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Summary Implicit time stepping procedures for the time depen-
dent Stokes problem lead to stationary singular perturbation prob-
lems at each time step. These singular perturbation problems are
systems of saddle point type, which formally approach a mixed for-
mulation of the Poisson equation as the time step tends to zero. Pre-
conditioners for discrete analogous of these systems are discussed.
The preconditioners uses standard positive definite elliptic precondi-
tioners as building blocks and lead to condition numbers which are
bounded uniformly with respect to the time step and the spatial dis-
cretization. The construction of the discrete preconditioners is related
to the mapping properties of the corresponding continuous system.

1 Introduction

Let Ω ⊂ Rn, with n=2 or 3, be a bounded polygonal domain with
boundary ∂Ω. Consider the corresponding initial value problem for
the time dependent Stokes problem given by:

ut −∆u− grad p = f in Ω × R+,
divu = 0 in Ω × R+,

u = 0 on ∂Ω × R+,
u = u0 on Ω × {t = 0}.

(1)

If this initial value problem is discretized by an implicit time stepping
procedure we are lead to stationary singular perturbation problems
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of the form:
(I − ε2∆)u− grad p = f in Ω,

divu = 0 in Ω,
u = 0 on ∂Ω.

(2)

Here ε > 0 is the square root of the time step, while p is related to the
original pressure by a scaling with the factor ε2. The new right–hand
side f represents a combination of the velocity at the previous time
step and the original forcing term. When such implicit time stepping
procedures are combined with a finite element discretization of the
spatial variables, then at least one discrete analog of the system (2)
has to be solved for each time step. Hence, the efficiency of such solu-
tion strategies may depend critically on the development of iterative
solvers for discretizations of systems of the form (2).

We recall that many semi–implicit time stepping schemes for the
full nonlinear, incompressible Navier–Stokes equation use discrete
analogs of linear systems of the form (2) as building blocks. These
systems are then combined with a proper method for the nonlinear
convection process by a fractional step strategy, cf. for example [12],
or by an approach using Lagrangian coordinates “to remove” the
convective term, cf. [26].

The main purpose of the present paper is to discuss block diagonal
preconditioners for discrete analogs of the system (2) when the per-
turbation parameter ε is allowed to be arbitrary small. More precisely,
we shall assume that ε ∈ (0, 1], and our goal is to design precondion-
ers which lead to condition numbers that are bounded uniformly with
respect to both ε and the discretization parameter h.

We note that when ε is not too small the system (2) is similar
to the stationary Stokes problem, but with an additional lower order
term. However, if ε approaches zero then the system formally tends
to a mixed formulation of the Poisson equation. This observation
can potentially indicate some problems for the corresponding discrete
systems, since standard stable finite elements for the Stokes problem
may not be stable for the mixed Poisson system. On the other hand,
most stable elements for the mixed Poisson system, like the Raviart–
Thomas elements, lack some of the continuity conditions required for
conforming approximations of the Stokes system. In fact, this issue
was discussed in great detail in [21], where systems of the form (2)
was motivated as models for “averaged fluid flow.” It was established
that if standard H(div)× L2 norms was used for the mixed Poisson
system then none of the most common Stokes elements appeared to be
stable, and as consequence, these elements did not perform well for ε
small. Motivated by this observation a new family of finite elements
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were constructed, with stability properties which are uniform with
respect to the perturbation parameter ε.

However, for our study here the starting point is rather different.
When the system (2) is derived from implicit time stepping proce-
dures for the time dependent Stokes system the parameter ε is not
a physical parameter. Difficulties which may occur as a consequence
of ε being small should therefore be seen as instabilities created by
the time stepping procedure, and not as instabilities created by the
spatial discretizations of the time dependent Stokes system. We shall
therefore in this paper study preconditioners for the system (2), dis-
cretized by standard Stokes elements. Uniform preconditioners with
respect to ε and h will be derived. Standard Stokes preconditioners
perform well if ε > 0 is sufficiently large, but degenerate if ε is small,
i.e. as we approach a simple potential flow. The main tool for deriv-
ing the uniform preconditioners will be proper stability estimates in
ε–dependent norms, but these norms do not degenerate to the norm
of H(div)×L2 for ε = 0. Instead, the norm for the reduced case will
correspond to (u, p) ∈ L2 ×H1.

A block diagonal preconditioner of the form studied here, where
each block is composed of preconditioners for standard elliptic prob-
lems, was introduced already in [10]. Later works which study block
preconditioners for discrete analogs of the system (2), using various
tools of analysis, are for example [6], [13], [14], [19], and [31]. Other
appraoches to the construction of preconditioners for saddle point
systems are for example given in [5], [7], [20], [25], [33], and [34],
cf. also [23]. The main contribution of the present paper is to relate
the construction of the preconditioner for the discrete systems to the
mapping properties of the continuous system (2). This leads to a clean
and precise framework of analysis which is essentially independent of
how the different elliptic preconditioners are constructed. All we es-
sentially need to verify is that the discrete spaces satisfy an inf–sup
condition which is uniform with respect to perturbation paramer ε.

In §2 below we introduce some useful notation and describe basic
properties of the system (2). Uniform preconditioners for the con-
tinuous system is derived in §3 as a consequence of a uniform inf–
sup property. In §4 we then use numerical experiments to study dis-
crete versions of this preconditioner for some choices of finite element
spaces with continuous pressures. We observe that these precondi-
tioners seems to result in preconditioned systems which are well con-
ditioned, uniformly with respect to the perturbation parameter ε and
the mesh parameter h. In §5 we perform a detailed theoretical analy-
sis of these discrete preconditioners. Finally, in §6 we investigate the
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properties of related preconditioners for finite elements with discon-
tinuous pressures.

2 Preliminaries

For any Banach space X the associated norm will be denoted ‖ · ‖X .
If Hm = Hm(Ω) is the Sobolev space of functions on Ω with m
derivatives in L2 = L2(Ω) we use the simpler notation ‖ · ‖m instead
of ‖ · ‖Hm . The space Hm

0 is the closure in Hm of C∞0 = C∞0 (Ω).
The dual space of Hm

0 with respect to the L2 inner product will
be denoted by H−m. Furthermore, L2

0 will denote the space of L2

functions with mean value zero. A space written in boldface denotes
a n–vector valued analog of the corresponding scalar space, where
n=2 or 3. The notation (·, ·) is used to denote the L2 inner product
on scalar, vector, and matrix valued functions, and to denote the
duality pairing between Hm

0 and H−m. The gradient of a vector field
v is denoted Dv, i.e. Dv is the n× n matrix with elements

(Dv)i,j = ∂vi/∂xj 1 ≤ i, j ≤ n.

Hence, for any u ∈H2 and v ∈H1
0 we have

−(∆u,v) = (Du,Dv) ≡
∫
Ω
Du : Dv dx,

where the colon denotes the scalar product of matrix fields.
Below we shall encounter the intersection and sum of Hilbert

spaces. We therefore recall the basic definitions of these concepts.
If X and Y are Hilbert spaces, both continuously contained in some
larger Hilbert spaces, then the intersection X∩Y and the sum X+Y
are themselves Hilbert spaces with the norms

‖z‖X∩Y = (‖z‖2X + ‖z‖2Y )1/2

and
‖z‖X+Y = inf

z=x+y
x∈X, y∈Y

(‖x‖2X + ‖y‖2Y )1/2.

Furthermore, if X ∩ Y is dense in both X and Y then

(X ∩ Y )∗ = X∗ + Y ∗. (3)

Finally, if T is a bounded linear operator mapping X1 to Y1 and X2

to Y2, respectively, then

T ∈ L(X1 ∩X2, Y1 ∩ Y2) ∩ L(X1 +X2, Y1 + Y2).
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In particular, we will later use the bound

‖T‖L(X1+X2,Y1+Y2) ≤ max(‖T‖L(X1,Y1), ‖T‖L(X2,Y2)). (4)

We refer to [4, Chapter 2] for these results.
Throughout this paper ε ∈ (0, 1], aε(·, ·) : H1 × H1 7→ R will

denote the bilinear form

aε(u,v) = (u,v) + ε2(Du,Dv),

and I − ε2∆ : H1
0 7→H−1 the corresponding operator, i.e.

((I − ε2∆)u,v) = aε(u,v) ∀u,v ∈H1
0 .

A weak formulation of problem (2), slightly generalized to allow for
a nonhomogeneous right hand side in the second equation, is given
by:

Find (u, p) ∈H1
0 × L2

0 such that

aε(u,v) + (p,div v) = (f ,v) ∀v ∈H1
0 ,

(divu, q) = (g, q) ∀q ∈ L2
0.

(5)

Here we assume that data (f , g) is given in H−1 × L2
0.

The problem (5) has a unique solution (u, p) ∈ H1
0 × L2

0. This
follows from standard results for Stokes problem, cf. for example [15].
However, the bound on (u, p) ∈ H1

0 × L2
0 will degenerate as ε tends

to zero. In fact, for the reduced problem (5), with ε = 0 and the
boundary condition modified such that only zero normal component
is required, the space H1

0 ×L2
0 is not a proper function space for the

solution. However, the theory developed in [8] can be applied in this
case if we seek (u, p) either in H0(div)×L2

0 or in L2× (H1∩L2
0), and

with data (f , g) in the proper dual spaces. These results are in fact
consequences of standard results for the Poisson equation. Here the
space H0(div) denotes the set of square integrable vector fields, with
a square integrable divergence, and with zero normal component on
the boundary.

The fact that the regularity of the solution is changed when ε
becomes zero strongly suggests that ε–dependent norms and function
spaces are required in order to obtain stability estimates independent
of ε. Furthermore, since the reduced problem is well posed for two
completely different choices of function spaces, this indicates that
there are at least two different choices of ε–dependent norms. These
are the norms of the spaces (H0(div)∩ε ·H1

0 )×L2
0 and (L2∩ε ·H1

0 )×
((H1 ∩L2

0) + ε−1 ·L2
0). Note that for any ε > 0 both these spaces are

equal to H1
0×L2

0 as a set, but as ε approaches zero the corresponding
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norms degenerates to the norm of H0(div) × L2
0 or L2 × (H1 ∩ L2

0),
respectively.

In [21] it was established that most standard Stokes elements are
not uniformly stable in the norm of (H0(div)∩ε·H1

0 )×L2
0. Therefore,

if we want uniform stability estimates for such elements it seems more
natural to use the norm induced by the space

Xε := (L2 ∩ ε ·H1
0 )× ((H1 ∩ L2

0) + ε−1 · L2
0).

This is the approach taken in this paper.
The norm of the space L2 ∩ ε ·H1

0 , will be denoted ||| · |||ε, i.e.

|||v|||2ε = ‖v‖20 + ε2‖Dv‖20,

while the norm in (H1∩L2
0)+ ε−1 ·L2

0 will be simplified to | · |ε. More
precisely, we define, |q|ε by

|q|ε = inf
q=q1+q2

q1∈H1∩L2
0, q2∈L2

0

(‖grad q1‖20 + ε−2‖q2‖20)1/2.

This notation for the norm in (H1 ∩ L2
0) + ε−1 · L2

0 is convenient,
but slightly unusual, since |q|0 = ‖grad q‖0 is equivalent to ‖q‖1 on
H1 ∩ L2

0, while |q|1 is equivalent to ‖q‖0.
Let H∗ ⊃ L2

0 denote the dual space of H1 ∩ L2
0, and define the

operator (I−ε2∆)−1 : H∗ 7→ H1∩L2
0 by a standard weak formulation,

i.e. p = (I − ε2∆)−1g if p satisfies

(p, q) + ε2(grad p,grad q) = (g, q) ∀q ∈ H1 ∩ L2
0.

By using this operator a more explicit characterization of |q|ε can be
given. For q ∈ L2

0 let q1 = (I−ε2∆)−1q ∈ H1∩L2
0. Note, in particular,

that ∆q1 ∈ L2
0. Furthermore, a straightforward computation shows

that the solution of the minimization problem in the definition of |q|ε
is given by q1 and q2 = −ε2∆q1 = q − q1. Hence, we obtain

|q|2ε = ‖grad q1‖20 + ε−2‖q − q1‖20. (6)

The system (5) can alternatively be written as

Aε
(
u
p

)
=
(
f
g

)
, (7)

where the coefficient operator Aε is given by

Aε =
(
I − ε2∆ −grad

div 0

)
. (8)



Uniform preconditioners 7

Here −grad : L2
0 7→ H−1 is the dual of the divergence operator,

div : H1
0 7→ L2

0.
Let X∗ε be the dual space of Xε. Because of (3) this space can be

expressed as

X∗ε = (L2 + ε−1H−1)× (ε · L2
0 ∩H∗).

We shall show below that the operator Aε is an isomorphism mapping
Xε into X∗ε . Furthermore, the corresponding operator norms

||Aε||L(Xε,X∗ε ) and ||A−1
ε ||L(X∗ε ,Xε) are independent of ε. (9)

In fact, with the definitions above, this is also true for ε ∈ [0, 1], i.e.
the endpoint ε = 0 can be included. However, in the discussion below
we will for simplicity always assume that ε > 0.

The uniform boundedness of Aε is straightforward to check from
the definitions above. For example, if p = p1 + p2, where p1 ∈ H1 ∩
L2

0, p2 ∈ L2
0, then the term (p,div v) in (5) can be bounded by

|(p,div v)| = |(p1 + p2,div v)|
= | − (grad p1,v) + (p2,div v)|
≤ (‖p1‖1‖v‖0 + ‖p2‖0‖div v‖0)

≤ (‖p1‖21 + ε−2‖p2‖20)1/2|||v|||ε.

Hence,

|(p,div v)| ≤ |p|ε|||v|||ε ∀v ∈H1
0 , p ∈ L2

0. (10)

The uniform boundedness of A−1
ε can be verified from the two Brezzi

conditions, cf. [8]. For the present problem these conditions read:
There are constants α0 > 0, β0 > 0, independent of ε, such that

sup
v∈H1

0

(q,div v)
|||v|||ε

≥ α0|q|ε ∀q ∈ L2
0 (11)

and

aε(v,v) ≥ β0|||v|||2ε ∀v ∈H1
0 . (12)

Condition (12) obviously holds with β0 = 1, while condition (11) will
be verified in the next section.



8 Kent–Andre Mardal, Ragnar Winther

3 Mapping properties and uniform preconditioners

As explained above the main purpose of the present paper is to con-
struct uniform preconditioners for discrete analogs of the system (2)
when this system has been discretized by standard Stokes elements.
The presentation of these preconditioners will be given in the next
section. However, in order to motivate these preconditioners we will
in this section explain how to precondition the continuous problem.
Similar discussions, where preconditioners for various discrete sys-
tems are motivated from mapping properties of the corresponding
continuous systems, can for example be found in [2] and [17].

We will first establish the uniform inf–sup condition (11). If ε = 1
then this condition, up to equivalence of norms, reduces to

sup
v∈H1

0

(q,div v)
‖v‖1

≥ α1‖q‖0 ∀q ∈ L2
0, (13)

where α1 > 0. This is the standard inf–sup condition for the Stokes
system which is well–known to hold. This result was established for
a Lipschitz domain by Nečas [22], cf. also [15, Chapter 1, Corollary
2.4]. The uniform inf–sup condition (11) is now a simple consequence
of (4), (13), and Poincaré’s inequality.

Lemma 1 The uniform inf–sup condition (11) holds.

Proof Observe that (13) can be written in the form

‖grad q‖−1 ≥ α1‖q‖0 ∀q ∈ L2
0.

Hence, if we define G0 = grad(L2
0) then G0 is a closed subspace of

H−1, and we can define grad−1 : G0 7→ L2
0 such that

‖grad−1 ‖L(G0,L2
0) ≤ α−1

1 .

In addition, Poincaré’s inequality states that there is a constant c =
c(Ω) such that

‖q‖1 ≤ c‖grad q‖0 ∀q ∈ H1 ∩ L2
0,

or ‖grad−1 ‖L(G1,H1∩L2
0) ≤ c, where G1 = grad(H1∩L2

0). We there-
fore conclude from (4) that

‖grad−1 ‖L(G1+ε−1G0,(H1∩L2
0)+ε−1L2

0) ≤ max(c, α−1
1 ).

Hence, letting α0 = min(α1, c
−1) we obtain

‖grad q‖L2+ε−1H−1 ≥ α0|q|ε ∀q ∈ L2
0,

which is (11). �
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Let Bε : X∗ε 7→ Xε be the diagonal operator

Bε =
(

(I − ε2∆)−1 0
0 ε2I + (−∆)−1

)
. (14)

When restricted to L2 × L2
0 this operator is symmetric and positive

definite. We observe that B0 = diag(I, (−∆)−1), while B1 has the
same mapping property as diag((−∆)−1, I). In fact, it follows directly
from the definitions of the spacesXε andX∗ε that the operator norms

||Bε||L(X∗ε ,Xε) and ||B−1
ε ||L(Xε,X∗ε ) are independent of ε. (15)

Hence, the composition

BεAε : Xε
Aε−→X∗ε

Bε−→Xε (16)

maps Xε into itself. In particular, we can conclude from (9) and (15)
that the operator norms

||BεAε||L(Xε,Xε), ||(BεAε)−1||L(Xε,Xε) are independent of ε. (17)

Furthermore, observe that the symmetric positive definite operator
B−1
ε defines an inner product on Xε, and that that the operator BεAε

is symmetric with respect to this inner product.
Consider now the preconditioned version of the system (5), or (7),

given by

BεAε
(
u
p

)
= Bε

(
f
g

)
, (18)

where the operator Bε, introduced above, is a preconditioner. This
preconditioned differential system has a symmetric and bounded co-
efficient operator. Therefore, the system (18) can, in theory, be solved
by an iterative method like the minimum residual method (cf. for ex-
ample [16] ) or the conjugate gradient method applied to the normal
equations. These methods are well defined as long as BεAε maps Xε

into itself, and the convergence in the norm of Xε can be bounded
by the spectral condition number

κ(BεAε) = ||BεAε||L(Xε,Xε) · ||(BεAε)−1||L(Xε,Xε).

Hence, property (17) ensures uniform convergence with respect to ε.
If the system (5) is replaced by a discrete analog, with a discrete

coefficient operator Aε,h, then the corresponding preconditioner Bε,h
should also be constructed on discrete spaces. However, the continu-
ous discussion given above suggests clearly the structure of these pre-
conditioners. Of course, in order to obtain computational efficiency,
the inverse operators appearing in the blocks of Bε should then be
replaced by proper elliptic preconditioners.
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4 The discrete preconditioners

A standard finite element discretization of (5) leads to discrete indef-
inite systems approximating (5). Motivated by the continuous discus-
sion above we will propose preconditioners for these discrete systems.
The behavior of these preconditioners will then be investigated by
numerical experiments, while a theoretical discussion is given in the
next section.

4.1 Finite element discretization

Let {Vh × Qh}h∈(0,1] ⊂ H1
0 × L2

0 be finite element spaces, where
the parameter h represents the scale of the discretization. Given the
spaces Vh and Qh the corresponding finite element discretization of
the system (5) is given by:

Find (uh, ph) ∈ Vh ×Qh such that

aε(uh,v) + (ph,div v) = (f ,v) ∀v ∈ Vh,
(divuh, q) = (g, q) ∀q ∈ Qh.

(19)

Standard stable Stokes elements satisfy a Babuska–Brezzi condition
of the form

sup
v∈Vh

(q,div v)
‖v‖1

≥ α1‖q‖0 ∀q ∈ Qh, (20)

where the positive constant α1 is independent of the mesh parameter
h. For a review of such finite element spaces we refere for example
to the texts [9] and [15]. We note that (20) is a discrete version of
(11) in the case when the perturbation parameter ε is bounded away
from zero. This condition will imply, in particular, that the discrete
system (19) has a unique solution.

The discrete system (19) can alternatively be written as a discrete
analog of (7),

Aε,h
(
uh
ph

)
=
(
fh
gh

)
, (21)

where the discrete coefficient operator Aε,h : Vh ×Qh 7→ Vh ×Qh is
defined by

(Aε,h
(
u
p

)
,

(
v
q

)
) = aε(u,v) + (p,div v) + (divu, q) (22)

for all (u, p), (v, q) ∈ Vh × Qh. Hence, the operator Aε,h is an L2–
symmetric, but indefinite, operator mapping the product space Vh×
Qh into itself.
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Our goal is to construct efficient positive definite, block diago-
nal preconditioners for the operator Aε,h, i.e. we will construct block
diagonal operators Bε,h : Vh × Qh 7→ Vh × Qh such that the con-
dition numbers of the operators Bε,hAε,h are bounded uniformly in
the perturbation parameter ε and the discretization parameter h.
The preconditioners Bε,h, constructed below, are designed as proper
discrete analogs of the operator Bε introduced above.

Motivated by (14), the preconditioner Bε,h will be constructed on
the form

Bε,h =
(
Mε,h 0

0 ε2Ih +Nh

)
. (23)

Here Mε,h : Vh 7→ Vh is a preconditioner for the discrete version
of the differential operator I − ε2∆ with Dirichlet boundary condi-
tions, while the operator Nh : Qh 7→ Qh is a corresponding precon-
ditioner for the discrete negative Laplacian with natural boundary
conditions. Finally, the operator Ih : Qh 7→ Qh is the identity opera-
tor if the space Qh consists of discontinuous functions or an operator
spectrally equivalent to the identity on C0–elements. In fact, in the
present section we will only consider finite elements spaces with con-
tinuous approximations of the pressure. The reason for this is that
the presence of the negative Laplacian preconditioner Nh, defined on
Qh, seems to demand that Qh ⊂ H1, at least as long as conforming
approximations of the Laplacian are used. Hence, below we shall con-
sider the classical Taylor–Hood element [9], [15] and the Mini element
[1].

The most efficient iterative method for the preconditioned system

Bε,hAε,h
(
uh
ph

)
= Bε,h

(
fh
gh

)
is the preconditioned minimum residual method. We refer to cf. [16],
[18], [24], [28], and [29] for general discussions of this method and
block diagonal preconditioners. Alternatively, we can use the conju-
gate gradient method applied to the normal equations of the precon-
ditioned system.

4.2 Numerical experiments

In order to test the behavior of the discrete preconditioners of the
form (23) we will consider the system (19) with the domain Ω taken
as the unit square in R2. A sequence of rectangular meshes is con-
structed by uniform refinements of a 2×2 partition of the unit square,
and a triangular mesh is constructed by dividing each rectangle into
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two triangles by the diagonal with negative slope. The number of un-
knowns in the experiments below will typically range from order 102

to order 105.
In the two examples below the pressure space Qh consists of con-

tinuous piecewise linear functions. The preconditioner Nh : Qh 7→
Qh is a standard V–cycle operator with a symmetric Gauss–Seidel
smoother, while the approximate identity Ih on Qh simply consists
of one symmetric Gauss–Seidel iteration. The condition numbers for
the operators Nh(−∆h) and Ih, where ∆h : Qh 7→ Qh is the corre-
sponding discrete Laplace operator, can be estimated by a standard
procedure from the preconditioned conjugate gradient method (i.e.
the Lanczos algorithm), where we have chosen an oscillatory random
vector as a start vector. The iteration is terminated when the residual
is reduced by a factor of 10−17 (roughly equal to the unit round off).

A similar approach is used to estimate the condition number of
Bε,hAε,h, where we recall that Bε,hAε,h is symmetric with respect to
the inner product generated by B−1

ε,h. These estimates for κ(Bε,hAε,h)
are based on the Conjugate Gradient method applied to the normal
system

Bε,hAε,hBε,hAε,h
(
uh
ph

)
= Bε,hAε,hBε,h

(
fh
gh

)
.

Estimates for the condition numbers of Nh(∆h) and Ih are given in
Table 1.

h 2−2 2−3 2−4 2−5 2−6 2−7

κ(Nh(−∆h)) 1.71 1.50 1.47 1.47 1.47 1.47

κ(Ih) 1.66 1.62 1.61 1.60 1.60 1.60

Table 1. Condition numbers for the operators Nh(−∆h) and Ih.

We observe that these operators cleary behave well as the mesh
paramer h is decreased. In the examples below the preconditioners
Nh and Ih are combined with proper operators Mε,h to build the
complete block diagonal preconditioner Bε,h of the form (23).

Example 4.1 First we consider the preconditioner in the case of the
Taylor–Hood element. Hence, Vh ⊂H1

0 consists of piecewise quadrat-
ics, while the space Qh is the space of continuous piecewise lin-
ears. The multigrid preconditioner Mε,h : Vh 7→ Vh, approximating
(I − ε2∆h)−1, where ∆h : Vh 7→ Vh is the corresponding discrete
Laplacian on Vh, is a standard V–cycle operator with a symmer-
tic Gauss–Seidel smoother. The estimates for the condition numbers
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κ(Mε,h(I − ε2∆h)), given in Table 2, clearly indicates a bound inde-
pendent of ε and h.

h\ε 0 0.001 0.01 0.1 0.5 1.0

2−3 1.11 1.11 1.03 1.14 1.22 1.22

2−5 1.11 1.09 1.03 1.23 1.24 1.24

2−7 1.11 1.02 1.20 1.24 1.24 1.24

Table 2. Condition numbers for κ(Mε,h(I − ε2∆h)) obtained from the Taylor–
Hood element.

We use the operator Mε,h, together with the operators Nh and
Ih introduced above, to construct the complete operator Bε,h of the
form (23). The estimates for the condition numbers of κ(Bε,hAε,h)
are given in Table 3.

h\ε 0 0.001 0.01 0.1 0.5 1.0

2−3 6.03 6.05 6.92 13.42 15.25 15.32

2−5 6.07 6.23 10.62 15.14 15.59 15.61

2−7 6.08 7.81 14.18 15.55 15.64 15.65

Table 3. Condition numbers for κ(Bε,hAε,h) using the Taylor–Hood element.

These condition numbers appears to be independent of ε and h.
This will be theoretically verified in the next section. Similar com-
putational results as reported here are also obtained if the P2 − P1

element is replaced by the corresponding element on rectangles, i.e.
the Q2 −Q1 element. �

Example 4.2 Analogous to the example with the Taylor–Hood element
above, we consider the Mini element discretization, i.e. Vh ⊂ H1

0
consists of piecewise linear functions and cubic bubble functions sup-
ported on a single triangle, while Qh ⊂ H1∩L2

0 is the space of contin-
uous piecewise linear functions. The preconditioner Mε,h : Vh 7→ Vh,
approximating (I − ε2∆h)−1, is again constructed as a standard V–
cycle operator with symmetric Gauss–Seidel as a smoother. However,
the high frequency bubble functions are only present in the finest grid.
On all the coarser grids we simply use piecewise linear functions. This
approach seems to be efficient as seen by the condition number es-
timates in Table 4. As expected these condition numbers appears to
be bounded uniformly with respect to ε and h.
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h\ε 0 0.001 0.01 0.1 0.5 1.0

2−3 2.79 2.73 1.35 1.05 1.14 1.16

2−5 2.94 2.22 1.02 1.15 1.20 1.21

2−7 2.95 1.14 1.11 1.20 1.23 1.23

Table 4. Condition numbers for κ(Mε,h(I − ε2∆h)) obtained from the Mini
element.

Finally, we construct the complete operator Bε,h of the form (23)
and estimate the condition numbers of Bε,hAε,h. The results are given
in Table 5.

h\ε 0 0.001 0.01 0.1 0.5 1.0

2−3 4.32 4.23 3.59 13.87 19.18 19.43

2−5 4.65 3.50 8.56 18.53 19.83 19.88

2−7 4.67 4.52 15.74 19.72 19.93 19.93

Table 5. Condition numbers for κ(Bε,hAε,h) obtained from the Mini element.

Again, these results seem to indicate that the condition numbers
κ(Bε,hAε,h) are indeed independent of ε and h. �

5 A theoretical discussion in the discrete case

The purpose of this section is to present a theoretical analysis of the
preconditioners studied experimentally above. We assume that Ω is a
bounded polygonal domain in R2 and that {Th} is a shape regular and
quasi–uniform family of triangulations of Ω, where h is the maximum
diameter of a triangle in Th.

Below we shall give a precise analysis of the conditioning of the
operator Bε,hAε,h when the spaces Vh and Qh are given either by
the Taylor–Hood element or the Mini element. However, first we will
make some remarks in the general case. For this discussion we just
assume that Vh ⊂ H1

0 and Qh ⊂ H1 ∩ L2
0 is a pair of finite element

spaces.
Let Aε,h : Vh × Qh 7→ Vh × Qh be defined by (22) and let Bε,h :

Vh × Qh 7→ Vh × Qh be a corresponding L2 symmetric and positive
definite, block diagonal preconditioner on the form (23). Our goal is
to establish bounds on the spectral condition number, κ(Bε,hAε,h),
which are independent of the perturbation parameter ε and the mesh
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parameter h. To establish this we will use the characterization

κ(Bε,hAε,h) =
sup |λ|
inf |λ| ,

where the supremum and infimum is taken over the spectrum of
Bε,hAε,h. The saddle point theory of [8] will be used to obtain an
upper bound on κ(Bε,hAε,h). Observe that if λ ∈ R is an eigenvalue
of Bε,hAε,h, with corresponding eigenfunction (uh, ph) ∈ Vh × Qh,
then the equations

aε(uh,v) + (ph,div v) = λ(M−1
h uh,v),

(divuh, q) = λ((ε2Ih +Nh)−1ph, q),
(24)

holds for all v ∈ Vh, q ∈ Qh.
In all the examples below the operator Mε,h : Vh 7→ Vh will be

a uniform preconditioner for the corresponding discrete version of
the operator I − ε2∆. In other words, the bilinear forms aε(·, ·) and
(M−1

ε,h ·, ·) are uniformly spectrally equivalent, i.e. there are constants
c1 and c2, independent of ε and h, such that

c1aε(v,v) ≤ (M−1
ε,hv,v) ≤ c2aε(v,v) ∀v ∈ Vh. (25)

Furthermore, the operator Ih : Qh 7→ Qh will be spectrally equivalent
to the identity operator, and Nh : Qh 7→ Qh is spectrally equivalent to
the discrete Laplacian, i.e. there are constants c3 and c4, independent
of h, such that

c3‖q‖21 ≤ (N−1
h q, q) ≤ c4‖q‖21 ∀q ∈ Qh. (26)

As we observed in the experiments discussed in §4 above, these re-
quirements on Mε,h,Nh and Ih were easily fulfilled for the examples
we studied there.

Recall that the norm |q|ε ≡ ‖q‖(H1∩L2
0)+ε−1L2

0
is characterized by

|q|2ε = inf
q1∈H1∩L2

0

[‖grad q1‖20 + ε−2‖q − q1‖20].

In fact, the optimal choice is q1 = (I − ε2∆)−1q, where Neumann
boundary conditions are implicitly assumed. For functions in Qh the
corresponding discrete norm is given by

|q|ε,h = inf
q1∈Qh

[‖grad q1‖20 + ε−2‖q − q1‖20].

It is obvious that |q|ε ≤ |q|ε,h on Qh. However, due to the quasi–
uniformity of the triangulations {Th}, the two norms are equivalent,
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uniformly in h. To see this note that if q ∈ Qh and q1 = (I−ε2∆)−1q
then

|q|2ε,h ≤ ‖grad q1,h‖20 + ε−2‖q − q1,h‖20,
where q1,h ∈ Qh is the L2 projection of q1. However, ‖q − q1,h‖0 ≤
‖q − q1‖0 and, by quasi-uniformity, ‖grad q1,h‖0 ≤ c0‖grad q1‖0,
where the constant c0 is independent of h. Hence, we conclude that

|q|ε,h ≤ c0|q|ε.
In addition, (26) further implies that |q|ε,h is equivalent to the norm

inf
q1∈Qh

[(N−1
h q1, q1) + ε−2‖q − q1‖0]1/2. (27)

Finally, from the general properties of sums and intersections of linear
spaces, cf. §2 above, it follows that the norm (27) is equivalent to the
norm ((ε2I +Nh)−1q, q)1/2.

To summarize the discussion so far we state the following result.

Lemma 2 If Ih,Nh : Qh 7→ Qh are L2 symmetric operators, such
that Ih is spectrally equivalent to the identity and Nh satisfies prop-
erty (26), then the norms |q|ε, |q|ε,h, and ((ε2Ih + Nh)−1q, q)1/2 are
equivalent, uniformly in ε and h.

Assume that the finite element spaces {Vh × Qh} satisfies the
uniform Babuska–Brezzi condition

inf
q∈Qh

sup
v∈Vh

(q,div v)
|||v|||ε|q|ε

≥ α > 0, (28)

where α is independent of ε and h. By using the theory of [8], cf.
Proposition 1.1 of that paper, this condition will imply that κ(Bε,hAε,h)
is bounded independently of ε and h. In fact, it is an immediate conse-
quence of this theory, the upper bound (10), the property (25) of the
operator Mε,h, and the norm eqivalence given in Lemma 2, that |λ|,
where λ is an eigenvalue of (24), is bounded from below and above,
uniformly in ε and h. We can therefore conclude with the following
result.

Theorem 1 Assume that Vh ⊂ H1
0 , Qh ⊂ H1 ∩ L2

0 and let Mε,h :
Vh 7→ Vh be a L2 symmetric, positive definite preconditioner satisfy-
ing (25). Furthermore, assume that the operators Nh and Ih on Qh
are as in Lemma 2. If the uniform Babuska–Brezzi condition (28)
holds then the condition numbers κ(Bε,hAε,h) are bounded uniformly
in ε and h.

Hence, for any particular choice of spaces {Vh ×Qh} our main task
is to verify the uniform inf–sup condition (28).
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5.1 The Taylor–Hood element

We recall that the velocity space, Vh, consists of continuous piecewise
quadratic vector fields, while the discrete pressures in Qh are contin-
uous and piecewise linear. The argument we will present to establish
the uniform Babuska–Brezzi condition (28) resembles the continuous
argument given in the proof of Lemma 1.

We first recall that it is well–known that the Taylor–Hood element
satisfies (20), cf. [32] or Chapter 6 of [9]. On the other hand, for ε = 0
(28) takes the form

inf
q∈Qh

sup
v∈Vh

(q,div v)
‖v‖0‖grad q‖0

≥ α0 > 0. (29)

In fact, this property, which is often referred to as the weak inf–sup
condition for the Taylor–Hood element, was established already in
[3], at least under the restriction that no triangle has two edges on
the boundary. Furthermore, this restriction can be removed by using
a macro–element technique, cf. [30].

We can therefore conclude that in the two extreme cases, ε = 0 and
ε = 1, the inf–sup condition is satisfied. Furthermore, these properties
imply that that the weakly defined gradient, gradh : Qh 7→ Vh given
by

(v,gradh q) = −(div v, q) ∀v ∈ Vh, q ∈ Qh,

is one–one. Let Gh ⊂ Vh be defined as gradh(Qh). As a consequence
of the two estimates (20) and (29) we obtain that for all u ∈ Gh

‖grad−1
h u‖0 ≤ α−1

1 ‖u‖−1,h ≡ α−1
1 sup
v∈Vh

(u,v)
‖v‖1

,

and

‖grad−1
h u‖1 ≤ α−1

0 ‖u‖0.

From (3), (4) and Lemma 2 it therefore follows that

|grad−1
h u|ε ≤ max(α−1

1 , α−1
0 ) sup

v∈Vh

(u,v)
|||v|||ε

, ∀u ∈ Gh,

and by letting u = gradh q this implies (28). Hence, we have com-
pleted our theoretical explanation of the observations done in Exam-
ple 4.1.
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5.2 The Mini element

We recall that the velocity space, Vh, consists of linear combinations
of continuous piecewise linear vector fields and local cubic bubbles.
More precisely, v ∈ Vh if and only if

v = v1 +
∑
T∈Th

cT bT ,

where v1 is a continuous piecewise linear vector field, cT ∈ R2, and
bT is the scalar cubic bubble function with respect to T , i.e. the
unique cubic function vanishing on ∂T and with

∫
T bT dx equals the

area of T . The pressure space Qh is the standard space of continuous
piecewise linear scalar fields.

As above we can establish the uniform Babuska-Brezzi condition
provided that the extreme cases ε = 0 and ε = 1 are valid. The case
ε = 1 is well–known, cf. [1]. It remains to show the weak inf-sup
condition (29). However, in the present case a direct argument for
(29) is straightforward.

First observe that the continuous analog of (29) obviously holds
with α0 = 1. Therefore, it is enough to construct and an interpolation
operator Πh : L2 7→ Vh, uniformly bounded with respect to h, such
that such that

(divΠhv, q) = (div v, q) ∀v ∈H1
0 , q ∈ Qh. (30)

Define Πh : L2 7→ V b
h ⊂ Vh by

(Πhv,z) = (v,z) ∀z ∈ Zh,

where Zh denotes the space of piecewise constants vector fields, and
V b
h denotes the span of the bubble functions. Clearly this uniquely de-

termines Πh, and a scaling argument, utilizing equivalence of norms,
shows that the local operators Πh are uniformly bounded, with re-
spect to h in L2. Furthermore, property (30) follows since for all
v ∈H1

0 and q ∈ Qh, we have

(divΠhv, q) = −(Πhv,grad q) = −(v,grad q) = (div v, q),

where we have used that gradQh ⊂ Zh. The uniform inf–sup condi-
tion (28) has therefore been established in this case.
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6 Discontinuous approximation of the pressure

In the analysis above we have strongly utilized the fact that we have
continuous discrete pressures, i.e. the pressure space Qh is a subspace
of H1. In fact, the bilinear form associated with the preconditioner
Nh : Qh 7→ Qh is required to be equivalent to the H1 inner product
on Qh. However, several common Stokes elements use discontinuous
piecewise constant pressures. The construction of uniform precondi-
tioners for the coefficient operator Aε,h in these cases will be discussed
in this section. For simplicity, we restrict the discussion to the well
known P2−P0 element, but we have also seen similar behavior as we
will present below in numerical experiments with other elements like
the nonconforming Crouzeix-Raviart element [11].

Let Qh ⊂ L2
0 be the space of discontinuous constant functions

with respect to a triangulation Th, where, as above, {Th} is a shape
regular and quasi–uniform family of triangulations of Ω. As for the
Taylor–Hood element discussed above, the velocity space Vh ⊂ H1

0
consists of continuous, piecewise quadratic vector fields. A weakly
defined gradient operator gradh : Qh 7→ Vh is given by

(gradh q,v) = −(q,div v) ∀v ∈ Vh, q ∈ Qh.

A discrete analog of the norm on (H1 ∩ L2
0) + ε−1 · L2

0 can now be
defined on Qh as

|q|ε,h = inf
q=q1+q2
q1,q2∈Qh

(‖gradh q1‖20 + ε−2‖q2‖20)1/2.

The appropriate uniform inf–sup condition we are seeking takes the
form

inf
q∈Qh

sup
v∈Vh

(q,div v)
|||v|||ε|q|ε,h

≥ α > 0, (31)

for a suitable α independent of ε and h.
For the P2−P0 element the standard inf–sup condition (20) is well–

known, cf. for example [9, Chapter 6.4]. In particular, this implies that
gradh : Qh 7→ Vh is one–one. Furthermore, (20) implies the discrete
Poincaré inequality

‖q‖0 ≤ α−1
1 ‖gradh q‖0 ∀q ∈ Qh. (32)

It is also straightforward to check that the norms ‖q‖0 and |q|1,h are
equivalent on Qh, uniformly in h. To see this note that |q|1,h ≤ ‖q‖0
is a direct consequence of the definition of |q|1,h. On the other hand,
if q1 is chosen as the minimizer in the definition of |q|1,h we have

|q|21,h = ‖gradh q1‖20 + ‖q − q1‖20
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and
(gradh q1,gradh r) + (q1, r) = (q, r) ∀r ∈ Qh.

From (32) we then obtain

‖q‖20 = (q, q − q1) + (q, q1)

= (q, q − q1) + ‖q1‖20 + ‖gradh q1‖20
≤ 1

2
‖q‖20 + (1 + α−2

1 )|q|21,h.

Therefore, ‖q‖0 and |q|1,h are uniformly equivalent on Qh, and (31)
for ε = 1 follows from (20).

When ε = 0 (31) holds with constant α = 1. This is a direct
consequence of the definitions of gradh and | · |ε,h. The uniform inf-
sup condition (31) therefore follows for all ε ∈ [0, 1] by an argument
completely analog to the one given in §5.1 above.

Having established a uniform inf–sup condition we are again in
position to construct a uniform, block diagonal preconditioner for the
operator Aε,h using similar arguments as above. Consider an operator
of the form

Bε,h =
(
Mε,h 0

0 ε2Ih +Nh

)
(33)

mapping Vh × Qh into itself. In fact, in the present case, where the
pressure space Qh is discontinuous, we simply take Ih to be the iden-
tity operator. Furthermore, as in §5.2 above we have to our disposal
a uniform preconditioner Mε,h : Vh 7→ Vh for the discrete version of
the differential operator I − ε2∆ on the piecewise quadratic space
Vh.

It only remains to specify the symmetric and positive definite
preconditioner Nh : Qh 7→ Qh. Assume that we can construct Nh

such that the norms ‖gradh q‖0 and (N−1
h q, q)1/2 are equivalent, uni-

formly in h, on Qh. As in §5 above it then follows from the uniform
inf–sup condition (31), some obvious upper bounds, and the theory of
[8] that the condition number κ(Bε,hAε,h) is bounded independently
of ε and h.

A potential difficulty for the construction of the preconditioner
Nh is that the operator gradh : Qh 7→ Vh is nonlocal. However, there
is a local norm, ‖q‖1,h, which is equivalent to ‖gradh q‖0, and the
structure of this local norm can more easily be used to construct the
preconditioner Nh. Define a new norm on Qh by

‖q‖21,h =
∑
e∈Eh

[q]2e, (34)
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where Eh is the set of interior edges of Th and [q]e is the jump of q on
the edge e.

Lemma 3 The norms ‖gradh q‖0 and ‖q‖1,h are equivalent on Qh,
uniformly in h.

Proof The standard degrees of freedom for the space Vh is the func-
tion values at each vertex and the zero order moments on each edge.
As a consequence of equivalence of norms we therefore obtain, from
a standard scaling argument, that∑

e∈Eh

(
∫
e
v · ne dρ)2 ≤ c‖v‖20 ∀v ∈ Vh,

where c is a constant independent of h. Here ne is a unit normal vector
on the edge e and ρ is the arc length along e. As a consequence, for
any v ∈ Vh and q ∈ Qh we have

(gradh q,v) = −
∑
T∈Th

∫
T
q div v dx = −

∑
e∈Eh

[q]e
∫
e
v · ne dρ

≤ ‖q‖1,h(
∑
e∈Eh

(
∫
e
v · ne dρ)2)1/2 ≤ c‖q‖1,h‖v‖0,

and we can therefore conclude that

‖gradh q‖0 ≤ c‖q‖1,h ∀q ∈ Qh.
To establish the opposite bound let q ∈ Qh be given and define v̂ ∈ Vh
such that v̂ is zero at each vertex, the tangential component of the
zero order moments are zero on each edge, and∫

e
v̂ · ne dρ = −[q]e

for all e ∈ Eh. Again, equivalence of norms implies that

‖v̂‖20 ≤ c
∑
e∈Eh

(
∫
e
v̂ · ne dρ)2 = c

∑
e∈Eh

[q]2e,

where the constant c is independent of h. Hence,

(gradh q, v̂) = −
∑
e∈Eh

[q]e
∫
e
v̂ · ne dρ =

∑
e∈Eh

[q]2e

≥ c−1‖q‖1,h‖v̂‖0,
which implies that

‖q‖1,h ≤ c‖gradh q‖0.
This completes the proof. �
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6.1 Numerical experiments

Our purpose is to repeat the experiments we did in the Examples 4.1
and 4.2, but this time we use the P2 − P0 element for the discretiza-
tion. In order to complete the description of the preconditioner Bε,h
given by (33) we have to make a proper choice for the preconditioner
Nh on Qh. However, due to Lemma 3 the operator Nh can be con-
structed as any preconditioner for the “finite difference Laplacian”
obtain from the bilinear form associated the norm ‖ · ‖1,h, cf. (34).
This can be done in many ways, cf. for example [31, Chapter 3] or [27].
Due to implementational convenience we shall here adopt the auxil-
iary space technique of Xu [35], where the auxiliary space consists of
piecewise linear functions. The advantage with this approach is that
Nh is essentially constructed from the corresponding preconditioner
introduced in §4.2 above. In the Examples 4.1 and 4.2, the subspace
of H1 ∩ L2

0 consisting of continuous piecewise linear functions with
respect to the triangulation Th was denoted Qh, but here, where Qh
already denotes the space of discontinuous constants, we will refer to
this space as Sh.

Let Ph : Sh 7→ Qh be the L2 projection, and P ∗h : Qh 7→ Sh the
adjoint operator with respect to the L2 inner product. The precon-
ditioner Nh we shall use will be of the form

Nh = τh2I + PhN
S
h P
∗
h , (35)

whereNS
h : Sh 7→ Sh is the standard V–cycle multigrid preconditioner

for the discrete Laplacian on Sh, described in §4.2 above, while τ > 0
is a suitable scaling constant. In the experiments below τ = 0.15. The
preconditioner Nh is computationally feasible since the L2 projection
Ph is local.

First, we check the efficiency of the preconditioner Nh by com-
puting the condition numbers of Nh(−∆h), where ∆h : Qh 7→ Qh is
given by

(−∆hp, q) =
∑
e∈Eh

[p]e[q]e ∀p, q ∈ Qh.

The results, which are given in Table 6, clearly indicate that κ(Nh(−∆h))
is bounded independently of h. In fact, a theoretical verification of
this can be done following the theory outlined in [35]. More precisely,
it can be shown that

‖q‖1,h ≡ (−∆hq, q)1/2 and (Nh∆hq,∆hq)1/2 (36)

are equivalent on Qh. However, since any oparator Nh satisfing (36)
is suitable, we will not include the proof here.
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h 2−2 2−3 2−4 2−5 2−6 2−7

κ(Nh(−∆h)) 3.07 3.13 3.16 3.18 3.17 3.18

Table 6. Condition numbers for the operators Nh(−∆h).

Having verified, at least experimentally, that Nh is a uniform pre-
conditioner for −∆h we should expect that the operator Bε,h, given
by (33), is a uniform preconditioner for the operator Aε,h.

The observed condition numbers of Bε,hAε,h, for ε ∈ [0, 1] and
decreasing values of h, are given in Table 7. In complete agreement
with the prediction of the theory these condition numbers appears to
be bounded independently of ε and h.

h\ε 0 0.001 0.01 0.1 0.5 1.0

2−3 4.96 4.95 4.48 5.56 7.85 7.79

2−5 5.22 5.07 4.46 7.12 8.72 8.74

2−7 5.28 4.30 5.93 8.27 9.24 9.28

Table 7. Condition numbers for κ(Bε,hAε,h) using the P2 − P0 element.
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