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Abstract. Finite element methods for a family of systems of sin-
gular perturbation problems of a saddle point structure are dis-
cussed. The system is approximately a linear Stokes problem when
the perturbation parameter is large, while it degenerates to a mixed
formulation of Poisson’s equation as the perturbation parameter
tends to zero. It is established, basically by numerical experiments,
that most of the proposed finite element methods for Stokes prob-
lem or the mixed Poisson’s system are not well behaved uniformly
in the perturbation parameter. This is used as the motivation
for introducing a new “robust” finite element which exhibits this
property.

1. Introduction

Let Ω ⊂ R2 be a bounded and connected polygonal domain with
boundary ∂Ω. In this paper we shall consider finite element methods
for the following singular perturbation problem:

(1.1)
(I − ε2∆)u − grad p = f in Ω,

div u = g in Ω,
u = 0 on ∂Ω.

Here ε ∈ (0, 1] is a parameter, while ∆ = diag(∆,∆) is the Laplace
operator on vector fields. The vector field f and scalar field g represent
the data. The problem (1.1) only admits a solution if the function g
has mean value zero on Ω and “the pressure” p is only determined up
to addition of a constant.

We note that when ε is not too small, and g = 0, this problem is
simply a standard Stokes problem, but with an additional non–harmful
lower order term. However, if f = 0 and ε approaches zero then the
model problem formally tends to a mixed formulation of the Poisson
equation with homogeneous Neumann boundary conditions.

When ε = 0 the first equation in (1.1) has the form of Darcy’s law for
flow in a homogeneous porous medium, where u is a volume averaged
velocity. In fact, the system (1.1) can be regarded as a macroscopic
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model for flow in an “almost porous media,” where u and p represents
volume averaged velocity and pressure, respectively. The zero order
velocity term in the first equation of (1.1) then typically represents a
Stokes drag. An attempt to derive Darcy’s law from volume averaged
Stokes flow is for example discussed in [16]. Generalizations of the
system (1.1) have also been proposed in the modeling of macrosegre-
gation formation in binary alloy solidification, cf. [13]. Systems of the
form (1.1) may also arise from time discretizations of the Navier–Stokes
equation, where the parameter ε corresponds to the square root of the
time step, cf. [3]. However, the study of such time discretizations is
not the motivation for the present paper.

The purpose of the present paper is to discuss a finite element method
for the model problem (1.1) with convergence properties that are uni-
form with respect to the perturbation parameter ε. In §2 we will intro-
duce some notations and discuss various properties of the model (1.1).
Discretizations of the model problem by the finite element method is
described in §3. In particular, we will state stability conditions which
are uniform with respect to the parameter ε, and show, by numeri-
cal experiments, that the standard discretizations, proposed either for
ε = 1 or ε = 0, do not satisfy these stability conditions. A new noncon-
forming finite element discretization is then proposed in §4. We show
that this new discretization is uniformly stable, and, as a consequence
we establish, in §5, error estimates which are uniform in ε under the
assumption that proper regularity estimates hold for the solution. In
§6 we then study the asymptotic smoothness of the solution of (1.1)
as ε tends to zero. Based on these regularity results we show that,
for fixed data f and g, a uniform O(h1/2) error estimate in a suitable
energy norm can be derived.

In the final section of this paper we study an elliptic system which
formally is a generalization of (1.1). This system is given by

(1.2)
(I − ε2∆)u − δ−2 grad(div u − g) = f in Ω,

u = 0 on ∂Ω,

where ε, δ ∈ (0, 1]. By introducing p = δ−2(div u − g) this system can
be alternatively written on the mixed form

(1.3)
(I − ε2∆)u − grad p = f in Ω,

div u − δ2p = g in Ω,
u = 0 on ∂Ω.

Note that this system also has meaning when δ = 0, and in this case
the system reduces to (1.1).

The symmetric and positive definite system (1.2) is discretized by
a straightforward finite element approach utilizing the new noncon-
forming velocity space constructed earlier in this paper, i.e. the mixed
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system (1.3) is not introduced in the discretization. We show, by nu-
merical experiments and theory, that under the assumption of suffi-
ciently regular solutions, we obtain error estimates which are uniform
both in ε and δ.

2. Preliminaries

We will use Hm = Hm(Ω) to denote the Sobolev space of scalar
functions on Ω with m derivatives in L2 = L2(Ω), with norm ‖ · ‖m.
Furthermore, the notation ‖ · ‖m,K is used to indicate that the norm is
defined with respect to a domain K different from Ω. The seminorm
derived from the partial derivatives of order equal m is denoted | · |m,
i.e. | · |2m = ‖ · ‖2

m − ‖ · ‖2
m−1. The space Hm

0 = Hm
0 (Ω) will denote the

closure in Hm of C∞
0 (Ω). The dual space of Hm

0 with respect to the L2

inner product will be denoted by H−m. Furthermore, L2
0 will denote

the space of L2 functions with mean value zero. A space written in
boldface denotes a 2–vector valued analog of the corresponding scalar
space. The notation (·, ·) is used to denote the L2 inner product on
scalar, vector, and matrix valued functions.

Below we shall encounter the intersection and sum of Hilbert spaces.
We therefore recall the basic definitions of these concepts. If X and Y
are Hilbert spaces, both continuously contained in some larger Hilbert
spaces, then the intersection X ∩Y and the sum X+Y are themselves
Hilbert spaces with the norms

‖z‖X∩Y = (‖z‖2
X + ‖z‖2

Y )1/2

and

‖z‖X+Y = inf
z=x+y

x∈X, y∈Y

(‖x‖2
X + ‖y‖2

Y )1/2.

Furthermore, if X ∩ Y is dense in both X and Y then (X ∩ Y )∗ =
X∗ + Y ∗. We refer to [4, Chapter 2] for these results.

If q is a scalar field then grad q will denote the gradient of q, while
div v denotes the divergence of a vector field v. We shall also use the
diffential operators

curl q =

(

−∂q/∂x2

∂q/∂x1

)

and rotv = ∂v1/∂x2 − ∂v2/∂x1.

Note that, due to Green’s theorem, these definitions lead to the follow-
ing “integration by parts formula”

(2.1)

∫

Ω

curl q · v dx =

∫

Ω

q rotv dx+

∫

∂Ω

q(v · t) dτ,

where t is the unit tangent vector in the counter clockwise direction on
∂Ω, and τ is the arclength.
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The gradient of a vector field v is denoted Dv, i.e. Dv is the 2 × 2
matrix with elements

(Dv)i,j = ∂vi/∂xj 1 ≤ i, j ≤ 2.

Hence, for any u ∈ H2 and v ∈ H1
0 we have

−(∆u,v) = (Du,Dv) ≡

∫

Ω

Du : Dv dx,

where the colon denotes the scalar product of matrix fields. Recall also
the identity

(2.2) ∆ = grad div− curl rot,

which can be verified by a direct computation. As a consequence, we
obtain the identity

(2.3) (Du,Dv) = (div u, div v) + (rotu, rotv) ∀u ∈ H1, v ∈ H1
0 .

In addition to the function spaces introduced above we will also use
the space H(div) = H(div; Ω) consisting of all vector fields in L2 with
divergence in L2, i.e.

H(div) = {v ∈ L2 : div v ∈ L2}.

Similarly,

H(rot) = {v ∈ L2 : rotv ∈ L2},

and the norms of these spaces are denoted by ‖·‖div and ‖·‖rot, respec-
tively. Furthermore, H0(div) is the closed subspace of H(div) consist-
ing of functions with vanishing normal component on the boundary,
i.e.

H0(div) = {v ∈ H(div) : v · n = 0 on ∂Ω},

where n is the unit outward normal vector.
Throughout this paper aε(·, ·) : H1 ×H1 7→ R will denote the bilin-

ear form

aε(u,v) = (u,v) + ε2(Du,Dv).

A weak formulation of problem (1.1) is given by:
Find (u, p) ∈ H1

0 × L2
0 such that

(2.4)
aε(u,v) + (p, div v) = (f ,v) ∀v ∈ H1

0 ,
(div u, q) = (g, q) ∀q ∈ L2

0.

Here we assume that data (f , g) is given in H−1 × L2
0.

The problem (2.4) has a unique solution (u, p) ∈ H1
0 × L2

0. This
follows from standard results for Stokes problem, cf. for example [11].
However, the bound on (u, p) ∈ H1

0 × L2
0 will degenerate as ε tends

to zero. In fact, for the reduced problem (2.4) with ε = 0 the space
H1

0 × L2
0 is not a proper function space for the solution. However, the

theory developed in [6] can be applied in this case if we seek (u, p)
either in H0(div)×L2

0 or in L2× (H1∩L2
0), and with data (f , g) in the
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proper dual spaces. These results are in fact consequences of standard
results for the Poisson equation.

The fact that the regularity of the solution is changed when ε be-
comes zero strongly suggests that ε–dependent norms and function
spaces are required in order to obtain stability estimates independent
of ε. Furthermore, since the reduced problem is well posed for two com-
pletely different choices of function spaces, this indicates that there are
at least two different choices of ε–dependent norms. In present paper
we will study the problem (1.1) with respect to an ε–dependent norm
which reduces to the norm in H0(div) × L2

0 when ε = 0. Our goal is
to derive discretizations which are uniformly stable with respect to ε
in this norm. This appears to be the proper choice if we want to study
discretizations which also can be generalized to non-mixed approxima-
tions of elliptic problems of the form (1.2).

Remark. When we refer to the reduced system corresponding to (1.1)
we refer to the system (1.1) with ε = 0 and the boundary condition
u = 0 replaced by u ·n = 0. This system has a weak formulation given
by (2.4), but with the solution space H1

0 replaced by H0(div). �

The space H0(div) ∩ ε · H1
0 , with norm ||| · |||ε given by

|||v|||2ε = ‖v‖2
0 + ‖ div v‖2

0 + ε2‖Dv‖2
0,

is equal to H1
0 as a set for ε > 0, but equal to H0(div) for ε = 0. The

system (2.4) can alternatively be written as the system

Aε

(

u

p

)

=

(

f

g

)

,

where the coefficient operator Aε is given by

(2.5) Aε =

(

I − ε2∆ −grad

div 0

)

.

Let Xε be the product space (H0(div) ∩ ε · H1
0 ) × L2

0 and X∗
ε the

corresponding dual space with respect to the L2–inner product. This
space can also be expressed as

X∗

ε = (H−1(rot) + ε−1H−1) × L2
0.

Here the + sign has the interpretation as the sum of Hilbert spaces,
and the space H−1(rot) is given by

H−1(rot) = {v ∈ H−1 : rotv ∈ H−1}.

The operator Aε can be seen to be an isomorphism mapping Xε into
X∗

ε . Furthermore, the corresponding operator norms

||Aε||L(Xε,X∗

ε ) and ||A−1
ε ||L(X∗

ε ,Xε)

are independent of ε. In fact, with the definitions above, this is also
true for ε ∈ [0, 1], i.e. the endpoint ε = 0 can be included.

The uniform boundedness of Aε is straightforward to check from the
definitions above, while the uniform boundedness of the inverse can be
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verified from the two Brezzi conditions, cf. [6]. For the present problem
these conditions read:

There are constants α0, β0 > 0, independent of ε, such that

(2.6) sup
v∈H0(div)∩ε·H1

0

(q, div v)

|||v|||ε
≥ α0‖q‖0 ∀q ∈ L2

0,

and

(2.7) aε(v,v) ≥ β0|||v|||
2
ε ∀v ∈ Z,

where Z = {v ∈ H1
0 : div v = 0}.

Since it is well known, cf. for example [11, Chapter 1, Corollary 2.4],
that condition (2.6) holds for ε = 1 it also holds for all ε ∈ [0, 1] with
the same constant α0. Furthermore, condition (2.7) holds trivially with
β0 = 1 for ε ∈ [0, 1].

3. Uniformly stable discretizations

The purpose of this section is to discuss finite element discretizations
of the system (1.1). In particular, we shall be interested in discretiza-
tions which are stable uniformly in the parameter ε ∈ (0, 1].

Let Vh ⊂ H1
0 and Qh ⊂ L2

0 be finite element spaces, where h ∈ (0, 1]
is a discretization parameter. The weak formulation (2.4) leads to the
following corresponding finite element discretization:

Find (uh, ph) ∈ Vh ×Qh such that

(3.1)
aε(uh,v) + (ph, div v) = (f ,v) ∀v ∈ Vh

(div uh, q) = (g, q) ∀q ∈ Qh.

Remark. Below we shall also encounter several examples of noncon-
forming approximations of (2.4), i.e. the space Vh * H1

0 . In all these
examples the bilinear form aε(·, ·) is understood to be the sum of the
corresponding integrals over each element. No extra jump terms are
added. The same remark applies to the energy norm, ||| · |||ε. �

The discretization (3.1) is stable in the sense of [6] if proper discrete
analogs of the conditions (2.6) and (2.7) holds. These conditions are:

Stability conditions.

The discretization (3.1) is said to be uniformly stable if there exist
constants α, β > 0, independent of ε and h, such that

(3.2) sup
v∈Vh

(q, div v)

|||v|||ε
≥ α‖q‖0 ∀q ∈ Qh,

and

(3.3) aε(v,v) ≥ β|||v|||2ε ∀v ∈ Zh,

where Zh = {v ∈ Vh : (div v, q) = 0 ∀q ∈ Qh}.
For the case ε = 1, or more precisely for ε bounded away from zero,

the second condition is obvious. In this case there are several choices of
pairs of finite element spaces which satisfies (3.2) with α independent
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of h. We mention for example the Mini element proposed in [1] or the
P2 − P0 element, i.e. we choose continuous quadratic velocities for Vh

and the corresponding space of piecewise constants for Qh, cf. [10]. For
a general review of stable Stokes elements we refer to [8].

However, most of these spaces do not lead to discretizations which
are stable uniformly in ε. The main reason for this is that when ε
approaches zero the second condition is no longer obvious. In fact, for
the reduced problem with ε = 0 the condition (3.3) requires

‖v‖2
0 ≥ β‖v‖2

div ∀v ∈ Zh.

Hence, we must have

(3.4) ‖ div v‖0 ≤ c‖v‖0 ∀v ∈ Zh

for a suitable constant c independent of h, and this condition does not
hold for the common conforming stable Stokes elements.

Example 3.1 We consider the problem (1.1) with Ω taken as the
unit square. The domain is triangulated by first dividing it into h× h
squares. Then, each square is divided into two triangles by the diag-
onal with a negative slope. The system is then discretized using the
P2 − P0 element with respect to this triangulation, i.e. Vh ⊂ H1

0 con-
sists of piecewise quadratic functions, while Qh ⊂ L2

0 is the space of
discontinuous piecewise constants. This discretization is known to be
stable when ε > 0 is fixed, cf. [10]. However, our purpose here is to
investigate how the convergence behave as ε becomes small.

We consider the system (1.1) with the function g chosen to be identi-
cal zero, while f = u−ε2∆u−grad p, where u = curl sin2(πx1) sin2(πx2)
and p = sin(πx1). Hence, in this example the solution is independent
of ε.

In Table 3.1 below we have computed the relative L2 error in the
velocity u, i.e. e(h) = ‖u−uh‖0/‖u‖0, for different values of ε and h.
A third order Gauss-Legendre rule, cf. [17], was used here, and in all the
other examples of this section, to perform the necessary integrations.
For each fixed ε the convergence rate with respect to h, γ, is estimated
by assuming e(h) = chγ , and by computing a least squares fit to this
log–linear relation.

ε\ h 2−2 2−3 2−4 2−5 2−6 rate

1 3.84e-2 4.75e-3 6.41e-4 1.04e-4 2.11e-5 2.72
2−2 6.15e-2 1.73e-2 4.65e-3 1.20e-3 3.05e-4 1.92
2−4 4.55e-1 2.10e-1 6.78e-2 1.86e-2 4.79e-3 1.67
2−8 9.31e-1 9.68e-1 9.43e-1 8.14e-1 5.32e-1 0.19
0 9.35e-1 9.84e-1 1.00 1.01 1.02 -0.03

Table 3.1. The relative L2 error in velocity obtained
by the P2 − P0 element.
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When ε = 1 the convergence seems to be at least quadratic with
respect to h in this case. However, the convergence deteriorates as ε
becomes smaller, and for ε = 0 there is no convergence.

Table 3.2 is based on the corresponding relative errors in the energy
norm, i.e. the norm ||| · |||ε for velocity and the L2 norm for pressure.
For simplicity only the estimated convergence rates are given.

ε 1 2−2 2−4 2−8 0
rate, velocity 1.84 1.01 0.70 -0.79 -1.03
rate, pressure 1.06 1.01 1.09 0.13 -0.20

Table 3.2. Estimated convergence rates for the velocity
and pressure, measured in the energy norm, for the P2 −
P0 element.

These results indicate a similar degenerate behavior with respect to
ε. In fact, when ε = 0 the norm, |||uh|||ε, seems to grow like h−1 as h
approach zero. This must be due to the fact that only the projection
of div uh into piecewise constants is controlled by the method in this
case. �

Example 3.2 We repeat the experiment above, but with the differ-
ence that we use the nonconforming Crouzeix–Raviart element instead
of the P2 −P0 element, i.e. Vh consists of piecewise linear vector fields
which are continuous at the midpoint of each edge of the triangulation,
while Qh ⊂ L2

0 is the space of piecewise constants. It is well known
that for any fixed ε > 0 this element leads to a stable discretization,
cf. [10].

In Table 3.3 we have again computed the relative L2 error in the
velocity u for different values of ε and h.

ε\ h 2−2 2−3 2−4 2−5 2−6 rate

1 1.83e-1 4.89e-2 1.26e-2 3.19e-3 8.02e-4 1.96
2−2 2.19e-1 6.89e-2 1.91e-2 4.96e-3 1.26e-3 1.87
2−4 6.42e-1 3.86e-1 1.53e-1 4.58-2 1.21-3 1.45
2−8 9.51e-1 1.00 1.01 9.43e-1 7.44e-1 0.08
0 9.53e-1 1.01 1.04 1.05 1.06 -0.04

Table 3.3. The relative L2 error in velocity obtained
by the nonconforming Crouzeix–Raviart element.

The L2 convergence appears to be quadratic when ε is large. How-
ever, also in this case the convergence deteriorates as ε decreases, and
for the reduced problem, with ε = 0, the observed values for the relative
error is monotonically increasing.
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The corresponding estimates of the the convergence rates in energy
norm decreases from approximately linear convergence to no conver-
gence as is shown by Table 3.4.

ε 1 2−2 2−4 2−8 0
rate, velocity 0.98 0.97 0.74 0.03 -0.03
rate, pressure 1.00 0.93 0.98 0.12 -0.03

Table 3.4. Estimated convergence rates for the veloc-
ity and pressure, measured in the energy norm, for the
Crouzeix–Raviart element.

In fact, the divergence of the Crouzeix–Raviart element in the case
ε = 0 is not surprising. Since the divergence free vector fields in this
case can be realized as the curl operator applied to the corresponding
Morley space, this behavior of the Crouzeix–Raviart element is closely
tied to the divergence of the Morley element for the Poisson equation,
cf. [14]. �

The two examples above show that the P2 − P0 element and the
nonconforming Crouzeix–Raviart element, which both are known to be
stable for ε = 1, fail to give methods which converge uniformly in ε.
The divergence of the P2 −P0 element for ε = 0 is basically due to the
fact that the estimate (3.4) does not hold, and therefore the method
is unstable, while the divergence of the Crouzeix–Raviart method is
caused by the inconsistency of the method.

Example 3.3 We repeat the experiment above once more, but this
time the system (1.1) is discretized by using the Mini element, i.e.
Vh ⊂ H1

0 consists of linear combinations of piecewise linear functions
and cubic bubble functions with support on a single triangle, while
Qh ⊂ L2

0 is the space of continuous piecewise linear functions.
In Table 3.5 below we have computed the relative error in the veloc-

ity, with respect to the energy norm ||| · |||ε, for different values of ε and
h.

ε\ h 2−2 2−3 2−4 2−5 2−6 rate

1 3.01 1.65 8.42e-1 4.22e-1 2.11e-1 0.96
2−2 2.70 1.55 7.80e-1 3.90e-1 1.95e-1 0.96
2−4 3.71 1.67 7.89e-1 3.87e-1 1.92e-1 1.07
2−8 7.32 4.28 2.79 1.64 6.51e-1 0.84
0 7.44 4.76 3.70 3.39 3.30 0.28

Table 3.5. The relative error in velocity, measured in
the energy norm, for the Mini element.

When ε = 1 the convergence seems to be linear with respect to h.
This agrees with the theoretical results given in [1]. The convergence
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deteriorates as ε becomes smaller, and for ε = 0 there seems to be
essentially no convergence in the energy norm.

An interesting observation can be made for the Mini element if we
consider the corresponding errors for the pressure p. In Table 3.6 below
we study the relative error given by ‖p− ph‖0/‖p‖0.

ε\h 2−2 2−3 2−4 2−5 2−6 rate

1 8.78 2.81 8.85e-1 2.95e-1 1.02e-1 1.61
2−2 6.09e-1 1.84e-1 5.62e-2 1.85e-2 6.40e-3 1.64
2−4 6.08e-2 1.51e-2 3.88e-3 1.21e-3 4.07e-4 1.81
2−8 3.58e-2 9.93e-3 2.34e-3 4.10e-4 6.00e-5 2.30
0 3.59e-2 1.02e-2 2.75e-3 7.23e-4 1.87e-4 1.90

Table 3.6. The relative L2 error in the pressure ob-
tained by the Mini element.

The surprising observation is that for the pressure the convergence
seems to be uniform with respect to ε. In fact, the convergence rate
seems to improve as ε tends to zero and for ε small the convergence
with respect to h appears to be quadratic. This is a striking difference
to what we observed in Examples 3.1 and 3.2. In both these cases the
error in the pressure diverges as ε tend to zero, cf. Tables 3.2 and 3.4.

What we have observed here is not special to the present example.
The Mini element leads to a discretization which is uniformly stable
with respect to ε in a proper ε–dependent norm different from ||| · |||ε.
If we define the solution space Xε by

(3.5) Xε = (L2 ∩ ε · H1
0 ) × ((H1 ∩ L2

0) + ε−1 · L2),

then it can be shown that the Mini element will in fact produce a
uniformly stable discretization in the corresponding energy norm. This
norm degenerates to the norm of L2 × H1 as ε tends to zero, cf. the
discussion in Section 2 above. In order to confirm this behavior we
computed the relative error in velocity once more, but this time we
used the L2 norm instead of ||| · |||ε. The results are given in Table 3.7.

ǫ \h 2−2 2−3 2−4 2−5 2−6 rate

1 3.54e-1 1.03e-1 2.64e-2 6.60e-3 1.65e-3 1.95
2−2 3.16e-1 8.79e-2 2.20e-2 5.48e-3 1.37e-3 1.97
2−4 1.90e-1 4.60e-2 1.07e-2 2.59e-3 6.42e-4 2.06
2−8 1.81e-1 7.23e-2 2.87e-2 8.70e-3 1.74e-3 1.64
0 1.82e-1 7.66e-2 3.59e-2 1.76e-2 8.75e-3 1.09

Table 3.7. The relative L2 error in velocity obtained
by the Mini element.
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We observe that as ε decreases from one to zero the corresponding
convergence rate decreases from approximately two to one. However,
there is no sign which indicates that the behavior will deteriorate below
linear convergence. To complete the picture we have also computed
the estimated convergence rates for the pressure in H1. The results are
given in Table 3.8.

ε 1 2−2 2−4 2−8 0
rate 0.61 0.64 0.86 0.99 0.99

Table 3.8. Estimated convergence rates for the H1 er-
ror of the pressure obtained by the Mini element.

The estimated convergence rate is clearly below one when ε = 1,
while it improves towards one as ε is decreased. This is consistent with
the fact that the norm of the pressure component of the product space
(3.5) is weaker than the H1 norm for each ε > 0, but approaches the
H1 norm as ε apprach zero.

The results above seem to confirm that the Mini element leads to
a uniformly convergent discretization as long as the error is properly
measured. However, as motivated in Section 2 above, in the present
paper we are interested in a discretization of the system (1.1) which
has a uniform behavior when the error is measured in (H0(div) ∩ ε ·
H1

0 ) × L2
0. Therefore, for our purpose here, the Mini element should

not be regarded as a uniformly stable element. �

Let us recall that if a standard conforming Stokes element is not
uniformly stable with respect to ε, then this instability must be caused
by the failure of the second stability condition (3.3), or equivalently
(3.4). Note that the stability condition (3.4) will be trivially satisfied
if the spaces Vh × Qh are constructed such that all elements of Zh

are divergence free, i.e. Zh ⊂ Z. In fact, nearly all proposed finite
element methods for the reduced problem will have this property. This
is for example true for the Raviart–Thomas spaces, cf. [15], and for
the Brezzi–Douglas–Marini spaces of [7]. However, in all these cases
the spaces Vh will only be a subspace of H0(div) and not of H1

0 , due
to the fact that only the normal components of the elements of Vh

are required to be continuous across element edges. It is therefore not
clear that these spaces will be useful for problems of the form (1.1)
with ε > 0.

Example 3.4 We repeat the calculation done in the three examples
above, but now we use the lowest order Raviart–Thomas space for
the discretization. Hence, for ε = 0 we will expect to obtain linear
convergence with respect to h. On the other hand, for ε > 0 the method
is nonconforming and there seems to be no reason to expect that the
method is convergent in this case. In Table 3.9 we have computed the
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estimated convergence rates with respect to h for the relative L2 errors
of the velocity u and the pressure p for different values of ε.

ε 1 2−2 2−4 2−8 0
rate, velocity -0.07 -0.07 0.28 0.97 0.97
rate, pressure -0.04 0.08 0.86 1.01 1.01

Table 3.9. Estimated convergence rates for the L2 er-
rors of the velocity and pressure for the Raviart–Thomas
element.

As expected, the method appears to be divergent for ε > 0. �

4. A robust nonconforming finite element space

The four examples presented above illustrate that none of the stan-
dard elements, proposed for the case ε = 1 or ε = 0, will lead to a
discrization of the problem (1.1) with uniform convergence properties
with respect to ε, when the error is measured in the norm of the space
(H0(div)∩ ε ·H1

0 )×L2
0. The purpose of the rest of this paper is there-

fore to construct and analyze a new finite element space which has this
property.

4.1. The finite element space. In order to describe the new finite
element space we will first define the proper polynomial space, or shape
functions, on a given triangle. Let T ⊂ R2 be a triangle and consider
the polynomial space of vector fields on T given by

V (T ) = {v ∈ P2
3 : div v ∈ P0, (v · n)|e ∈ P1 ∀e ∈ E(T )}.

Here Pk denotes the set of polynomials of degree k and E(T ) denotes
the set of the edges of T . Furthermore, n is the unit normal vector on
the edge e. Below we will also use t to denote the unit tangent vector
on e, while τ denotes the arc length along e.

The space P2
3 is a vector space of dimension twenty. Furthermore,

the conditions

div v ∈ P0 and (v · n)|e ∈ P1 ∀e ∈ E(T ),

represent at most eleven linearly independent constraints on this space.
Therefore we must have

dim V (T ) ≥ 9.

In fact, we shall show that dim V (T ) = 9.

Lemma 4.1. The space V (T ) is a linear space of dimension nine. Fur-

thermore, an element v ∈ V (T ) is uniquely determined by the following

degrees of freedom:

•
∫

e
(v · n)τk dτ k = 0, 1 for all e ∈ E(T ).

•
∫

e
(v · t) dτ for all e ∈ E(T ).
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Figure 4.1. The degrees of freedom of the new noncon-
forming element.

Proof. Since V (T ) is a vector space of dimension ≥ 9 it is enough to
show that elements of V (T ) are uniquely determined by the given nine
degrees of freedom. Assume that v ∈ V (T ) with all the degrees of
freedom equal zero. In particular, this implies that

(v · n)|∂T ≡ 0.

As a consequence of this
∫

T

div v dx =

∫

∂T

v · n dτ = 0.

Hence, since div v ∈ P0, we conclude that v is divergence free.
However, since v ∈ P2

3 is divergence free we must have v = curlw
for a suitable scalar function w ∈ P4. Furthermore, since

(gradw · t)|e = (v · n)|e = 0

for each edge e, we conclude that gradw · t ≡ 0 on ∂T . Since w is
uniquely determined only up to a constant, we can therefore assume
that w ≡ 0 on ∂T .

Hence, w is of the form w = pb, where p ∈ P1 and b is the cubic
bubble function with respect to T , i.e. b = λ1λ2λ3, where λi(x) are the
barycentric coordinates of x with respect to the three corners of T . In
particular, ∂b

∂n
|e does not change sign on e. Furthermore,

∂w

∂n
|∂T = p

∂b

∂n
|∂T ,

and
∫

e

p
∂b

∂n
dτ =

∫

e

∂w

∂n
dτ =

∫

e

v · t dτ = 0 ∀e ∈ E(T ).

We can therefore conclude that p has a root in the interior of e. How-
ever, if p ∈ P1 with a root in the interior of each edge of T then
p ≡ w ≡ 0. �

Let {Th} be a shape regular family of triangulations of Ω, where h is
the maximal diameter. Furthermore, let Eh be the set of edges of Th.
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Define a finite element space of vector fields Vh, associated with the
triangulation Th, as all functions v ∈ Vh such that

• v|T ∈ V (T ) for all T ∈ Th

•
∫

e
(v · n)τk dτ is continuous for k = 0, 1 for all e ∈ Eh,

•
∫

e
(v · t) dτ is continuous for all e ∈ Eh.

Here we assume that v is extended to be zero outside Ω, i.e. if e is an
edge on the boundary of Ω then we require

∫

e

(v · n)τk dτ = 0 k = 0, 1 and

∫

e

(v · t) dτ = 0.

It follows from Lemma 4.1 that any function v ∈ Vh is uniquely deter-
mined by the two lowest order moments of v ·n and by the mean value
of v · t for all interior edges, cf. Figure 4.1.

If v ∈ Vh then the normal component v · n is continuous for all
interior edges. Therefore, Vh ⊂ H0(div). However, the tangential
component of v is not continuous, only the mean value with respect to
each edge is continuous. Therefore, Vh * H1

0 . In addition to the space
Vh we let Qh ⊂ L2

0 denote the space of scalar piecewise constants with
respect to the triangulation Th.

In the rest of this paper Vh and Qh will always refer to the finite ele-
ment spaces just introduced. The corresponding nonconforming finite
element approximation of the system (1.1) is defined by the system
(3.1).

4.2. Properties of the new finite element space. It follows from
the definition of Vh that div Vh ⊂ Qh. Hence, if we define Zh ⊂ Vh as
the weakly divergence free elements of Vh, i.e.

Zh = {v ∈ Vh : (div v, q) = 0 ∀q ∈ Qh},

then these elements are in fact divergence free.
Remark. It can be seen that

(4.1) Zh = curlWh,

where Wh is an associated nonconforming H2–element. Locally, on
each triangle, Wh consists of all P4 polynomials which reduces to a
quadratic on each edge. In addition, Wh ⊂ H1

0 and the average of
the normal derivatives of functions in Wh are continuous on on each
edge. The finite element space Wh is precisely described and analyzed
in [14]. The identity (4.1) was actually the main motivation for the
construction of the space Vh. More precisely, the spaces Wh, Vh and
Qh are related such that the sequence

0 −−−→ Wh/R
curl

−−−→ Vh
div

−−−→ Qh −−−→ 0.

is exact. In particular, div Vh = Qh. �
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Define an interpolation operator Πh : H1
0 7→ Vh by

∫

e

(Πhv · n)τk dτ =

∫

e

(v · n)τk dτ k = 0, 1

∫

e

(Πhv · t) dτ =

∫

e

(v · t) dτ

for all e ∈ Eh. In addition, let Ph : L2
0 7→ Qh be the L2–projection. From

the definition of the operator Πh we easily verify the commutativity
property

(4.2) div Πhv = Ph div v for all v ∈ H1
0 .

In fact, for all T ∈ Th
∫

T

div Πhv dx =

∫

∂T

(Πhv · n) dτ =

∫

∂T

(v · n) dτ =

∫

T

div v dx

and hence (4.2) follows.
Since Qh is the space of piecewise constants the L2–projection Ph

onto Qh satisfies

(4.3) ‖w − Phw‖0 ≤ ch‖w‖1

for all w ∈ H1∩L2
0, where c > 0 is independent of h and w. The opera-

tor Πh is well defined on H1
0 , it is locally defined on each triangle, and

it preserves linear functions locally. Furthermore, the polynomial space
V (T ) is invariant under affine Piola transformations. More precisely,
let T ∈ Th and φ(x) = Bx + c an affine map of T onto a reference

triangle T̂ . Then the Piola transform, v 7→ v̂, where

v̂(x̂) = (detB)−1Bv(x), x̂ = φ(x),

maps V (T ) onto V (T̂ ). Therefore, approximation estimates for the
operator Πh can be derived from standard scaling arguments utilizing
the shape regularity of {Th}. In particular, there exists a constant
c > 0, independent of h such that

(4.4) ‖Πhv‖div ≤ ‖Πhv‖1,h ≤ c‖v‖1.

In addition, from the Bramble–Hilbert lemma, using the fact that Πh

preserves linears locally, we can further conclude that

(4.5) ‖Πhv − v‖j,h ≤ chk−j|v|k for 0 ≤ j ≤ 1 ≤ k ≤ 2,

and for all v ∈ H1
0 ∩Hk. Here ‖ · ‖j,h denotes the piecewise Hj–norm

‖v‖2
j,h =

∑

T∈Th

‖v‖2
j,T .

In fact, if T̂ is a reference triangle, and Π̂ : H1(T̂ ) 7→ V (T̂ ) the

corresponding interpolation operator, then for all v ∈ H1(T̂ )

‖Π̂v‖0,T̂ ≤ c1‖v‖0,∂T̂ ≤ c2‖v‖
1/2

0,T̂
‖v‖

1/2

1,T̂
,
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where c1 and c2 only depends on T̂ . Hence, from a scaling argument
we also obtain the low order estimate

(4.6) ‖Πhv − v‖0 ≤ ch1/2‖v‖
1/2
0 ‖v‖

1/2
1

for all v ∈ H1
0 .

Next we will verify the stability conditions (3.2) and (3.3) for the
product space Vh ×Qh. However, due to the fact that we are consider-
ing a nonconforming finite element approximation of the system (1.1),
where Vh * H1

0 , the norm ||| · |||ε has to be properly modified. For each
v ∈ Vh we define

|||v|||2ε,h = ‖v‖2
div + ε2

∑

T∈Th

‖Dv‖2
0,T .

Note that for ε = 0 this norm is simply equal to ‖ · ‖div, while for ε = 1
it is equivalent, uniformly in h, to the piecewise H1–norm ‖ · ‖1,h.

Lemma 4.2. There exists a constant α1 > 0, independent of h, such

that

sup
v∈Vh

(q, div v)

‖v‖1,h

≥ α1‖q‖0 for all q ∈ Qh.

Proof. This follows by a standard argument from the properties of
the interpolation operator Πh and the corresponding continuous re-
sult (2.6). In fact, since for any v ∈ H1

0 and q ∈ Qh we have

(q, div Πhv) = (q, div v)

and

‖Πhv‖1,h ≤ c1‖v‖1,

we can take α1 = α0/c1. �

The following uniform stability result is an immediate consequence
of the previous lemma.

Theorem 4.1. The pair of spaces (Vh, Qh) satisfies the uniform sta-

bility conditions (3.2) and (3.3), but with the norm ||| · |||ε replaced by

||| · |||ε,h.

Proof. The norms ||| · |||1,h and ‖ · ‖1,h are equivalent on Vh and ||| · |||ε,h
decreases as ε decreases. It follows from Lemma 4.2 that condition (3.2)
holds. Since Zh ⊂ Z the second condition (3.3) holds with β = 1. �

5. Error estimates for smooth solutions

Since our new finite element space (Vh, Qh) satisfies the proper sta-
bility conditions (3.2) and (3.3), uniformly with respect to ε, it seems
probable that the corresponding finite element method will in fact have
uniform convergence properties. In the present section we shall inves-
tigate this question under the assumption that the solution (u, p) of
the continuous problem is sufficiently smooth, while the effect of the
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ε–dependent boundary layers will be taken into account in the next
section.

We will start the discussion here with a numerical example which is
completely similar to Examples 3.1–3.3.

Example 5.1 We redo the computations done in Examples 3.1–3.3,
but this time we use the finite element spaces constructed above. In
all the numerical examples with the the new element we used a fifth
order Gauss-Legendre method, cf. [17], as integration rule.

In Table 5.1 we have computed the estimated convergence rates with
respect to h for the velocity and the pressure.

ε 1 2−2 2−4 2−8 0
rate, velocity in L2 1.93 1.94 1.94 1.90 1.92

rate, velocity in ||| · |||ε 0.98 0.99 1.05 1.72 1.92
rate, pressure in L2 0.98 1.00 1.00 1.00 1.00

Table 5.1. Estimated convergence rates for the velocity
and the pressure for the new nonconforming element.

We observe that the convergence rates in L2 appear to be close to
quadratic in velocity and linear in pressure uniformly with respect to
ε ∈ [0, 1], while the convergence in the energy norm appears to be at
least linear for each ε > 0. In fact, as ε approaches zero the convergence
rate tends to two. This improved convergence is partly due to the fact
that the exact solution u is divergence free in this case.

To make a direct comparison between the P2 − P0 element, the
Crouzeix–Raviart element, the Mini element, and the new element
when ε is small compared to h, we have plotted the errors in veloc-
ity for the different methods as functions of σ, where h = 2−σ. Here
we have chosen ε = 2−8. The errors are plotted, in a logarithmic scale,
in Figure 5.1.

To the left the L2 errors are plotted, while the errors in the energy
norm are depicted to the right. We observe that the Mini element
and the new element bahaves comparably with respect to the L2 norm,
while the new element clearly is superior to all the other methods with
respect to the energy norm. �

The rest of this section will be devoted to establishing error estimates
for the new nonconforming finite element method. Throughout this
section we will assume that u ∈ H2 ∩ H1

0 , where (u, p) is the weak
solution of (2.4). For convenience we also introduce the notation ‖ · ‖a

for the norm on Vh associated the bilinear form aε, i.e.

‖v‖2
a = ‖v‖2

0 +
∑

T∈Th

‖Dv‖2
0,T .
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Figure 5.1. The errors in velocity, measured in the L2

norm and the energy norm, as functions of σ =
− log(h)/ log(2).

For any v ∈ Vh, we define the consistency error Eε,h(u,v) by

Eε,h(u,v) = ε2
∑

e∈Eh

∫

e

(rotu) [v · t] dτ.

Here, if T− and T+ are two triangles, sharing an edge e, then [w] =
[w]e = w|T+

− w|T−
denotes the jump of w across e, while t is the unit

tangent vector along e corresponding to the clockwise direction on T+.
Since [v · n]e = 0 for any v ∈ Vh it follows from (2.2) and Green’s
theorem, in particular from (2.1), that

(5.1)
aε(u,v) + (p, div v) = (f ,v) + Eε,h(u,v) ∀v ∈ Vh,

(div u, q) = (g, q) ∀q ∈ L2
0,

where the term Eε,h appears due to the fact that Vh * H1
0 .

In the error analysis below we will need proper estimates on the
consistency error Eε,h. The following bounds are therefore useful.

Lemma 5.1. If u ∈ H2 ∩ H1
0 then

sup
v∈Vh

|Eε,h(u,v)|

‖v‖a
≤ c ε

{

h‖ rotu‖1

h1/2‖ rotu‖
1/2
1 ‖ rotu‖

1/2
0 ,

where c > 0 is independent of ε and h.

Proof. Let e ∈ Eh and v ∈ H1
0 +Vh. Since the mean value with respect

to e of v · t is zero, it follows from a standard scaling argument, cf. for
example [5, Section 8.3] or [14, Section 4] for similar arguments, that
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for any φ ∈ H1

(5.2)

∫

e
φ[v · t]dτ ≤ infλ,µ∈R ‖φ− λ‖0,e‖[v · t − µ]‖0,e

≤

{

ch|φ|1,Ωe
(|v|1,T−

+ |v|1,T+
)

ch1/2|φ|
1/2
1,Ωe

‖φ‖
1/2
0,Ωe

(|v|1,T−
+ |v|1,T+

).

Here T− and T+ denote the two triangles meeting the edge e and Ωe =
T− ∪ T+. Since

|Eε,h(u,v)| ≤ ε2
∑

e∈Eh

|

∫

e

(rotu) [v · t] dτ |,

the desired estimate follows by applying the estimate (5.2) with φ =
rotu, summing over all edges, and using the fact that

∑

e∈Eh

|v|21,T ≤ ε−2aε(v,v).

�

Let (uh, ph) ∈ Vh ×Qh be the approximation of (u, p) derived from
the discrete system (3.1). From (3.1) and (5.1) we obtain

(5.3) aε(u − uh,v) + (p− ph, div v) = Eε,h(u,v)

for all v ∈ Vh. Furthermore,

div uh = Ph div u = divΠhu.

Therefore, taking v = Πhu − uh in (5.3) we obtain

aε(u − uh,Πhu − uh) = Eε,h(u,Πhu − uh).

Since aε is an inner product we further have

‖Πhu − uh‖
2
a ≤ ‖u − Πhu‖

2
a + 2aε(u − uh,Πhu − uh)

≤ ‖u − Πhu‖
2
a + 2Eε,h(u,Πhu − uh).

Hence, we conclude that

(5.4) ‖u − uh‖a ≤ 2(‖u − Πhu‖a + sup
v∈Vh

|Eε,h(u,v)|

‖v‖a
).

From this basic bound we easily derive the following error estimate.

Theorem 5.1. If u ∈ H2 ∩ H1
0 and p ∈ H1 ∩ L2

0 then the following

estimates hold:

‖u − uh‖0 + ε‖ rot(u − uh)‖0 ≤ c(h2 + εh)‖u‖2,

‖ div(u − uh)‖0 ≤ ch‖ div u‖1

‖p− ph‖0 ≤ ch(‖p‖1 + (ε+ h)‖u‖2).

Here c > 0 is a constant independent of ε and h.

Remark: Here, and below, the differential operators D and rot, ap-
plied to vector fiels in Vh, are defined locally on each triangle of the
triangulation Th. �
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Proof. The first estimate is a direct consequence of (4.5), (5.4), and
Lemma 5.1. The second estimate follows from the bound (4.3), and
the fact that div uh = Ph div u.

In order to establish the third estimate we first observe that (4.3)
implies that

(5.5) ‖p− Php‖0 ≤ ch‖p‖1.

Hence, it only remains to estimate Php−ph. However, from the modified
inf–sup condition (3.2), cf. Theorem 4.1, we obtain

‖Php− ph‖0 ≤ α−1 sup
v∈Vh

(Php− ph, div v)

|||v|||ε,h
.

Furthermore, for any v ∈ Vh we have

(Php− ph, div v) = (p− ph, div v)

= −aε(u − uh,v) + Eε,h(u,v),

which implies that

|(Php− ph, div v)| ≤ (‖u − uh‖a + sup
v∈Vh

|Eε,h(u,v)|

‖v‖a
)|||v|||ε,h,

or

(5.6) ‖Php− ph‖0 ≤ α−1(‖u − uh‖a + sup
v∈Vh

|Eε,h(u,v)|

‖v‖a
).

From the previous estimates we therefore obtain

‖Php− ph‖0 ≤ c(h2 + εh)‖u‖2,

and together with (5.5) this establishes the desired estimate on the
error ‖p− ph‖0. �

Remark: As an alternative to the estimates given in Theorem 5.1
above we can also obtain

(5.7) ‖u − uh‖0 + ε‖ rot(u − uh)‖0 ≤ ch(‖u‖1 + ε‖u‖2)

and

(5.8) ‖p− ph‖0 ≤ ch(‖p‖1 + ‖u‖1 + ε‖u‖2).

These modifications are obtained if we use the estimate

‖u − Πhu‖0 ≤ ch‖u‖1,

obtained from (4.5), in (5.4) instead of the corresponding quadratic es-
timate. Even if the modified estimates are weaker for uniformly smooth
solutions, they are sometimes preferable for more singular solutions. �
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6. Boundary layers and uniform error estimates

In general, we cannot expect that the norm ‖u‖2 of the solution
of (1.1) is bounded independently of ε. In fact, as ε approach zero
even ‖ rotu‖0 should be expected to blow up. Hence, the convergence
estimates given in Theorem 5.1 will deteriorate as ε becomes small.
The following example shows that this behavior of the error is in fact
real.

Example 6.1 In this example we study the convergence for an ε
dependent solution. Let u = ε curl e−x1x2/ε, p = εe−x1/ε, f = u −
ε2∆u − grad p and g identical zero. In fact, u is not the solution of
the corresponding system (1.1), since the boundary conditions are not
satisfied. However, the adaption of the new method to nonhomoge-
neous boundary conditions is straightforward.

The significance of the solution u just given is related to the fact
that the quantities ‖ rotu‖0 and ε‖ rotu‖1 both are of order ε−1/2 as
ε tends to zero. As we will see below, in Lemma 6.1, this behavior
is typical for solutions of the singular perturbation problem (1.1). For
solutions with this singular behavior the estimates (5.7) and (5.8) leads
to error bounds of the form

(6.1) |||u − uh|||ε, ‖p− ph‖0 ≤ chε−1/2,

where c is a constant independent of ε and h. In Table 6.1 below we
have computed the absolute error, |||u − uh|||ε for different values of
ε and h. For each fixed ε the convergence rate with respect to h is
estimated.

ε\ h 2−2 2−3 2−4 2−5 2−6 rate

2−2 7.29e-2 3.60e-2 1.77e-2 8.75e-3 4.36e-3 0.98
2−6 8.89e-2 5.88e-2 3.71e-2 2.06e-2 1.05e-2 0.77
2−8 1.12e-1 6.89e-2 4.07e-2 2.66e-2 1.73e-2 0.67
2−10 1.17e-1 8.16e-2 5.48e-2 3.34e-2 1.93e-2 0.65
2−12 1.17e-1 8.20e-2 5.74e-2 4.02e-2 2.71e-2 0.52

Table 6.1. The absolute error in velocity, measured in
the energy norm, obtained by the new nonconforming
element.

We observe that for ε sufficiently large the convergence rate is ap-
proximately one, but the estimated rate decreases when ε approaches
zero. These results seem to confirm the claim that the convergence is
linear with respect to h for each fixed ε. However, when h is sufficiently
large compared to ε we do not observe this linear rate.

In Table 6.2 we give the corresponding absolute L2 errors for the
pressure.
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ε\ h 2−2 2−3 2−4 2−5 2−6 rate

2−2 2.32e-2 1.11e-2 5.36e-3 2.64e-3 1.31e-3 1.04
2−6 9.00e-3 5.33e-3 2.62e-3 1.15e-3 4.61e-4 1.07
2−8 5.28e-3 3.24e-3 2.18e-3 1.23e-3 5.97e-4 0.77
2−10 4.93e-3 2.54e-3 1.33e-3 7.93e-4 5.32e-4 0.81
2−12 4.92e-3 2.51e-3 1.24e-3 6.22e-4 3.27e-4 0.98

Table 6.2. The absolute L2 error in the pressure ob-
tained by the new nonconforming element.

Again the estimated convergence rate is approximately one for ε
large. Then it starts to decrease with ε as in Table 6.1. However, in
this case the convergence rate increases roughly back to one when ε is
super close to zero. We will comment on this phenomenon for the error
of the pressure at the end of this section.

The estimate (6.1) does not imply uniform convergence with respect
to ε for our new finite element method. However, as a consequence of
the theory below, we will obtain an improved estimate of the form

(6.2) |||u − uh|||ε, ‖p− ph‖0 ≤ cmin(h1/2, hε−1/2),

for solutions with a singular behavior similar to the solution u studied
here. Note that this is in fact consistent with the results of Tables 6.1
and 6.2, where we never observe a convergence rate below a half. �

The main purpose of this section is to establish error estimates which
are uniform with respect to the perturbation parameter ε. We shall
show a uniform O(h1/2) error estimate in the energy norm. We observe
that if g ∈ H1 ∩ L2

0 then it follows directly from Theorem 5.1 that

(6.3) ‖ div(u − uh)‖0 ≤ c h‖g‖1,

where the constant c is independent of ε and h. Hence, we have uniform
linear convergence for the error of the divergence. In contrast to this,
the remaining part of the error will be affected by boundary layers as
ε becomes small. However, the following uniform convergence estimate
will be derived.

Theorem 6.1. If f ∈ H(rot) and g ∈ H1
+ then there is a constant c,

independent of f , g, ε, and h such that

‖u − uh‖0 + ε‖ rot(u − uh)‖0 + ‖p− ph‖0 ≤ c h1/2(‖f‖rot + ‖g‖1,+).

Here the Sobolev space H1
+ is a space contained in H1, with asso-

ciated norm, ‖ · ‖1,+, slightly stronger than ‖ · ‖1. This space will be
precisely defined below.

The derivation of the uniform error estimate above will depend heav-
ily on certain regularity estimates for the solution of the system (1.1).
For example, we shall estimate the blow up of ‖ rotu‖1 as ε approaches
zero. We shall therefore first derive these regularity estimates.
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For convenience of the reader we repeat the system (1.1):

(6.4)
(I − ε2∆)u − grad p = f in Ω,

div u = g in Ω,
u = 0 on ∂Ω.

We also repeat that the domain Ω is a polygonal domain in R2. In fact,
in the discussion of this section we shall assume that Ω in addition is
convex. If ε ∈ (0, 1], f ∈ L2 and g = 0 then the corresponding weak
solution admits the additional regularity that (u, p) ∈ (H1

0 × L2
0) ∩

(H2 × H1). This regularity result follows directly from the result for
the corresponding Stokes problem on a convex domain which can be
found in [12, Corollary 7.3.3.5]. In fact, the same regularity holds for
g 6= 0 if we restrict the data g to the space H1

+.
In order to define this space let x1, x2, . . . , xN ∈ ∂Ω denote the ver-

tices of Ω. The space H1
+ is given by

H1
+ = {g ∈ H1 ∩ L2

0 :

∫

Ω

|g(x)|2

|x− xj |2
dx <∞, j = 1, 2, . . . , N},

with associated norm

‖g‖2
1,+ = ‖g‖2

1 +

N
∑

j=1

∫

Ω

|g(x)|2

|x− xj |2
dx.

Hence, functions in H1
+ vanish weakly at each vertex of Ω.

It is established in [2] that

div(H2 ∩ H1
0 ) = H1

+.

Furthermore, the divergence operator has a bounded right inverse, R :
H1

+ 7→ H2 ∩ H1
0 , i.e. div Rg = g for all g ∈ H1

+ and

‖Rg‖2 ≤ c‖g‖1,+.

Note that if (u, p) solves (6.4) then (u−Rg, p) solves a corresponding
problem with g = 0. From the result in the case g = 0 we can therefore
conclude that (u, p) ∈ (H1

0 ×L
2
0)∩(H2×H1) for any (f , g) ∈ L2×H1

+.
The following result gives an upper bound for the blow up of the

norm ‖ rotu‖1 as ε tends to zero.

Lemma 6.1. Assume that f ∈ H(rot), g ∈ H1
+, and let (u, p) be

the corresponding solution of (6.4). There exist a constant c > 0,
independent of ε, f and g, such that

(6.5) ε1/2‖ rotu‖0 + ε3/2‖ rotu‖1 ≤ c (‖ rotf‖0 + ‖g‖1,+).

Proof. We first construct a function û ∈ H2 ∩ H1
0 such that

(6.6) div û = g, and rot∆û = 0.

In fact, the function û can be constructed by defining

û = Rg + curlψ,
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with ψ ∈ H2
0 being the weak solution of the biharmonic equation

∆2ψ = rot∆Rg in Ω,

ψ =
∂ψ

∂n
= 0 on ∂Ω.

We observe that, since Rg ∈ H2, the right hand side is in H−1. There-
fore, from the regularity of solutions of the biharmonic equation on
convex domains, cf. [12, Theorem 7.2.2.3], we have that ψ ∈ H3, and
‖ψ‖3 ≤ c‖ rot∆Rg‖−1. Hence, û ∈ H2 ∩ H1

0 , and

(6.7) ‖û‖2 ≤ c ‖g‖1,+.

Furthermore, clearly div û = div Rg = g, and for any µ ∈ C∞
0 we have

(∆û, curlµ) = (∆Rg, curlµ) − (∆ψ,∆µ) = 0.

Hence, the second property in (6.6) also holds.
Define v = u− û. Then (v, p) ∈ (H1

0 ×L2
0)∩ (H2 ×H1) is the weak

solution of the problem

(6.8)
(I − ε2∆)v − grad p = f̂ in Ω,

div v = 0 in Ω,
v = 0 on ∂Ω,

where f̂ = f + ε2∆û− û. Clearly, f̂ ∈ L2. In fact, f̂ ∈ H(rot), since

rot f̂ = rotf − rot û.

Furthermore, there is a constant c, independent of ε, f and g, such
that

(6.9) ‖ rot f̂‖0 ≤ c (‖ rotf‖0 + ‖g‖1,+).

Since v ∈ L2 and div v = 0 there exists φ ∈ H1, uniquely determined
up to a constant, such that v = curlφ ([11, Theorem I.3.1]). Hence,
since v ∈ H2 ∩ H1

0 , we can choose φ ∈ H3 ∩H2
0 . In fact, by applying

the rot operator, as a map from L2 to H−1, to the first equation of
(6.8) we obtain

−∆φ + ε2∆2φ = rot f̂ in Ω,

φ =
∂φ

∂n
= 0 on ∂Ω.

The function φ is uniquely determined by this problem. This singular
perturbation problem was in fact studied in [14], where it was estab-
lished that ([14, Lemma 5.1])

ε1/2‖φ‖2 + ε3/2‖φ‖3 ≤ c‖ rot f̂‖0,

and as a consequence

ε1/2‖ rotv‖0 + ε3/2‖ rotv‖1 ≤ c‖ rot f̂‖0.
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Therefore, since u = v + û, (6.7) and (6.9) implies

ε1/2‖ rotu‖0 + ε3/2‖ rotu‖1 ≤ c‖ rot f̂‖0 + ε1/2(‖ rot û‖0 + ε‖ rot û‖1)

≤ c(‖ rotf‖0 + ‖g‖1,+).

This completes the proof. �

In addition to the ε–dependent bound on the solution (u, p) of (6.4)
derived above, we shall also need convergence estimates on how fast
these solutions converge to the solution of the reduced system.

The reduced system corresponding to (6.4) is of the form

(6.10)
u0 − grad p0 = f in Ω,

div u0 = g in Ω,
u0 · n = 0 on ∂Ω,

A precise weak formulation of this system is given by:
Find (u0, p0) ∈ H0(div) × L2

0 such that

(6.11)
(u0,v) + (p0, div v) = (f ,v) ∀v ∈ H0(div)

(div u0, q) = (g, q) ∀q ∈ L2
0.

If (f , g) ∈ H−1(rot)×L2
0 then this system admits a unique solution. In

fact, if f ∈ H(rot) then u0 ∈ H(rot) with rotu0 = rotf . Therefore,

u0 ∈ H0(div) ∩ H(rot),

and hence, cf. [11, Proposition 3.1, Chap. 1], u0 ∈ H1. As a con-
sequence, p0 ∈ H1. Furthermore, the corresponding solution map is
continuous, i.e. there exist a constant c, independent of f and g, such
that

(6.12) ‖u0‖1 + ‖p0‖1 ≤ c (‖f‖rot + ‖g‖0).

Lemma 6.2. Assume that f ∈ H(rot), g ∈ H1
+, and let (u, p) be

the corresponding solution of (6.4). There exist a constant c > 0,
independent of ε, f and g, such that

‖u − u0‖0 + ‖p− p0‖1 ≤ c ε1/2(‖f‖rot + ‖g‖1,+).

Proof. It follows from (2.2), the weak formulation of (6.4), and Green’s
theorem that for any v ∈ H1 ∩ H0(div) the solution (u, p) satisfies

(u,v) + ε2(div u, div v) + ε2(rotu, rotv) + ε2

∫

∂Ω

(rot u)(v · t)dτ

+ (p, div v) = (f ,v).

By subtracting from this the first equation of (6.11), we obtain

(u − u0,v) + ε2(rotu, rotv) + ε2

∫

∂Ω

(rotu)(v · t)dτ = 0
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for any v ∈ H1∩H0(div) with div v = 0. Hence, if we take v = u−u0,
and observe that rotu0 = rotf and div(u − u0) = 0, we derive the
identity

‖u − u0‖2
0 + ε2‖ rotu‖2

0 = ε2

∫

∂Ω

(rotu)(u0 · t)dτ + ε2(rotu, rotf ),

which immediately leads to the bound

(6.13) ‖u−u0‖2
0 +

ε2

2
‖ rotu‖2

0 ≤ ε2 ‖ rotf‖2
0 + ε2

∫

∂Ω

(rotu)(u0 · t)dτ.

In order to estimate the boundary integral we note that it follows from
Lemma 6.1 and [12, Theorem 1.5.1.10] that

‖ rotu‖0,∂Ω ≤ c‖ rotu‖
1/2
0 ‖ rotu‖

1/2
1 ≤ cε−1 (‖ rotf‖0 + ‖g‖1,+).

Together with the estimate (6.12) this leads to

ε2

∫

∂Ω

(rotu)(u0 · t)dτ ≤ ε2‖ rotu‖0,∂Ω‖u
0‖1

≤ c ε(‖f‖2
rot + ‖g‖2

1,+).

Hence, the estimate

(6.14) ‖u − u0‖0 + ε2‖ rotu‖2
0 ≤ c ε1/2(‖f‖rot + ‖g‖1,+)

follows.
The estimate for ‖p−p0‖1 is now a direct consequence of the identity

grad(p− p0) = u − u0 − ε2∆u

= u − u0 + ε2(curl rot u − grad g)

and the previously established bounds. In fact, it follows from Lemma
6.1 and (6.14) that

‖ grad(p− p0)‖0 ≤ ‖u − u0‖0 + ε2(‖ rotu‖1 + ‖g‖1)

≤ c ε1/2(‖f‖rot + ‖g‖1,+).

Since p− p0 ∈ L2
0, an application of the Poincaré inequality completes

the proof. �

The regularity bounds derived above will now be used to prove the
uniform convergence estimates.

Proof of Theorem 6.1. Recall that since u ∈ H1
0 it follows from [11,

Proposition 3.1, Chap. 1] that

‖u‖1 ≤ c(‖ div u‖0 + ‖ rotu‖0).

Furthermore, by the standardH2–regularity for solutions of the Poisson
equation on convex domains, and (2.2), we obtain

‖u‖2 ≤ c‖∆u‖0 ≤ c(‖ div u‖1 + ‖ rotu‖1).
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Hence, from the estimates given in Lemmas 6.1 and 6.2 we conclude
that

(6.15) ε2‖u‖2+ε‖u‖1+‖u−u0‖0+‖p−p0‖1 ≤ cε1/2(‖f‖rot+‖g‖1,+).

The desired estimate on the velocity error will be derived from (5.4).
We will first establish the interpolation estimate

(6.16) ‖u −Πhu‖0 + ε‖D(u − Πhu)‖1 ≤ c h1/2(‖f‖rot + ‖g‖1,+).

From (4.6), (6.12), and (6.15) we have

‖u −Πhu‖0 ≤ ‖(I − Πh)(u − u0)‖0 + ‖u0 −Πhu
0‖0

≤ ch1/2 (‖u − u0‖
1/2
0 ‖u − u0‖

1/2
1 + h1/2 ‖u0‖1)

≤ ch1/2(‖f‖rot + ‖g‖1,+).

Furthermore, from (4.4), (4.5), and (6.15),

ε‖D(u − Πhu)‖0 ≤ cε‖u‖
1/2
1 ‖u − Πhu‖

1/2
1 ≤ cεh1/2‖u‖

1/2
1 ‖u‖

1/2
2

≤ ch1/2(‖f‖rot + ‖g‖1,+).

The estimate (6.16) is therefore verified.

Similarly, since ‖u‖
1/2
1 ‖u‖

1/2
2 ≤ cε−1(‖f‖rot+‖g‖1,+), we obtain from

Lemma 5.1 that

(6.17) sup
v∈Vh

|Eε,h(u,v)|

‖v‖a
≤ ch1/2(‖f‖rot + ‖g‖1,+).

However, by combining (5.4), (6.3), (6.16), and (6.17), this implies

(6.18) ‖u − uh‖0 + ε‖ rot(u − uh)‖0 ≤ ch1/2(‖f‖rot + ‖g‖1,+).

In order to establish the estimate for the ‖p− ph‖0 note that (4.3) and
(6.15) implies

‖Php− p‖0 ≤ ch‖p‖1 ≤ ch(‖f‖rot + ‖g‖1,+).

Finally, by (5.6), (6.17), and (6.18),

‖Php− ph‖0 ≤ ch1/2(‖f‖rot + ‖g‖1,+).

This completes the proof of Theorem 6.1. �

Remark. Even if Lemma 6.2 states that ‖p‖1 is uniformly bounded
with respect to ε, we are not able to prove that ‖p − ph‖0 converges
linearly in h uniformly in ε. The convergence rate is polluted by the
blow up of u. This seem to agree with what we observed in Example
6.1 above, cf. Table 6.2. �
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7. An associated elliptic system

In this section we shall study the elliptic system (1.2) given by

(7.1)
(I − ε2∆)u − δ−2 grad(div u − g) = f in Ω,

u = 0 on ∂Ω,

where ε, δ ∈ (0, 1]. Recall that by introducing p = δ−2 div u this system
can be alternatively be written on the mixed form (1.3). Hence, as δ
approach zero the system formally reduces to (1.1).

The system (7.1) will be discretized by a standard finite element
approach, i.e. the mixed system (1.3) is not introduced in the dis-
cretization. Let the bilinear form bε,δ(·, ·) be defined by

bε,δ(u,v) = aε(u,v) + δ−2(div u, div v)

= (u,v) + ε2(Du,Dv) + δ−2(div u, div v).

For a given finite element space Vh, the corresponding standard finite
element discretization of (7.1) is given by:

Find a uh ∈ Vh such that

(7.2) bε,δ(uh,v) = (f ,v) + δ−2(g, div v) ∀v ∈ Vh.

Our purpose here is to discuss this discretization when the finite ele-
ment space Vh is the space introduced in §4 above. Since this space is
not a subspace of H1

0 this will lead to a nonconforming discretization
of the system (7.1). However, before we analyze this discretization, we
will present some numerical experiments based on the system (7.1).

Example 7.1 In all the examples presented in this section we consider
the system (7.1) with u = curl sin2(πx1) sin2(πx2), g = 0, and f =
u − ε2∆u. Hence, the solution is independent of ε and δ.

We consider the problem (7.1) with Ω taken as the unit square. The
domain is triangulated as described in Example 3.1. The system is
then discretized by solving the system (7.2), where the space Vh is the
standard space of continuous piecewise linear functions with respect to
this triangulation.

In the present example we have used ε = 1, while δ and h varies. In
Table 7.1 below we have computed the relative error in the L2 norm
for different values of δ and h.

δ\h 2−2 2−3 2−4 2−5 2−6 rate

1.00 3.87e-1 1.32e-1 3.69e-2 9.52e-3 2.39e-3 1.85
0.10 9.19e-1 7.28e-1 4.34e-1 1.88e-1 6.20e-2 0.97
0.01 1.00 9.96e-1 9.82e-1 9.32e-1 7.88e-1 0.08

Table 7.1. The relative L2 error using piecewise linear
elements, ε = 1.
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As expected we observe approximately quadratic convergence with
respect to h for δ = 1. However the convergence clearly deteriorates as
δ tends to zero. �

Example 7.2 We repeat the experiment above, but we extend the
finite element space and use the corresponding velocity space of the
Mini element instead of the piecewise linear space. It is interesting to
note that the L2 convergence deteriorates, as δ gets small, also in this
case, in contrast to what we have observed in Table 3.7. The relative
L2 error is given in Table 7.2.

δ\h 2−2 2−3 2−4 2−5 2−6 rate

1.00 3.80e-1 1.30e-1 3.62e-2 9.34e-3 2.35e-3 1.85
0.10 9.19e-1 7.28e-1 4.34e-1 1.88e-1 6.20e-2 0.97
0.01 9.99e-1 9.96e-1 9.82e-1 9.33e-1 7.88e-1 0.08

Table 7.2. The relative L2 error using the Mini ele-
ment, ε = 1.

We observe that the results are almost identical to the ones we ob-
tained in the piecewise linear case. Hence, the extra bubble functions
have almost no effect. Of course, the main reason for the difference
between the results given here, for δ small, and the results given in
Example 3.3, where δ = 0, is that the second equation of the mixed
method used previously implicitly introduces a reduced integration in
the divergence term. �

Example 7.3 We repeat the experiment above once more, but this
time we use the new nonconforming element. In Table 7.3 below we
have computed the relative error in the energy norm, i.e. the norm
generated by the form bε,δ, for different values of δ and h.

δ\h 2−2 2−3 2−4 2−5 2−6 rate

1.00 1.84 9.83e-1 4.98e-1 2.50e-1 1.25e-1 0.97
0.10 1.83 9.66e-1 4.87e-1 2.44e-1 1.22e-1 0.98
0.01 1.83 9.66e-1 4.87e-1 2.44e-1 1.22e-1 0.98

Table 7.3. The relative error in energy norm for the
new nonconforming element, ε = 1.

In contrast to the other examples above, in this case the convergence
seems to be linear with respect to h, uniformly in δ. We also observe
that the errors are almost independent of δ.

Next, we reduce ε and take ε = 0.01 and redo the experiment. The
results are given in Table 7.4.

We observe that to the given accuracy, the numerical solution is
independent of δ, clearly indicating that the numerical solutions are
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δ\h 2−2 2−3 2−4 2−5 2−6 rate

1.00 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91
0.10 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91
0.01 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91

Table 7.4. The relative error in energy norm for the
new nonconforming element, ε = 0.01.

close to a pure curl field independent of δ, which is precisely the form
of the exact solution in this case. A similar observation is done if we
take ε = 0. �

The numerical experiments just presented indicate that the noncon-
forming space Vh, introduced in §4 above, is well suited for the problem
(7.1). We will give a partial theoretical justification for this claim by
deriving a generalization of Theorem 5.1.

We assume throughout this section that u ∈ H2 ∩H1
0 . Let ‖ · ‖b be

the energy norm associated with the system (7.1), i.e.

‖v‖2
b = bε,δ(v,v).

It is a straightforward consequence of the second Strang lemma, cf. [9,
Theorem 4.2.2], that there exists a c > 0 independent of ε, h and u

such that

(7.3) ‖u − uh‖
2
b ≤ ‖u −Πhu‖

2
b + c sup

v∈Vh

|Eε,h(u,v)|2

‖v‖2
b

,

where the inconsistency error Eε,h is introduced in §5 above. However,
since ‖v‖b ≥ ‖v‖a, the inconsistency term can be bounded as in Lemma
5.1. Furthermore, (4.5) implies

‖u − Πhu‖a ≤ c(h2 + εh)‖u‖2.

As a consequence of the fact that div Πhu = Ph div u, it is also true
that

‖ div(u − uh)‖
2
0 = ‖ div(u −Πhu)‖2

0 + ‖ div(Πhu − uh)‖
2
0.

Thus, we can conclude from (7.3) that

‖u − uh‖
2
a + δ−2‖(I − Ph) div u‖2

0 + δ−2‖ div(Πhu − uh)‖
2
0

≤ c(h2 + εh)2‖u‖2
2 + δ−2‖(I − Ph) div u‖2

0.

We therefore have established the following convergence result.

Theorem 7.1. If u ∈ H2 ∩ H1
0 then

‖u−uh‖0+ε‖ rot(u−uh)‖0+δ−1‖ div(Πhu−uh)‖0 ≤ c(h2 +εh)‖u‖2.

Here c > 0 is a constant independent of ε, δ and h.
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Note that from this result we can conclude that if ε and h are fixed,
and δ approaches zero, then div uh converges in L2 to Ph div u. Fur-
thermore, the divergence of the error can be controlled by this estimate
since

‖ div(u − uh)‖0 ≤ ‖(I − Ph) div u‖0 + ‖ div(Πhu − uh)‖0

≤ ch‖ div u‖1 + cδ(ε2 + hε)‖u‖2.

Of course, exactly as for the problem (1.1) we can argue that, in general
cases, the norm ‖u‖2 will not remain bounded as ε and δ approach
zero. Hence, ideally we would like to generalize the results of §6 to
the problem (7.1). However, this discussion is outside the scope of this
paper.
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