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Abstract

We present an overview of the most common numerical solution

strategies for the incompressible Navier–Stokes equations, including

fully implicit formulations, artificial compressibility methods, penalty

formulations, and operator splitting methods (pressure/velocity correc-

tion, projection methods). A unified framework that explains popular

operator splitting methods as special cases of a fully implicit approach

is also presented and can be used for constructing new and improved

solution strategies. The exposition is mostly neutral to the spatial

discretization technique, but we cover the need for staggered grids or

mixed finite elements and outline some alternative stabilization tech-

niques that allow using standard grids. Emphasis is put on showing

the close relationship between (seemingly) different and competing so-

lution approaches for incompressible viscous flow.

1 Introduction

Incompressible viscous flow phenomena arise in numerous disciplines in sci-

ence and engineering. The simplest viscous flow problems involve just one

fluid in the laminar regime. The governing equations consist in this case of

the incompressible Navier–Stokes equations,

∂v

∂t
+ v · ∇v = −1

̺
∇p + ν∇2v + g, (1)

and the equation of continuity, also called the incompressibility constraint,

∇ · v = 0 . (2)

In these equations, v is the velocity field, p is the pressure, ̺ is the fluid

density, g denotes body forces (such as gravity, centrifugal and Coriolis

forces), ν is the kinematic viscosity of the fluid, and t denotes time. The

initial conditions consist of prescribing v, whereas the boundary conditions

can be of several types: (i) prescribed velocity components, (ii) vanishing

normal derivatives of velocity components, or (iii) prescribed stress vector

components. The pressure is only determined up to a constant, but can

be uniquely determined by prescribing the value (as a time series) at one

spatial point. Many people refer to the system (1)–(2) as the Navier–Stokes

equations. The authors will also adapt to this habit in the present paper.

Most flows in nature and technological devices are turbulent. The tran-

sition from laminar to turbulent flow is governed by the Reynolds number,

2



Re = Ud/ν, where U is a characteristic velocity of the flow and d is a

characteristic length of the involved geometries. The basic Navier-Stokes

equations describe both laminar and turbulent flow, but the spatial resolu-

tion required to resolve the small (and important) scales in turbulent flow

makes direct solution of the Navier-Stokes equations too computationally

demanding on today’s computers. As an alternative, one can derive equa-

tions for the average flow and parameterize the effects of turbulence. Such

common models models for turbulent flow normally consist of two parts:

one part modeling the average flow, and these equations are very similar to

(1)–(2), and one part modeling the turbulent fluctuations. These two parts

can at each time level be solved sequentially or in a fully coupled fashion. In

the former case, one needs methods and software for the system (1)–(2) also

in turbulent flow applications. Even in the fully coupled case the basic ideas

regarding discretization of (1)–(2) are reused. We also mention that simula-

tion of turbulence by solving the basic Navier-Stokes equations on very fine

grids, referred to as Direct Numerical Simulation (DNS), achieves increas-

ing importance in turbulence research as these solutions provide reference

databases for fitting parameterized models.

In more complex physical flow phenomena, laminar or turbulent viscous

flow is coupled with other processes, such as heat transfer, transport of pol-

lution, and deformation of structures. Multi-phase/multi-component fluid

flow models often involve equations of the type (1)–(2) for the total flow

coupled with advection-diffusion-type equations for the concentrations of

each phase or component. Many numerical strategies for complicated flow

problems employ a splitting of the compound model, resulting in the need to

solve (1)–(2) as one subset of equations in a possibly larger model involving

lots of partial differential equations. Hence, it is evident that complex phys-

ical flow phenomena also demand software for solving (1)–(2) in a robust

fashion.

Viscous flow models have important applications within the area of wa-

ter resources. The common Darcy-type models for porous media flow are

based on averaging viscous flow in a network of pores. However, the av-

eraging introduces the permeability parameter, which must be measured

experimentally, often with significant uncertainty. For multi-phase flow the

ad hoc extensions of the permeability concept to relative permeabilities is

insufficient for satisfactory modeling of many flow phenomena. Moreover,
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the extensions of Darcy’s law to flow in fractured or highly porous media

introduce considerable modeling uncertainty. A more fundamental approach

to porous media flow is to simulate the viscous flow at the pore scale, in a

series of network realizations, and compute the relation between the flow

rate and the pressure differences. This is an important way to gain more

insight into deriving better averaged flow models for practical use and to

better understand the permeability concept [6, 80]. The approach makes

a demand for solving (1)–(2) in highly complex geometries, but the left-

hand side of (1) can be neglected because of small Reynolds numbers (small

characteristic length).

Water resources research and engineering are also concerned with free

surface flow and currents in rivers, lakes, and the ocean. The commonly

used models in these areas are based on averaging procedures in the ver-

tical direction and ad hoc incorporation of viscous and turbulent effects.

The shortcomings of averaged equations and primitive viscosity models are

obvious in very shallow water, and in particular during run-up on beaches

and inclined dam walls. Fully three-dimensional viscous flow models based

on (1)–(2) with free surfaces are now getting increased interest as these are

becoming more accurate and computationally feasible [1, 24, 33, 69, 72, 79].

Efficient and reliable numerical solution of the incompressible Navier–

Stokes equations for industrial flow or water resources applications is ex-

tremely challenging. Very rapid changes in the velocity field may take place

in thin boundary layers close to solid walls. Complex geometries can also

lead to rapid local changes in the velocity. Locally refined grids, preferably

in combination with error estimation and automatic grid adaption, are hence

a key ingredient in robust methods. Most implicit solution methods for the

Navier–Stokes equations end up with saddle-point problems, which compli-

cates the construction of efficient iterative methods for solving the linear

systems arising from the discretization process. Implicit solution methods

also make a demand for solving large systems of nonlinear algebraic equa-

tions. Many incompressible viscous flow computations involve large-scale

flow applications with several million grid points and thereby a need for the

next generation of super-computers before becoming engineering or scientific

practice. We have also mentioned that Navier–Stokes solvers are often em-

bedded in much more complex flow models, which couple turbulence, heat

transfer, and multi-specie fluids. Before attacking such complicated prob-
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lems it is paramount that the numerical state-of-the-art of Navier–Stokes

solvers is satisfactory. Turek [84] summarizes the results of benchmarks

that were used to assess the quality of solution methods and software for

unsteady flow around a cylinder in 2D and 3D. The discrepancy in results

for the lifting force shows that more research is needed to develop sufficiently

robust and reliable methods.

Numerical methods for incompressible viscous flow is a major part of

the rapidly growing field computational fluid dynamics (CFD). CFD is now

emerging as an operative tool in many parts of industry and science. How-

ever, CFD is not a mature field either from a natural scientist’s or an appli-

cation engineer’s point of view; robust methods are still very much under de-

velopment, many different numerical tracks are still competing, and reliable

computations of complex multi-fluid flows are still (almost) beyond reach

with today’s methods and computers. We believe that at least a couple of

decades of intensive research are needed to merge the seemingly different

solution strategies and make them as robust as numerical models in, e.g.,

elasticity and heat conduction. Sound application of CFD today therefore

requires advanced knowledge and skills both in numerical methods and fluid

dynamics. To gain reliability in simulation results, it should be a part of

common practice to compare the results from different discretizations, not

only varying the grid spacings but also changing the discretization type and

solution strategy. This requires a good overview and knowledge of differ-

ent numerical techniques. Unfortunately, many CFD practitioners have a

background from only one ”numerical school” practicing a particular type

of discretization technique and solution approach. One goal of the present

paper is to provide a generic overview of the competing and most dominat-

ing methods in the part of CFD dealing with laminar incompressible viscous

flow.

Writing a complete review of numerical methods for the Navier–Stokes

equations is probably an impossible task. The book by Gresho and Sani [27]

is a remarkable attempt to review the field, though with an emphasis on fi-

nite elements, but it required over 1000 pages and 48 pages of references.

The page limits of a review paper demand the authors to only briefly report

a few aspects of the field. Our focus is to present the basic ideas of the

most fundamental solution techniques for the Navier–Stokes equations in a

form that is accessible to a wide audience. The exposition is hence of the
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introductory and “engineering” type, keeping the amount of mathematical

details to a modest level. We do not limit the scope to a particular spa-

tial discretization technique, and therefore we can easily outline a common

framework and reasoning which demonstrate the close connections between

seemingly many different solution procedures in the literature. Hence, our

hope is that this paper can help newcomers to the numerical viscous flow

field see some structure in the jungle of Navier–Stokes solvers and papers,

without having to start by digesting thick textbooks.

The literature on numerical solutions of the Navier–Stokes equations is

overwhelming, and only a small fraction of the contributions is cited in this

paper. Some books and reviews that the authors have found attractive are

mentioned next. These references serve as good starting points for read-

ers who want to study the contents of the present paper in more detail.

Fletcher [21] contains a nicely written overview of some finite element and

finite difference techniques for incompressible fluid flow (among many other

topics). Gentle introductions to numerical methods and their applications

to fluid flow can be found in the textbooks [3, 20, 28, 58, 59] (finite differ-

ences, finite volumes) and [60, 65, 66, 89] (finite elements). More advanced

texts include [15, 26, 27, 30, 61, 25, 84, 86]. Readers with a background in

functional analysis and special interest in mathematics and finite element

methods are encouraged to address Girault and Raviart [25] and the reviews

by Glowinski and Dean [16] and Rannacher [63]. Readers interested in the

efficiency of solution algorithms for the Navier–Stokes equations should con-

sult Turek [84]. Gresho and Sani’s comprehensive book [27] is accessible to

a wide audience and contains thorough discussions of many topics that are

weakly covered in most other literature, e.g., questions related to boundary

conditions. The book’s extensive report on practical experience with vari-

ous methods is indispensable for CFD scientists, software developers, and

consultants. An overview of CFD books is available on the Internet [36].

Section 2 describes the natural first approach to solving the Navier–

Stokes equations and points out some basic numerical difficulties. Necessary

conditions to ensure stable spatial discretizations are treated in Section 3.

Thereafter we consider approximate solution strategies where the Navier–

Stokes equations are transformed to more common and tractable systems of

partial differential equations. These strategies include modern stabilization

techniques (Section 4.1), penalty methods (Section 4.2), artificial compress-
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ibility (Section 4.3), and operator splitting techniques (Section 5). The

latter family of strategies is popular and widespread and are known under

many names in the literature, e.g., projection methods and pressure (or

velocity) correction methods. We end the overview of operating splitting

methods with a framework where such methods can be viewed as special

preconditioners in an iterative scheme for a fully implicit formulation of

the Navier–Stokes equations. Section 7 mentions some examples of existing

software packages for solving incompressible viscous flow problems, and in

Section 8 we point out important areas for future research.

2 A Naive Derivation of Schemes

With a background from a basic course in the numerical solution of partial

differential equations, one would probably think of (1) as some kind of heat

equation and try the simplest possible scheme in time, namely an explicit

forward step

vℓ+1 − vℓ

∆t
+ vℓ · ∇vℓ = −1

̺
∇pℓ + ν∇2vℓ + gℓ . (3)

Here, ∆t is the time step and superscript ℓ denotes the time level. The

equation can be trivially solved for vℓ+1, after having introduced, e.g., finite

elements [27], finite differences [3], finite volumes [20], or spectral methods

[11] to discretize the spatial operators. However, the fundamental problem

with this approach is that the new velocity vℓ+1 does not, in general, satisfy

the other equation (2), i.e., ∇ · vℓ+1 6= 0. Moreover, there is no natural

computation of pℓ+1.

A possible remedy is to introduce a pressure at pℓ+1 in (3), which leaves

two unknowns, vℓ+1 and pℓ+1, and hence requires a simultaneous solution

of

vℓ+1 +
∆t

̺
∇pℓ+1 = vℓ − ∆tvℓ · ∇vℓ + ∆tν∇2vℓ + ∆tgℓ, (4)

∇ · vℓ+1 = 0 . (5)

We can eliminate vℓ+1 by taking the divergence of (4) to obtain a Poisson

equation for the pressure,

∇2pℓ+1 =
̺

∆t
∇ · (vℓ − ∆tvℓ · ∇vℓ + ∆tν∇2vℓ + ∆tgℓ) . (6)
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However, there are no natural boundary conditions for pℓ+1. Hence, solv-

ing (6) and then finding vℓ+1 trivially from (4) is therefore not in itself a

sufficient solution strategy. More sophisticated variants of this method are

considered in Section 5, but the lack of explicit boundary data for pℓ+1 will

remain a problem.

More implicitness of the velocity terms in (1) can easily be introduced.

One can, for example, try a semi-implicit approach, based on a Backward

Euler scheme, using an “old” velocity (as a linearization technique) in the

convective term v · ∇v:

(1 + ∆tvℓ · ∇ − ∆tν∇2)vℓ+1 +
∆t

̺
∇pℓ+1 = vℓ + ∆tgℓ+1, (7)

∇ · vℓ+1 = 0 . (8)

This problem has the proper boundary conditions since (7) and (8) have the

same order of the spatial operators as the original system (1)–(2). Using

some discretization in space, one arrives in both cases at a linear system,

which can be written on block form:
[

N Q

QT 0

][

u

p

]

=

[

f

0

]

. (9)

The vector u contains in this context all the spatial degrees of freedom (i.e.,

grid point values) of the vector field vℓ+1, whereas p is the vector of pressure

degrees of freedom in the grid.

A fully implicit approach, using a backward Euler scheme for (1), where

the convective term v ·∇v is evaluated as vℓ+1 ·∇vℓ+1, leads to a nonlinear

equation in vℓ+1. Standard Newton or Picard iteration methods result in a

sequence of matrix systems of the form (9) at each time level.

In contrast to linear systems arising from standard discretization of, e.g.,

the diffusion equation, the system (9) may be singular. Special spatial dis-

cretization or stabilizing techniques are needed to ensure an invertible matrix

in (9) and are reviewed in Section 3 and 4. In the simplest case, N is a sym-

metric and positive definite matrix (this requires the convective term v ·∇v

to be evaluated explicitly at time level ℓ, such that the term appears on the

right-hand side of (7)), and Q is a rectangular matrix. The stable spatial

discretizations are designed such that the matrix QT Q is non-singular. It

should be noted that these conditions on N and Q lead to the property

that the coefficient matrix in (9) is symmetric and non-singular but indef-

inite. This indefiniteness causes some difficulties. For example, a standard
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iterative method like the preconditioned conjugate gradient method can not

be directly used. In fact, preconditioners for these saddle point problems

are much more delicate to construct even when using more general solvers

like, e.g., GMRES and may lead to breakdown if not constructed properly.

Many of the time stepping procedures for the Navier-Stokes system have

been partially motivated by the desire to avoid the solution of systems of

the form (9). However, as we shall see later, such a strategy will introduce

other difficulties.

3 Spatial Discretization Techniques

So far we have only been concerned with the details of the time discretiza-

tion. Now we shall address spatial discretization techniques for the systems

(4)–(5) or (7)–(8).

3.1 Finite Differences and Staggered Grids

Initial attempts to solve the Navier–Stokes equations employed straightfor-

ward centered finite differences to the spatial operators on a regular grid,

with the pressure and velocity components being unknown at the corners of

each cell. Two typical terms in the equations would then be discretized as

follows in a uniform 2D grid:

[

∂p

∂x

]ℓ+1

i,j

≈ −
pℓ+1

i+1,j − pℓ+1
i−1,j

2∆x
(10)

and
[

∂2u

∂y2

]ℓ

i,j

≈
uℓ

i,j−1 − 2uℓ
i,j + uℓ

i,j+1

∆y2
,

where ∆x and ∆y are uniform spatial cell sizes, φℓ
i,j means the numerical

value of a function φ at the point with spatial index (i, j) at time level ℓ.

Two types of instabilities were soon discovered, associated with this type

of spatial discretization. The pressure can be highly oscillatory or even

undetermined by the discrete system, although the corresponding velocities

may be well approximated. The reason for this phenomenon is that the

symmetric difference operator (10) will annihilate checkerboard pressures,

i.e., pressures which oscillate between 1 and -1 on each grid line connecting

the grid points. In fact, if the vertices are colored in a checkerboard pattern,
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Figure 1: Example on a staggered grid for the Navier–Stokes equations,

where p and v = (u, v) are unknown at different spatial locations. The •
denotes p points, − denotes u points, whereas | denotes v points.

then the pressure at the black vertices will not be related to the pressure

at the white vertices. Hence, the pressure is undetermined by the discrete

system and wild oscillations or overflow will occur. This instability is related

to whether the system (9) is singular or not. There is also a ”softer” version

of this phenomenon when (9) is nearly singular. Then the pressure will not

necessarily oscillate, but it will not converge to the actual solution either.

The second type of instability is visible as non-physical oscillations in

the velocities at high Reynolds numbers. This instability is the same as

encountered when solving advection-dominated transport equations, hyper-

bolic conservation laws, or boundary layer equations and can be cured by

well-known techniques, among which upwind differences represent the sim-

plest approach. We shall not be concerned with this topic in the present pa-

per, but the interested reader can consult the references [9, 20, 21, 27, 59, 71]

for effective numerical techniques.

The remedy for oscillatory or checkerboard pressure solutions is, in a

finite difference context, to introduce a staggered grid in space. This means

that the primary unknowns, the pressure and the velocity components, are

sought at different points in the grid. Figure 1 displays such a grid in 2D,

and Figure 2 zooms in on a cell and shows the spatial indices associated

with the point values of the pressure and velocity components that enter

the scheme.

Discretizing the terms −∂p/∂x and ∂2u/∂y2 on the staggered grid at a
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pℓ
i+ 1

2
,j+ 1

2

uℓ
i,j+ 1

2

uℓ
i+1,j+ 1

2

vℓ
i+ 1

2
,j

vℓ
i+ 1

2
,j+1

Figure 2: A typical cell in a staggered grid.

point with spatial indices (i, j + 1
2
) now results in

[

∂p

∂x

]ℓ+1

i,j+ 1

2

≈ −
pℓ+1

i+ 1

2
,j+ 1

2

− pℓ+1

i− 1

2
,j+ 1

2

∆x

and
[

∂2u

∂y2

]ℓ

i,j+ 1

2

≈
uℓ

i,j− 1

2

− 2uℓ
i,j+ 1

2

+ uℓ
i,j+ 3

2

∆y2
.

The staggered grid is convenient for many of the derivatives appearing in the

equations, but for the nonlinear terms it is necessary to introduce averaging.

See, for instance, [3, 21, 20, 28] for more details regarding discretization on

staggered grids.

Finite volume methods are particularly popular in CFD. Although the

final discrete equations are similar to those obtained by the finite difference

method, the reasoning is different. One works with the integral form of the

equations (1)–(2), obtained either by integrating (1)–(2) or by direct deriva-

tion from basic physical principles. The domain is then divided into control

volumes. These control volumes are different for the integral form of (2) and

the various components of the integral form of (1). For example, in the grid

in Figure 1 the dotted cell, also appearing in Figure 2, is a typical control

volume for the integral form of the equation of continuity, whereas the con-

trol volumes for the components of the equation of motion are shifted half a
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cell size in the various spatial directions. The governing equations in integral

form involve volume/area integrals over the interior of a control volume and

surface/line integrals over the sides. In the computation of these integrals,

there is freedom to choose the type of interpolation for v and p and the

numerical integration rules. Many CFD practitioners prefer finite volume

methods because the derivation of the discrete equations is based directly

on the underlying physical principles, thus resulting in “physically sound”

schemes. From a mathematical point of view, finite volume, difference, and

element methods are closely related, and it is difficult to decide that one

approach is superior to the others; these spatial discretization methods have

different advantages and disadvantages. We refer to textbooks like [3] and

[20] for detailed information about the finite volume discretization technol-

ogy.

Staggered grids are widespread in CFD. However, in recent years other

ways of stabilizing the spatial discretization have emerged. Auxiliary terms

in the equations or certain splittings of the operators in the Navier–Stokes

equations can allow stable pressure solutions also on a standard grid. Avoid-

ing staggered grids is particularly convenient when working with curvelinear

grids. Much of the fundamental understanding of stabilizing the spatial dis-

cretization has arisen from finite element theory. We therefore postpone

the discussion of particular stabilization techniques until we have reviewed

the basics of finite element approximations to the spatial operators in the

time-discrete Navier–Stokes equations.

3.2 Mixed Finite Elements

The staggered grids use different interpolation for the pressure and the ve-

locity, hence we could call it mixed interpolation. In the finite element world

the analog interpolation is referred to as mixed elements. The idea is, basi-

cally, to employ different basis functions for the different unknowns. A finite

element function is expressed as a linear combination of a set of prescribed

basis functions, also called shape functions or trial functions [88]. These ba-

sis functions are defined relative to a grid, which is a collection of elements

(triangles, qaudrilaterals, tetrahendra, or boxes), so the overall quality of

a finite element approximation depends on the shape of the elements and

the type of basis functions. Normally, the basis functions are lower-order

polynomials over a single element.
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One popular choice of basis functions for viscous flow is quadratic piece-

wise polynomials for the velocity components and linear piecewise polyno-

mials for the pressure. This was in fact the spatial discretization used in

the first report, by Taylor and Hood [76], on finite element methods for the

Navier–Stokes equations.

The Babuska-Brezzi (BB) condition [8, 25, 27, 30] is central for ensuring

that the linear system of the form (9) is non-singular. Much of the mathe-

matical theory and understanding of importance for the numerical solution

of the Navier-Stokes equations has been developed for the simplified Stokes

problem, where the acceleration terms on the left-hand side of (1) vanish:

0 = −1

̺
∇p + ν∇2v + g, (11)

∇ · v = 0 . (12)

We use the Galerkin method to formulate the discrete problem, seeking

approximations

v ≈ v̂ =
d

∑

r=1

n
∑

i=1

vr
i N

r
i , (13)

p ≈ p̂ =
m

∑

i=1

piLi, (14)

where N r
i = Nier, Ni and Li are some scalar basis functions and er is the

unity vector in the direction r. Here d is the number of spatial dimensions,

i.e., 2 or 3. The number of velocity unknowns is dn, whereas the pressure

is represented by m unknowns. Using Ni as weighting function for (11) and

Li as weighting function for (12), and integrating over Ω, one can derive a

linear system for the coefficients vr
i and pi :

n
∑

j=1

N̄ijv
r
j +

m
∑

j=1

Qr
ijpj = f r

i , i = 1, . . . , dn, r = 1, . . . , d (15)

d
∑

r=1

n
∑

j=1

Qr
jiv

r
j = 0, i = 1, . . . ,m (16)

where

N̄ij =

∫

Ω

ν∇Ni · ∇NjdΩ, (17)

Qr
ij =

1

̺

∫

Ω

∂Li

∂xr
NjdΩ = −1

̺

∫

Ω

∂Ni

∂xr
LjdΩ +

1

̺

∫

dΩ

NiLjnrdΓ, (18)

f r
i =

∫

Ω

grN r
i dΩ . (19)
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We shall write such a system on block matrix form (like (9)):

[

N Q

QT 0

][

u

p

]

=

[

f

0

]

, N =







N̄ 0 0

0 N̄ 0

0 0 N̄






, Q =







Q1

Q2

Q3







(20)

Here N̄ is the matrix with elements N̄ij , Qr has elements Qr
ij, and

u = (v1
1 , . . . , v1

n, v2
1 , . . . , v

2
n, v3

1 , . . . , v
3
n)T , p = (p1, . . . , pn)T . (21)

The N matrix is seen to be dn × dn, whereas Q is m × dn. In (20)-(21)

we have assumed that d = 3. Moreover, we have multiplied the equation of

continuity by the factor −1/̺ to obtain a symmetric linear system.

We shall now go through some algebra related to the block form of the

Stokes problem, since this algebra will be needed later in Section 5.6. Let

us write the discrete counterpart to (11)–(12) as:

Nu + Qp = f , (22)

QT u = 0 . (23)

The matrices N and Q can in principle arise from any spatial discretization

method, e.g., finite differences, finite volumes, or finite elements, although

we will specifically refer to the latter in what follows. First, we shall ask

the question: What conditions on N and Q are needed to ensure that u

and p are uniquely determined? We assume that N is positive definite (this

assumption is actually the first part of the BB condition, which is satisfied

for all ”standard” elements). We can then multiply (22) by N−1 to obtain

an expression for u, which can be inserted in (23). The result is a linear

system for p:

−QT N−1Qp = QT N−1f . (24)

Once the pressure is known, the velocities are found by solving

Nu = (f − Qp) .

To obtain a uniquely determined u and p, QT N−1Q, which is referred

to as the Schur complement, must be non-singular. A necessary sufficient

condition to ensure this is Ker(Q) = {0}, which is equivalent to requiring

that

sup
v̂

∫

Ω

p̂∇ · v̂ > 0, (25)
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for all discrete pressure p̂ 6= 0, where the supremum is taken over all discrete

velocities on the form (13). This guarantees solvability, but to get conver-

gence of the numerical method, one also needs stability. Stability means

in this setting that QT N−1Q does not tend to a singular system as the h

decrease. It is also sufficient to ensure optimal accuracy. This is where the

famous BB condition comes in:

inf
p

sup
v̂

∫

Ω
p̂∇ · v̂

‖v̂‖1‖p̂‖0

≥ γ > 0 . (26)

Here, γ is independent of the discretization parameters, and the inf is taken

over all p̂ 6= 0 on the form (14). The condition (26) is stated in numerous

books and papers. Here we emphasize the usefulness of (26) as an operative

tool for determining which elements for p and v that are “legal”, in the sense

that the elements lead to a solvable linear system and a stable, convergent

method. For example, the popular choice of standard bilinear elements

for v and piecewise constant elements for p voilates (26), whereas standard

quadratic triangular elements for v and standard linear triangules for p fulfill

(26).

Provided the BB condition is fulfilled, with γ not depending on the mesh,

one can derive an error estimate for the discretization of the Navier-Stokes

equations:

‖v̂ − v‖1 + ‖p̂ − p‖0 ≤ C(hk‖v‖k+1 + hl+1‖p‖l+1), (27)

This requires the exact solutions v and p to be in [Hk+1(Ω)]d and H l+1(Ω),

respectively. The constant C is independent of the spatial mesh parameter

h. The degree of the piecewise polynomial used for the velocity and the

pressure is k and l, respectively, (see e.g. [29] or [25]). Since (27) involves

the H1 norm of v, and the convergence rate of v in L2 norm is one order

higher, it follows from the estimate (27) that k = l+1 is the optimal choice,

i.e., the velocity is approximated with accuracy of one higher order than the

pressure. For example, the Taylor-Hood element [76] with quadratic velocity

components and linear pressure gives quadratic and linear L2-convergence

in the mesh parameter for the velocities and pressure, respectively (under

reasonable assumptions), see [5].

In simpler words, one could say that the computer resources are not

wasted. We get what we can and should get. Elements that do not satisfy

the BB condition may give an approximation that does not converge to the
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solution, and if it does, it may not converge as fast as one should expect

from the order of the elements.

Numerous mixed finite elements satisfying the BB condition have been

proposed over the years. However, elements not satisfying the BB condition

may also work well. The element with bilinear velocities and constant pres-

sure, which does violates the BB condition, is popular and usable in many

occasions. A comprehensive review of mixed finite elements for incompress-

ible viscous flow can be found in [27].

4 Stabilization Techniques

Staggered grids or mixed finite elements can be challenging from an im-

plementational point of view, especially when using unstructured, adaptive

and/or hierarchical grids. Therefore, there has been significant interest in

developing stabilization techniques which allow standard grids and equal

order interpolation of v and p.

The singularity of the matrix (9) can be circumvented by introducing a

stabilization matrix ǫD and possibly a perturbation of the right hand side,

ǫd,
[

N Q

QT −ǫD

][

u

p

]

=

[

f

−ǫd

]

, (28)

where ǫ is a parameter that should be chosen either from physical knowledge

or by other means. It can also be a spatially local parameter, which can be

important for anisotropic meshes and boundary layer problems. There are

mainly three methods used to construct ǫD, all based on perturbed versions

of the equation of continuity,

∇ · v = ǫ∇2p, (29)

∇ · v = −ǫp, (30)

∇ · v = −ǫ
∂p

∂t
. (31)

The approach (29) was derived with the purpose of stabilizing pressure

oscillations and allowing standard grids and elements. Section 4.1 deals with

this approach. The equations (30) and (31) were not derived as stabilization

methods, but were initiated from alternative physical and mathematical

formulations of viscous incompressible flow, as we outline in Sections 4.2

and 4.3.
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4.1 Pressure Stabilization Techniques

Finite elements not satisfying the BB condition often lead to non-physical

oscillations in the pressure field. It may therefore be tempting to introduce

a regularization based on ∇2p, which will smooth the pressure solution [8].

One can show that the BB condition can be avoided by, e.g., introducing a

stabilization term in the equation of continuity as shown in (29). It is com-

mon to write this perturbed equation with a slightly different perturbation

parameter;

∇ · v = ǫh2∇2p, (32)

where ǫ is a constant to be chosen. Now the velocities and the pressure

can be represented with equal order, “standard” finite elements. We have

introduced an O(h2) perturbation of the problem, and there is hence no

point in using higher-order elements. Consistent generalizations that also

apply to higher-order elements have been proposed, a review can be found

in Gresho and Sani [27] and Franca et al. in [30]. The idea behind these

methods is that one observes that by taking the divergence of (11) we get

an equation that includes a ∇2p term like in (32),

1

̺
∇2p = ∇ · (ν∇2v) + ∇ · g . (33)

This divergence of (11) can be represented by the weak form
∫

Ω

(−1

̺
∇p̂ + ν∇2v̂ + g) · ∇Li dΩ = 0,

where the pressure basis functions are used as weighting functions. The left-

hand side of this equation can then be added to (16) with a local weighting

parameter ǫh2
K in each element. The result becomes

d
∑

r=1

n
∑

j=1

Q̂r
jiv

r
j − ǫ

m
∑

j=1

Dijpj = −ǫdi, i = 1, . . . ,m, (34)

where

Dij =
∑

K

h2
K

∫

ΩK

∇Li · ∇LjdΩ, (35)

Q̂r
ij = Qr

ij + ǫ
∑

K

h2
K

∫

ΩK

ν∇2N r
j

∂Li

∂xr
dΩ (36)

dr
i =

∑

K

h2
K

∫

ΩK

gr ∂Li

∂xr
dΩ . (37)
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The sum over K is to be taken over all elements; ΩK is the domain of

element K and hK is the local mesh size. We see that this stabilization is

not symmetric since Q̂r
ij 6= Q̂r

ji, however it is easy to see that a symmetric

stabilization can be made by an adjustment of (15), such that

∫

Ω

(−1

̺
∇p̂ + ν∇2v̂ + g) · ∇2N r

i dΩ

is added to (15) with the same local weighting parameter. The use of second-

order derivatives excludes linear polynomials for N r
i . Detailed analysis of

stabilization methods for both Stokes and Navier–Stokes equations can be

found in [82].

One problem with stabilization techniques of the type outlined here is

the choice of ǫ, since the value of ǫ influences the accuracy of the solution. If

ǫ is too small we will experience pressure oscillations, and if ǫ is too large the

accuracy of the solution deteriorates, since the solution is far from divergence

free locally, although it is divergence free globally [27]. The determination

of ǫ is therefore important. Several more or less complicated techniques

exist, among the simplest is the construction of ’optimal bubbles’ which is

equivalent to the discretization using the MINI element [8, 27]. Problems

with this approach have been reported; one often experiences O(h) pressure

oscillations in boundary layers with stretched elements, but a fix (multiply

ǫ with a proper factor near the boundary layer) is suggested in [54]. An

adaptive stabilization parameter calculated locally from properties of the

element matrices and vectors is suggested in [78]. This approach gives a

more robust method in the boundary layers.

4.2 Penalty Methods

A well-known result from variational calculus is that minimizing a functional

J(v) =

∫

Ω

|∇v|2dΩ

over all functions v in the function space H1(Ω), such that v|∂Ω = g where

g is the prescribed boundary values, is equivalent to solving the Laplace

problem

∇2u = 0 in Ω, u = g on ∂Ω .
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The Stokes problem (11)–(12) can be recast into a variational problem as

follows: Minimize

J(w) =

∫

Ω

̺ (ν∇w : ∇w − g · w) dΩ

over all w in some suitable function space, subject to the constraint

∇ · w = 0 .

Here, ∇w : ∇w =
∑

r

∑

s wr,swr,s is the “inner product” of two tensors

(and wr,s means ∂wr/∂xs). As boundary conditions, we assume that w is

known or the stress vector vanishes, for the functional J(w) to be correct

(extension to more general conditions is a simple matter). This constrained

minimization problem can be solved by the method of Lagrange multipliers:

Find stationary points of

Ĵ(w, p) = J(w) −
∫

Ω

p∇ · w dΩ

with respect to w and p, −p being the Lagrange multiplier. The solution

(w, p) is a saddle point of Ĵ ,

Ĵ(w, q) ≤ Ĵ(w, p) ≤ Ĵ(v, p)

and fulfills the Stokes problem (11)–(12).

The penalty method is a way of solving constrained variational problems

approximately. One works with the modified functional

J̃(w) = J(w) +
1

2
λ2

∫

Ω

(∇ · w)2dΩ,

where λ is a prescribed, large parameter. The solution is governed by the

equation
1

̺
λ∇(∇ · v) + ν∇2v = g . (38)

or the equivalent mixed formulation,

−ν∇2v +
1

̺
∇p = g, (39)

∇ · v +
1

λ
p = 0 . (40)

For numerical solution, (38) is a tremendous simplification at first sight;

equation (38) is in fact equivalent to the equation of linear elasticity, for
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which robust numerical methods are well known. The penalty method does

not seem to need mixed elements or staggered grids and is hence easy to

implement.

The governing equation (38) is only an approximation to (11)–(12),

where the latter model is obtained in the limit λ → ∞. A too low λ leads

to mass loss, whereas a large λ value leads to numerical difficulties (known

as the locking problem in elasticity). Because of the large λ parameter, ex-

plicit time discretization leads to impractical small time steps, and implicit

schemes in time are therefore used, with an associated demand of solving

matrix systems. The disadvantage of the penalty method is that efficient

iterative solution of these matrix systems is hard to construct. The discrete

approximations of the system (38) will be positive definite. However, as λ

approach infinity the system will tend to a discrete Stokes system, i.e., a

discrete version of (39)-(40) with 1
λ = 0. Hence, in the limit the elimination

of the pressure is impossible, and this effect results in bad conditioning of

the systems derived from (38) when λ is large. The dominating solution

techniques have therefore been variants of Gaussian elimination. However,

progress has been made with iterative solution techniques, see Reddy and

Reddy [68].

The penalty method has a firm theoretical basis for the Stokes problem

[64]. Ad hoc extensions to the full Navier–Stokes equations are done by

simply replacing equation (2) by

p = −λ∇ · v

and eliminating the pressure p. This results in the governing flow equation

∂v

∂t
+ v · ∇v =

λ

̺
∇(∇ · v) + ν∇2v + g . (41)

In a sense, this is a nonlinear and time-dependent version of the standard

linear elasticity equations.

One problem with the penalty method and standard elements is often

referred to as locking. The locking phenomena can be illustrated by seeking

a divergence-free velocity field subject to homogeneous Dirichlet boundary

conditions on a regular finite element grid. For the standard linear elements

the only solution to this problem is v = 0. In the case of the penalty method

we see that as λ → ∞, v = 0 is the only solution to (41) unless the matrix

associated with the λ term is singular. One common way to avoid locking
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is, in a finite element context, to introduce selective reduced integration,

which causes the matrix associated with the λ term to be singular. The

selective reduced integration consists in applying a Gauss-Legendre rule to

the λ term that is of one order lower than the rule applied to other terms

(provided that rule is of minimum order for the problem in question). For

example, if bilinear elements are employed for v, the standard 2× 2 Gauss-

Legendre rule is used for all integrals, except those containing λ, which are

treated by the 1×1 rule. The same technique is known from linear elasticity

problems when the material approaches the incompressible limit. We refer

to [34, 64] or standard textbooks [65, 66, 89] for more details.

The use of selective reduced integration is justified by the fact that under

certain conditions the reduced integration is equivalent to consistent inte-

gration, which is defined as the integration rule that is obtained if mixed

elements were used to discretize (39)- (40) before eliminating the pressure

to obtain (38). This equivalence result does, however, need some conditions

on the elements. For instance, the difference between consistent and re-

duced integration was investigated in [19], and they reported much higher

accuracy of mixed methods with consistent integration when using curved

higher-order elements.

The locking phenomena is related to the finite element space and not to

the equations themselves. For standard linear elements the incompressibility

constraint will affect all degrees of freedom and therefore the approximation

will be poor. Another way of circumventing this problem can therefore be to

use elements where the incompressibility constraint will only affect some of

the degrees of freedom, e.g., the element used to approximate Darcy-Stokes

flow [55] .

The penalty formulation can also be justified by physical considerations

(Stokes’ viscosity law [23]). We also mention that the method can be viewed

as a velocity Schur complement method (cf. pressure Schur complement

methods in Section 5.8). The Augmented Lagrangian method is a regu-

larization technique closely related to the penalty method. For a detailed

discussion we refer to the book by Fortin and Glowinski [22].

4.3 Artificial Compressibility Methods

If there had been a term ∂p/∂t in the equation of continuity (2), the system

of partial differential equation for viscous flow would be similar to the shal-
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low water equations (with a viscous term). Simple explicit time stepping

methods would then be applicable.

To introduce a pressure derivative in the equation of continuity, we con-

sider the Navier–Stokes equations for compressible flow:

∂v

∂t
+ v · ∇v = −1

̺
∇p + ν∇2v + g, (42)

∂̺

∂t
+ ∇ · (̺v) = 0 . (43)

In (42) we have neglected the bulk viscosity since we aim at a model with

small compressibility to be used as an approximation to incompressible flow.

The assumption of small compressibility, under isothermal conditions, sug-

gests the linearized equation of state

p = p(̺) ≈ p0 + c2
0(̺ − ̺0), (44)

where c2
0 = (∂p/∂̺)0 is the velocity of sound at the state (̺0, p0). We can

now eliminate the density in the equation of continuity (43), resulting in

∂p

∂t
+ c2

0̺0∇ · v = 0 . (45)

Equations (42) and (45) can be solved by, e.g., explicit forward differences

in time. Here we list a second-order accurate leap-frog scheme, as originally

suggested by Chorin [13]:

vℓ+1 − vℓ−1

2∆t
+ vℓ · ∇vℓ = − 1

̺0

∇pℓ + ν∇2vℓ + gℓ (46)

pℓ+1 − pℓ−1

2∆t
= −c2

0̺0∇ · vℓ . (47)

This time scheme can be combined with centered spatial finite differences on

standard grids or on staggered grids; Chorin [13] applied a DuFort-Frankel

scheme on a standard grid. When solving the similar shallow water equa-

tions, most practitioners apply a staggered grid of the type in Figure 1 as

this give a more favorable numerical dispersion relation. Peyret and Taylor

[59] recommend staggered grids for slightly compressible viscous flow for the

same reason.

Artificial compressibility methods are often used to obtain a stationary

solution. In this case, one can introduce α = ̺0c
2
0 and use α and ∆t for

optimizing a pseudo-time evolution of the flow towards a stationary state.

A basic problem with the approach is that the time step ∆t is limited by
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the inverse of c2
0, which results in very small time steps when simulating

incompressibility (c0 → ∞). Implicit time stepping in (42) and (45) can then

be much more efficient. In fact, explicit temporal schemes in (46)–(47) are

closely related to operator splitting techniques (Sections 5 and 5.6), where

the pressure Poisson equation is solved by a Jacobi-like iterative method

[59]. Therefore, the scheme (46)–(47) is a very slow numerical method unless

the flow exhibits rapid transient behavior of interest. Having said this, we

should also add that artificial compressibility methods with explicit time

integration have been very popular because of the trivial implementation

and parallelization.

5 Operator Splitting Methods

The most popular numerical solution strategies today for the Navier–Stokes

equations are based on operator splitting. This means that the system (1)–

(2) is split into a series of simpler, familiar equations, such as advection

equations, diffusion equations, advection-diffusion equations, Poisson equa-

tions, and explicit/implicit updates. Efficient numerical methods are much

easier to construct for these standard equations than for the original system

(1)–(2) directly. In particular, the evolution of the velocity consists of two

main steps. First we neglect the incompressibility condition and compute

a predicted velocity. Thereafter, the velocity is corrected by performing ”a

projection” onto the divergence free vector fields.

5.1 Explicit Schemes

To illustrate the basics of operator splitting ideas, we start with a forward

step in (1):

vℓ+1 = vℓ − ∆tvℓ · ∇vℓ − ∆t

̺
∇pℓ + ∆tν∇2vℓ + ∆tgℓ . (48)

The problem is that vℓ+1 does not satisfy the equation of continuity (2),

i.e., ∇ · vℓ+1 6= 0. Hence, we cannot claim that vℓ+1 in (48) is the velocity

at the new time level ℓ + 1. Instead, we view this velocity as a predicted

(also called tentative or intermediate) velocity, denoted here by v∗, and try

to use the incompressibility constraint to compute a correction vc such that

vℓ+1 = v∗ + vc. For more flexible control of the pressure information used
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in the equation for v∗ we multiply the pressure term ∇pℓ by an adjustable

factor β:

v∗ = vℓ − ∆tvℓ · ∇vℓ − ∆t
β

̺
∇pℓ + ∆tν∇2vℓ + ∆tgℓ . (49)

The vℓ+1 velocity to be sought should fulfill (48) with the pressure being

evaluated at time level ℓ + 1 (cf. Section 2):

vℓ+1 = vℓ − ∆tvℓ · ∇vℓ − ∆t

̺
∇pℓ+1 + ∆tν∇2vℓ + ∆tgℓ .

Subtracting this equation and the equation for v∗ yields an expression for

vc:

vc = vℓ+1 − v∗ = −∆t

̺
∇(pℓ+1 − βpℓ) .

That is,

vℓ+1 = v∗ − ∆t

̺
∇(pℓ+1 − βpℓ)

We must require ∇ · vℓ+1 = 0 and this leads to a Poisson equation for the

pressure difference φ ≡ pℓ+1 − βpℓ:

∇2φ =
̺

∆t
∇ · v∗ . (50)

After having computed φ from this equation, we can update the pressure

and the velocity:

pℓ+1 = βpℓ + φ, (51)

vℓ+1 = v∗ − ∆t

̺
∇φ . (52)

An open question is how to assign suitable boundary conditions to φ;

the function, its normal derivative, or a combination of the two must be

known at the complete boundary since φ fulfills a Poisson equation. On

the other hand, the pressure only needs to be specified (as a function of

time) at a single point in space, when solving the original problem (1)–(2).

There are two ways of obtaining the boundary conditions. One possibility

is to compute ∂p/∂n from (1), just multiply by the unit normal vector at

the boundary. From these expressions one can set up ∂φ/∂n. The second

way of obtaining the boundary conditions is derived from (52); if vℓ+1 is

supposed to fulfill the Dirichlet boundary conditions then

∇φ|∂Ω =
∆t

̺
(vℓ+1 − v∗)|∂Ω = 0, (53)
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since v∗ already has the proper boundary conditions. This relation is valid

on all parts of the boundary where the velocity is prescribed. Because φ

is the solution of (50), ∂φ/∂n can be controlled, but these homogeneous

boundary conditions are in conflict with the ones derived from (1) and (52)

[61]. We see that the boundary conditions can be derived in different ways,

and the surprising result is that one arrives at different conditions. Addi-

tionally we see that after the update (52) we are no longer in control of the

tangential part of the velocity at the boundary. The problem with assigning

proper boundary conditions for the pressure may result in a large error for

the pressure near the boundary. Often one experiences an O(1) error in

a boundary layer with width ≈
√

∆tν. This error can often be removed

by extrapolating pressure values from the interior domain to the boundary.

We refer to Gresho and Sani [27] for a thorough discussion of boundary

conditions for the pressure Poisson equation.

The basic operator splitting algorithm can be summarized as follows.

1. Compute the prediction v∗ from the explicit equation (49).

2. Compute φ from the Poisson equation (50).

3. Compute the new velocity vℓ+1 and pressure pℓ+1 from the explicit

equations (51)–(52).

Note that all steps are trivial numerical operations, except for the need to

solve the Poisson equation, but this is a much simpler equation than the

original problem (1)–(2).

5.2 Implicit Velocity Step

Operator splittings based on implicit difference schemes in time are more

robust and stable than the explicit strategy just outlined. To illustrate how

more implicit schemes can be constructed, we can take a backward step in

(1) to obtain a predicted velocity v∗:

v∗ + ∆tv∗ · ∇v∗ + ∆t
β

̺
∇pℓ − ∆tν∇2v∗ + ∆tgℓ+1 = vℓ . (54)

Alternatively, we could use the more flexible θ-rule in time (see below).

Equation (54) is nonlinear, and a simple linearization strategy is to use

vℓ · ∇v∗ instead of v∗ · ∇v∗,

v∗ + ∆tvℓ · ∇v∗ + ∆t
β

̺
∇pℓ − ∆tν∇2v∗ + ∆tgℓ+1 = vℓ . (55)
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Also in the case we keep the nonlinearity, most linearization methods end

up with solving a sequence of convection-diffusion equations like (55). The

vℓ+1 velocity is supposed to fulfill

vℓ+1 + ∆tvℓ · ∇vℓ+1 +
∆t

̺
∇pℓ+1 − ∆tν∇2vℓ+1 + ∆tgℓ+1 = vℓ .

The correction vc is now vℓ+1 − v∗, i.e.,

vc = s(vc) +
∆t

̺
∇φ, s(vc) = ∆t(−vℓ · ∇vc + ν∇2vc) . (56)

Note that so far we have not done anything ”illegal”, and this system can

be written as a mixed system,

vc − s(vc) +
∆t

̺
∇φ = 0, (57)

∇ · vc = ∇ · v∗ . (58)

It is then common to neglect or simplify s, such that the problem changes

into a mixed formulation of the Poisson equation,

vc − ∆t

̺
∇φ = 0, (59)

∇ · vc = ∇ · v∗ . (60)

Elimination of vc yields a Poisson equation like (50),

∇2φ =
̺

∆t
∇ · v∗ . (61)

The problems at the boundary that were discussed in the previous section

apply to this method as well. Different choices of and approximations to s

give rise to different methods. We shall come back to this point later when

discretizing in space prior to splitting the original equations.

To summarize, the sketched implicit operator splitting method consists

of solving an advection-diffusion equation (55), a Poisson equation (61), and

then performing two explicit updates (we assume that s is neglected):

vℓ+1 = v∗ −∇∆t

̺
φ, (62)

pℓ+1 = βpℓ + φ . (63)

The outlined operator splitting approaches reduce the Navier–Stokes equa-

tions to a system of standard equations (explicit updates, linear convection-

diffusion equations, and Poisson equations). These equations can be dis-

cretized by standard finite elements, that is, there is seemingly no need for

mixed finite elements, a fact that simplifies the implementation of viscous

flow simulators significantly.
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5.3 A More Accurate Projection Method

In Brown et al. [10] an attempt to remove the boundary layer introduced in

the pressure by the projection method discussed above is described, cf. also

[17, 52]. Previously, in Sections 5.1 and 5.2, we neglected the term s(vc),

since the scheme was only first order in time. This resulted in a problem with

the boundary conditions on φ. If the scheme is second-order in time, we can

not remove this term. In [10] a second-order scheme in velocity and pressure

is described. In addition, many previous attempts to construct second-order

methods for the incompressible Navier-Stokes equations are reviewed there.

In order to describe the approach let us start to form a centered scheme at

time level ℓ + 1/2 for the momentum equation:

vℓ+1 − vℓ

∆t
+ ∇pℓ+1/2 = −[v · ∇v]ℓ+1/2 +

ν

2
∇2(vℓ+1 + vℓ) + gℓ+1/2,(64)

∇ · vℓ+1 = 0 . (65)

Here the approximation [v · ∇v]ℓ+1/2 is assumed to be extrapolated from

the solution on previous time levels. A predicted velocity is computed by

v∗,ℓ+1 − v∗,ℓ

∆t
= −[v · ∇v]ℓ+1/2 +

ν

2
∇2(v∗,ℓ+1 + v∗,ℓ) + gℓ+1/2 . (66)

Note that since we now use v∗,ℓ instead of vℓ as the initial solution at level

ℓ, v∗ follows its own evolution equation. The initial conditons v∗,0 = v0

should be used. Subtracting (66) from (64) we obtain an equation for the

velocity correction, vc,ℓ+1 = vℓ+1 − v∗,ℓ+1,

vc,ℓ+1 − vc,ℓ

∆t
+ ∇pℓ+1/2 =

ν

2
∇2(vc,ℓ+1 + vc,ℓ) . (67)

Observe that this is a diffusion equation for vc with a gradient, −∇p, as a

forcing term. If we assume that this implies that vc is itself a gradient we

can conclude that

vℓ+1 − v∗,ℓ+1 = vc,ℓ+1 = ∇φℓ+1, (68)

for a suitable function φℓ+1. From ∇ · vℓ+1 = 0 we get

−∇2φℓ+1 = −∇ · v∗,ℓ+1 . (69)

To solve this equation, it remains to assign proper boundary conditions to

φℓ+1. From the discussion in Section 5.1 we know that the boundary condi-

tions on φ can be determined such that vl+1 fullfills the normal components
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(or one tangential component), i.e.,

∂φ

∂n
|∂Ω = n · (v∗,ℓ+1 − vl+1)|∂Ω = 0 . (70)

We have now fixed the normal components of the boundary conditions on

v∗,ℓ+1, but we have lost control over the tangential part. In [10] they there-

fore propose to use an extrapolated value for φ̂ℓ+1 to determined the tan-

gential parts of v∗ such that

t · v∗,ℓ+1|∂Ω = t · (vℓ+1 + ∇φ̂ℓ+1)|∂Ω, (71)

where t is a tangent vector.

A relation between p and φ is computed by inserting (68) into (67) to

get the pressure update,

pℓ+1 =
φℓ+1 − φℓ

∆t
− ν

2
∇2(φℓ+1 + φℓ) . (72)

To summerize this approach a complete time step consists of

1. Evolve v∗ by (66) and the boundary conditions given by (70) and (71).

2. Solve (69) for φℓ+1 using the boundary condition (70).

3. Compute vℓ+1 and pℓ+1 using (68) and (72).

We refer to Brown et al. [10] for more details. A critical and non-obivious

step seems to be the correctness of the derivation of (68) from (67). This

may depend on the given boundary conditions.

5.4 Relation to Stabilization Techniques

The operator splitting techniques in time, as explained in (5.1) and (5.2),

seem to work quite well in spite of their simplicity compared to the original

coupled system (1)–(2). Some explanation of why the method works can be

found in [62, 63, 73, 74]. The point is that one can show that the operator

splitting method from Section (5.2) is equivalent to solving a system like (1)–

(2) with an old pressure in (1) and a stabilization term ∆t∇2p on the right-

hand side of (2). This stabilization term makes it possible to use standard

elements and grids. Other suggested operator splitting methods [63] can be

interpreted as a ∆t∂p/∂t stabilization term in the equation of continuity,

i.e., a method closely related to the artificial compressibility scheme from

Section 4.3.
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5.5 Fractional Step Methods

Fractional step methods constitute another class of popular strategies for

splitting the Navier–Stokes equations. A typical fractional step approach

[2, 4, 10, 20, 87] may start with a time discretization where the convective

term is treated explicitly, whereas the pressure and the viscosity term are

treated implicitly:

vℓ+1 − vℓ + ∆tvℓ · ∇vℓ = −∆t
β

̺
∇pℓ+1 + ∆tν∇2vℓ+1 + ∆tgℓ+1, (73)

∇ · vℓ+1 = 0 . (74)

One possible splitting of (73)–(74) is now

v∗ − vℓ + ∆tvℓ · ∇vℓ = 0, (75)

v∗∗ = v∗ + ∆tν∇2v∗∗ + ∆tgℓ+1, (76)

vℓ+1 = v∗∗ − ∆t

̺
∇pℓ+1, (77)

∇ · vℓ+1 = 0 . (78)

Notice that combining (75)–(77) yields (73). Equation (75) is a pure advec-

tion equation and can be solved by appropriate explicit methods for hyper-

bolic problems. Equation (76) is a standard heat conduction equation, with

implicit time differencing. Finally, (77)–(78) is a mixed Poisson problem,

which can be solved by special methods for mixed Poisson problems, or one

can insert vℓ+1 from (77) into (78) to obtain a pressure Poisson equation,

∇2pℓ+1 =
̺

∆t
∇ · v∗∗ . (79)

After having solved this equation for pℓ+1, (77) is used to find the velocity

vℓ+1 at the new time level. Using (79) and then (77) instead of solving (77)–

(78) simultaneously has the advantage of avoiding staggered grids or mixed

finite elements. However, (79) requires extra pressure boundary conditions

at the whole boundary as discussed previously.

The fractional step methods offer flexibility in the splitting of the Navier–

Stokes equations into equations that are significantly simpler to work with.

For example, in the presented scheme, one can apply specialized methods

to treat the v · ∇v term because this term is now isolated in a Burgers

equation (75) for which numerous accurate and efficient explicit solution

methods exist. The implicit time stepping in the scheme is isolated in a
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standard heat or diffusion equation (76) whose solution can be obtained very

efficiently. The last equation (79) is also a simple equation with a wealth

of efficient solution methods. Although each of the equations can be solved

with good control of efficiency, stability, and accuracy, it is an open question

of how well the overall, compound solution algorithm behaves. This is the

downside of all operator splitting methods, and therefore these methods must

be used with care.

More accurate (second-order in ∆t) fractional step schemes than outlined

here can be constructed, see Glowinski and Dean [16] for a framework and

Brown et al. [10] for review.

5.6 Discretizing in Space Prior to Discretizing in Time

The numerical strategies in Sections 5.1–5.4 are based on discretizing (1)–(2)

first in time, to get a set of simpler partial differential equations, and then

discretizing the time-discrete equations in space. One fundamental difficulty

with the this approach is that we derive a second-order Poisson equation for

the pressure itself or a pressure increment. Such a Poisson equation implies

a demand for more boundary conditions for p than what is required in the

original system (1)–(2), as discussed in the previous section. The cause of

these problematic, and unnatural, boundary conditions on the pressure is

the simplification of the system (57)-(58) to (59)-(60), where the term s(vc),

containing ∆tν∇2vc, is neglected. If we keep this term the system (57)-(58)

is replaced by

(1 − ∆tν∇2)vc − ∆t

̺
∇φ = 0, (80)

∇ · vc = ∇ · v∗ . (81)

This system is a modified stationary Stokes system, which can be solved

under the correct boundary conditions on the velocity field vc. However,

this system can not easily be reduced to a simple Poisson equation for the

pressure increment φ. Instead, we have to solve the complete coupled sys-

tem in vc and φ, and when this system is discretized we obtain algebraic

systems of the form (9). Hence, the implementation of the correct boundary

conditions seems to be closely tied to the need to solve discrete saddle point

systems of the form (9).

Another attempt to avoid constructing extra consistent boundary con-

ditions for the pressure is to first discretize the original system (1)-(2) in
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space. Hence, we need to discretize both the dynamic equation and the

incompressibility conditions, using discrete approximations of the pressure

and the velocity. This will lead to a system of ordinary differential equations

with respect to time, with a set of algebraic constraints representing the in-

compressibility conditions, and with the proper boundary conditions built

into the spatial discretization. A time stepping approach, closely related

to operator splitting, for such constrained systems is to first facilitate an

advancement of the velocity just using the dynamic equation. As a second

step we then ”project” the velocity onto the space of divergence free veloc-

ities. The two steps in this procedure are closely related to the approach

discussed in Sections 5.1 and 5.2. For example, equation (55) can be seen as

a dynamic step, while (59)-(60), or simply (61), can be seen as the projec-

tion step. However, the projection induced by the system (59)-(60) is not

compatible with the boundary conditions of the original system (and this

may lead to large error in the pressure near the boundary). In contrast,

the projection introduced by the system (80)-(81) has the correct boundary

conditions.

In order to discuss this approach in greater detail let us apply either a fi-

nite element, finite volume, finite difference, or spectral method to discretize

the spatial operators in the system (1)–(2). This yields a system of ordinary

differential equations, which can be expressed in the following form:

Mu̇ + K(u)u = −Qp + Au + f (82)

QT u = 0 . (83)

Here, u is a vector of velocities at the (velocity) grid points, p is a vec-

tor of pressure values at the (pressure) grid points, K is a matrix arising

from discretizing v · ∇, M is a mass matrix (the identity matrix I in finite

difference/volume methods), Q is a discrete gradient operator, QT is the

transpose of Q, representing a discrete divergence operator, and A is a dis-

crete Laplace operator. The right-hand side f contains body forces. Stable

discretizations require mixed finite elements or staggered grids for finite vol-

ume and difference methods. Alternatively, one can add stabilization terms

to the equations. The extra terms to be added to (82)–(83) are commented

upon in Section 5.8.

We can easily devise a simple explicit method for (82) by using the same

ideas as in Section 5.1. A tentative or predicted discrete velocity field u∗ is
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computed by

Mu∗ = Mvℓ + ∆t(−K(uℓ)uℓ − βQpℓ + Auℓ + f ℓ) . (84)

A correction uc is sought such that uℓ+1 = u∗ + uc fulfills QT uℓ+1 = 0.

Subtracting u∗ from uℓ+1 yields

uc = −∆tM−1Qφ, φ ≡ pℓ+1 − βpℓ . (85)

Now a projection step onto the constraint QT uℓ+1 = 0 results in an equation

for φ:

QT M−1Qφ =
1

∆t
QT u∗ . (86)

This is a discrete Poisson equation for the pressure. For example, employ-

ing finite difference methods in a spatial staggered grid yields M = I and

QT Q is then the standard 5- or 7-star discrete Laplace operator. The ma-

trix QT M−1Q is a counterpart to matrices arising from ∇2 in the Poisson

equations for φ in Sections 5.1 and 5.2.

Having computed φ, the new pressure and velocity values are found from

pℓ+1 = βpℓ + φ, (87)

uℓ+1 = u∗ − ∆tM−1Qφ . (88)

5.7 Classical Schemes

In this subsection we shall present a common setting for many popular

classical schemes for solving the Navier-Stokes equations. We start with

formulating an implicit scheme for (82) using the θ-rule for flexibility; θ = 1

gives the Backward Euler scheme, θ = 1/2 results in the trapezoidal rule (or

a Crank-Nicolson scheme), and θ = 0 recovers the explicit Forward Euler

scheme treated above. The time-discrete equations can be written as

Nuℓ+1 + ∆tQpℓ+1 = q, (89)

QT uℓ+1 = 0 (90)

where

N = M + θ∆tR(uℓ), (91)

R(uℓ) = K(uℓ) − A, (92)

q = (M − (1 − θ)∆tR(uℓ))uℓ + ∆tf ℓ+1) (93)
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are introduced to save space in the equations. Observe that we have lin-

earized the convective term by using R(uℓ) on the left-hand side of (89).

One could, of course, resolve the nonlinearity by some kind of iteration in-

stead.

To proceed, we skip the pressure or use old pressure values in (89) to

produce a predicted velocity u∗:

Nu∗ = q − β∆tQpℓ . (94)

The correction uc = uℓ+1 − u∗ is now governed by

Nuc + ∆tQφ = 0, (95)

QT uc = QT u∗, (96)

The system (95)–(96) for (uc,φ) corresponds to the system (80)–(81). Elim-

inating uc gives

QT N−1Qφ = − 1

∆t
QT u∗ . (97)

We shall call this equation the Schur complement pressure equation [84].

Solving (97) requires inverting N , which is not an option since N−1 is

dense and N is sparse. Several rough approximations Ñ
−1

to N−1 have

therefore been proposed. In other words, we solve

QT Ñ
−1

Qφ = − 1

∆t
QT u∗ . (98)

The simplest approach is to let N be an approximation to M only, i.e.,

Ñ = I in finite difference methods and Ñ equal to the lumped mass matrix

M in finite element methods. The approximation Ñ = I leaves us with a

standard 5- or 7-star Poisson equation. With θ = 0 we recover the simple

explicit scheme from the end of Section 5.6, whereas θ = 1 gives an implicit

backward scheme of the same nature as the one described in Section 5.2.

To summarize the algorithm at a time level, we first make a prediction

u∗ from (94), then solve (98) for the pressure increment φ, and then update

the velocity and pressure by

uℓ+1 = u∗ − ∆tN−1Qφ, pℓ+1 = βpℓ + φ . (99)

Let us now comment upon classical numerical methods for the Navier-

Stokes equations and show how they can be considered as special cases of

the algorithm in the previous paragraph. The history of operator splitting
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methods starts in the mid and late 1960s. Harlow and Welch [31] suggested

an algorithm which corresponds to β = 0 in our set up and centered finite

differences on a staggered spatial grid. The Poisson equation for φ hence

becomes an equation for pℓ+1 directly. Chorin [14] defined a similar method,

still with β = 0, but using a non-staggered grid. Temam [77] developed more

or less the same method independently, but with explicit time stepping.

Hirt and Cook [32] introduced β = 1 in our terminology. All of these

early contributions started with spatially discrete equations and performed

the splitting afterwards. The widely used SIMPLE method [58] consists of

choosing θ 6= 0

Ñ = diag(N ) = diag(M + θ∆tR(uℓ))

when solving (98). A method very closely related to SIMPLE is the segre-

gated finite element approach, see e.g. Ch. 7.3 in [35].

Most later developments follow either the approach for the current sub-

section or the alternative view from Sections 5.1 and 5.2. Much of the focus

in the history of operator splitting methods has been on constructing second-

and higher-order splittings in the framework of Sections 5.1, 5.2, 5.3, and

5.5, see e.g. [2, 4] and [10].

We remark that the step for u∗ is unnecessary if we solve the system

(95)–(96) for (uc,φ) correctly, basically we then solve the “exact” system

(89)–(90). The point is that we solve (95)–(96) approximately because we

replace N in (95) by Ñ when we eliminate uc to form the pressure equation

(98). The next section presents a framework where the classical methods

from the current section appear as one iteration in an iterative solution

procedure for the fully implicit system (89)–(90).

5.8 Fully Implicit Methods

Rannacher [63] and Turek [84] propose a general framework to analyze the

efficiency and robustness of operator splitting methods. We first consider

the fully implicit system (89)–(90). Eliminating uℓ+1 yields (cf. the similar

elimination for the Stokes problem in Section 3.2)

QT N−1Qpℓ+1 =
1

∆t
QT N−1q, (100)

which we can call the Schur complement pressure equation for the implicit

system. Notice that we obtain the same solution for the pressure in both
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(100) and (89)–(90). The velocity needs to be computed, after pℓ+1 is from

(89), which requires an efficient solution of linear systems with N as coeffi-

cient matrix (Multigrid is an option here).

Turek [84] suggests that many common solution strategies can be viewed

as special cases of a preconditioned Richardson iteration applied to the Schur

complement pressure equation (100). Given a linear system

Bpℓ+1 = b,

the preconditioned Richardson iteration reads

pℓ+1,k+1 = pℓ+1,k − C−1(Bpℓ+1,k − b), (101)

where C−1 is a preconditioner and k an iteration counter. The iteration at

a time level is started with the pressure solution at the previous time level:

pℓ+1,0 = pℓ .

Applying this approach to the Schur complement pressure equation (100)

gives the recursion

pℓ+1,k+1 = pℓ+1,k − C−1(QT N−1Qpℓ+1,k − 1

∆t
QT N−1q) . (102)

We now show that the operator splitting methods from Section 5.7, based

on solving u∗ from (94), solving (98) for φ, and then updating the velocity

and pressure with (99), can be rewritten in the form (102). This allows us

to interpret the methods from Section 5.7 in a more general framework and

to improve the numerics and generate new schemes.

To show this equivalence, we start with the pressure update (99) and

insert (98) and (94) subsequently:

pℓ+1 = pℓ + φ (103)

= pℓ + (QT Ñ
−1

Q)−1 1

∆t
QT u∗ (104)

= pℓ + (QT Ñ
−1

Q)−1 1

∆t
QT (N−1q − ∆tN−1Qpℓ), (105)

= pℓ − (QT Ñ
−1

Q)−1(QT N−1Qpℓ − 1

∆t
QT N−1q) . (106)

We have assumed that β = 1, since this is the case in the Richardson

iteration. Equation (106) can be generalized to an iteration on pℓ+1:

pℓ+1,k+1 = pℓ+1,k−(QT Ñ
−1

Q)−1(QT N−1Qpℓ+1,k− 1

∆t
QT N−1q) . (107)
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We see that (107) is constistent with (106) for the first iteration k = 1 if

pℓ+1,0 = pℓ. Moreover, we notice that (107) is identical to (102), provided

we choose the preconditioner C as QT ÑQ. In other words, classical opera-

tor splitting methods from Section 5.7 can be viewed as one preconditioned

Richardson iteration on the fully implicit system (89)–(90) (though formu-

lated as (100)). If we perform more iterations in (107), we essentially have

an Uzawa algorithm for the original fully implicit system (89)–(90). Using

more than one iteration corresponds to iterating on the pressure in (94), i.e.,

we solve (94) and (98) more than once at each time level, using the most

recent pressure approximation to pℓ+1 in (94).

The various choices of Ñ outlined in Section 5.7 resemble various classi-

cal operator splitting methods when used in the preconditioner C = QT ÑQ

in the framework (107). This includes explicit and implicit projection meth-

ods, pressure correction methods, SIMPLE variants, and also Uzawa meth-

ods and the Vanka smoother used in Multigrid methods [83].

With the classical operator splitting methods reformulated as one iter-

ation of an iterative method for the original fully implicit system, one can

more easily attack the fully implicit system directly; the building blocks

needed are fast solvers for N−1 and (QT ÑQ)−1, but these are already

available in software for the classical methods. In this set up, solving the

fully implicit mixed system (89)–(90) is from an implementational point of

view not more complicated than using a classical operator splitting method

from Section 5.7 method repeatedly. This is worth noticing because people

tend to implement and use the classical methods because of their numerical

simplicity compared with the fully implicit mixed system.

Noticing that (107) is an Uzawa method, we could introduce inexact

Uzawa methods [18], where N−1 is replaced by Ñ
−1

in the right-hand side

of (107) (with some additional terms for making (107) consistent with the

original linear system). This can represent significant computational savings.

One view of such an approach is that one speeds up solving the predictior

step (94) when we iterate over the predictor-correction equations in the

classical methods.

The system (82)–(83) can easily be augmented with stabilitzation terms,

resulting in a modification of the system (89)–(90):

Nuℓ+1 + ∆tQpℓ+1 = q, (108)

QT uℓ+1 − ǫDp = −ǫd . (109)
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Eliminating uℓ+1 yields

(∆tQT N−1Q + ǫD)pℓ+1 = QT N−1q + ǫd . (110)

With this stabilization one can avoid mixed finite elements or staggered

finite difference/volume grids.

Let us now discuss how the preconditioner C can be chosen more gener-

ally. If we define the error in iteration k as ek = pℓ+1,k−pℓ+1, one can easily

show that ek = (I −CB)ek−1. One central question is if just one iteration

is enough and under what conditions the iteration is convergent. The latter

property is fulfilled if the modulus of the eigenvalues of the amplification

matrix I − CB are less than unity. Hence, the choice of C is important

both with respect to efficiency and robustness of the solution method.

Turek proposes an efficient preconditioner C−1 for (101):

C−1 = αRB−1
R + αDB−1

D + αKB−1
K , (111)

where

• BR is an optimal (reactive) preconditioner for QT MQ,

• BD is an optimal (diffusive) preconditioner for QT AQ,

• BK is an optimal (convective) preconditioner for QT KQ,

Both BR and BD can be constructed optimally by standard methods; BR

can be constructed by a Multigrid sweep on a Poisson-type equation, and

BD can be made simply by an inversion of a lumped mass matrix. However,

no optimal preconditioner is known for BK . It is assumed that ǫD does not

change the condition number significantly and it is therefore not considered

in the preconditioner.

It is also possible to improve the convergence and in particular the ro-

bustness by utilizing other iterative methods than the Richardson iteration,

which is the simplest iterative method of all. One particular attractive class

of methods is the Krylov (or Conjugate Gradient-like) methods. Meth-

ods like GMRES are in principle always convergent, but the convergence is

highly dependent on the condition number of CB. The authors are pursu-

ing these matters for future research. If approximate methods (Multigrid or

Krylov solvers) are used for N−1 too, we have a nested iteration, and for the

outer Krylov method to behave as efficiently as expected, it is necessary to
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solve the inner iterations accurately. Inexact Uzawa methods would hence

be attractive since they only involve Ñ
−1

in the inner iteration.

There is also a link between operator splitting methods and fully implicit

methods without going through the Schur complement pressure equation.

In [70] they considered preconditioners for the Stokes problem of the form

[

N Q

QT 0

] [

u

p

]

=

[

q

0

]

. (112)

and this lead to preconditioners like
[

C1 0

0 C2

]

, (113)

where C1 should be an approximation of the inverse of N and C2 of

QT N−1Q. This ”operator splitting” preconditioner was proved to be op-

timal provided that C1 and C2 were optimal preconditioners for N and

QT N−1Q, respectively. This preconditioner has been extended to the time-

dependent fully coupled Stokes problem in [7] and a preconditioner similar

to the one proposed by Turek in (111) is considered in [56].

6 Parallel Computing Issues

Laminar flow computations in simple geometries, involving a few thousand

unknowns, can now be carried out routinely on PCs or workstations. Never-

theless, more demanding flows met in industrial and scientific applications

easily require a grid resolution corresponding to 105 − 109 unknowns and

hence the use of parallel computers. The suitability of the methods for

solving the Navier-Stokes equations on parallel computers is therefore of

importance.

The operator splitting methods from Section 5 reduce the Navier-Stokes

equations to a sequence of simpler problems. For example, the explicit

scheme from Section 5.1 involves explicit updates, in the form of matrix-

vector products and vector additions, and the solution of a Poisson equa-

tion. Vector additions are trivial to parallelize, and the parallel treatment

of products of sparse matrices and vectors is well known. Several meth-

ods have been shown to be successful for parallel solution of the Poisson

equation, but Multigrid seems to be particularly attractive as the method is

the most effecient solution approach for the Poisson equation on sequential
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computers and its concurrent versions are well developed and can be real-

ized with close to optimal speed-up. Using Multigrid as a preconditioner for

a Conjugate Gradient method does not alter this picture, since the outer

Conjugate Gradient method just involves inner products of vectors, vector

additions, and matrix-vector products. In conclusion, the classical explicit

operator splitting methods are very well suited for parallel computing.

The implicit operator splitting methods require, in addition to explicit

updates and the solution of a Poisson equation, also the solution of a convection-

diffusion equation. Domain Decomposition methods at the partial differen-

tial equation level can split the global convection-diffusion equation into a

series of smaller convection-diffusion problems on subdomains, which can

be solved in parallel. The efficiency of this method depends on the con-

vergence rate of the iteration, which shows dependence on the nature of

the convection. To achieve sufficient efficiency of the iteration, the Domain

Decomposition approach must be combined with a coarse grid correction

[75]. Alternatively, the convection-diffusion equation can be viewed as a lin-

ear system, with non-symmetric coefficient matrix, to be solved in parallel.

Using a Conjugate Gradient-like method, such as GMRES og BiCGStab,

combined with Multigrid as preconditioner, yields a solution method whose

parallel version is well established and can be realized with close to opti-

mal speed-up. Other popular preconditioners may be more challenging to

parallelize well; incomplete factorizations fall in this category. The overall

performance of the parallel convection-diffusion solver depends on choices

of numerical degrees of freedom in the linear solver, but these difficulties

are present also in the sequential version of the method. To summarize, the

implicit operator splitting methods are well suited for parallel computers if

a good Multigrid or Domain Decomposition preconditioner can be found for

the corresponding sequential problem.

The classical fully implicit method for the Navier-Stokes equations nor-

mally applies variants of Gaussian elimiation as linear solver (after a lin-

earization of the nonlinear system of algebraic equations by, e.g., some

Newton-like method). Parallel versions of sparse and banded Gaussian elim-

ination procedures are being developed, but such methods are much more

difficult to implement efficiently on parallel computers than the iterative

solvers discussed above.

Solving the fully implicit system for the Navier-Stokes equations by itera-
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tive strategies (again after a linearization of the nonlinear system), basically

means running an iterative method, like Richardson iteration or a Krylov

solver, combined with a suitable preconditioner. In the case we choose the

preconditioner to be typical steps in operator splitting methods, as described

in Section 5.8, fully implicit methods parallelize with the same efficiency as

the corresponding implicit operator splitting methods.

The pressure stabilization technique from Section 4.1 is actually a way

of formulating the equation of continuity and get rid of the mixed finite

element or staggered grid requirement. This approach is typically used in

combination with operator splitting or fully implicit methods, and the extra

stabilization terms do not change the parallelization of those methods.

Penalty methods lead to a kind of transient, nonlinear equation of elas-

ticity. After discretizing in time and resolving the nonlinearity, we are left

with a partial differential equation or linear system of the same nature as

the equation of elasticity. The problem, however, is that the Lame constant

λ in this equation is large, which makes it hard to construct efficient itera-

tive methods. Large-scale computing with penalty methods is relevant only

if efficient iterative methods for the sequential problem can be constructed.

When these methods are based on Domain Decomposition and/or involve

vector operations, matrix-vector products, and Multigrid building blocks,

parallelization is feasible, see Reddy et al. [67] for a promising approach.

The classical artificial compressibility method from Section 4.3 is a purely

explicit method, just containing explicit updates, and is hence trivial to

parallelize well. Also when implicit time discretizations are used, we get

matrix systems that can, in principle, be solved in a parallel fashion using the

same methods as we described for the implicit operator splitting approach.

7 Software

Development of robust CFD software is a complicated and time consuming

task. Most scientists and engineers who need to solve incompressible viscous

fluid flow problems must therefore rely on available software packages. An

overview of CFD software is available on the Internet [37], and here we shall

just mention a few widely distributed packages.

PHOENICS [50], which appeared in 1981, was the first general-purpose

tool for CFD and is now probably the most widely used CFD software.

40



The numerical foundation is the finite volume method in the notation of

Patankar [58]. The user can add code and solve equations that are not

supported by the package. FLUENT [46] is another general-purpose CFD

package that addresses laminar and turbulent incompressible flow, also in

combination with combustion and multiple phases. The spatial discretiza-

tion employs a finite volume technique applicable to unstructured meshes.

FIDAP [43] is a general-purpose fluid flow package quite similar to FLUENT,

but it applies finite elements for the spatial discretization. CFX [39] is an-

other modern, general-purpose package addressing complex flow problems

in the process and chemical industries, including turbulence, multi-phase

flow, bubble-driven flow, combustion, flames, and so on. Flow-3D [45] offers

special techniques for and specializes in incompressible viscous free surface

flow, but the package can be used for more standard external and confined

flows as well. Another general-purpose CFD package is CFD2000 [38], which

uses finite volumes on curvelinear grids and handles incompressible as well

as compressible flows, with turbulence, heat transfer, multiple phases, and

chemical reactions. CFD++ is a finite volume-based solver with particu-

lar emphasis on turbulent flow. It handles many different types of grids

and flow regimes (from incompressible to hypersonic). ANSYS/FLOTRAN

[44] is a CFD package contained in the ANSYS family of finite element

codes. The tight integration with other ANSYS codes for heat transfer,

elasticity, and electromagnetism makes it feasible to perform multi-physics

simulations, e.g., fluid-structure interactions and micro-electro-mechanical

systems (MEMS). The CFD software mentioned so far covers advanced,

commercial, general-purpose tools that offer a complete problem solving en-

vironment, with user-friendly grid generation and visualization facilities in

addition to the numerical engines.

FEATFLOW [42] is a free package implementing the framework from

Section 5.8, with finite elements in space, Multigrid for solving linear and

nonlinear systems, and an emphasis on computational efficiency and robust-

ness. FEMLAB is a package built on top of Matlab and offers easy set-up of

incompressible flow problems, also coupled with heat transfer, electromag-

netism, and elasticity. Fastflo [41] is a code of a similar nature. Mouse [48]

is a modern finite volume-based software library, packed with ready-made

CFD programs. Some flexible, general-purpose, programmable environments

and libraries with important applications to CFD are Diffpack [40], FOAM

41



[47], Overture[49], and UG [51].

The quality and robustness of the numerics even in advanced packages,

especially when simulating complex multi-fluid flows, may be questionable

as we know that our understanding of how to solve the building block (1)–

(2) is still limited. More benchmark problem initiatives [84] are needed to

classify flow cases and methods whose numerical results are reliable.

The complexity of CFD applications makes a demand for flexibility,

where different splitting approaches, different space and time discretizations,

different linear and nonlinear system solvers, and different governing equa-

tions can be freely combined. Much of the current CFD software, written as

large, stand-alone Fortran 77 programs, lacks this freedom of choice because

of an inflexible software design. There is now a growing interest in method-

ologies for better design of CFD software based on, e.g., object-oriented

programming techniques [40, 47, 53, 48, 57, 49, 81, 85].

8 Future Directions of Research

During the last decades there has been tremendous progress in computa-

tional fluid dynamics. Even if some of the most basic tools are well un-

derstood by now, there are still challenging problems related to numerical

methods for incompressible Navier–Stokes equation. In fact, the simplified

Stokes problem (11)–(12), especially when (11) is augmented with a time

derivative ∂v/∂t, is not fully understood when it comes to stable discretiza-

tions [56], efficient solution of the resulting linear systems (in an implicit

formulation), as well as a priori and a posteriori error estimates. It there-

fore seems fruitful to still address simplified versions of the Navier–Stokes

equations to develop and understand numerical methods.

The most popular time stepping methods for the Navier–Stokes equa-

tion are not fully implicit. As explained in Section 5.1, an operator splitting

strategy can be used to essentially decouple the updating of the velocity and

the pressure. However, the choice of boundary conditions for the pressure

in these procedures is problematic. The pressure is closely tied to the in-

compressibility condition for the velocity, and any decoupling therefore has

drawbacks. As in many other fields, engineers prefer to work with robust

and stable numerical engines, even at a cost of decreased computational

efficiency. This usually implies that fully implicit codes are preferred in in-
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dustry. Hence, we think that fully implicit schemes, like the ones discussed

in Sections 5.2 and 5.8 should be further developed. The study of efficient

preconditioners, which are robust with respect to physical and numerical

parameters, seems essential. An attractive framework would be to reuse

the experience and knowledge built up around (classical) operator splitting

schemes as preconditioners for the more robust fully coupled and implicit

scheme. For efficiency, Multigrid cycles should be used in such precondition-

ers, but the optimal combination of Multigrid building blocks (smoothers,

cycling strategies etc.) are not yet known for fully implicit formulations. In

addition, the use of parallel computational techniques, like Domain Decom-

position algorithms, is essential for performing fine scale simulations. As the

gap between CPU power and memory access efficiency increases, it might be

questionable whether today’s numerics are well suited for the coming gener-

ation of high-performance computers. This calls for paying closer attention

to the interplay between hardware and numerics.

Another topic which will be essential for doing fine scale computations

is the development of adaptive algorithms using suitable error estimators.

In particular, for simulations in complex geometries such tools will be un-

avoidable [63, 84]. The ultimate goal is to allow the engineer to specify an

error tolerance and let adaptive algorithms and error estimators find the

corresponding discretization parameters and solution strategies. This will

be an important goal because we cannot expect that sufficient numerical and

physical comptenence will be present among all users when CFD becomes a

cheap, widely accessible, and apparently simple-to-use tool.

We have already mentioned the particular need for robust Navier–Stokes

solvers when such solvers are embedded in complex fluid models, involv-

ing multi-species fluids, turbulence, heat transfer, chemical reactions, and

coupling to structural deformations. Many of the future scientific water

resources applications of incompressible viscous flow will involve such com-

posite models. For example, a better understanding of consolidation of

porous media may be based on studying coupled models of Navier–Stokes

equations and the equations of elasto-visco-plasticity at the pore level. Ge-

ologists are especially interested in cracking mechanisms, where the desire

is to simulate deformation, contact, and fracture of sand grains embedded

in a viscous fluid. The science of reactive porous media flow has many open

questions, and fundamental studies may benefit from simulating pore level
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multi-phase flow coupled with chemistry models, in particular in the vicinity

of rock “walls”. Fortunately, the computing technology necessary for realiz-

ing such studies is the same that is needed for complex flow problems found

in, e.g., the car industry and physiology.

9 Concluding Remarks

We have in this paper presented a basic introduction to some well-known

and widely used numerical methods for the incompressible Navier–Stokes

equations. The emphasis has been on the fundamental underlying ideas

for discretizing the system of partial differential equations. By hiding the

details of the spatial discretization (finite elements, finite differences, finite

volumes, spectral methods), we hope to better explain the close relationship

between different numerical schools, in particular finite differences/volumes

and finite elements; most of the schools apply the same fundamental rea-

soning and arrive in most cases at the same algebraic equations (modulo

effects from different treatment of boundary conditions). Naturally, our

main emphasis is on advancing the equations in time and especially how

to split the equations into more tractable systems. The methods covered

herein include artificial compressibility, penalty function formulations, fully

implicit schemes, and operator splitting techniques (and their aliases pro-

jection methods, fractional step methods, pressure correction strategies).

As an extension of the introduction to operator splitting methods we

have proposed a framework, inspired by Rannacher [63] and Turek [84],

where many classical and popular methods can be viewed as certain precon-

ditioned iterative methods applied to a robust, fully implicit formulation of

the Navier–Stokes equations. This opens up the possibility of a more gen-

eral view of the classical methods and for constructing an endless series of

new solution strategies, all of them trying to solve the fully implicit system

iteratively. One such strategy pursued by the authors has been outlined.

Due to page limitations, several important topics had to be left out

or only briefly commented upon. Such topics include, among others, de-

tailed information about finite element, finite difference, and finite volume

discretization techniques, spectral methods, higher-order temporal schemes,

“upwind” techniques for high Reynolds number flow, discretizing boundary

conditions, least-squares finite element formulations, vorticity-streamfunction
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formulations, grid generation techniques, as well as adaptivity methods

based on error estimation and control. Relevant textbooks for references

and further reading about these subjects are [15, 20, 27, 30, 61, 84, 86, 89].

The lack of a discussion of special methods for high Reynolds number

flow, where a careful treatment of the convective term v · ∇v is important,

may give the impression that these flow regimes are beyond scope of the pre-

sented solution methods. This is not true; the same basic solution strategies

can still be applied, but then in combination special spatial discretization

techniques for the convective term (typically upwind differencing or Petrov-

Galerkin finite element methods). More sophisticated approaches for highly

convective flow apply special space-time integrations, and this may affect

the operator splitting strategies. Within a fractional step approach (as in

Section 5.5), the convection term is isolated in a Burgers equation, such that

the treatment of high Reynolds number flow is then limited to an advanced

numerical treatment of a Burgers equation.

No numerical experiments have been presented in this paper. Results of

extensive numerical investigations with different solution strategies for the

Navier–Stokes equations can be found in textbooks, see [27, 84] in particular.

The Virtual Album of Fluid Motion [42, 84] contains an exciting collection

of animations for numerous flow configurations.

Finally, we mention that incompressible viscous flow can also be com-

puted by means of lattice gas or lattice Boltzman methods [12]. These

methods are statistical in nature and involve collisions of a large number

of particles moving in a lattice. The approach is particularly attractive for

simulation of complex multi-phase flows where the qualitative flow behavior

is in focus. When computational accuracy is important, and only one fluid is

flowing in the laminar regime, discretization of the Navier–Stokes equations

as outlined in the present paper seems to be the most efficient and robust

solution strategy.
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Eine Praxisorienterte Einfürung, Vieweg Lehrbuch Scientific Comput-

ing, 1995.

[29] M. Gunzburger. Finite Element Methods for Viscous Incompressible

flows. Academic Press, 1989.

[30] M. D. Gunzburger and R. A. Nicolaides. Incompressible computational

fluid dynamics; Trends and advances. Cambridge University Press,

1993.

[31] F. H. Harlow and J. E. Welch. Numerical Calculation of Time-

Dependent Viscous Incompressible Flow of Fluid with Free Surface.

The physics of fluids, 8:2182–2189, 1965.

[32] C. W. Hirt and J. L. Cook. Calculating three-dimensional flows around

structures and over rough terrain. J. Comp. Phys., 10:324–340, 1972.

[33] L. W. Ho and E. M. Rnquist. Spectral element solution of steady

incompressible viscous free-surface flows. Finite Elements in Analysis

and Design, pages 207–227, 1994.

48



[34] T. J. R. Hughes, W. K. Liu, and A. Brooks. Finite element analysis

of incompressible viscous flows by the penalty function formulation. J.

Comp. Phys., 30:1–60, 1979.

[35] Fluent Inc. FIDAP theory manual.

See e.g. http://fortuitous.ncsa.uiuc.edu/fidapdocumentation/.

[36] Internet. CFD Online’s book page.

http://www.cfd-online.com/Books/.

[37] Internet. CFD online’s software overview.

http://www.cfd-online.com/Resources/soft.html.

[38] Internet. CFD2000 software package.

http://www.adaptive-research.com/.

[39] Internet. CFX software package.

http://www.software.aeat.com/cfx/.

[40] Internet. Diffpack software package. http://www.diffpack.com.

[41] Internet. Fastflo software package.

http://www.nag.co.uk/simulation/Fastflo/fastflo.html.

[42] Internet. FEATFLOW software package. http://www.featflow.de.

[43] Internet. FIDAP software package.

http://www.fluent.com/software/fidap/.

[44] Internet. FLOTRAN software package.

http://www.ansys.com/products/flotran.htm.

[45] Internet. Flow-3D software package. http://www.flow3d.com.

[46] Internet. FLUENT software package.

http://www.fluent.com/software/fluent/.

[47] Internet. FOAM software package. http://www.nabla.co.uk.

[48] Internet. Mouse software package.

http://fire8.vug.uni-duisburg.de/MOUSE/.

[49] Internet. Overture software package.

http://www.llnl.gov/casc/Overture/.

49



[50] Internet. PHOENICS software package.

http://213.210.25.174/phoenics/d polis/d info/phover.htm.

[51] Internet. UG software package.

http://cox.iwr.uni-heidelberg.de/ ug/.

[52] J. Kim and P. Moin. Application of a fractional-step method to incom-

pressible navier–stokes equations. J. Comput. Phys., 1985.

[53] H. P. Langtangen. Computational Partial Differential Equations – Nu-

merical Methods and Diffpack Programming. Lecture Notes in Compu-

tational Science and Engineering. Springer, 1999.
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