The following example shows that this behavior of the error is in fact
real.

Example 6.1 In this example we study the convergence for an ¢
dependent solution. Let w = ecurle ®%/¢ p = ge #/¢ f = u —
e2Au — grad p and g identical zero. In fact, w is not the solution of
the corresponding system (1.1), since the boundary conditions are not
satisfied. However, the adaption of the new method to nonhomoge-
neous boundary conditions is straightforward.

The significance of the solution w just given is related to the fact
that the quantities || rot ullp and ¢|| rot u||; both are of order /2 as
¢ tends to zero. As we will see below, in Lemma 6.1, this behavior
is typical for solutions of the singular perturbation problem (1.1). For
solutions with this singular behavior the estimates (5.7) and (5.8) leads
to error bounds of the form

(6.1) lw — unle, lp — pallo < che™'/?,

where c is a constant independent of ¢ and A. In Table 6.1 below we
have computed the absolute error, ||u — wyl|. for different values of
e and h. For each fixed ¢ the convergence rate with respect to h is
estimated.

le\h[2% | 23 | 2% | 2° | 2% [rate|
272 [7.29¢e-2 | 3.60e-2 | 1.77e-2 | 8.75e-3 | 4.36e-3 || 0.98
276 |1 8.89¢-2 | 5.88e-2 | 3.71e-2 | 2.06e-2 | 1.05e-2 || 0.77
278 [1.12e-1 | 6.89e-2 | 4.07e-2 | 2.66e-2 | 1.73e-2 || 0.67
2710 11.17e-1 | 8.16e-2 | 5.48e-2 | 3.34e-2 | 1.93e-2 || 0.65
2712 [11.17e-1 | 8.20e-2 | 5.74e-2 | 4.02e-2 | 2.71e-2 || 0.52
TABLE 6.1. The absolute error in velocity, measured in
the energy norm, obtained by the new nonconforming
element.

We observe that for ¢ sufficiently large the convergence rate is ap-
proximately one, but that the estimated rate decreases when € approach
zero. These results seem to confirm the claim that the convergence is
linear with respect to A for each fixed €. However, when A is sufficiently
large compared to € we do not observe this linear rate.

In Table 6.2 we give the corresponding relative L? errors for the
pressure.

22 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

le\h[22 | 23 | 2% | 2° | 2% [rate|

272 [/ 2.32e-2 | 1.11e-2 | 5.36e-3 | 2.64e-3 | 1.31e-3 || 1.04
276 119.00e-3 | 5.33e-3 | 2.62e-3 | 1.15e-3 | 4.61e-4 || 1.07
278 11 5.28e-3 | 3.24e-3 | 2.18e-3 | 1.23e-3 | 5.97e-4 || 0.77
2710 1 4.93e-3 | 2.54e-3 | 1.33e-3 | 7.93e-4 | 5.32¢-4 || 0.81
21211 4.92e-3 | 2.51e-3 | 1.24e-3 | 6.22e-4 | 3.27e-4 | 0.98

TABLE 6.2. The L? error in the pressure obtained by
the new nonconforming element.

Again the estimated convergence rate is approximately one for &
large. Then it starts to decrease with € as in Table 6.1. However, in
this case the convergence rate increases roughly back to one when ¢ is
super close to zero. We will comment on this phenomenon for the error
of the pressure at the end of this section.

The estimate 6.1 does not imply uniform convergence with respect
to € for our new finite element method. However, as a consequence of
the theory below, we will obtain an improved estimate of the form

(6.2) [— e, [lp = pallo < cmin(A'/2, he™2),

for solutions with a singular behavior similar to the solution u studied
here. Note that this is in fact consistent with the results of Tables 6.1
and 6.2, where we never observe a convergence rate below a half. [
The main purpose of this section is to establish error estimates which
are uniform with respect to the perturbation parameter . We shall
show a uniform O(h'/2) error estimate in the energy norm. We observe
that if g € H' N L2 then it follows directly from Theorem 5.1 that

(6.3) [div(u —un)llo < chliglls,

where the constant c is independent of € and h. Hence, we have uniform
linear convergence for the error of the divergence. In contrast to this,
the remaining part of the error will be affected by boundary layers as
¢ becomes small. However, the following uniform convergence estimate
will be derived.

Theorem 6.1. If f € H(rot) and g € H’ then there is a constant c,
independent of f, g, €, and h such that

lw — wallo + el vot(u — wp)llo + [Ip — pallo < A2 (| Flleor + llg

|1;+)'

Here the Sobolev space H: is a space contained in H', with asso-
ciated norm, || - |14, slightly stronger than || - ||;. This space will be
precisely defined below.

The derivation of the uniform error estimate above will depend heav-
ily on certain regularity estimates for the solution of the system (1.1).
For example, we shall estimate the blow up of || rot u||; as € approach
zero. We shall therefore first derive these regularity estimates.

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 23

For convenience of the reader we repeat the system (1.1):

(I —&?A)u—gradp =f inQ,
(6.4) dive =g inQ,
u =0 on 0.

We also repeat that the domain € is a polygonal domain in R?. In fact,
in the discussion of this section we shall assume that 2 in addition is
conver. If € € (0,1], f € L? and g = 0 then the corresponding weak
solution admits the additional regularity that (u,p) € (Hg x L2) N
(H? x H'). This regularity result follows directly from the result for
the corresponding Stokes problem on a convex domain which can be
found in [12, Corollary 7.3.3.5]. In fact, the same regularity holds for
g # 0 if we restrict the data g to the space H.

In order to define this space let z1,x,,..., 2y € 00 denote the ver-
tices of (2. The space H is given by

2
H,={geH'NL: Jﬂ@—dw<axj:LG”NL
X

with associated norm
N
lg(z)|?
ol = ol + Y [20 e
1+ 1 - oz — 1,2

Hence, functions in H} vanish weakly at each vertex of .
It is established in [2] that

div(H* N Hy) = H.
Furthermore, the divergence operator has a bounded right inverse, R :
H} — H°NHyg,ie. divRg =g forall g€ H} and
[Rgll2 < cllg

Note that if (u, p) solves (6.4) then (u — Rg,p) solves a corresponding
problem with ¢ = 0. From the result in the case g = 0 we can therefore
conclude that (u,p) € (Hyx L) N(H?x H') for any (f,g) € L* x H}.

The following result gives an upper bound for the blow up of the
norm || rotu||; as € tends to zero.

|1+

Lemma 6.1. Assume that f € H(rot), g € Hi, and let (u,p) be
the corresponding solution of (6.4). There exist a constant ¢ > 0,
independent of €, f and g, such that

(6.5) e!/?||rotullo + *2|| rot ulli < ¢ (|| ot £llo + llg]

14)-
Proof. We first construct a function 4 € H? N H} such that
(6.6) diva =g, and rot Ad = 0.

In fact, the function @ can be constructed by defining

u = Rg + curly,

24 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

with 1) € HZ being the weak solution of the biharmonic equation
A1) =rot ARyg in Q,
0
Y= 9 =0 on Of).
on

We observe that, since Rg € H?, the right hand side is in H~!. There-
fore, from the regularity of solutions of the biharmonic equation on
convex domains, cf. [12, Theorem 7.2.2.3], we have that 1y € H3, and
|3 < c||rot ARg||—;. Hence, 4 € H* N H}, and

(6.7) [@ll2 < cllglls+-
Furthermore, clearly diva = div Rg = g, and for any pu € C§° we have
(A4, curly) = (ARg, curl) — (A, Ap) = 0.

Hence, the second property in (6.6) also holds.
Define v = u — 4. Then (v, p) € (Hj x L) N (H? x H') is the weak
solution of the problem

(I -e2A)v—gradp =f inQ,
(6.8) dive =0 inQ,
v =0 on 09,
where f = f+e2Ad — 1. Clearly, f € L. In fact, f € H(rot), since
rotf =rot f — rot u.

Furthermore, there is a constant ¢, independent of €, f and g, such
that

(6.9) Irot fllo < ¢ (|l ot flo + [lg

Since v € L? and divv = 0 there exists ¢ € H', uniquely determined
up to a constant, such that v = curl¢ ([11, Theorem 1.3.1]). Hence,
since v € H? N H}, we can choose ¢ € H® N H2. In fact, by applying
the rot operator, as a map from L? to H~!, to the first equation of
(6.8) we obtain

|1;+)'

—A¢ +£2A% =rot f in Q,
¢ = 8_(]5 =0 on 0f).
on

The function ¢ is uniquely determined by this problem. This singular
perturbation problem was in fact studied in [14], where it was estab-
lished that ([14, Lemma 5.1))

e lla + | lls < cllrot £llo,
and as a consequence

2| rot wl|o + || rot v]|; < || rot £]|o-

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 25
Therefore, since u = v + 4, (6.7) and (6.9) implies

51/2|| rot ul|o + 53/2|| rot ul|; < ¢/ rot f||0 + 51/2(|| rot @l|o + ¢|| rot @l|;)
< c(||rot fllo + llg

This completes the proof. O

|1;+)'

In addition to the e-dependent bound on the solution (u,p) of (6.4)
derived above, we shall also need convergence estimates on how fast
these solutions converge to the solution of the reduced system.

The reduced system corresponding to (6.4) is of the form

u’ —gradp® =f inQ,
(6.10) divu® =g inQ,

u’-n =0 on 09,

A precise weak formulation of this system is given by:
Find (u?, p°) € Hy(div) x L2 such that

(u’,v) + (p°, dive) = (f,v) Vo € Hy(div)

(6.11) (divu®,q) =(g,9) Vg € L2.

If (f,9) € H '(rot) x L then this system admits a unique solution. In
fact, if £ € H(rot) then u’ € H(rot) with rot u® = rot f. Therefore,
u’ € Hy(div) N H (rot),

and hence, cf. [11, Proposition 3.1, Chap. 1], u® € H'. As a con-
sequence, p° € H'. Furthermore, the corresponding solution map is
continuous, i.e. there exist a constant ¢, independent of f and g, such
that

(6.12) [l + 1Pl < e (1o + llgllo)-

Lemma 6.2. Assume that f € H(rot), g € H}, and let (u,p) be
the corresponding solution of (6.4). There exist a constant ¢ > 0,
independent of €, f and g, such that

[—u®llo + [lp = 2°[l < c&2([| Fllrot + llglh,+).
Proof. Tt follows from (2.2), the weak formulation of (6.4), and Green’s
theorem that for any v € H' N Hy(div) the solution (u,p) satisfies

(u,v) + £*(div u, div v) + £2(rot u, rot v) + £ / (rotu)(v - t)dr
o9

+ (p,dive) = (f,v).

By subtracting from this the first equation of (6.11), we obtain

(u — u’,v) + &*(rot u, rot v) + 82/ (rotw)(v-t)dr =0
o9

26 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

for any v € H' N Hy(div) with dive = 0. Hence, if we take v = u—u®,
and observe that rotu’ = rot f and div(u — u®) = 0, we derive the
identity

u — u’l|? + &% rot ul|? = £ rot u)(u’ - t)dr + £*(rot u, ot f),
0 0 0

which immediately leads to the bound

2
6.13) |lu—u’ 2+6— rot u||? < &2 || rot f||? + &2 rot u)(u-t)dr.
0T 0 0 0

In order to estimate the boundary integral we note that it follows from

Lemma 6.1 and [12, Theorem 1.5.1.10] that
| rot wllopn < ¢l rot ully/?|| rot ul|}/* < ce™* (|| rot £]lo + |lgll1,+)-

Together with the estimate (6.12) this leads to
82/ (1ot) (w® - £)dr <] rotullo ol
o9

< ce(|[flleot + lgll%).
Hence, the estimate
(6.14) [— u®llo + €3[| vot ullg < ce2(|| £llros + llglh,+)

follows.
The estimate for ||p—p°||; is now a direct consequence of the identity

grad(p — p°) = u —u® — ®Au
=u —u’ + &*(curlrot u — grad g)

and the previously established bounds. In fact, it follows from Lemma
6.1 and (6.14) that

Jrad(p ~)l < llu — wllo + (1ot + gl
< 061/2(||f||r0t + lg]l1,4)-

Since p — p € L2, an application of the Poincaré inequality completes
the proof. O

The regularity bounds derived above will now be used to prove the
uniform convergence estimates.

Proof of Theorem 6.1. Recall that since uw € Hj it follows from [11,
Proposition 3.1, Chap. 1] that

[ully < (][divullo + [[rot w]lo)-

Furthermore, by the standard H?-regularity for solutions of the Poisson
equation on convex domains, and (2.2), we obtain

[ulle < cl|Aullo < c(|| div ully + [rot ul]).

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 27

Hence, from the estimates given in Lemmas 6.1 and 6.2 we conclude
that

(6.15) ”[|ulla+ellull+[lu—u’llo+Ilp—p"ll < ce' (| fllroe+Ilgll1,)-

The desired estimate on the velocity error will be derived from (5.4).
We will first establish the interpolation estimate

(6.16) [lu — Iyullo + &l D(u — yw) [y < (]| £llros + llglh,)-
From (4.6), (6.12), and (6.15) we have
lw — Tyallo < [|(X = Ty) (u — u®)lo + [|lu® — IT,u’jo
< h? (Jlu — u®llg*[lu — uO " + B2 |ul])y)
< hY2(|| £ leor + Il

Furthermore, from (4.4), (4.5), and (6.15),

14+)-

1/2 1/2 12y, 111/2
el| D(u — Tyu)llo < cellufly?flw — Maull”* < ceh™? [l ully

< b (|| Fllvor + Il

|1;+)'

The estimate (6.16) is therefore verified.

Similarly, since [|u]}/*[|u|ly”” < ce (|| Fllwot+ g

Lemma 5.1 that

|1,+), we obtain from

Ee n(u,
(6.17) sup Ben(w, v)|

e < B2 ([| Flleor + 19
veV, |v]|a

|17+)'

However, by combining (5.4), (6.3), (6.16), and (6.17), this implies

(6.18) [lu — unllo + el rot(w — wn)llo < ch*([| Fllcot + [lll14)-

In order to establish the estimate for the ||[p — ps||o note that (4.3) and
(6.15) implies

1Pap = pllo < chllplly < ch(l[£ o + [lgll+)-

Finally, by (5.6), (6.17), and (6.18),

1Psp = pallo < B2 (|| Fllrot + [l

This completes the proof of Theorem 6.1. U

14)-

Remark. Even if Lemma 6.2 states that ||p||; is uniformly bounded
with respect to e, we are not able to prove that ||p — pp|lo converges
linearly in A uniformly in €. The convergence rate is polluted by the
blow up of u. This seem to agree with what we observed in Example
6.1 above, cf. Table 6.2. (]

28 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

7. AN ASSOCIATED ELLIPTIC SYSTEM
In this section we shall study the elliptic system (1.2) given by

(I —e*A)u—d?grad(divu —g) =Ff inQ,

(7.1) u =0 on 09,

where ¢, 6 € (0,1]. Recall that by introducing p = 6 2 div u this system
can be alternatively be written on the mixed form (1.3). Hence, as ¢
approach zero the system formally reduces to (1.1).

The system (7.1) will be discretized by a standard finite element
approach, i.e. the mixed system (1.3) is not introduced in the dis-
cretization. Let the bilinear form b, 5(-,-) be defined by

bes(u, v) = a.(u,v) + 6 *(div u, divv)
= (u,v) + £*(Du, Dv) + 6 %(divu, divv).

For a given finite element space Vj, the corresponding standard finite
element discretization of (7.1) is given by:
Find a uj € Vj, such that

(7.2) b s(up,v) = (f,v) + 6 *(g,divv) Yo € Vj,.

Our purpose here is to propose that the finite element space V}, intro-
duced in §4 above, in used this discretization. Since this space is not a
subspace of H; this will lead to a nonconforming discretization of the
system (7.1). However, before we analyze this discretization, we will
present some numerical experiments based on the system (7.1).

Ezxample 7.1 In all the examples presented in this section we consider
the system (7.1) with u = curlsin?(7z,)sin?(7z;), ¢ = 0, and f =
u — e2Awu. Hence, the solution is independent of € and 6.

We consider the problem (7.1) with taken as the unit square. The
domain is triangulated as described in Example 3.1. The system is
then discretized by solving the system (7.2), where the space V}, is the
standard space of continuous piecewise linear functions with respect to
this triangulation.

In the present example we have used € = 1, while § and h varies. In
Table 7.1 below we have computed the relative error in the L? norm
for different values of 6 and h.

O] 22 [27 [27 [20 [2° [raie]
1.00 || 3.87e-1 | 1.32e-1 | 3.69e-2 | 9.52e-3 | 2.39e-3 || 1.85
0.10 || 9.19e-1 | 7.28e-1 | 4.34e-1 | 1.88e-1 | 6.20e-2 || 0.97
0.01 1.00 | 9.96e-1 | 9.82e-1 | 9.32e-1 | 7.88e-1 || 0.08

TABLE 7.1. The relative L? error using piecewise linear
elements, ¢ = 1.

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 29

As expected we observe quadratic convergence with respect to h for
0 = 1. However the convergence clearly deteriorates as 0 tends to zero.
O

Ezample 7.2 We repeat the experiment above, but we extend the
finite element space and use the corresponding velocity space of the
Mini element instead of the piecewise linear space. It is interesting to
note that the L? convergence deteriorates, as § gets small, also in this
case, in contrast to what we have observed in Table 3.7. The relative
L? error is given in Table 7.2.

AV B S S Al 1)
1.00 || 3.80e-1 | 1.30e-1 | 3.62e-2 | 9.34e-3 | 2.35e-3 || 1.85
0.10 || 9.19e-1 | 7.28e-1 | 4.34e-1 | 1.88e-1 | 6.20e-2 || 0.97
0.01 | 9.99e-1 | 9.96e-1 | 9.82e-1 | 9.33e-1 | 7.88e-1 || 0.08
TABLE 7.2. The relative L? error using the Mini ele-
ment, € = 1.

We observe that the results are almost identical to the ones we ob-
tained in the piecewise linear case. Hence, the extra bubble functions
have almost no effect. Of course, the main reason for the difference
between the results given here, for ¢ small, and the results given in
Example 3.3, where 6 = 0, is that the second equation of the mixed
method used previously implicitly introduces a reduced integration in
the divergence term. [

Ezxample 7.3 We repeat the experiment above once more, but this
time we use the new nonconforming element. In Table 7.3 below we
have computed the relative error in the energy norm, i.e. the norm
generated by the form b, 5, for different values of ¢ and h.

(O\p 27 27 | 2% | 2° | 2% [rate]
1.00 || 1.84 | 9.83e-1 | 4.98e-1 | 2.50e-1 | 1.25e-1 || 0.97
0.10 || 1.83 | 9.66e-1 | 4.87e-1 | 2.44e-1 | 1.22¢-1 || 0.98
0.01 || 1.83 | 9.66e-1 | 4.87e-1 | 2.44e-1 | 1.22e-1 | 0.98
TABLE 7.3. The relative error in energy norm for the
new nonconforming element, ¢ = 1.

In contrast to the other examples above, in this case the convergence
seems to be linear with respect to A, uniformly in §. We also observe
that the errors are almost independent of 9.

Next, we reduce € and take € = 0.01 and redo the experiment. The
results are given in Table 7.4.

We observe that to the given accuracy, the numerical solution is
independent of 4, clearly indicating that the numerical solutions are

30 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

A 22 [2° [2% [2° | 2° [raie]
1.00 || 1.04e-1 | 3.23e-2 | 8.94e-3 | 2.21e-3 | 5.29¢-4 || 1.91
0.10 || 1.04e-1 | 3.23e-2 | 8.94e-3 | 2.21e-3 | 5.29e-4 || 1.91
0.01 || 1.04e-1 | 3.23e-2 | 8.94e-3 | 2.21e-3 | 5.29e-4 || 1.91
TABLE 7.4. The relative error in energy norm for the
new nonconforming element, ¢ = 0.01.

close to a pure curl field independent of §, which is precisely the form
of the exact solution in this case. A similar observation is done if we
take e = 0. O

The numerical experiments just presented indicate that the noncon-
forming space Vj, introduced in §4 above, is well suited for the problem
(7.1). We will give a partial theoretical justification for this claim by
deriving a generalization of Theorem 5.1.

We assume throughout this section that w € H*N Hj. Let || - ||, be
the energy norm associated with the system (7.1), i.e.

[v]l; = b-s(v, v).

It is a straightforward consequence of the second Strang lemma, cf. [9,
Theorem 4.2.2], that there exists a ¢ > 0 independent of ¢,h and u
such that

E, h(u,v)|?
(73) flu—wnll < flu— Tyl + ¢ sup e)

vevi ol

where the inconsistency error E, j is introduced in §5 above. However,
since ||v|[p > ||v]|4, the inconsistency term can be bounded as in Lemma
5.1. Furthermore, (4.5) implies

[— Tyulla < c(h® +eh)|ull..

As a consequence of the fact that divII,u = P, divu, it is also true
that

[div(w — up)|lg = || div(w — Myu)|fs + || div(TTyw — w)f5.
Thus, we can conclude from (7.3) that
lw —unlle + 0 2 (I = Pu) divullg + 62| div(TTyu — u)|lg
< c(h? 4+ eh)?|ull3 + 0 %||(I — Py) div ulfj.
We therefore have established the following convergence result.
Theorem 7.1. If u € H>N H; then
lw—wpllo+el| rot(w—up)llo+ 0" || div(IT u —up)|jo < c(h® +eh)||ull,.

Here ¢ > 0 is a constant independent of €, 6 and h.

ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 31

Note that from this result we can conclude that if £ and h are fixed,
and § approach zero, then div u; converges in L? to P, divu. Further-
more, the divergence of the error can be controlled by this estimate
since

| div(w — up)|lo < ||(I = Pp) divullo + || div(IT,u — wp)||o
< ch|| div ul|; + c6(e® + he)||ulo-

Of course, exactly as for the problem (1.1) we can argue that, in general
cases, the norm |lul|; will not remain bounded as £ and § approach
zero. Hence, ideally we would like to generalize the results of §6 to
the problem (7.1). However, this discussion is outside the scope of this

paper.

Acknowledgment. The authors are grateful to Professors D.N Arnold,
R.S. Falk and Z. Cai for many useful discussions.

REFERENCES

[1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element method for the
Stokes equations, Calcolo 21 (1984), pp. 337-344.

[2] D.N. Arnold, L.R. Scott and M. Vogelius, Regular inversion of the divergence
operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm.
Sup. Pisa Cl. Sci.—Serie IV XV (1988), pp. 169-192.

[3] J.H. Bramble and J.E. Pasciak, Iterative techniques for time dependent Stokes
problem, Comput. Math. Appl. 33 (1997), pp- 13-30.

[4] J. Bergh and J. Lofstrom, Interpolation spaces, Springer Verlag, 1976.

[5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element meth-
ods, Springer Verlag, 1994.

[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipliers, RAIRO Anal. Numér. 8 (1974),
pp. 129-151.

[7] F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements
for second order elliptic problems, Numer. Math. 47 (1985), pp. 217-235.

[8] F. Brezzi and M. Fortin, Mized and hybrid finite element methods, Springer
Verlag, 1991.

[9] P.G. Ciarlet, The finite element method for elliptic problems, North-Holland
Publishing Company, 1978.

[10] M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element
methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 7
(1973), pp- 33-76.

[11] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equa-
tions, Springer Verlag 1986.

[12] P. Grisvard, Elliptic problems on nonsmooth domains, Monographs and studies
in mathematics vol. 24, Pitman Publishing Inc., 1985.

[13] E. Haug, T. Rusten and H. Thevik, A mathematical model for macrosegrega-
tionformation in binary alloy solidification, in Numerical methods and software
tools in industial mathematics, M. Dahlen and A. Tveito eds., Birkhauser,
1997.

[14] T.K. Nilssen, X-C Tai and R. Winther, A robust nonconforming H?—element,
Math. Comp. 70 (2000), pp. 489-505.

32 KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

[15] P.A. Raviart and J.M. Thomas, A mixed finite element method for second or-
der elliptic problems, Mathematical aspects of finite element methods, Lecture
Notes in Mathematics 606, Springer—Verlag 1977.

[16] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law,
Transport in porous media 1 (1986), pp. 3—25.

[17] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Butterworth-
Heinemann, 2000.

DEPARTMENT OF INFORMATICS, UNIVERSITY OF OsLoO, P.O. Box 1080 BLIN-
DERN, 0316 OsLo, NORWAY
E-mail address: kent-and@ifi.uio.no

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BERGEN, JOHANNES BRUN-
SGT. 12, 5007 BERGEN, NORWAY
E-mail address: Xue-Cheng.Tai@mi.uib.no

DEPARTMENT OF INFORMATICS AND DEPARTMENT OF MATHEMATICS, UNI-
VERSITY OF OSLO, P.O. Box 1080 BLINDERN, 0316 OSLO, NORWAY
E-mail address: rwinther@ifi.uio.no

IV

Systems of PDEs and Block Preconditionering

K.-A. Mardal, J. Sundnes, H. P. Langtangen and A. Tveito

In Langtangen and Tveito (eds): Advanced Topics in Computational Partial
Differential Equations — Numerical Methods and Diffpack Programming,
Lecture Notes in Computational Science and Engineering, Springer, 2003.

Systems of PDEs and Block Preconditioning

K.-A. Mardal™?, J. Sundnes'?, H. P. Langtangen'2, and A. Tveito!2

! Simula Research Laboratory
2 Department of Informatics, University of Oslo

Abstract. We consider several examples on systems of PDEs and how block pre-
conditioners can be formulated. Implementation of block preconditioners in Diffpack
is in particular explained. We emphasize object-oriented design, where a standard
simulator is developed and debugged before being extended with efficient block pre-
conditioners in a derived class. Optimal preconditioners are applied to the Stokes
problem, the mixed formulation of the Poisson equation, and the Bidomain model
for the electrical activity in the heart.

5.1 Introduction

In this chapter we will see how block preconditioners can be utilized in Diff-
pack for three different model problems. The chosen model problems are
fundamental problems in engineering, medicine and science and they need
to be solved in real-life situations, implying very large scale simulations. In
such situations the algorithm for solving the matrix equation is of vital im-
portance, and this motivates the use of highly efficient block preconditioners.
A model for the electrical activity in the heart is described in Chapter
[14]. We will consider a simplified form of the equations, given by
v
i V- (o;Vv)+ V- (0;Vue), © € 2, t>0,
V- (o;Vu)+ V- ((0:+0c)Vue) =0, z € 2, t >0,

where v is the transmembrane potential, u. is the extracellular potential,
and o; and o, are the intra- and extracellular conductivities, respectively.
The two other problems, described in [10], are the Stokes problem and the
mixed Poisson problem. It is well known how efficient preconditioners may be
constructed for these problems (see e.g. [13,1]). The Stokes problem, modeling
creeping Newtonian flow, reads

—pAv+Vp = fin 2 (equation of motion),

V-v=0 in {2 (mass conservation),

where v is the velocity, p is the pressure, p is the viscosity, and f denotes
the body forces. The last example is the mixed Poisson problem,

v+ AVp=0in 2 (Darcy’s law),

V.-v =gin {2 (mass conservation),

200 Mardal et al.

where v is the velocity, p is the pressure, A is a mobility parameter, and g is a
source term. These equations are discretized by the finite element method. In
the Stokes problem and the mixed Poisson problem we use mixed elements.

With a suitable numbering of the unknowns the discretization of all the
equations given above may be written as

AB| |z b

o5 -[2] o
It is this particular block structure that motivates our preconditioners. We
want to utilize the structure of the problems to construct efficient precondi-
tioners. In fact, for all our model problems it is possible to obtain optimal
preconditioners by applying simple algebraic operator splitting techniques
o (5.1). An optimal preconditioner leads to a number of iterations that
is bounded independent of the number of unknowns. This implies that the
amount of computational work is proportional to the number of unknowns.
This is (order) optimal.

The remainder of this paper is organized as follows. Section 1 introduces
block preconditioners from an algebraic point of view and describes some
software tools in Diffpack. In Section 2 the Bidomain equations are consid-
ered, and an optimal preconditioner is developed together with appropriate
software tools. In Section 3 we extend the simulators presented in [10] to
utilize block solvers.

5.2 Block Preconditioners in General

In this section we will try to motivate block preconditioners from an algebraic
point of view. We first consider the Jacobi method on block form, which is
often used to solve coupled systems of PDEs. We then discuss some basic
properties of the Jacobi method and motivate why and how it can be used
as a preconditioner. We discuss the Jacobi method instead of the slightly
faster Gauss-Seidel, because Jacobi is symmetric and can therefore be used
as a preconditioner for e.g. the Conjugate-Gradient method. Then we briefly
consider Conjugate-Gradient-like methods and see how they can be combined
with these block preconditioners. The two last sections deal with software
tools to utilize these preconditioners in existing simulators. Readers interested
in the mathematical details of iterative methods, e.g., the Conjugate-Gradient
method, multigridmethods and classical iterations, are refereed to Hackbusch
[8]. Krylov solvers in general, for non-symmetric and indefinite matrices, are
dealt with in [3].

5.2.1 Operator Splitting Techniques

Operator slitting techniques are widely used for coupled systems of PDEs,
and there are many different techniques that are used for different PDE

5.2. Block Preconditioners in General 201

problems. Often the operator splitting is used in time, resulting in a splitting
on the PDE level. One of the main advantages with these techniques is that
a complicated system of coupled PDEs is reduced to simpler equations like
the Poisson equation, convection-diffusion equations etc. For such equations
a fast solver like multigrid can be employed. Additionally well tested software
for such problems can be reused.

However, here we will consider techniques on the linear algebra level, but
we should bear in mind that the fast solvers should and will also be used in
this approach. The reader interested in the mathematical details is refereed
to [8]. Given an algebraic system on the form,

Am B [élB)} m = [Z] (5.2)

the simplest operator splitting technique is the Jacobi method,

"t = A7 (b - By"), (5.3)
y" Tl =D (c—-C2h).

Let D be the block-wise diagonal of A,

D— {‘(‘)‘ 107} . (5.5)

The convergence of Jacobi is determined by the spectral radius of Z —D~1 A,
p(Z — D7t A), where Z = diag(I,I). A necessary condition for convergence
is that

p(T-D'A)<65<1. (5.6)

Hence, the standard results of point-wise Jacobi apply also to the block ver-
sion of Jacobi’s method. For coupled systems of PDEs it is often not easy to
verify (5.6) a priori. The convergence/divergence determined by ¢, is usually
found experimentally, and quite often Jacobi diverges. Jacobi is also known
to be a rather slow iterative method, hence it might be necessary to iterate
quite a number of times. A natural question to ask is how accurate A~! and

D! need to be. Can we use cheap approximations of these matrices, A

and Dil, and speed up the simulation time? A naive inexact version of block
Jacobi (5.3)-(5.4) reads,

(b — By"), (5.7)
(c—CzF). (5.8)

However, we see that this approach is dangerous, since we then solve a per-

turbed system y {ﬂ - {A B} {5;} B [b] (5.9)
y| |cD||y| |e|’ |

202 Mardal et al.

Instead one should use the consistent version of the inexact Jacobil

"l =k + A7 (b Azb — Byb), (5.10)
Yyt =gk b_l(c — Cz" — Dy"). (5.11)

The convergence will then be determined by
p(I —D1A). (5.12)

Note that this quantity is even harder to estimate than . The method (5.10)-
(5.11) can also be seen as a Richardson method preconditioned with D!,
Introducing a damping parameter 7,

Pt =gk 4 TA_l’l“l;, (5.13)

Yl =y Dk (5.14)

..
where the residual [rh*!, 75¥1] is defined by

r* =b— Az" — By", (5.15)
r;j =c— Cz" — Dy* (5.16)

we can always make the iteration convergent by adjusting?® 7 such that
p(ZT —TDTA) < 1.

However, 7 must then usually be found and tuned experimentally for optimal
performance. A too small 7 will reduce the efficiency, while a too large 7 will
lead to divergence.

Although we have here focused on the block Jacobi method, a large num-
ber of other operator splitting methods exist. Variants that are similar to
block Jacobi are the block versions of Gauss-Seidel, SOR, and SSOR, which
may all be obtained by modifying the preconditioner. On this 2 x 2 block sys-
tem we replace D! with the following B&é to obtain the block Gauss-Seidel
method,)

The following discussion will not only concern with the block-diagonal pre-
conditioner leading to the block Jacobi method, but with preconditioners in
general. Hence, the notation D~ is replaced with 5. For all the algorithms
the condition number x(BA) determines the efficiency of the algorithm and
whether it converges or not. In practice the estimates of these parameters are

! This is what Hackbusch [8] calls the second normal form of a consistent linear
iteration. Inexact Jacobi is used to generate D~*.

2 ; _ 1
It can be done by setting 7 = TR

5.2. Block Preconditioners in General 203

almost always computed. For the Stokes problem the Uzawa algorithm or the
more general Pressure Schur Complement framework (see [16]) is often used.
We will see that similar reasoning can be used here. In the next section we
will consider more robust methods, that in principle always are convergent.
Still, the convergence rate depends depends strongly on x(B.A).

5.2.2 Conjugate Gradient-Like Methods

Although there exists a large variety of iterative solvers that may utilize
preconditioners based on operator splitting, we will focus on a family of
such methods that is particularly interesting. This is the group of Conju-
gate Gradient-like methods or Krylov Subspace methods. There has been
developed a rich set of Krylov solvers for different purposes, many of which
are implemented in Diffpack. Some of the most commonly used are ConjGrad
for symmetric and positive definite (SPD) systems, Symmlg and SymMinRes
for symmetric and indefinite problems, and general purpose methods like
Orthomin, GMRES, BiCGStab. The reader is referred to [3] for a general discussion
of Krylov solvers and iterative solvers in general, and [4,9] for a presentation
of the Krylov solvers implemented in Diffpack.

The Krylov solvers do not need a 7 to be chosen to be convergent. How-
ever, the efficiency of an appropriate Krylov solver is to a large extent de-
pendent on the condition number of the coefficient matrix A, x(.A). We have
e.g. that the number of iterations is proportional to /x(A) for the Conju-
gate Gradient method3. For standard second order elliptic problems in 2D
the condition number is typically O(h~2), where h is the grid size parameter,
and the performance of the Krylov solver will therefore deteriorate as the grid
is refined. For sparse matrices arising from the discretization of PDEs, the
memory required to store the matrix and vectors is O(n), where n is the num-
ber of unknowns in the linear system. The basic operations in Krylov solvers
are matrix-vector products, vector additions and inner products, which are
all O(n) operations. The overall performance is therefore O(n3/2), since the
number of iterations is vVhA=2 ~ n'/2.

In matrices arising from discretizations of PDEs the condition number
increases as the resolution of the grid increases. We are not satisfied with
being able to solve the problem on one particular grid. In four years when
we have a four times faster computer with four times as much memory4, we

3 some assumptions must be made, see Section 5.3.3

4 A popular version of Moore’s law predicts that the processor speed double at
least every other year. However, it seems to be slowing down, a doubling is more
likely to happen every two year. It is also becoming apparent that the speed of
the CPU is not the only factor that determine the total CPU time. The latency
of the RAM is also very important. In fact, for the problems we consider here,
which are very memory intensive, the CPU usually spend 90% of the time waiting
for lookups in RAM, see [5].

204 Mardal et al.

want a four times as accurate solution in the same amount of time. Hence, if
we want efficient solution methods we need to consider a family of problems,

xp, Ap Bp | |z b,
A = = , 5.18
Lol -la] -[e] 619
where h is the most important parameter for the condition number. Our
ultimate goal is to construct methods that will solve the problem in O(n)
operations, independently of the grid size h. As mentioned above, this is

commonly called an optimal method. We are considering iterative methods,
hence the demands on a optimal solver can be summarized as follows,

1. The number of operations in each iteration should be proportional to the
number of unknowns.

2. The memory requirement should be proportional to the number of un-
knowns.

3. The number of iterations needed to reach convergence should be bounded
independently of the mesh.

As mentioned earlier the convergence of a Krylov solver for symmetric
systems can be estimated in terms of the condition number of A, and the
point 3 is therefore not satisfied. A common way to speed up the Krylov solver
is therefore to use a preconditioner, essentially meaning that we multiply the
system by a matrix By, to obtain another system with the same solution,

C

By Ap m _ By H . (5.19)

The preconditioner Bj should be a well designed operator, because the effi-
ciency of the Krylov solver then depends on (Bp.Ap). The preconditioner By,
does not need to be formed as a matrix explicitly, it can also be an algorithm
like, e.g., multigrid. The only action that is needed is its evaluation on a vec-
tor, vy, = Bpuyp. The demands given above can then be stated as properties
of the preconditioner By:

1. The application of By, to a vector should require O(n) operations.

2. The memory required to store By, should be proportional to the number
of unknowns.

3. k(Bp.A) should be ”small” and bounded independently of h.
Point 3, in the case of symmetric matrices, is often stated as

max; |)\1 ‘

k(BpAp) = <, (5.20)

min; [N\;| ~

where \; are the eigenvalues and C' is a constant that is independently of
the discretization parameter h. We will then say that By A, ~ I. Notice that

5.2. Block Preconditioners in General 205

the above condition (5.20) differ slightly from the spectral equivalence that
is usually wanted for elliptic operators. It is needed for the indefinite systems
in Section 5.4.

The ”operator splitting” technique in (5.10)-(5.11) can be reused directly.
Using the matrix representation in (5.5) with inexact subsolvers, the precon-
ditioner in (5.19) reads

A7 0 1

By = (5.21)

-1

0 D

This is the simplest form of the block preconditioners. Nevertheless it will be
the focus of this paper.

5.2.3 Software Tools for Block-Matrices and Numbering
Strategies

Equation (5.1) is just an ordinary matrix equation,
Au = b,

with a particular numbering. That is, we have two unknowns x and y num-
bered block wise giving the solution vector,

u = [$17$27~--7$nayhy2a---7ym]-

In general and y define different fields which may be defined on different
grids. One example is the Stokes problem which requires mixed elements,
e.g. bilinear elements for y and biquadratic for x. Diffpack has a general
numbering strategy capable of numbering several different fields simultane-
ously. However, a straightforward use of this numbering (as was explained in
Chapter [10]) results in a matrix where the block structure is lost. We want
to keep the system on block form, implying that the matrix B in (5.1) needs
a numbering consistent with & column-wise, while the row numbering must
be the same as in y. Hence, B is a n X m matrix and n may be unequal to
m. This is the case for the Stokes and the mixed Poisson problem. Diffpack
has several tools for assembling and solving linear system on block-structured
form. The coupling of unknown fields (FieldFE) and their degree of freedom
in the linear system (LinEqSystem) is handled by a DegFreeFE object, and in
case of block-structured systems, we use two DegFreeFE objects for each block
matrix. DegFreeFE has two numbering strategies, the special and the general,
we need both. In the first simulators for the Bidomain model it is sufficient
to use isoparametric elements and the special numbering can be used. In Sec-
tion 5.4 we need to use mixed elements, and we must then use the general
numbering.

Here is a list of the tools used to facilitate the handling of block-structured
systems.

206 Mardal et al.

— Each matrix in A needs two DegFreeFE objects to handle the numbering.
One is used for the column-wise numbering and one for the row-wise.

— Class ElmMatVecs holds a matrix of ElmMatVec objects, where each ElmMatVec
object contains a block matrix and a block vector at the element level.

— Class SystemCollector administers the computation of the element block
matrices and vectors, as well as the modification of the matrices and vec-
tors due to essential (Dirichlet) boundary conditions. The class contains
handles to an ElmMatVecs object, all the DegFreeFE objects, and func-
tors [9] to hold the integrands for each block matrix and vector. The
assembly of element contributions in LinEqAdmFE::assemble relies on a
SystemCollector object.

A(k,k) 0 A(k,k)

Fig. 5.1. Enforcing boundary condition subject to node i.

Linear systems in Diffpack support block structures. That is, the classes
LinEqAdm, LinEqSolver and LinEqSystem and their subclasses always work on
LinEgMatrix and LinEqVector objects. LinEqMatrix is a MatSimplest (usually
1 x 1) of pointers (handles) to Matrix objects. The LinEqVector has a similar
structure. This means that the Diffpack Krylov solvers can be used on the
mixed system without modifications.

LinEqSystemPrec is a subclass of LinEqSystem designed for preconditioned
linear systems. To handle block preconditioners, this class is extended by the
subclass LinEqSystemBlockPrec. It has the same interface as LinEqSystemPrec
plus some more functions associated with the block preconditioner. We refer
to the manual page for the full interface. The use of LinEqSystemBlockPrec is
exemplified in the source code in Chapter 5.3.4.

//Make a 2x2 matrix of integrand-functors
integrands.redim(2,2) ;

integrands(1,1) .rebind(new Integrandll(this));
integrands(2,1) .rebind(new Integrand21(this));
integrands(1,2) .rebind(new Integrand12(this));
integrands(2,2) .rebind(new Integrand22(this));

//Make ElmMatVecCalcStd functor to be used from makeSystem

5.2. Block Preconditioners in General

The mixed system

The mixed

element matrix I - 7] :

o |

Fig. 5.2. The assembly process of the mixed system.

calcelm.rebind (new ElmMatVecCalculator());

//Block matrix of ElmMatVec’s
elmats.rebind(new ElmMatVecs());
//SystemCollectorFEM handles the assembly
//the block element matrices into the
//block matrix

elmsys.rebind(new SystemCollectorFEM());

//redim and attach datastructure:
elmsys->redim(2,2);
for (int i=1; i<= 2; i++)
for (int j=1; j<= 2; j++)
if (integrands(i,j).ok())
elmsys->attach(integrands(i,j) (),1i,j);

elmsys->attach(*calcelm);

elmsys->attach(*u_dof,1,true);
elmsys->attach(*u_dof,1,false);

elmsys->attach(*v_dof,2,true);
elmsys->attach(*v_dof,2,false);

//lineq is initialized from the DegFreeFE’s attached
//to elmsys
lineq->initAssemble (*elmsys);

//attach the ElmMatVec’s
elmats->attach(*elmsys) ;
elmsys->attach(*elmats);

207

208 Mardal et al.

Assembly of the right hand side Each of the integrandMx functors could
have done calculations like

elmat.b(i) += ...

on the right hand side, as is common in a Diffpack integrands function.
This would lead to a distributed calculation of the right hand side in several
IntegrandCalc objects. Instead we have chosen to use the diagonal IntegrandCalc
objects to handle the computation of the element vector. This gives cleaner
and more efficient code. Hence, only

integrands(1,1)
integrands(2,2)

will be used in the computation of the right hand side.

5.2.4 Software Tools for Block Structured Preconditioners

As indicated above we will in this paper focus on block diagonal precondi-
tioners, which may be written as

5= [1‘04](H (5.22)

where M and IN are operators that are constructed in some way reflecting
the structure of the linear system matrix .A. The software is not restricted to
2 x 2 block systems, any block system can be used. In this chapter we will
however stick to 2 x 2 systems, for simplicity. In Diffpack such preconditioners
can be made by defining the menu interface MenuSystem,

menu.setCommandPrefix ("M prec");
Precond_prm ::defineStatic(menu, level+1);
menu.unsetCommandPrefix();
menu.setCommandPrefix ("N prec");
Precond_prm: :defineStatic(menu, level+l);
menu.unsetCommandPrefix ()

scan the parameters,

menu.setCommandPrefix ("M prec");
M_prec_prm.rebind(Precond_prm::construct());
M_prec_prm->scan(menu) ;
menu.unsetCommandPrefix ();
menu.setCommandPrefix ("N prec");
N_prec_prm.rebind(Precond_prm::construct());
N_prec_prm->scan(menu) ;
menu.unsetCommandPrefix ();

and attach the preconditioners to the linear system, represented by the class
LinEqSystemBlockPrec

5.3. The Bidomain Equations 209

LinEqSystemBlockPrec& lins = CAST_REF(lineq->getLinEqSystem(),
LinEqSystemBlockPrec) ;

lins.attach(*M_prec_prm,1);

lins.attach(*N_prec_prm,2);

LinEqSystemBlockPrec supply the routines

virtual void applyLeftBlockDiagPrec
(

const LinEqVector& c,
LinEqVector& d,
TransposeMode tpmode = NOT_TRANSPOSED
)5

// apply right block preconditioner Cright, d=Crightx*c
virtual void applyRightBlockDiagPrec
(
const LinEqVector& c,
LinEqVector& d,
TransposeMode tpmode = NOT_TRANSPOSED
)5

which are used by the Krylov solvers. The user should make sure that the
matrix, the vector and the corresponding preconditioner are all constructed
using the same DegFreeFE-object. This will ensure that the numbering of all
components are consistent.

This completes our general discussion of block preconditioners and the
corresponding software tools. In the remainder of the paper we will demon-
strate how the proposed solution method may be applied to specific problems.

5.3 The Bidomain Equations

As a first introduction to problems that lead to block structured linear sys-
tems, we consider a set of partial differential equations modeling the electrical
activity in the heart. Solving these equations enables us to simulate the prop-
agation of the electrical field that causes the cardiac cells to contract and thus
initiates each heartbeat. Measurements of this electrical field on the surface
of the body are known as electrocardiograms or ECG measurements, and are
an important tool for identifying various pathological conditions. Performing
realistic computer simulations may increase our understanding of this pro-
cess, and may thus be a valuable tool for research and educational purposes.

5.3.1 The Mathematical Model

To obtain a set of partial differential equations describing the propagation
of the electrical field, we introduce the quantities w; and u., denoting the
intracellular and extracellular potential, respectively. To avoid treating the

210 Mardal et al.

complex cellular structure of the tissue explicitly, we consider the heart mus-
cle to be a continuum consisting of both intracellular and extracellular space.
The potentials u; and u,. are then volume averaged quantities defined at ev-
ery point in the domain. To easily relate the electrical potentials to ionic
currents crossing the cell membranes, which are extremely important for the
propagation of the potentials, we introduce the transmembrane potential v,
defined as v = u; — u,. If we further denote the intra- and extracellular con-
ductivities by o; and o, respectively, the dynamics of the electrical potentials
are governed by the following equations,

XCm% + Xlion(v,8) =V - (0;Vv) + V - (0;Vu.), x € Heart(£2),

V- ((0; 4+ 0e)Vue) = =V - (M; V), x € Heart(£2).

This is the Bidomain model, introduced by Geselowitz [6] in the late 70s. The
term [i,, is the transmembrane ionic current, C,, is the capacitance of the
cell membrane and y is a parameter relating the area of the cell membrane to
the tissue volume. A detailed derivation of these equations is given in Chapter
[14]. The vector s in the ionic current term Iy, is a state vector characterizing
the conductivity properties of the cell membrane. Realistic models of cardiac
cells require this state vector to be determined from a complex set of ordinary
differential equations. The solution of these ODEs contributes significantly to
the complexity of solving the Bidomain equations numerically. Simulations
based on the complete equations are presented in Chapter [14]. In the present
section we want the Bidomain problem to serve as a simple model problem to
introduce the concepts of block systems and block preconditioning. To obtain
a problem that is more suitable for this purpose we disregard the ionic current
term [, and assume that xyC,, = 1. We then get the simplified problem

% =V - (o;Vv)+ V- (0;Vu.), x € 12, (5.23)
V- (0;Vv)+ V- ((0; +0)Vu.) =0, z € (2. (5.24)

For the present study, we assume that the heart muscle is immersed in a
non-conductive media, so that no current leaves the heart tissue. The current
is assumed to be given by Ohms law, so this gives

n-(o;Vu;) =0
and
n-(6.Vue) =0

on the surface of the heart, which defines the boundary conditions for (5.23)-
(5.24). By utilizing that u; = v+u,. we may express these conditions in terms
of our primary variables v and u.. Combining this with equations (5.23) and

5.3. The Bidomain Equations 211
(5.24) gives the following initial-boundary value problem

%:V-(ain)—i-V-(oiVue),xe!),t>0 ()
V- (o;Vo)+ V- ((6;4+0.)Vue) =0, z€ 2, t>0 ()
n-(o;Vv+o;Vue.) =0, x €982, t >0 (5.27)

n-(0.Vue) =0, €92, t>0 (5.28)
v(z,0) = vo(x), € §2, t=0, ()

where vg is a given initial distribution for the transmembrane potential.

5.3.2 Numerical Method

Time Discretization We let At be the (constant) time step and denote
by v! and u! approximations to v an wu., respectively, at time step t;. More
precisely we have

A time discretization of equation (5.25) may be obtained from a simple im-
plicit Euler scheme, leading to the following equations to be solved at each
time step,

l -1

% =V (0:V) + V- (0:Vd), z € 2, (5.30)
V- (o;VUOOV - ((0; + 0o)Vul) =0, z € 2. (5.31)

To simplify the notation we introduce the inner products

a;(v,d) = At/ o; Vv - Vedz, (5.32)
Q

aire(V,0) = At/ (0i+0)Vu-Vodx . (5.33)
Q

If we now define a suitable function space V(£2), a weak formulation of equa-
tions (5.30)-(5.31) is to find v', u! € V(£2) which satisfies

(Ulv ¢) + ai(vla d)) + ai(ulv ¢) = (vlil7 ¢)7 V(rb € V(“Q)7 (534)
ai(v',¢) + airo(ul,p) =0, Vo e V(92), (5.35)

where (-,-) denotes the L? inner product. All boundary integral terms in

the weak equations vanish because of the homogeneous boundary conditions
(5.27)-(5.28).

212 Mardal et al.

We now introduce a discrete subspace V,(£2) of V({2), spanned by basis
functions ¢;(x),i = 1,...,n. We approximate v’ and u! by

Hz) ~ Y (@), (5.36)

j=1
ul(z) =) ¢j(x)u;, (5.37)
j=1
where ¢;(x),i =1,...,n is a suitable set of basis functions defined in (2. For

the application of the finite element method, the basis functions are usually
piecewise polynomials defined over a grid f25,. The refinement of the grid is
characterized by the discretization parameter h. We have n ~ h=%, where d
is the number of physical space dimensions. Applying a standard Galerkin
finite element discretization to the weak formulation (5.34)-(5.35), we obtain
a system of linear equations given by

1
(95, di)v; + Z ai(9j, ¢i)v; (5.38)

1 j=1

l
Jj=

l
+ Zai(¢j7 (rbl)u] = (vl717 ¢'L)7 for i =]-7 e ’nv(539)

=1
l l

Z ai((/)j, ¢i)vj + Z ai+e(¢j, qbl)uj =0, fori=1,...,n. (540)

J=1 =1

In matrix form, this system may be written as

Lul=lsel i) =[6) o)

where the matrix blocks are defined by

Aij = (¢i, ¢5) + ai(di, ¢;5)
Bij = ai(¢i, ¢5)

Cij = aite(9i, ¢5)

;= (v, ¢).

5.3.3 Solution of the Linear System

It is of course possible to solve the linear system (5.41) without considering
the block structure of the problem. Direct and iterative methods exist that
will handle this problem fairly well. We may, however, improve the efficiency
significantly by utilizing our knowledge of the system structure. The focus of
this section is the construction of a highly efficient block preconditioner for
this system.

5.3. The Bidomain Equations 213

A Preconditioner In this section we will consider the linear system to
be solved at each time step as a stationary problem. We do not make any
assumptions on the right hand side, but consider (5.41) with an arbitrary
right hand side. The problem is given by

v A Bl |v a
Aful= a2 2] - 3] 640
where a and b are arbitrary vectors. The reason for this is simply that the
preconditioner needs to be able to work on any right hand side, since we do

not have any a priori information about the behavior of the residual. Our
suggested preconditioner for this linear system is

5= [(o]

where () denotes multigrid approximations to the respective inverse. Since
the blocks A and C' are similar to the discrete Laplace operator, it is well
known from multigrid theory that such approximations can be made that are
spectrally equivalent with the true inverse, see e.g. [17].

The Solver Since our linear system is symmetric and positive definite, we
use the conjugate gradient method to solve the preconditioned system. If we
denote the start vector by z° and the exact solution z, the initial error is
given by e’ = x — 29. It can be shown that a reduction of the initial error
with a factor € < 1 is achieved after at most

1 In gﬁ (5.47)
2 €

iterations, see e.g. [3], where & is the condition number of BA. The condition
number of A without preconditioning is & ~ h~2, and the number of iter-
ations is thus proportional to A~!. Preliminary analysis indicates that the
preconditioner B introduced in the previous section is spectrally equivalent
to the inverse of A, and the condition number of the preconditioned system is
hence bounded independently of h. According to (5.47), the number of iter-
ations is thus independent of h, i.e. independent of the number of unknowns
n.

5.3.4 A Simulator for the Bidomain Model

We first make a simulator for the Bidomain model without considering the
block structure, primarily for debugging purposes. The complete source code
for this simulator is located in $NOR/doc/mixed/Heart.

class Heart : public FEM
{

214 Mardal et al.

public:
Handle (GridFE) grid; // underlying finite element grid
Handle(FieldFE) u;
Handle (FieldFE) u_prev;
Handle (FieldFE) v;
Handle(DegFreeFE) dof;
Handle(TimePrm) tip;
Vec(real) linsol;
Handle (LinEqAdmFE) lineq;
Handle (SaveSimRes) database;

MatSimple(real) sigma_i;
MatSimple(real) sigma_e;
bool dump;

Handle(FieldFE) error;

// used to partition scan into manageable parts:
virtual void sigma_scan();

void scanGrid();

virtual void initFieldsEtc();

virtual void timeLoop();
virtual void solveAtThisTimeStep();
virtual void setIC();

// standard functions:

virtual void fillEssBC ();

virtual void fillEssBC4U (DegFreeFE& dof, int U);
virtual void fillEssBC4V (DegFreeFE& dof, int V);

virtual void calcElmMatVec
(int e, ElmMatVec& elmat, FiniteElement& fe);

virtual void integrands
(ElmMatVec& elmat, const FiniteElement& fe);

public:
Handle (FieldFunc) usource;
Handle (FieldFunc) uic;
Heart ();
“Heart ();

virtual void adm (MenuSystem& menu);
virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan ();

virtual void solveProblem ();
virtual void saveResults ();
virtual void resultReport ();

};

This simulator should be thought of as the main simulator. It is in charge
of initialization of all the datastructure related to the physical properties of

5.3. The Bidomain Equations 215

the model problem. One should also use this simulator to validate the model
and verify new simulators that utilize more efficient solution techniques, like
the block and multigrid solvers that will be presented below. To ease the
process of debugging the simulator, we also introduce a sub-class named
HeartAnalytic which is intended purely for debugging purposes. The class
solves the problem with very simple boundary- and initial conditions, and
compares the numerical solution with analytical results. This simulator is
also useful to find appropriate convergence criteria.

It is evident from the header file that the structure of this simulator class
is not very different from the simplest Diffpack simulators introduced in [9].
The major difference is that we have two unknown fields, and one DegFreeFE
object, based on the grid and the number of unknowns per node,

dof .rebind (new DegFreeFE (xgrid, 2));

The fields of unknowns are made accordingly,

coll.rebind(new FieldsFE(*grid, "coll"));
u.rebind (coll()(1));
v.rebind (coll() (2));

Hence, the fields are made as vector fields, similar to the way they are made
in the Elasticityl simulator described in [9]. When we use the special (or
the general) numbering technique the block structure of the matrices will be
lost. Usually one wants to avoid this block structure because it results in
a very large bandwidth of the matrices and for factorization methods small
bandwidths are desirable. We employ these numbering strategies within each
block, such that each block has a very small bandwidth.

To be able to reuse the £i11EssBC routine in the block simulators we split
it into two functions:

fi11EssBC4U(DegFreeFE& dof, int U)
fi11EssBC4V(DegFreeFE& dof, int V)

The main idea is that a DegFreeFE& dof and a field number U is sufficient
to fill the boundary conditions with dof.fields2dof(- , U). This can be
done in both the block simulators, multigrid and this simulator. Consult
$NOR/doc/mixed/Heart/HeartAnalytic.cpp for the complete code.

The HeartAnalytic class is used to verify that the simulator produces
correct results. A case with very simple geometry and initial conditions is
considered, and the numerical results are compared to the analytical solu-
tion. The next step is to develop a simulator that utilizes the block structure
in the solution algorithm. The purpose of this simulator is of course to pro-
duce the exact same results as the general Heart class, but to speed up the
solution process by applying specialized block preconditioners. We first make
a simple block structured simulator HeartBlocks, without any multigrid func-
tionality. The process of debugging the simulators is substantially simplified
by this incremental development, as we limit the amount of new functionality
introduced in each step.

216

class HeartBlocks

{

Mardal et al.

public:

Handle (Precond_prm)

Handle (Precond_prm)

Handle (FieldsFE) u_coll;
Handle (FieldsFE)

Handle (DegFreeFE) u_dof;
Handle (DegFreeFE)
Handle(LinEqVector)
Integrands_type

int nsd;

public:

HeartBlocks();
HeartBlocks();

: public HeartAnalytic

prec_prml;
prec_prm2;

v_coll;
v_dof;

linsol_block;
integrand_type;

MatSimplest (Handle(IntegrandCalc)) integrands;
Handle (ElmMatVecCalc) calcelm;

Handle (ElmMatVecs) elmat;

// all blocks at the element level

Handle(SystemCollector) elmsys; // main utility for block adm.

virtual void adm (MenuSystem& menu) ;

virtual void timeLoop();

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();
void initBlocks();
void initBlockDofs();

virtual void solveAtThisTimeStep();

virtual void solveProblem();
virtual void resultReport ();

virtual void fillEssBC(Q);

virtual void makePreconditioner();
virtual void makePreconditioner4U();
virtual void makePreconditioner4V();

void makeBlockSystem

(

LinEqAdmFE& lineq,
SystemCollector& elmsys,
FieldsFE& coll,
ElmMatVecs& elmat,
int itg_man
)

void makeSystem

(
DegFreeFE& dof,
FieldsFE& coll,
IntegrandCalc& integrand,
ElmMatVecCalc& emv,
Matrix(NUMT)& A,
int itgrule_man

5.3. The Bidomain Equations 217

The LinEqAdmFE handle lineq introduced in the main simulator Heart is
a general structure for linear systems, which is capable of handling block
structured systems. The default version has only one block, but in this case
we want to construct a 2 x 2 block system corresponding to the two primary
unknowns. The call

lineq.rebind (new LinEqAdmFE(2,2));

in the scan function handles this basic initialization. This call constructs a
LinEqSystemBlockPrec with a 2 x 2 block structure of the matrices, precondi-
tioners and vectors. The preconditioners are attached as described in Section
5.2.3.

The main simulator class Heart was derived from the base class FEM which
offers a virtual function integrands, which is used to make the linear system
in makeSystem. This is the common way to construct the linear system in
a Diffpack simulator. However, Diffpack also offers other possibilities, which
are more suitable for handling block structured systems. Instead of redefining
the provided integrands function, we may introduce the integrands as derived
subclasses of IntegrandCalc, which offers the integrands (ElmMatVec& elmat,
const FiniteElement& fe), similar to FEM. The base class FEM then offers gen-
eral makeSystem routines like,

virtual void makeSystem

(DegFreeFE& dof, FieldsFE& coll, IntegrandCalc* integrand,
ElmMatVecCalc& emv, Matrix(NUMT)& A),

which only uses the datastructures submitted in the function call. This is in
fact the function we will use to make the algebraic preconditioners, as we will
see later.

For a block system we need several integrand classes, all sub-classes of
IntegrandCalc, which are typically organized in a 2-dimensional array.

MatSimplest (Handle (IntegrandCalc)) integrands;

The matrix is initialized according to the structure of the system, which in
our case is a 2 X 2 system.

integrands.redim(2,2);

integrands(1,1) .rebind(new Integrandil(this));

integrands(2,1) .rebind(new Integrand21(this));

integrands(1,2) .rebind(new Integrandi12(this));
integrands(2,2) .rebind(new Integrand22(this));

Each element in integrands is derived of IntegrandCalc and needs to define
an integrands function. In addition they usually contain a pointer to a Heart
object, submitted as this, to be able to fetch various data from the main
simulator.

The four integrands functions will correspond to the four distinct parts of
the integrands function implemented in the Heart class. The following one,
corresponding to the block C in (5.41), is a typical function for Poisson type
equations (compare with the Poissoni example).

218 Mardal et al.

void Integrand22::integrands
(ElmMatVec& elmat, const FiniteElement& fe)
{

real nabla;
real detJxW = fe.detJxW();
int nbf = fe.getNoBasisFunc();
int nsd = fe.getNoSpaceDim();
int i,j,k;
real dt = data->tip->Delta(); //data is a Heart pointer
for (i = 1; i <= nbf; i++) {
=1; j <= nbf; j++) {
nabla = 0;
for (k = 1; k <= nsd; k++)
nabla += (data->sigma_e(k,k)+data->sigma_i(k,k))
*fe.dN(i,k)*fe.dN(j,k);
elmat.A(i,j) += dt*nabla*detJxW;
}
elmat.b(i) += 0.0;
}
}

Since all the calcElmMatVec functions are identical in this application they are

all represented as one ElmMatVecCalculator object. The class ElmMatVecCalculator
is derived from ElmMatVecCalc which supply functions for calculating the el-
ement matrices. The following is a typical declaration of such a function,
further details are found in the manual pages for the FEM class [9].

virtual void calcElmMatVec
(
int elm_no,
ElmMatVec& elmat,
FiniteElement& fe,
IntegrandCalc& integrand,
FEM* fem
)

We also need some temporary data structures to store the element matrices
and administer the computation.

elmsys.rebind(new SystemCollector());
elmat.rebind(new ElmMatVecs());

ElmMatVecs is simply a matrix of ElmMatVecobjects, in the present case a 2 x 2
system of element matrices. This class also enforces the essential boundary
conditions in the different element matrices simultaneously.

The SystemCollector object elmsys is the manager that connects the block
structured LinEqMatrix to the DegFreeFE objects and the classes contain-
ing the integrands for the system. It should be fed with a consistent set
of DegFreeFEs and IntegrandCalc objects.

elmsys—>redim(2,2);
for (int i=1; i<= 2; i++)

5.3. The Bidomain Equations 219

for (int j=1; j<= 2; j++)
if (integrands(i,j).ok())
elmsys->attach(integrands(i,j) (),1i,3);

elmsys->attach(*calcelm);

elmsys->attach(*u_dof,1,true);
elmsys->attach(*u_dof,1,false);

elmsys->attach(*v_dof,2,true);
elmsys->attach(*v_dof,2,false);

lineq->initAssemble (*elmsys) ;
elmat->attach(*elmsys);
elmsys->attach(*elmat) ;
elmsys->attach(this);

The assembly of the linear system is performed by a function corresponding
to the makeSystenm call in common Diffpack simulators.

makeBlockSystem(*lineq,*elmsys,*coll,*elmat,1);

A suitable definition of this function can be found in
$NOR/mixed/Heart/block/HeartBlocks. cpp.

Having now constructed the block linear system, we need to build the
preconditioners. We will use the block Jacobi preconditioner introduced in
sections 5.2.1 and 5.2.2 , but as stated above we will not consider multigrid
preconditioners in this version of the simulator. We will instead use simple
algebraic preconditioners to approximate the block inverses. The matrices
needed by the preconditioner are assembled using the IntegrandCalc sub-
classes defined earlier. The following code segment handles the assembly of
the preconditioner corresponding to block A in (5.41).

Handle(IntegrandCalc) integrand;
LinEqSystemBlockPrec& lins =
CAST_REF (lineq->getLinEqSystem(), LinEqSystemBlockPrec);
MenuSystem& menu = SimCase::getMenuSystem();
integrand = new Integrandl1(this);

Handle(Matrix_prm(NUMT)) mat_prec_prm;
//initialize mat_prec_prm somehow

Handle (Matrix (NUMT)) mat_prec;
mat_prec= mat_prec_prm().create();

makeSystem(u_dof (), *coll, *integrand, *calcelm, *mat_prec, 1);

The assembled matrix is attached to the preconditioner and then to the
preconditioned linear system represented by the LinEqSystemBlockPrec lineq.

Handle(PrecBasis) prec_basis = new PrecBasis();
prec_basis->attach(*mat_prec);
prec_prml->print(s_o);

lins.attach(*prec_prml, *prec_basis,1);

220 Mardal et al.

Numerical results for this simulator are shown in Table 5.1. We have
used the Conjugate Gradient method with RILU block preconditioners. We
see that the number of iterations increases when the problem size increases.
Because the cost of one iteration is proportional to the number of unknowns,
the work of solving the problem is O(n?), with p > 1.

Table 5.1. Numerical results for the Bidomain solver with RILU block precondi-
tioning.

Unknowns Iterations[P ‘

882 34 -
3362 39 1.1
13122 56 1.3
51842 86 1.3

206082 150 (1.3

5.3.5 A Simulator with Multigrid

The final step in the process of speeding up the simulator is to replace
the simple algebraic preconditioners with efficient multigrid algorithms. The
Multigrid tools in Diffpack are documented in [11] and the reader is re-
ferred to this chapter for more details concerning the MGtools class. In the
present section we will see how the toolbox can be utilized to easily em-
ploy multigrid for block systems. The HeartBlocksMG simulator is a derived
sub-class of the HeartBlocks class. In our problem we need two MGtools ob-
jects, one for each block on the diagonal, and we thus introduce the vector
VecSimplest (Handle (MGtools)) mg. We also need to rewrite some of the func-
tions in the HeartBlocks. The complete class declaration is as follows.

class HeartBlocksMG : public HeartBlocks

{

public:
int no_of_grids;
VecSimplest (Handle (MGtools)) mg;
Handle(FieldCollector) fieldcoll2;

HeartBlocksMG() ;
~“HeartBlocksMG() ;

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void initFieldsEtc();

virtual void scan ();

virtual void solveAtThisTimeStep();

virtual void fillEssBC(Spaceld space);

virtual void mgFillEssBC(Spaceld space);

virtual void getDataStructureOnGrid(Spaceld space);

5.3. The Bidomain Equations 221

virtual void resultReport();
virtual void makePreconditioner();
virtual void saveResults();
virtual void setIC();

};

As usual in Diffpack we have an extensive menu-interface which makes it easy
to test various parameters. We use the command prefixes blockl and block2
to allow separate menu input for the two blocks.

menu.setCommandPrefix("blockl");
Precond_prm ::defineStatic(menu, level+1);
menu.unsetCommandPrefix () ;
menu.setCommandPrefix("block2");
Precond_prm: :defineStatic(menu, level+l);
menu.unsetCommandPrefix () ;

The MGtools menu is also initialized according to the Diffpack standard pre-
sented in [9)].

MGtools: :defineStatic(menu,level+1);

In the scan function the preconditioners are initialized and attached to the
linear system.

menu.setCommandPrefix("blockl");
prec_prml.rebind(Precond_prm: :construct());
prec_prmi->scan(menu) ;
menu.unsetCommandPrefix ();
menu.setCommandPrefix("block2");
prec_prm2.rebind(Precond_prm: :construct());
prec_prm2->scan(menu) ;
menu.unsetCommandPrefix ();

LinEqSystemBlockPrec& lins =

CAST_REF (lineq->getLinEqSystem(), LinEqSystemBlockPrec);
lins.attach(*prec_prml,1);
lins.attach(*prec_prm2,2);

We also need to initialize the VecSimplest holding the MGtools. The length
of the vector is set and each MGtools object is initialized according to the
procedure described in [11].

mg.redim(2);
for (int i=1; i<= 2; i++){
if (i== 1){
mg(i) .rebind(new MGtools(*this, oform("mg toolbox",i)));

else{
//use the same grid hierarchy as mg(1l) in mg(2):
mg (i) .rebind(new MGtools(*this,mg(1)->gridcoll(),
oform("mg toolbox",i)));
}
mg(i)->attach(lineq());

222 Mardal et al.

mg(i)->scan(menu); //make grid etc.

mg(i)->initStructure();

if (lins.getPrec(i).description().contains("multilevel")){
PrecML& p = CAST_REF(lins.getPrec(i), PrecML);
p.attach(mg(i)->getMLSolver());

}

Both MGtools objects are now initialized properly and attached to the
linear system lineq. The only remaining task in the construction of the pre-
conditioners is to make the linear systems for the multigrid algorithms.

void HeartBlocksMG:: makePreconditioner() {
int i;
integrand_type = PRECONDITIONER;
for (i=1; i<= 2; i++) {
mg (i) ->makeSystemMl (xintegrands(i,i), *calcelm, true);

}

The code segments presented here include all the major steps in the process
of including the block multigrid preconditioner in the simulator. Because
the simulator was already prepared for block linear systems and block pre-
conditioning the addition of the multigrid preconditioner was fairly straight-
forward. The source code for the simulator is found in $NOR/mixed/Heart/block/
in the files HeartBlocksMG.h and HeartBlocksMG. cpp.

Numerical results for the simulator with multigrid are shown in Table 5.2.
We see that the number of iterations does not increase when the problem size
increases. Because the number of iterations is constant and the cost of one
iteration is proportional to the number of unknowns, the total work for one
simulation is O(n).

Table 5.2. Numerical results for the Bidomain solver with multigrid block precon-
ditioning.

l Unknowns ‘ Iterations ‘

882 17
3362 17
13122 16
51842 15

206082 15

5.3.6 A Solver Based on Operator Splitting

The block structured preconditioners presented in this paper are all based on
operator splitting techniques. These techniques may also be used as solvers

5.3. The Bidomain Equations 223

for the linear system. The simplest operator splitting algorithm is the block
Jacobi method given by (5.3)-(5.4). A very similar algorithm is the block
Gauss-Seidel iteration, defined by

"t = 2% 4+ A7 (b — Ax® — By") (5.48)
= A1 (b— By"), (5.49)
y" T =y + D (e - Cx" — Dy") (5.50)
=D (c—CxMt). (5.51)

Here we have inverted A and D exactly. This leads to the simplified expres-
sion.

The major work of one iteration is the solution of the linear sub-systems
(5.49) and (5.51), the efficiency of the algorithm depends on our ability to
solve these linear systems efficiently. For these systems it is possible to use
multigrid directly as a solver, by simply repeating the multigrid sweeps until
convergence is reached. A slightly different approach is to use multigrid as
preconditioner for the conjugate gradient method. We want to implement the
new simulator as a sub-class of the HeartBlocksMG class described in the pre-
vious section, with as much reuse as possible, and thus the second approach
seems like a good choice. To maximize the possibility for reuse, we employ the
Gauss-Seidel method on linear algebra level. This means that we assemble
the global linear system first, before it is decomposed into the sub-systems
in (5.49)-(5.51).

A different, and perhaps more common, approach would be to split the
equations on the PDE level and assemble the two linear systems separately.
The main advantage of our approach is that we are able to reuse the code from
the HeartBlocksMG simulator. Other advantages include a simple and efficient
update of the right hand sides for each iteration, and that the residual for
the complete linear system is easily available, to be used as a convergence
test for the Gauss-Seidel iterations. The main disadvantage of the chosen
approach is that the assembly of the complete linear system is more costly
than assembling the two smaller sub-systems, and because of the need to
store all the matrix blocks, the memory requirement is also increased.

Most of the datastructures and functions of the HeartBlocksMG class are
reused unaltered in the new HeartBlocksGS simulator. The main addition
to the class is that we need two new LinEqAdmFE objects to handle the linear
systems (5.49)-(5.51). These linear systems are initialized and preconditioners
attached by the following code segment in the scan function.

lineql.rebind (new LinEqAdmFE(EXTERNAL_STORAGE));
lineq2.rebind (new LinEqAdmFE(EXTERNAL_STORAGE));

//use the same menu input for both linegs
lineql->scan(menu) ;

lineg2->scan(menu) ;

LinEqSystemPrec& linsl =

224 Mardal et al.

CAST_REF (lineql->getLinEqSystem(), LinEqSystemPrec);
linsl.attach(*prec_prml);

LinEqSystemPrec& lins2 =
CAST_REF (1ineq2->getLinEqSystem(), LinEqSystemPrec);
lins2.attach(*prec_prml);

if (linsl.getPrec() .description().contains("multilevel")){
PrecML& p = CAST_REF(linsl.getPrec(), PrecML);
p-attach(mg(1l)->getMLSolver());

}

if (lins2.getPrec().description().contains("multilevel”)){
PrecML& p = CAST_REF(lins2.getPrec(), PrecML);
p-attach(mg(2)->getMLSolver()) ;

In addition to the additions made to the scan function, we need to change
the function solveAtThisTimeStep to incorporate the new solution procedure.
After assembling the global system, the following do-loop handles the Gauss-
Seidel iterations.

do {
//extract the u blocks as a separate system:
Matrix(real)& blockl2 = lineq->A1() .mat(1,2);

block12.prod(linsol_block->getVec(2), rhsl);
rhs1l.add(lineq->b1() .getVec(1),’~’,rhsl);

lineql->attach(lineq->A1() .mat(1,1),
linsol_block->getVec(1), rhsl);

//attach preconditioner for u:
mg(1)->attach(lineq1->A1() .mat(), no_of_grids);
mg(1)->attachSol(lineql->x1() .vec(), no_of_grids);
mg(1)->attachRhs(lineql->b1() .vec(), no_of_grids, false);
//solve the linear system for u:

lineql->solve();

//extract the v blocks as a separate system
Matrix(real)& block2l = lineq->A1() .mat(2,1);

block21.prod(linsol_block->getVec(1), rhs2);
rhs2.add(lineq->b1() .getVec(2),’~’,rhs2);

lineq2->attach(lineq->A1() .mat(2,2),
linsol_block->getVec(2), rhs2);

//attach preconditioner for v:
mg(2)->attach(lineq2->A1() .mat(), no_of_grids);
mg(2)->attachSol(lineq2->x1() .vec(), no_of_grids);
mg(2)->attachRhs (1ineq2->b1() .vec(), no_of_grids, false);
//solve the linear system for v

lineg2->solve(); // solve linear system

lineq->getLinEqSystem() .residual(res);

5.4. Two Saddle Point Problems 225

r = res.norm();
its ++;
} while (x/r0 > tol);

We use the relative residual r/r0 of the complete system to monitor
the convergence. The same residual was used for the block preconditioned
solvers described previously, and the performance of the simulators should
thus be directly comparable. The source code for this simulator is found in
NOR/doc/mixed/Heart/block in the files HeartBlocksGS.h and HeartBlocksGS. cpp.
Results from numerical experiments with the Gauss-Seidel based simulator
are presented in Table 5.3. With the given structure of the two sub-problems
and the results achieved in the previous section, we expect multigrid to be an
optimal preconditioner for solving the two sub-problems with the Conjugate-
Gradient method. This is confirmed by the non-increasing iteration count for
these sub-problems when the problem size increases. It is not quite as obvious
that the number of Gauss-Seidel iterations is also independent of the prob-
lem size, but this is confirmed by the presented results. The present solution
method is thus O(n), exactly as we had for the block-preconditioned solver
with Conjugate Gradient iterations. Still, experiments indicate that the block
preconditioned solver is significantly faster, with CPU times approximately
25% of the Gauss-Seidel based solver.

Table 5.3. Numerical results for the Bidomain solver with multigrid-based Gauss-
Seidel iterations.

lUnknowns[CG its u system[CG its v system[GS iterationsl

882 6 6 19
3362 6 5 16
13122 7 5 14
51842 7 6 12

206082 7 6 10

5.4 Two Saddle Point Problems

In the next sections we will consider two well known saddle point problems;
the Stokes problem and the mixed formulation of the Poisson equation. These
problems may both be written on the form

B e

This is a special case of (5.2) where C is 0 and C ™' is undefined. There-
fore we cannot use the Jacobi method as preconditioner. But as we will see

226 Mardal et al.

the preconditioner will be block diagonal and is constructed similarly. These
systems are indefinite and the discretization of these model problems require
mixed elements as discussed in [10].

How should this preconditioner be constructed? Such systems have been
studied in [13] and we follow their conclusion. The best preconditioner is of
course A~!, which is obviously not an option. Our mixed system is indefi-
nite, but we see that if we use the best preconditioner possible, A~!, we get
a positive definite system. Hence, a natural question to ask, is whether the
preconditioned system should be indefinite or definite. We seek an “approxi-
mation of the inverse” and an approximate transformation from an indefinite
to a positive system may be dangerous. We may end up with eigenvalues
close to zero, causing a breakdown of the basic iterative method. The cure
is to make a preconditioner such that the preconditioned system is also an
indefinite problem. Guided by [13] we consider block preconditioners on the
form B = diag(M, N) such that (5.19) has the following form

(5.53)

T
By Ay, — [MA MB }

NB 0

The preconditioners M and L are positive and therefore the preconditioned
system will still be indefinite. The best possible such saddle point problem is

BA = [é %T] , where QQT =1T. (5.54)

This system has eigenvalues, 1,1/2 4+ 1/2v/5 (both positive and negative).
Hence, the preconditioner is not similar to the inverse of the coefficient ma-
trix. To construct a system similar to (5.54) we should have block operators
such that,

MA~ I, (5.55)
NBMBT ~ 1. (5.56)

If we are able to construct blocks with these properties, we will bound the
eigenvalues of BA above and away from zero, independent of the mesh size
h.

Pressure Schur Complement methods. In [16] they have formulated a general
framework, a basic iteration on the Pressure Schur Complement, where the
Projection method, Pressure correction methods, Uzawa methods and the
Vanka smoother are special cases. Such a framework can be developed by
using the block utilities in Diffpack in a similar way that is done in Section
5.3.6.

5.4. Two Saddle Point Problems 227

5.4.1 Stokes Problem

Mathematical Model The Stokes problem fits elegantly in the setup de-
scribed in the previous section. We briefly recapture the equations from [10],

—pAv +Vp= fin 2, (equation of motion), (5.57)
V-v =0 in {2, (mass conservation), (5.58)
v =h on 02, (5.59)

ov
In +pn =0 on 02y . (5.60)

Numerical Method We remember the discrete coefficient operator for the
Stokes problem,

—pAV
= { VMT 0] . (5.61)

To obtain a well posed discrete and continuous problem the Babuska-Brezzi
condition have to be fulfilled [7], this means that we need to use the mixed
elements described in [10]. Examples of elements are the Taylor-Hood, Mini
and Crouzeix-Raviart.

%]

Solution of the Linear System We can choose M as an efficient precon-
ditioner for A since M A ~ I. Such preconditioner can be made by multigrid
because A is an elliptic operator. The Schur complement BMB7 is already
well conditioned, thus IN can be chosen as I (the mass matrix). We present
some numerical experiments of this preconditioner in Section 5.4.1, similar
experiments are shown in [13].

A Simulator for Stokes problem In [10] a Stokes simulator, using mixed
finite elements, was developed. We will now extend this simulator to utilize
efficient block preconditioners. Most of the steps to do this are the same as
for the Bidomain problem presented in the previous section, but we then only
used isoparametric elements. For the Stokes problem and the mixed Poisson
problem discussed later, we need to use mixed elements or else (5.52) will be
singular® [2]. The transition from isoparametric elements to mixed is first of
all a query-replace,

FEM, FiniteElement, integrand, makeSystem, IntegrandCalc

is replaced with

5 Notice that the pressure is only determined up to a constant and the system
is therefore singular with a one dimensional kernel. However, when not using
certain mixed elements, the kernel will be larger.

228 Mardal et al.

MxFEM, MxFiniteElement, integrandMx, makeSystemMx, IntegrandCalcMx.

In addition, it is important to know that the general numbering strategy of
DegFreeFE is used instead of the special numbering which is used for isopara-
metric elements. The way DegFreeFE is constructed will determine which strat-
egy it will use. A DegFreeFE made like,

GridFE grid;
DegFreeFE dof;

//make grid somehow

dof .rebind(new DegFreeFE(grid, 2)); //dof is made

results in the special numbering whereas, the general numbering is used if
DegFreeFE is made like,

FieldsFE fields;

DegFreeFE dof;

fields_grid.rebind (new BasisFuncGrid (*grid));

String fields_elm_tp = menu.get ("fields element");
fields_grid->setElmType (fields_grid->getElmType(), fields_elm_tp);
fields.rebind (new FieldsFE (xfields_grid, nsd, "fields"));

dof .rebind (new DegFreeFE(fields)); //dof is made

The general numbering will be used even though isoparametric elements are
used in FieldsFE. We turn on the mixed element utilities in MGtools by

MGtools: :useFieldCollector (true,no_fields);

where no_fields is an integer. The fields of unknowns will then be collected
in a FieldCollector object managed by the MGtools. When needed the fields
should be fetched from there,

Handle(FieldsFE) v_coll;
v_coll.rebind(mg->fieldcoll->getFields(no_of_grids));

In contrast to HeartBlocksMG we made the fields ourselves by

coll.rebind(new FieldsFE(*grid, "coll"));
u.rebind (coll()(1));

v.rebind (coll()(2));

u_prev.rebind (new FieldFE (*grid, "u_prev"));

The implementation of the multigrid tools for the velocity preconditioner is
more or less the same as for the Bidomain problem and we therefore skip the
details. The source code can be found in $N0R/doc/mixed/Stokes/block.
However, now we also must make a preconditioner similar to I, the mass
matrix. It can be misleading to use the term identity when using finite ele-
ment methods. However, it is the natural counterpart to the identity in finite
difference methods. We therefore describe the term in greater detail. Assume

5.4. Two Saddle Point Problems 229

we have a function f and we want a finite element representation, » ;uiNj,
of this function, then u; is determined by

(Z u; Ny, Ni) = fi = (f, Ni). (5.62)

Hence, we see that u; and f; are scaled differently. Inside the integration the
coefficient u; is multiplied roughly with sz, whereas f; is f multiplied by
N;. We make a preconditioner to account for this different scaling, namely
the inverse of a lumped mass matrix. To do this we derive a preconditioner
from FEM and PrecUserDefProc,

class PressurePrec : public PrecUserDefProc, public MxFEM {

public:
StokesBlocks* solver;
Handle(Precond) mass_prec;

Handle (Precond_prm) mass_prm;
Handle (Matrix_prm(NUMT)) mat_prm;
Handle (DegFreeFE) p_dof;

Handle (Matrix (NUMT)) mass;
bool inited;

PressurePrec(Precond_prm& prm) :PrecUserDefProc(prm) {
inited= false;
}

“PressurePrec() {}

virtual void scan(MenuSystem& menu) ;
static void defineStatic(MenuSystem& menu, int level);
virtual void init();
virtual void attachPDof (DegFreeFE& dof) { p_dof.rebind(dof); }
virtual void makeMassPrec();
virtual void apply(
const LinEqVector& c,
LinEqVector& d,
TransposeMode tpmode = NOT_TRANSPOSED
)5

bool ok() { return inited; }
};

Any derived class of PrecUserDefProc must supply an apply function, which
in our case simply is,

void PressurePrec:: apply (const LinEqVector& c_, LinEqVector& d_,
TransposeMode tpmode)
{
if (!inited) initQ);
mass->forwBack ((Vector(NUMT)&)c_.vec(), d_.vec());
}

The init function should make the mass matrix and factorize it.

230 Mardal et al.

void PressurePrec:: init(){
makeMassPrec() ;
inited = true;

}

The mass matrix is made from the finite element fields related to the pressure,
a DegFreeFE object p_dof containing the sufficient information and is fetched
from the Stokes class. The mass matrix is made as follows,

void PressurePrec:: makeMassPrec() {
if (p_dof->noEssBC()) {
warningFP ("PressurePrec:: makeMassPrec",
"p_dof has no essential bc.");

}

mass.rebind(new MatDiag(NUMT) (p_dof->getTotalNoDof()));
mass()=0.0;

Handle(IntegrandMassP) integrand = new IntegrandMassP();
integrand->P = 1;

FEM: :makeSystemMx (*p_dof, integrand.getPtr(), #*mass);
FactStrategy fact; fact.fact_tp=LU_FACT;
mass->factorize(fact);

}

We make a diagonal mass matrix for fast inversion. It is sufficient to use the
diagonal version since this matrix only should deal with the scaling in (5.62).
The following integrands function makes the mass matrix.

void IntegrandMassP::integrandsMx
(ElmMatVec& elmat, const MxFiniteElement& mfe)

{
const int nsd = mfe.getNoSpaceDim();
const int npbf = mfe(P).getNoBasisFunc();

const real detJxW = mfe.detJxW();
int i,k,j;
for (1 = 1; i <= npbf; i++){
for (j = 1; j <= npbf; j++){
elmat.A(i,i) += mfe(P).N(i)*mfe(P) .N(j)*detJxW;
}
}
}

Numerical Experiments In this section we test the efficiency of different
block preconditioners. We fix L as the inverse of a lumped mass matrix. The
comparison of M made be multigrid and RILU is shown in Table 5.4. We
have used the Krylov method SymMinRes (Minimum residual method for sym-
metric and indefinite problems), with a random start vector. The convergence
criterion is set as,

(Bry, k) <10,

(B’I’(), ’r‘o)

5.4. Two Saddle Point Problems 231

where 7 is the residual at iteration k and B is the preconditioner. This con-
vergence monitor is implemented in Diffpack as CMRelMixResidual. The multi-
grid preconditioner is constructed as a V-cycle with SSOR with relaxation
parameter 1.0 as smoother. On the coarsest grid we use Gauss elimination.
As expected the multigrid preconditioner ensures convergence in (roughly) a
fixed number of iterations, while the efficiency of the RILU preconditioner
deteriorates as the number of unknowns increases. Similar results are ob-
tained with the Crouzeix-Raviart and the Mini element (see the examples
that follow the source code.).

Table 5.4. Numerical results for the Stokes problem with Taylor-Hood elements.

Unknowns|Iterations with RILU][Iterations with MG

187 25 16
659 34 19
2467 49 19
9539 72 21
37507 120 21
148739 158 21

5.4.2 Mixed Poisson Problem

Mathematical Model The mixed Poisson problem is

v—AVp=0in 2 (Darcy’s law), (5.63)

V-v=gin £ (mass conservation). 5.64)

The sign of p is changed to obtain a symmetric system with more efficient
solution algorithms. More details on this problem and its implementation in
Diffpack can be found in [10].

Numerical Method The coefficient operator is,
A BT] _ {I —V}

B 0o . 0 (5.65)

|

Examples of elements that can be used are the Raviart-Thomas (see, e.g.,
[2,10]) and the new element [10,12], which we refered to as the robust ele-
ment, in lack of a better name. Some usual Stokes elements, with continuous
pressure elements, can also be used at the expense of loss of accuracy in the
velocity field.

232 Mardal et al.

Solution of the Linear System Analogous with the preconditioner made
in Section 5.4.1 we can choose M as the inverse of a lumped mass ma-
trix, since A = I. The preconditioner L should then be made such that
LBMB” ~ I and this means that L ~ A1, This preconditioner can be
used in connection with the Mini and Taylor-Hood, because the pressure ele-
ments are continuous. We have implemented this and numerical experiments
are shown in Section 5.4.2.

However, we are primarily interested in using discontinuous pressure ele-
ments, since the elements of particular interest are the Raviart-Thomas and
the robust element. These elements are formulated as subspaces of H (div; £2) x
L?(£2). The point is that the gradient on the pressure is transfered to a di-
vergence on the velocity. The A-operator applied on these pressure elements
is not straightforward.

One alternative is to use the auxiliary space technique [19]. This technique
allows us to make a multigrid preconditioner based on standard continuous
linear elements and employ it on the piecewise constant elements. We refer to
[18] for the mathematical description and the requirements on the operators
involved. Notice also that the numerical experiments done in this section have
not been verified theoretically.

Let C' and L be the spaces of piecewise constant elements and continuous
linear elements, respectively. Furthermore, let P : L — C' be an interpolation
or projection operator, and P* is the adjoint operator with respect to the Lo
inner product. The preconditioner is then,

Lc=Sc+PL P*. (5.66)
The basic ingredients are

— A multigrid preconditioner for continuous linear elements, Ly, .

— Transfer operators mapping between the two different element spaces, P
and P*.

— A smoother for the piecewise constants, Sc.

The multigrid preconditioner made for the the Mini and the Taylor—-Hood
elements can be reused. The smoother is implemented as the inverse of a
mass matrix multiplied with 7h2. This is similar to the L-preconditioner we
made for the Stokes problem (except that we multiply with 7h?). The transfer
operators are made in a class Interpolator, which implements a general Lo
projection. The Lo projection involves the making and inversion of mass
matrices. This might seem like overkill, but the mass matrix has a small
condition number and can be inverted sufficiently accurate quite efficiently.
A few Conjugate Gradient iterations, with SSOR as the preconditioner, is
usually sufficient. In our case the mass matrix is diagonal, because of the
piecewise constants. Therefore, we can simply use on SSOR iteration to invert
the mass matrix exactly.

5.4. Two Saddle Point Problems 233

The NCPressurePrecMG implements the above described preconditioner.
We will comment the key points. The NCPressurePrecMG is a subclass of
PressurePrecMG, which is a multigrid preconditioner similar to the one we
implemented for the Stokes problem.

The new software in this preconditioner is the Ly projection, Interpolator,
which we will describe below. The Interpolator has a standard menu inter-
face and can be made as follows,

interpolator.rebind(new Interpolator());
interpolator->scan(menu) ;

Additionally, it has to be initialized with the fields that we will transfer
between.

interpolator->init(
solver->p_dof () .fields() (1),
mgtools_laplace->getDof (no_of_grids).fields() (1));

These two steps are all that must be done to initialize the L, projection. We
now apply this projection. The mapping from the piecewise constant elements
onto the continuous linear element is then,

void NCPressurePrecMG::cons2linear (LinEqVector& from,
LinEqVector& to)

{
interpolator->interpolate(
from.getVec(), DUAL, FIRST,
to.getVec(), DUAL, SECOND);
X

The enum variable DUAL means that a right-hand side is transfered. A left-hand
side transfer operation use the NODAL flag. The FIRST and SECOND flags mean
that the vector from and to corresponds to the first and second field used in
the initialization, Interpolator::init. The mapping from linear to constant
elements is similar,

void NCPressurePrecMG::linear2cons(
LinEqVector& from, LinEqVector& to)

interpolator->interpolate(
from.getVec(), NODAL, SECOND,
to.getVec(), NODAL, FIRST);
}

The whole preconditioner in (5.66) is implemented as

void NCPressurePrecMG:: apply (
const LinEqVector& c_,
LinEqVector& d_,
TransposeMode tpmode)

{
if (linited) init();

234 Mardal et al.

// init vectors

LinEqVector& c_not_const = (LinEqVector&)c_;
c->attach(c_not_const.getVec(1));

d_ = 0.0;

d->attach(d_.vec(1));

tmp_vec->vec (1) .£ill(d->getVec(1));

//lapace prec on linear elements
cons2linear (*c, *1rhs);
laplace_prec—>apply(*1lrhs, *11lhs);
linear2cons(*1lhs, *tmp_vec);

//smoother

ssor_vec.fill(d->getVec());

mass->SSO0R1it (d->vec(), ssor_vec, c->vec(), 1.0);
d->mult (taux*h_char*h_char) ;

//add together
d->add (*tmp_vec, *d);

There are several other alternatives to construct optimal preconditioners for
the mixed Poisson problem (see, e.g., [15,1]).

Numerical Experiments We now show the results of some numerical ex-
periments that document the efficiency of the preconditioner. We have tested
the Taylor-Hood, Mini, Raviart-Thomas and the robust element. Notice that
the results with the Raviart-Thomas and the robust elements have not been
verified theoretically.

Table 5.5. Numerical results for the mixed Poisson problem with Taylor-Hood
elements.

Unknowns‘lterations with RILU |Iterations with MG‘

187 26 22
659 26 25
2467 35 25
9539 58 24
37507 73 23
148739 50 21

The number of iterations to achieve the convergence criterion ||7g||/||7o| <
10~* with the Taylor-Hood element is shown in Table 5.5. We obtain similar
behavior with the Mini element, where we use the same preconditioner. The
number of iterations needed with the RILU preconditioner increases as the
number of unknowns increases. The multigrid preconditioner ensures a fixed

5.4. Two Saddle Point Problems 235

Table 5.6. Numerical results for the mixed Poisson problem with Raviart-Thomas
elements.

Unknowns[lterations with RILU[Iterations with MG‘

88 55 35
336 100 37
1312 195 44
5184 318 50

20608 442 52
82176 678 56

convergence rate independent of the number of unknowns. The input files for
the Taylor-Hood experiment is b_th.i and mg_th.i, while the Mini element is
tested with the bmini.i and the mgmini.i input files.

The preconditioner Raviart-Thomas and the robust element is on the form
(5.66). Table 5.6 shows the results with the Raviart-Thomas element, it seems
that the preconditioner is about as effiecient as in the case of the Taylor-Hood
elements. The robust element behaves the same way. The Raviart-Thomas
element is tested in b_rt.i and mg_rt.i, while the robust element is tested in
bnew.i and mgnew.i. The complete source code for the block preconditioned
mixed Poisson problem is in $NOR/doc/mixed/PoissonMx/block.

References

1. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and
applications. Math. Comp. 66, 1997.

2. F. Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods. Springer-
Verlag, 1991.

3. A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Addison-Wesley
Pitman, 1995.

4. A. M. Bruaset and H. P. Langtangen. Object-oriented design of preconditioned
iterative methods in Diffpack. Transactions on Mathematical Software, 23:50—
80, 1997.

5. Craig C. Douglas, Jonathan Hu, Markus Kowarschik, and Ulrich
Rude. Cache based algorithms. In MGNet Virtual Proceedings 2001,
http://www.mgnet.org/mgnet-cm2001.html, 2001.

6. D. B. Geselowitz and W. T. Miller. A bidomain model for anisotropic cardiac
muscle. Annals of Biomedical Engineering, 11:191-206, 1983.

7. V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equa-
tions. Springer-Verlag, 1986.

8. W. Hackbusch. [Iterative Solution of Large Sparse Systems of Equations.
Springer-Verlag, 1994.

9. H. P. Langtangen. Computational Partial Differential Equations - Numerical
Methods and Diffpack Programming. Textbooks in Computational Science and
Engineering. Springer, 2nd edition, 2003.

236

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

Mardal et al.

K.-A. Mardal and H. P. Langtangen. Mixed finite elements in Diffpack. In
Computational Partial Differential Equations using Diffpack. Springer, 2003.
K.-A. Mardal, H. P. Langtangen, and G.W. Zumbusch. Multigrid methods
in diffpack. In Computational Partial Differential Equations using Diffpack.
Springer, 2003.

K.-A. Mardal, X.-C. Tai, and R. Winther. Robust finite elements for Darcy—
Stokes flow.

T. Rusten and R. Winther. A preconditioned iterative method for saddlepoint
problems. SIAM J. Matriz Anal., 1992.

J. Sundnes, G. T. Lines, P. Grgttum, and A. Tveito. Numerical methods and
software for modeling the electrical activity in the human heart. In H. P. Lang-
tangen and A. Twveito, editors, Computational Partial Differential Equations
using Diffpack - Advanced Topics. Springer, 2002.

P. S. Vassilevski T. Rusten and R. Winther. Interior penalty preconditioners
for mixed finite element approximations of elliptic problems. Mathematics of
Computation, 1996.

S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer, 1999.
C. Oosterlee U. Trottenberg and A. Schuller. Multigrid. Academic Press, 2001.
J. Xu. Iterative methods for space decomosision and subspace correction. STAM
Review, 1992.

J. Xu. The auxiliary space method and optimal multigrid preconditioning
techniques forunstructured grids. Computing, 56:215-235, 1996.

Uniform Preconditioners for the Time Dependent Stokes
Problem

K.-A. Mardal and R. Winther

Submitted to Numerische Mathematik.

UNIFORM PRECONDITIONERS FOR THE TIME
DEPENDENT STOKES PROBLEM

KENT ANDRE MARDAL AND RAGNAR WINTHER

ABSTRACT. Implicit time stepping procedures for the time depen-
dent Stokes problem lead to stationary singular perturbation prob-
lems at each time step. These singular perturbation problems are
systems of saddle point type, which formally approach a mixed
formulation of the Poisson equation as the time step tends to zero.
The purpose of the present paper is to design preconditioners for
discrete analogs of these systems, where the spatial discretization
is derived from standard finite element procedures. By using stan-
dard positive definite elliptic preconditioners as building blocks we
construct preconditioners which lead to condition numbers which
are bounded uniformly with respect to the time step and the spatial
discretization.

1. INTRODUCTION

Let Q C R*, with n=2 or 3, be a bounded polygonal domain with
boundary 0f2. Consider the corresponding initial value problem for the
time dependent Stokes problem given by:

u; — Au—gradp = f in Q xR,
(1.1) dive =0 in Qx R",
’ u =0 ondQ xR,
u =wuy onx{t=0}

If this initial value problem is discretized by an implicit time stepping
procedure we are lead to stationary singular perturbation problems of
the form:
(I —&?A)u—gradp =f inQ,
(1.2) divu =0 1in Q,
u =0 on 0.

Here € > 0 is the square root of the time step, while p is related to the
original pressure by a scaling with the factor 2. The new right-hand
side f represents a combination of u at the previous time step and the
original forcing term. When such implicit time stepping procedures
are combined with a finite element discretization of the spatial vari-
ables, then at least one discrete analog of the system (1.2) has to be
solved for each time step. Hence, the efficiency of such solution strate-
gies may depend critically on the development of iterative solvers for

discretizations of systems of the form (1.2).
1

2 KENT ANDRE MARDAL AND RAGNAR WINTHER

We recall that many semi-implicit time stepping schemes for the full
nonlinear, incompressible Navier-Stokes equation use discrete analogs
of linear systems of the form (1.2) as building blocks. These systems
are then combined with a proper method for the nonlinear convection
process by a fractional step strategy, cf. for example [11], or by an ap-
proach using Lagrangian coordinates “to remove” the convective term,
cf. [17].

The main purpose of the present paper is to discuss preconditioners
for discrete analogs of the system (1.2) when the perturbation param-
eter € is allowed to be arbitrary small. More precisely, we shall assume
that € € (0, 1], and our goal is to design precondioners which leads to
condition numbers which are bounded uniformly with respect to both
¢ and the discretization parameter h.

We note that when ¢ is not too small the system (1.2) is similar
to the stationary Stokes problem, but with an additional lower order
term. However, if ¢ approaches zero then the system formally tends
to a mixed formulation of the Poisson equation. This observation can
potentially indicate some problems for the corresponding discrete sys-
tems, since standard stable finite elements for the Stokes problem may
not be stable for the mixed Poisson system. On the other hand, most
stable elements for the mixed Poisson system, like the Raviart-Thomas
elements, lack some of the continuity conditions required for conforming
approximations of the Stokes system. In fact, this issue was discussed
in great detail in [14], where systems of the form (1.2) was motivated
as models for “averaged fluid flow.” It was established that if standard
H (div) x L? norms was used for the mixed Poisson system then none of
the most common Stokes elements appeared to be stable, and as conse-
quence, these elements did not perform well for € small. Motivated by
this observation a new family of finite elements were constructed, with
stability properties which are uniform with respect to the perturbation
parameter €.

However, for our study here the starting point is rather different.
When the system (1.2) is derived from implicit time stepping proce-
dures for the time dependent Stokes system the parameter ¢ is not a
physical parameter. Difficulties which may occur as a consequence of
¢ being small should therefore be seen as instabilities created by the
time stepping procedure, and not as instabilities created by the spatial
discretizations of the time dependent Stokes system. We shall therefore
in this paper study preconditioners for the system (1.2), discretized by
standard Stokes elements. Uniform preconditioners with respect to ¢
and h will be derived, even if these systems have the instability prop-
erties indicated above. The main tool for deriving these precondition-
ers will be proper stability estimates in e—dependent norms, but these
norms do not degenerate to the norm of H (div) x L? for e = 0. Instead,
the norm for the reduced case will correspond to (u,p) € L? x H'.

UNIFORM PRECONDITIONERS 3

The results of this paper are closely related to the results of [3]. In [3]
a class of uniform block diagonal preconditioners for the system (1.2)
was constructed in a multilevel setting. A tight connection between the
perturbation parameter ¢, the mesh parameter A, and the multigrid
algorithm was utilized in order to obtain uniform preconditioners. In
contrast to this, the theory developed here makes no explicit use of
a multilevel framework. We will basically construct block diagonal
preconditioners, where each block is composed of standard second order
elliptic preconditioners which can be constructed by any algorithm.
The preconditioners analyzed in this paper resemble preconditioners
in [19] for the full incompressible Navier—Stokes equation, in the sense
that also here we construct the preconditioners by composing several
simpler operators derived from proper subproblems.

In §2 below we introduce some useful notation and describe basic
properties of the system (1.2). Uniform preconditioners for the contin-
uous system is derived in §3 as a consequence of a uniform inf-sup prop-
erty. In §4 we then use numerical experiments to study discrete versions
of this preconditioner for some choices of finite element spaces with
continuous pressures. We observe that these preconditioners seems to
result in preconditioned systems which are well conditioned, uniformly
with respect to the perturbation parameter € and the mesh parameter
h. In §5 we perform a detailed theoretical analysis of these discrete
preconditioners. Finally, in §6 we investigate the properties of related
preconditioners for finite elements with discontinuous pressures.

2. PRELIMINARIES

For any Banach space X the associated norm will be denoted ||-||x. If
H™ = H™() is the Sobolev space of functions on €2 with m derivatives
in L? = L?(Q) we use the simpler notation || - ||,,, instead of || - || zm.
The space HJ" is the closure in H™ of C§° = C§°(€2). The dual space
of HI" with respect to the L? inner product will be denoted by H~™.
Furthermore, L2 will denote the space of L? functions with mean value
zero. A space written in boldface denotes a n—vector valued analog
of the corresponding scalar space, where n=2 or 3. The notation (-, -)
is used to denote the L? inner product on scalar, vector, and matrix
valued functions, and to denote the duality pairing between H{* and
H~—™. The gradient of a vector field v is denoted Dw, i.e. Dv is the
n X n matrix with elements

(D’U)i,]' = 8vi/8:vj 1< Z,j <n.
Hence, for any u € H? and v € H; we have

—(Au,v) = (Du,Dv) = / Du : Dv dz,
0

where the colon denotes the scalar product of matrix fields.

4 KENT ANDRE MARDAL AND RAGNAR WINTHER

Below we shall encounter the intersection and sum of Hilbert spaces.
We therefore recall the basic definitions of these concepts. If X and Y
are Hilbert spaces, both continuously contained in some larger Hilbert
spaces, then the intersection X NY and the sum X + Y are themselves
Hilbert spaces with the norms

l2llxny = (l2ll% + [l215)"?

and
lellxor = it (ol + lylR) >
ze€X,yey
Furthermore, if X NY is dense in both X and Y then
(2.1) (XNY) " =X"+Y"

Finally, if T is a bounded linear operator mapping X; to Y; and X5 to
Y5, respectively, then

TeL(XiNXy,YINY)NL(X; + X5, Y] +Y5).
In particular, we will later use the bound

(2'2) ||T||E(X1+X2,Y1+Y2) < maX(”T”[—(Xl,Yl)’ ”T”[—(Xz,YQ))'

We refer to [5, Chapter 2| for these results.
Throughout this paper € € (0,1], a.(-,-) : H' x H' — R will denote
the bilinear form

a.(u,v) = (u,v) + e*(Du, Dv),
and I —e?A : Hi — H ! the corresponding operator, i.e.
(I - *A)u,v) = a.(u,v) VYu,v € H,.

A weak formulation of problem (1.2), slightly generalized to allow for
a nonhomogeneous right hand side in the second equation, is given by:
Find (u,p) € H} x L% such that

a:(u,v) + (p,dive) = (f,v) Vv € H},

(2:3) (divu,q) =(g,9) Vq € L§.

Here we assume that data (f,g) is given in H~! x L2.

The problem (2.3) has a unique solution (u,p) € H} x L3. This
follows from standard results for Stokes problem, cf. for example [10].
However, the bound on (u,p) € H} x L% will degenerate as ¢ tends
to zero. In fact, for the reduced problem (2.3), with ¢ = 0 and the
boundary condition modified such that only zero normal component
is required, the space Hj x L2 is not a proper function space for the
solution. However, the theory developed in [6] can be applied in this
case if we seek (u,p) either in Hy(div) x L or in L? x (H' N L%), and
with data (f,g) in the proper dual spaces. These results are in fact
consequences of standard results for the Poisson equation. Here the
space Hj(div) denotes the set of square integrable vector fields, with a

UNIFORM PRECONDITIONERS 5

square integrable divergence, and with zero normal component on the
boundary.

The fact that the regularity of the solution is changed when ¢ be-
comes zero strongly suggests that e-dependent norms and function
spaces are required in order to obtain stability estimates independent
of . Furthermore, since the reduced problem is well posed for two com-
pletely different choices of function spaces, this indicates that there are
at least two different choices of e—dependent norms. These are the
norms of the spaces (Ho(div)Ne- Hy) x L2 and (L*Ne-H}) x (H'N
L2) +¢e71- L2). Note that for any € > 0 both these spaces are equal to
H} x L2 as a set, but as ¢ approaches zero the corresponding norms
degenerates to the norm of Hy(div) x LZ or L? x (H'NL2), respectively.

In [14] it was established that most standard Stokes elements are not
uniformly stable in the norm of (Hy(div) Ne - Hy) x L3. Therefore,
if we want uniform stability estimates for such elements it seems more
natural to use the norm induced by the space

X.:=(L’Nne-Hy) x (H'NLY) +e'-LY).

This is the approach taken in this paper.
The norm of the space L? N e - Hy, will be denoted || - |., i.e.

I[vllZ = [lvllg + %[Dllg,

while the norm in (H! N L%) + &7 - L2 will be simplified to | - |.. More
precisely, we define, |g|. by
gl = inf ([gradqll§ +?[lgall5)">.
4=q1+q2
@ EH'NLE, q2€L3
This notation for the norm in (H' N L) + &' - L2 is convenient, but
slightly unusual, since |g|o = || grad q||o is equivalent to ||g||; on H*NL3,
while |g|; is equivalent to ||¢||o-
Let H* D L2 denote the dual space of H* N L2 and define the
operator (I —&2A)~!': H* — H'N L2 by a standard weak formulation,
i.e. p= (I —&?A)~!g if p satisfies

(p,q) +&°(grad p,gradq) = (9,q) Vg€ H'NL{.

By using this operator a more explicit characterization of |g|. can be
given. For ¢ € L2 let ¢y = (I —e2A)~'q € H' N L2. Note, in particular,
that Ag; € L. Furthermore, a straightforward computation shows
that the solution of the minimization problem in the definition of |¢|.
is given by ¢; and ¢ = —¢2Aq; = q — ¢;. Hence, we obtain

(2.4) lalz = llgrad aulfg +e*llg — a1 l5-

The system (2.3) can alternatively be written as

- ()

6 KENT ANDRE MARDAL AND RAGNAR WINTHER

where the coefficient operator A, is given by

I—-¢?A —grad
(2.6) A, = (div 0 >
Here —grad : L2 — H ! is the dual of the divergence operator, div :

H; — L2
Let X be the dual space of X.. Because of (2.1) this space can be
expressed as
X'=(L*+¢'"H™ ") x (e- LN HY).
We shall show below that the operator A, is an isomorphism mapping
X, into X?. Furthermore, the corresponding operator norms
2.7) [|Allexo,xs) and ||AZY|gxr,x.) are independent of €.

In fact, with the definitions above, this is also true for ¢ € [0, 1], i.e.
the endpoint € = 0 can be included. However, in the discussion below
we will for simplicity always assume that & > 0.

The uniform boundedness of A, is straightforward to check from the
definitions above. For example, if p = p; +po, where p; € H'NL3,ps €
L2, then the term (p,divw) in (2.3) can be bounded by

|(p, divv)| = |(p1 + p2, div v)|
= | - (gradp17 'U) + (p27 div 'U)|
< (lpallelivllo + [lp2lloll div w]lo)

< (Il + &2 llp2ll3) 2.
Hence,
(2.8) |(p, divw)| < |ple[lv]l. Vo € Hj,p € L.

The uniform boundedness of AZ! can be verified from the two Brezzi
conditions, cf. [6]. For the present problem these conditions read:
There are constants ag > 0, 5y > 0, independent of &, such that

di

(2.9) sup (g, divo) > aglgl. Vg e L}
very vle

and

(2.10) a:(v,v) > Bol|v||>? Vv € H,.

Condition (2.10) obviously holds with £, = 1, while condition (2.9) will
be verified in the next section.

3. MAPPING PROPERTIES AND UNIFORM PRECONDITIONERS

As explained above the main purpose of the present paper is to con-
struct uniform preconditioners for discrete analogs of the system (1.2)
when this system has been discretized by standard Stokes elements.
The presentation of these preconditioners will be given in the next sec-
tion. However, in order to motivate these preconditioners we will in

UNIFORM PRECONDITIONERS 7

this section explain how to precondition the continuous problem. Sim-
ilar discussions, where preconditioners for various discrete systems are
motivated from mapping properties of the corresponding continuous
systems, can for example be found in [2] and [13].

We will first establish the uniform inf-sup condition (2.9). If ¢ =1
then this condition, up to equivalence of norms, reduces to
(3.) sup LI 5 gy vge L3

verry vl

where a; > 0. This is the standard inf-sup condition for the Stokes
system which is well-known to hold. This result was established for
a Lipschitz domain by Necas [15], cf. also [10, Chapter 1, Corollary
2.4]. The uniform inf-sup condition (2.9) is now a simple consequence
of (2.2), (3.1), and Poincaré’s inequality.

Lemma 3.1. The uniform inf-sup condition (2.9) holds.
Proof. Observe that (3.1) can be written in the form
lgradg||-1 > aillglle Vg € L5

Hence, if we define Gy = grad(L32) then Gy is a closed subspace of
H™', and we can define grad™' : G — L2 such that,

lgrad™ ||zigo,2) < a7 -

In addition, Poincaré’s inequality states that there is a constant ¢ =
c(Q2) such that

lglly < cllgradglle Vg€ H' N L,

or || grad™ |z minez) < ¢, where Gy = grad(H'NL§). We therefore
conclude from (2.2) that

| grad™ ||ﬁ(G1+s—IGO,(Hlng)+s—1Lg) < max(c, a7).
Hence, letting aiy = min(ay, c™!) we obtain
lgradg|lp2 c1a-1 > aolgle Vg € L,
which is (2.9). O
Let B, : X! — X, be the diagonal operator

(3.2) B. = <(I B 602A)_1 eI + (O—A)1> '

When restricted to L? x L2 this operator is symmetric and positive
definite. We observe that By = diag(I,(—A)™"), while B; has the
same mapping property as diag((—A)™1, I). In fact, it follows directly
from the definitions of the spaces X, and X that the operator norms

(3.3) ||Bellexr,x.) and ||BI'||g(x.x:) are independent of e.

8 KENT ANDRE MARDAL AND RAGNAR WINTHER

Hence, the composition
(3.4) BA.: X.25 xr By x,

maps X, into itself. In particular, we can conclude from (2.7) and (3.3)
that the operator norms

(3.5) [IBeAclleexe,x)s ||(BeA) 7 | £(x.x.) are independent of e.

Furthermore, observe that the symmetric positive definite operator B_!
defines an inner product on X,, and that that the operator B, A, is
symmetric with respect to this inner product.

Consider now the preconditioned version of the system (2.3), or (2.5),
given by

(3.6) B.A. <Z) = B. (g) ,

where the operator B., introduced above, is a preconditioner. This
preconditioned differential system has a symmetric and bounded coef-
ficient operator. Therefore, the system (3.6) can, in theory, be solved
by an iterative method like the minimum residual method (cf. for ex-
ample [12]) or the conjugate gradient method applied to the normal
equations. These methods are well defined as long as B..A. maps X,
into itself, and the convergence in the norm of X, can be bounded by
the spectral condition number

k(BA:) = HBEAEHE(XE,XE) : H(BEAE)_lHﬁ(XE,XE)-

Hence, property (3.5) ensures uniform convergence with respect to e.

If the system (2.3) is replaced by a discrete analog, with a discrete
coeflicient operator A, , then the corresponding preconditioner B;
should also be constructed on discrete spaces. However, the continuous
discussion given above suggests clearly the structure of these precon-
ditioners. Of course, in order to obtain computational efficiency, the
inverse operators appearing in the blocks of B, should then be replaced
by proper elliptic preconditioners.

4. THE DISCRETE PRECONDITIONERS

A standard finite element discretization of (2.3) leads to discrete
indefinite systems approximating (2.3). Motivated by the continuous
discussion above we will propose preconditioners for these discrete sys-
tems. The behavior of these preconditioners will then be investigated
by numerical experiments, while a theoretical discussion is given in the
next section.

UNIFORM PRECONDITIONERS 9

4.1. Finite element discretization. Let {V,, X Qx}ne(o,1) € Hy X L
be finite element spaces, where the parameter A represents the scale
of the discretization. Given the spaces V}, and ()} the corresponding
finite element discretization of the system (2.3) is given by:

Find (up,pr) € Vi X Qp such that

ac(up, v) + (pp,dive) = (f,v) Vo € Vj,
(divun, q) = (9,9) Vg € Q.

Standard stable Stokes elements satisfies a Babuska—Brezzi condition
of the form

(4.1)

q,divov
(4.2) sup LIYO) S il V€ O
Tl

where the positive constant «; is independent of the mesh parameter
h. For a review of such finite element spaces we refere for example to
the texts [7] and [10]. We note that (4.2) is a discrete version of (2.9)
in the case when the perturbation parameter € is bounded away from
zero. This condition will imply, in particular, that the discrete system
(4.1) has a unique solution.

The discrete system (4.1) can alternatively be written as a discrete
analog of (2.5),

(4.3) Ach (Z}’;) = (;Z) ,

where the discrete coefficient operator A, : Vi X Qp — V, X Q) is
defined by

(4.4) (A (“) , (”)) = a.(u,v) + (p,divv) + (divu, g)

p q

for all (u,p), (v,q) € Vi X Q. Hence, the operator A, is an L?-
symmetric, but indefinite, operator mapping the product space Vj, x Q)
into itself.

Our goal is to construct efficient positive definite, block diagonal pre-
conditioners for the operator A, 5, i.e. we will construct block diagonal
operators B, p : Vi, X Qp — V}, x @), such that the condition numbers
of the operators B, ,.A; ; are bounded uniformly in the perturbation
parameter € and the discretization parameter A. The preconditioners
Be 1, constructed below, are designed as proper discrete analogs of the
operator B, introduced above.

Motivated by (3.2), the preconditioner B;j, will be constructed on
the form

_ (M., 0
(45) Ben _< 0 521h+Nh>'

Here M, j, : V), = V}, is a preconditioner for the discrete version of the
differential operator I —<2A with Dirichlet boundary conditions, while
the operator Ny, : @, — @ is a corresponding preconditioner for the

10 KENT ANDRE MARDAL AND RAGNAR WINTHER

discrete negative Laplacian with natural boundary conditions. Finally,
the operator I, : @, — @ is the identity operator if the space @)
consists of discontinuous functions or an operator spectrally equivalent
to the identity on C%-elements. In fact, in the present section we will
only consider finite elements spaces with continuous approximations of
the pressure. The reason for this is that the presence of the negative
Laplacian preconditioner Ny, defined on (), seems to demand that
Qn C H', at least as long as conforming approximations of the Lapla-
cian are used. Hence, below we shall consider the Mini element [1] and
the classical Taylor-Hood elements [7], [10].
The most efficient iterative method for the preconditioned system

Bs € h = BE fh)
e (Ph) h (gh

is probably the preconditioned minimum residual method, cf. [12], [16],
[18]. Alternatively, we can use the conjugate gradient method applied
to the normal equations of the preconditioned system.

4.2. Numerical experiments. In order to test the behavior of the
discrete preconditioners of the form (4.5) we will consider the system
(4.1) with the domain € taken as the unit square in R*. A sequence
of rectangular meshes is constructed by uniform refinements of a 2 x 2
partition of the unit square, and a triangular mesh is constructed by
dividing each rectangle into two triangles by the diagonal with negative
slope. The number of unknowns in the experiments below will typically
range from order 102 to order 10°.

In the two examples below the pressure space (), consists of contin-
uous piecewise linear functions. The preconditioner N, : QQp, — @, is a
standard V—cycle operator with a symmetric Gauss—Seidel smoother,
while the approximate identity I, on (), simply consists of one sym-
metric Gauss—Seidel iteration. The condition numbers for the operators
Np(—Ap) and I, where A, : Qp — Qp is the corresponding discrete
Laplace operator, can be estimated by a standard procedure from the
preconditioned conjugate gradient method, where we have chosen an
oscillatory random vector as a start vector. The iteration is terminated
when the residual is reduced by a factor of 10717,

A similar approach is used to estimate the condition number of
B: hAc p, where we recall that B, ».A; ; are symmetric with respect to
the inner product generated by B; ,11 These estimates for x(B. pA.
are based on the Conjugate Gradient method applied to the normal
system

an

Estimates for the condition numbers of Nj,(Ap) and I, are given in
Table 4.1.

BE,hAE,hBE,hAE,h <ZZ) = Ba,hAs,hBa,h (fh) -

UNIFORM PRECONDITIONERS 11

h 22232 [25 2627
K(NW(—AL)) | 171 [1.50 | 1.47 | 1.47 | 1.47 [1.47
k(Ip) 1.66 | 1.62 | 1.61 | 1.60 | 1.60 | 1.60

TABLE 4.1. Condition numbers for the operators
Nh(_Ah) and Ih-

We observe that these operators cleary behave well as the mesh
paramer h is decreased. In the examples below the preconditioners
Ny, and I, are combined with proper operators M, j to build the com-
plete block diagonal preconditioner B, j, of the form (4.5).

Ezample 4.1 Consider the discretization given by the Mini element
proposed in [1], i.e. V, C Hj consists of piecewise linear functions
and cubic bubble functions supported on a single triangle, while @), C
H' N L} is the space of continuous piecewise linear functions. The
preconditioner M, j, : V}, — V},, approximating (I — ?A;)~", where
Ay V, =V, is the corresponding discrete Laplacian on Vj,, is again
constructed as a standard V—cycle operator with symmetric Gauss—
Seidel as a smoother. However, the high frequency bubble functions
are only present in the finest grid. On all the coarser grids we simply
use piecewise linear functions.

This approach seems to be efficient as seen by the condition number
estimates in Table 4.2

‘h\s H 0 ‘0.001 ‘ 0.01 ‘ 0.1 ‘ 0.5 ‘ 1.0 ‘
272 2.67] 2.66 [2.021.00|1.10]1.12
=3 12.79] 2.73 [1.35[1.05 | 1.14 | 1.16
4 1292] 268 |[1.11]1.10|1.18 [1.19
1294222 [1.02]1.15|1.20|1.21
=6

=7

NN DN DN

295 | 1.54 |1.04|1.18|1.22|1.22
2 295 1.14 | 1.11|1.20 | 1.23 | 1.23

TABLE 4.2. Condition numbers for k(M. (I — e2A}))
obtained from the Mini element.

As expected these condition numbers appears to bounded uniformly
with respect to € and h. Finally, we construct the complete operator
B, j, of the form (4.5) and estimate the condition numbers of B, ».A. 5.
The results are given in Table 4.3.

These results seem to indicate that the condition numbers x(B; 5.A;)
are indeed independent of € and h. This will be theoretically verified
in the next section. [

Ezample 4.2 We repeat the experiment above, but this time we re-
place the Mini element by the Taylor-Hood element. Hence, V,, C H;

12 KENT ANDRE MARDAL AND RAGNAR WINTHER

[h\e] 0]0.001]0.01 | 01 | 05 | 1.0 |

27214.06| 4.04 | 3.77 [10.00 | 17.89 | 18.33
273 114.32] 4.23 | 3.59 |13.87[19.18 | 19.43
271]4.58] 4.21 | 5.27 | 16.81 | 19.66 | 19.77
27> 11 4.65| 3.50 | 8.56 |18.53 | 19.83 | 19.88
2761466 | 3.35 |12.49|19.36 | 19.91 | 19.92
277 114.67] 4.52 [15.74]19.7219.93 | 19.93

TABLE 4.3. Condition numbers for x(B; A ») obtained
from the Mini elements.

consists of piecewise quadratics, while, as above, the space (J;, is the
space of continuous piecewise linears. The multigrid preconditioner
M., : V, — V}, is again a standard V-cycle operator with a symmer-
tic Gauss—Seidel smoother. The estimates for the condition numbers
k(M. (I —e2A})), given in Table 4.4, clearly indicates a bound inde-
pendent of ¢ and h.

|h\e | 0 [0.001]0.01] 0.1 | 0.5] 1.0 |
272]1.10] 1.10 | 1.07 [1.05]1.19 | 1.20
273 1.11] 1.11 |1.03|1.14]1.22 | 1.22
~4]111] 1.10 [1.01[1.21[1.24 | 1.14
1.11] 1.09 [1.03]1.23]1.24[1.24
1.11] 1.05 [1.12]1.24]1.24[1.24
1.11] 1.02 [1.20 | 1.24 | 1.24 [1.24

TABLE 4.4. Condition numbers for k(M. (I — 2Ay))
obtained from the Taylor-Hood element.

~N o O

DN DN DN DO

As in the case of the Mini element we use the operator M, ;, to-
gether with the operators N, and I introduced above, to construct
the complete operator B, of the form (4.5). The estimates for the
condition numbers of k(B A,) are given in Table 4.5.

[R\e] 0 J0.000]0.01] 01 [05 [1.0 |
272 15.98] 5.99 | 6.28 |11.63|14.77 | 14.92
6.03 | 6.05 | 6.92 |13.42|15.25 | 15.32
6.06 | 6.10 | 8.41 |14.55 | 15.50 | 15.53
6.07 | 6.23 |10.62]15.14 | 15.59 | 15.61
6.08 | 6.64 |12.77]15.42|15.63 | 15.64
6.08 | 7.81 | 14.18 | 15.55 | 15.64 | 15.65

TABLE 4.5. Condition numbers for x(B; A 5) using the
Taylor—Hood elements.

~N Y O N W

5
5
5
5=
5=

UNIFORM PRECONDITIONERS 13

Again these condition numbers appears to be independent of ¢ and
h. Similar results are also obtained if the replace the P, — P; element
with the corresponding element on rectangles, i.e. the Q3 — (@, element.
O

5. A THEORETICAL DISCUSSION IN THE DISCRETE CASE

The purpose of this section is to present a theoretical analysis of the
preconditioners studied experimentally above. We assume that (2 is a
bounded polygonal domain in R? and that {7} is a shape regular and
quasi—uniform family of triangulations of 2, where A is the maximum
diameter of a triangle in 7p,.

Below we shall give a precise analysis of the conditioning of the
operator B A, when the spaces V;, and), are given either by the
Mini element or the Taylor-Hood element. However, first we will make
some remarks in the general case. For this discussion we just assume
that V;, C H} and Q) C H' N L3 is a pair of finite element spaces.

Let A.p 0 Vi, x Qp — V3, X Q) be defined by (4.4) and let B, :
Vi, X Qn — Vi x Qp, be a corresponding L? symmetric and positive
definite, block diagonal preconditioner on the form (4.5). Our goal
is to establish bounds on the spectral condition number, (B »A. 1),
which are independent of the perturbation parameter € and the mesh
parameter h. To establish this we will use the characterization

sup |A|
inf [\’
where the supremum and infimum is taken over the spectrum of B, ,.A; j.
The saddle point theory of [6] will be used to obtain an upper bound

on k(B: pAcp). Observe that if A € R is an eigenvalue of B 5.A. , with
corresponding eigenfunction (un,pn) € Vi, X @4, then the equations

K'(Bs,h-As,h) =

a:(un, v) + (pn,dive) =AM, 'up,v),
(le Up, q) =)\((82111 + Nh)_lph) q)a

holds for all v € V;,,q € Q.

In all the examples below the operator M, : V, — V}, will be a
uniform preconditioner for the corresponding discrete version of the op-
erator I —e2A. In other words, the bilinear forms a.(-,-) and (M _,1,)

(5.1)

3
are uniformly spectrally equivalent, i.e. there are constants ¢; and co,

independent of £ and h, such that
(5.2) cra.(v,v) < (M v, v) < cza.(v,v) Vv € V.

€,
Furthermore, the operator I, : Q) — @} will be spectrally equivalent
to the identity operator, and Ny, : QQn, — @}, is spectrally equivalent to
the discrete Laplacian, i.e. there are constants c3 and ¢4, independent
of h, such that

(5.3) csllgl? < (N, 'g,q) < cllgll? Vg € Q.

14 KENT ANDRE MARDAL AND RAGNAR WINTHER

As we observed in the experiments discussed in §4 above, these re-
quirements on M, 5, N}, and I, were easily fulfilled for the examples we
studied there.

Recall that the norm |g|. = ||g||(z1nr2)1e-112 is characterized by

lale = Il grad a1l +~llg — a1 lg]-

inf
@ EH'NLY

In fact, the optimal choice is ¢ = (I — e2A)'q, where Neumann
boundary conditions are implicitly assumed. For functions in () the
corresponding discrete norm is given by

\qles = inf [|grad 1|2 + & g — aul2]-
qQ1EQ

It is obvious that |g|. < |g|.n on Q. However, due to the quasi-
uniformity of the triangulations {7}, the two norms are equivalent,
uniformly in h. To see this note that if ¢ € Q; and q; = (I —&?A)~'q

then
a2 <l grad guulls +e*llg — qulls,
where ¢1 5, € Q) is the L? projection of ¢;. However, ||¢ — qiullo <

lg—a1[lo and, by quasi-uniformity, || grad g1 s/lo < col| grad ¢i|lo, where
the constant c; is independent of h. Hence, we conclude that

[q]en < colgle-
In addition, (5.3) further implies that |g|. 5 is equivalent to the norm
(5.4) inf [(N; g1, 1) + e %[la — ailo]'/*.

q1€Qn

Finally, from the general properties of sums and intersections of linear
spaces, cf. §2 above, it follows that the norm (5.4) is equivalent to the
norm ((¢2I + Ny)~1q, q)/2.

To summarize the discussion so far we state the following result.

Lemma 5.1. If I;,, Ny : Qn — Qp are L? symmetric operators, such
that Iy, s spectrally equivalent to the identity and Ny satisfies prop-
erty (5.3), then the norms |q|., |qlen, and ((e2I, + Ny)~1q,q)/? are
equivalent, uniformly in € and h.

Assume that the finite element spaces {V;, x Qp, } satisfies the uniform
Babuska-Brezzi condition

(5.5) inf sup (g, divv)

>a>0,
9€Qnvev;, ||v[lclgle

where « is independent of € and h. By using the theory of [6], c¢f. Propo-
sition 1.1 of that paper, this condition will imply that x(B: A p) is
bounded independently of ¢ and A. In fact, it is an immediate conse-
quence of this theory, the upper bound (2.8), the property (5.2) of the
operator M, p, and the norm eqivalence given in Lemma 5.1, that ||,
where A is an eigenvalue of (5.1), is bounded from below and above,

UNIFORM PRECONDITIONERS 15

uniformly in ¢ and h. We can therefore conclude with the following
result.

Theorem 5.1. Assume that Vi, C Hy, Q, C H' N L2 and let M., :
Vi, — V,, be a L? symmetric, positive definite preconditioner satisfying
(5.2). Furthermore, assume that the operators Ny and Iy, on Qy are
as in Lemma 5.1. If the uniform Babuska—Brezzi condition (5.5) holds

then the condition numbers k(B. pA:) are bounded uniformly in € and
h.

Hence, for any particular choice of spaces {V}, X @} our main task
is to verify the uniform inf-sup condition (5.5).

5.1. The Mini element. We recall that the velocity space, V, con-
sists of linear combinations of continuous piecewise linear vector fields
and local cubic bubbles. More precisely, v € V,, if and only if

v=v'+ E crbr,
TET

where v! is a continuous piecewise linear vector field, ¢ € R?, and by

is the scalar cubic bubble function with respect to 7', i.e. the unique
cubic function vanishing on 07 and with [.bydz = 0. The pressure
space @y, is the standard space of continuous piecewise linear scalar
fields.

The uniform Babuska—Brezzi condition (5.5) will be established in
this case by constructing an interpolation operator ITj, : L? — V}, such
that

(5.6) (divITw, q) = (divw,q) Yo € Hy,q € Qy,
and
(5.7) [Thv]l. <cllvll. Vo e Hy,

where the constant ¢ is independent of ¢ and h. The condition (5.5)
will then follow from these two properties of the operator Il; and the
corresponding continuous Babuska—Brezzi condition (2.9).

In order to define the operator II, we will utilize the fact that the
space Vj, can be decomposed into two subspaces, V}?, consisting of all
functions which are identical zero on all edges, i.e. V}? is the span of
the bubble functions, and V' consisting of continuous piecewise linear
vector fields. Let II? : L? — V! be defined by,

(Mw, 2) = (v, 2) Vz € Zp,

where Z;, denotes the space of piecewise constants vector fields. Clearly
this uniquely determines IT%. Furthermore, a scaling argument, utiliz-
ing equivalence of norms, shows that the local operators II} are uni-
formly bounded, with respect to A, in L?.

16 KENT ANDRE MARDAL AND RAGNAR WINTHER

The operator IT? will satisfy property (5.6) since for all v € H} and
q € @y, we have

(divIT,v, q) = —(IT; v, grad ¢) = —(v, grad ¢) = (divv,q),

where we have used that grad Q, C Z,.
The desired operator I : V;, — V,, will be of the form

I, =TI%(I — R,) + Ry,
where Ry, : L? — V;! will be specified below. Note that
I-1I, = (I -II;)(I - Ry),
and therefore
(div(I — IIy)v, q) = (div(I — II})(I — Ry)v,q) =0

for all ¢ € Q. Hence, the operator IT, satisfies (5.6).
We take R, to be the Clement interpolant onto piecewise linear
vector fields, cf. [8]. Hence, in particular, Ry, satisfies

(5.8) (- Rl <ch*Iolli, 0<j<k<l,

where the constant c is independent of h and v. Since IT? is uniformly
L*-bounded we derive, using (5.8) and a standard inverse estimate,
that for j = 0,1

[TIywll; < T (T — Ra)vll; + || Ravl];
< e(h 7| (I — Ry)vllo + [Jv]];)
< c(h (I = Ru)vllo + ||v|l;)
< c|lvl];.

This implies (5.7).

The uniform inf-sup condition (5.5) has therefore been established.
As explained above, this implies that £(B; A) is bounded, uniformly
with respect to € and h. The analysis given here is therefore in agree-
ment with the observations done in Example 4.1.

5.2. The Taylor—-Hood element. We recall that the velocity space,
V,,, consists of continuous piecewise quadratic vector fields, while, as
above, the discrete pressures in ()}, are continuous and piecewise linear.
In this case we shall use a slightly different strategy than above to
establish the uniform Babuska—Brezzi condition (5.5). The argument
we will present resembles the continuous argument given in the proof
of Lemma 3.1.

We first recall that it is well-known that the Taylor—-Hood element
satisfies (4.2), cf. [20] or Chapter 6 of [7]. On the other hand, for e = 0
(5.5) takes the form

di
(5.9) inf sup (g, divo) > ap > 0.

1€@n vev,, [|v]oll grad gllo

UNIFORM PRECONDITIONERS 17

In fact, this property, which is often referred to as the weak inf-sup
condition for the Taylor-Hood element, was established in [4]. We can
therefore conclude that in the two extreme cases, ¢ = 0 and € = 1, the
inf-sup condition is satisfied. Furthermore, these properties imply that
that the weakly defined gradient, grad,, : @, — V), given by

(v,grad, q) = —(divw,q) Yv € V},q € @y,

is one—one. Let G, C Vj be defined as grad,(Q). As a consequence
of the two estimates (4.2) and (5.9) we obtain that for all u € G,

I grad, " ully < o5 ful 1= a5 sup),
’ vevi, [vllx
and
lgrad,” ull: < ag'llullo.
From (2.1), (2.2) and Lemma 5.1 it therefore follows that

(u, v)

|grad; ' ul. < max(a;', ap') sup Yu € Gp,

vevi, [lvlle
and by letting u = grad,, ¢ this implies (5.5). Hence, we have com-
pleted our theoretical explanation of the observations done in Example
4.2.

6. DISCONTINUOUS APPROXIMATION OF THE PRESSURE

In the analysis above we have strongly utilized the fact that we have
continuous discrete pressures, i.e. the pressure space (J; is a subspace
of H'. In fact, the bilinear form associated with the preconditioner N, :
Qp — Qp, is required to be equivalent to the H' inner product on Q}.
However, several common Stokes elements use discontinuous piecewise
constant pressures. The construction of uniform preconditioners for
the coefficient operator A, ; in these cases will be discussed in this
section. For simplicity, we restrict the discussion to the well known
P, — P, element, but we have also seen similar behavior as we will
observe below in numerical experiments with other elements like the
nonconforming Crouzeix-Raviart element [9].

Let Qn, C L% be the space of discontinuous constant functions with
respect to a triangulation 7, where, as above, {7,} is a shape regular
and quasi—uniform family of triangulations of 2. As for the Taylor—
Hood element discussed above, the velocity space V;, C Hj consists of
continuous, piecewise quadratic vector fields. A weakly defined gradi-
ent operator grad, : Q) — Vj, is given by

(grad, q,v) = —(q,divv) Yv € V}, ¢ € Q.

A discrete analog of the norm on (H'NLZ)+&!- L2 can now be defined

on @ as
_ 2, -2 211/2
alen = inf (| grad, a1l + < as]) 72
q1,92€Qh

18 KENT ANDRE MARDAL AND RAGNAR WINTHER

The appropriate uniform inf-sup condition we are seeking takes the
form

(6.1) inf sup (g, divo)
1€Qn vev;, [|v]lclg
for a suitable o independent of € and h.

For the P, — P, element the standard inf-sup condition (4.2) is well-
known, cf. for example [7, Chapter 6.4]. In particular, this implies that
grad, : Qy — Vj, is one—one. Furthermore, (4.2) implies the discrete
Poincaré inequality

(6.2) lgllo < i 'l grad, qllo Vg € Qn.

It is also straightforward to check that the norms ||¢||o and |g|;,, are
equivalent on @y, uniformly in h. To see this note that |g|1, < ||g||o is
a direct consequence of the definition of |g|; ;. On the other hand, if
¢1 is chosen as the minimizer in the definition of |g|, , we have

>a>0,

&,h

lq1? 5 = Il grad, ¢:[[5 + [lg — a1 II5
and
(grad,, 1, grad, r) + (q1,7) = (¢,7) Vr € Q.
From (6.2) we then obtain

= (¢, —q1) + laull2 + || grad,, ¢ |3

1 _
< §||q||§ + (1 +a1?)|gl? .

Therefore, ||¢|lo and |g|1, are uniformly equivalent on @, and (6.1) for
e =1 follows from (4.2).

When ¢ = 0 (6.1) holds with constant = 1. This is a direct
consequence of the definitions of grad, and |- |.,. The uniform inf-
sup condition (6.1) therefore follows for all ¢ € [0,1] by an argument
completely analog to the one given in §5.2 above.

Having established a uniform inf-sup condition we are again in po-
sition to construct a uniform, block diagonal preconditioner for the
operator A, ; using similar arguments as above. Consider an operator
of the form

_ (M., 0
(6.3) Ben = (0 &+ Nh>

mapping V;, X Q) into itself. In fact, in the present case, where the
pressure space @y, is discontinuous, we simply take I to be the identity
operator. Furthermore, as in §5.2 above we have to our disposal a
uniform preconditioner M, : V}, — V}, for the discrete version of the
differential operator I — 2A on the piecewise quadratic space V.

It only remains to specify the symmetric and positive definite pre-
conditioner Np, : @ — @Qp. Assume that we can construct N, such

UNIFORM PRECONDITIONERS 19

that the norms || grad, ¢||o and (N, 'g,q)'/? are equivalent, uniformly
in h, on Q. As in §5 above it then follows from the uniform inf-sup
condition (6.1), some obvious upper bounds, and the theory of [6] that
the condition number k(B ,.A.) is bounded independently of € and
h.

A potential difficulty for the construction of the preconditioner N,
is that the operator grad, : @, — V), is nonlocal. However, there
is a local norm, ||g||1, which is equivalent to | grad, ¢|lo, and the
structure of this local norm can more easily be used to construct the
preconditioner Nj. Define a new norm on ()} by

(6.4) lall? = _ldl?,

ecy,

where &, is the set of interior edges of 7, and [g]. is the jump of g on
the edge e.

Lemma 6.1. The norms || grad,, q||o and ||q|
uniformly in h.

1,n are equivalent on Qp,

Proof. The standard degrees of freedom for the space V}, is the function
values at each vertex and the zero order moments on each edge. As
a consequence of equivalence of norms we therefore obtain, from a
standard scaling argument, that

So(fvendp? <cloly Vo€

ec&y, €

where c is a constant independent of A. Here n. is a unit normal vector
on the edge e and p is the arc length along e. As a consequence, for
any v € V;, and ¢q €)5, we have

(grad, ¢,v) = —Z/qdivvdx:—Z[q]e/v-nedp
T e

TeTs ec&y

< |lql

(S ([0enedp)? < clalhallolo

ecéy, €

and we can therefore conclude that

lgrad,, qllo < cllgllin Vg € Qn.

To establish the opposite bound let ¢ € @, be given and define © € V},
such that v is zero at each vertex, the tangential component of the zero
order moments are zero on each edge, and

/ﬁ-nedp= —[gle

e

for all e € &,. Again, equivalence of norms implies that

]2 < c2</ﬁ cnedp)? = Sl

ec&, V€ ecty

20 KENT ANDRE MARDAL AND RAGNAR WINTHER

where the constant c¢ is independent of A. Hence,

(grad, q,v) = — Z[Q]e/@-ne dp = > lql2

e€& € e€éy,
> ¢ g

|1,2119]]0

which implies that

gl < cll grady gllo-

This complets the proof. O

6.1. Numerical experiments. Our purpose is to repeat the experi-
ments we did it Examples 4.1 and 4.2, but this time we use the P, — F,
element for the discretization. In order to complete the description of
the preconditioner B, j, given by (6.3) we have to make a proper choice
for the preconditioner N, on @),. However, due to Lemma 6.1 the
operator N, can be constructed as preconditioner for the “finite dif-
ference Laplacian” obtain from the bilinear form associated the norm
| - |l1,n, cf- (6.4). This can be done in many ways. Here we shall
adopt the auxiliary space technique of Xu [21], where the auxiliary
space consists of piecewise linear functions. The advantage with this
approach is that N} is essentially constructed from the corresponding
preconditioner introduced in §4.2 above. In Examples 4.1 and 4.2, the
subspace of H' N L consisting of continuous piecewise linear functions
with respect to the triangulation 7, was denoted @, but here, where
Q@ already denotes the space of discontinuous constants, we will refer
to this space as Sj.

Let Py, : Sp, — Qp, be the L? projection, and P} : Q, — S}, the adjoint
operator with respect to the L? inner product. The preconditioner N},
we shall use will be of the form

(6.5) Ny = 7h*I + P,N; Py,

where N : S, — Sj, is the standard V—cycle multigrid preconditioner
for the discrete Laplacian on S}, described in §4.2 above, while 7 > 0
is a suitable scaling constant. In the experiments below 7 = 0.15. The
preconditioner N, is computationally feasible since the L? projection
P, is local.

First, we check the efficiency of the preconditioner /N, by computing
the condition numbers of N, (—Ap), where Ay : Qp — Q) is given by

(—Awp,q) = > _[pleldle VP, q € Q.

ecéy

The results, which are given in Table 6.1, clearly indicate the x(Ny(—Ap))
is bounded independently of h. In fact, a theoretical verification of this
will be given in §6.2 below.

UNIFORM PRECONDITIONERS 21

h 2722324252627
k(Na(=Ap)) [3-07 [3.13 [3.16 [3.18 | 3.17 | 3.18
TABLE 6.1. Condition numbers for the operators Ny (—Ap).

Having verified, at least experimentally, that N, is a uniform pre-
conditioner for —Aj, we should expect that the operator B, j, given by
(6.3), is a uniform preconditioner for the operator A, .

The observed condition numbers of B, ,A. 4, for ¢ € [0,1] and de-
creasing values of h, are given in Table 6.2. In complete agreement
with the prediction of the theory these condition numbers appears to
bounded independently of ¢ and h.

|h\e | 0 [0.001]0.01] 0.1 | 0.5] 1.0 |
272]5.51] 5.16 | 4.45]4.82]6.96 | 7.06
3496] 4.95 | 4.485.56 | 7.85 | 7.79
~* [5.69] 5.51 |4.35]6.38[8.31]8.35
5]/5.22] 5.07 |4.46|7.12|8.72 | 8.74
—6

=7

5.23 | 4.77 |5.09 | 7.74|9.02 | 9.05
9.28 | 4.30 | 5.93 | 8.27|9.24 | 9.28

TABLE 6.2. Condition numbers for (B ;.A. 5) using the
P, — P, element.

DN DN DN DN DN

6.2. Analysis of the preconditioner. In order to complete the anal-
ysis of the preconditioner (6.3) we will show that the operator Ny, given
by (6.5), is a uniform preconditioner with respect to h for the discrete
Laplacian Aj on Q. More precisely, we will show that the norms

(6.6) lallip = (—Arg, @) and (NyApg, Ang)'/?

are uniformly equivalent on @},
In order to apply the theory of [21] we need to establish that the
projection P, is stable and accurate in the sense that

(6.7) |1Pus|lin < c||grads|ly Vs € Sh,
and
(6.8) (I — Pp)sl|lo < ch| gradsl||y Vs € Sp.

Here, the constant ¢ is independent of h. Furthermore, we need to
construct an operator Ry, : (), — S, which also is stable an accurate,
i.e.

(6.9) | grad Rugllo < cllqll1n Vg € Qp,
and

(6.10) I = Ra)gllo < chllgllin Vg € Qn,

22 KENT ANDRE MARDAL AND RAGNAR WINTHER

where again c is independent of hA. The operator R} is only needed for
the analysis. It is a straightforward consequence of these four estimates
and the theory given in [21], cf. Theorems 2.1 and 2.2 of that paper,
to conclude that the two norms given in (6.6) are uniformly equivalent.
Hence, the remaining task is to establish the estimates (6.7)—(6.10).

In fact, since P, is local and preserves piecewise constants, the es-
timate in (6.8) holds for any s € L3 N H', and hence on S;,. In order
to show (6.7) let us first denote by Z, the set of piecewise linear func-
tions with respect to 75, where no continuity constraints are imposed.
Hence, Qn,Sn, C Zj. Recall that a linear function on a triangle is
uniquely determined by the zero order moments with respect to each
edge. Therefore, as a consequence of a scaling argument, it follows that
the two norms

lelo and KOS oo+ ([21 do)

e [e

are equivalent on Z,. Here z_ and z, denote the two restriction of z
to e obtained from the two triangles meeting e, and the sum is taken
over all edges of the triangulation, with an obvious modification if e is
a boundary edge. Using this norm equivalence on Z; we have for any
s € Sy,

nw%=2m%=2w{ﬁmﬁww

e€&n e€&y
< ch ?||Pys — s|5.

Here, |e| denotes the length of e. Hence, (6.7) follows from (6.8).

In order to show (6.9) and (6.10) we will introduce an alternative
discrete norm on Z;. Since a linear function on a triangle is uniquely
determined by its values at each vertex it follows that the two norms

l2llo and A(Y - D (2(2))*)?

zEN}, TET(x)

are equivalent on Zj,. Here, zr(z) denotes the value of z at the vertex
x on the triangle 7', NV}, denotes the set of vertices of the triangulation
Th, and T, (z) denotes the set of triangles in 7, meeting the vertex z.
Furthermore, note that the shape-regularity of the triangulation 7y,
implies that the number of triangles in 7,(z) is bounded. Therefore,
the equivalence above will still hold if we replace the discrete (> norm
of the values of z at the vertex z, {zr(z)}, by any other norm. In
particular, the two norms

61D flello and ACY (@) + 3 ()

TEN, ec&(x)

UNIFORM PRECONDITIONERS 23

are equivalent on Zp,, where &,(x) is the set of interior edges meeting
x and z(z) is the arithmetic mean of z at z, i.e.

2(2) = [Tal@)| 7") 2r(a).

Th(x)

Here |7, ()| denotes the number of triangles in 7y (z).

Let S, = S), ® R, i.e. Sy, is the space of continuous piecewise linear
functions with no mean value constraint. Then S'h C Zp and any ele-
ment of S, is uniquely determined by its values at each vertex. Define
an operator R, : Q, — Sj, by fihq(x) = q(z) for all vertices z, i.e. the
value of th at x is the corresponding mean value of ¢ at . Hence,
(I — Rh)q € Zp with mean value zero at each vertex, and therefore
(6.11) implies that

(6.12) (1 = Ra)allo < ch(D_ Y la(@)])"* = vVachallin

TEN}, e€Eh ()

for all ¢ € @)y, where the constant c¢ is independent of hA. The desired
operator Ry : @y — Sy, is defined by

Ryg = Rpg— |9 / Ryqdz.
Q

The estimate (6.10) is an immediate consequence of the estimate (6.12).
Finally, (6.9) essentially follows from (6.10) and an inverse inequality.
We have,

| grad Ragll§ = > [l grad Ragll§r = > |l grad(Rag — ¢)ll ¢
TeT TeTh

< ch™?||Rng — qlI5,

and hence (6.10) implies (6.9). This completes the analysis of the
preconditioner (6.3).

REFERENCES

[1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element method for the
Stokes equations, Calcolo 21 (1984), pp. 337-344.

[2] D.N. Arnold, R.S. Falk and R. Winther, Preconditioning discrete approxima-
tions of the Reissner—Mindlin plate model, M2AN 31 (1997), pp 517-557.

[3] J.H. Bramble and J.E. Pasciak, Iterative techniques for time dependent Stokes
problem, Comput. Math. Appl. 33 (1997), pp. 13-30.

[4] M. Bercovier and O. Pironneau, Error estimates for finite element method
solution of the Stokes problem in primitive variables, Numer. Math. 33 (1979),
pp- 211-224.

[5] J. Bergh and J. Lofstrom, Interpolation spaces, Springer Verlag, 1976.

[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipliers, RATRO Anal. Numér. 8 (1974),
pp. 129-151.

[7] F. Brezzi and M. Fortin, Mized and hybrid finite element methods, Springer
Verlag, 1991.

24 KENT ANDRE MARDAL AND RAGNAR WINTHER

[8] P. Clement, Approximation by finite element functions using local regulariza-
tion, RATRO Anal. Numér. 9 (1975), pp. 77-84.

[9] M. Crouzeix and P.A. Raviart, Conforming and non—conforming finite element
methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 7
(1973), pp. 33-76.

[10] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equa-
tions, Springer Verlag 1986.

[11] Edward J. Dean and Roland Glowinski, On Some Finite Element Methods
for the Numerical Simulation of Incompressible Viscous Flow, In Proceedings:
Incompressible computational fluid dynamics; Trends and advances, Editors:
M. D. Gunzburger and R. A. Nicolaides, Cambridge University Press, 1993.

[12] W. Hackbusch, Iterative solution of large sparse systems of equations, Springer
Verlag 1994.

[13] E. Haug and R. Winther, A domain embedding preconditioner for the Lagrange
multiplier system, Math. Comp. 69 (1999), pp. 65-82.

[14] K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for
Darcy—Stokes flow, SITAM J. Numer. Anal. 40 (2002), pp. 1605-1631.

[15] J. Necas, Equations auz dérivée partielles, Presses de I’Université de Montréal
1965.

[16] C.C Paige and M.A. Sauders, Solution of sparse indefinite systems of linear
equations, STAM J. Numer. Anal. 12 (1975), pp. 617-629.

[17] O. Pironneau, The finite element method for fluids, John Wiley & Sons, 1989.

[18] T.Rusten and R. Winther, A preconditioned iterative method for saddle point
problems, STAM J. Matrix Anal. 13 (1992), pp. 887-904.

[19] S. Turek, Efficient Solvers for Incompressible Flow Problem, Springer Verlag
1999.

[20] R. Verfiirth, Error estimates for a mixed finite element approximation of the
Stokes equation, R.A.ILR.O. Anal. Numer. 18 (1984), pp. 175-182.

[21] J. Xu, The auxiliary space method and optimal multigrid preconditioning tech-
niques forunstructured grids, Computing 56, (1996) pp. 215-235.

DEPARTMENT OF INFORMATICS, UNIVERSITY OF OsLO, P.O. Box 1080 BLIN-
DERN, 0316 OSLO, NORWAY
E-mail address: kent-and@ifi.uio.no

DEPARTMENT OF INFORMATICS AND DEPARTMENT OF MATHEMATICS, UNI-
VERSITY OF OsLo, P.O. Box 1080 BLINDERN, 0316 OSLO, NORWAY
E-mail address: rwinther@ifi.uio.no

