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Abstract
Many mixed finite elements have been proposed to approximate the solution of the
Navier-Stokes equations for laminar, incompressible fluid flow. The theory for these
elements is centered around the stationary Stokes problem, but it is far from Stokes
problem theory to real-life applications of mixed elements in, e.g., the car industry.
This paper extends theoretical convergence estimates to the linearized Navier-Stokes
equations and discusses the non-trivial influence of the time-stepping parameter.

Mardal, Tai and Winther (2002) constructed a new mixed finite element, which was
robust with respect to a physical parameter � appearing in Darcy-Stokes porous media
flow. This element was proved to be much more accurate than well-known and popular
elements for the Stokes/Navier-Stokes problem, when � was small. The parameter � is
related to the time-stepping parameter in time-dependent flow. Therefore the accuracy
of the standard elements for the time-dependent Navier-Stokes equations can be ques-
tioned. However, in time-dependent problems the error decreases as the time-stepping
parameter decreases. It may be that the spatial accuracy is sufficient to ensure the con-
vergence of the scheme, but this is not obvious. Our aim with this paper is to investigate
the influence of the time-stepping parameter on the stability of mixed finite elements
for time-dependent flow, in the simplified case where the nonlinear convective term is
omitted. We compare the accuracy of several elements, such as the Taylor-Hood, Mini,
Crouzeix-Raviart,

� ��� ���
elements, as well as the previously mentioned new element.

The numerical experiments suggest that Taylor-Hood, Mini and the new element are
more accurate (in some sense) than Crouzeix-Raviart and

� ��� ���
, for flow with low

viscosity. The results from these experiments are relevant to full Navier-Stokes solvers,
as many of these have the linearized Navier-Stokes problem as one component in the
solution method.
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INTRODUCTION
In this paper we will discuss the accuracy of different mixed finite elements for a

simplified version of the Navier-Stokes equations for an incompressible fluid flow. The
incompressible Navier-Stokes equations read	�
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where



and

�
are the unknown velocity and pressure, respectively. The body forces is

represented by � , while � is the viscosity and � is the density of the fluid. Additionally,
we must assign suitable boundary and initial conditions.



The Navier-Stokes equations are now solved routinely by today’s scientists and en-
gineers, using a variety of software packages and numerical methods. An overview of
finite element methods for the incompressible Navier-Stokes equations can be found in
Langtangen, Mardal and Winther (2002). Unfortunately, for many problems the solu-
tion obtained with different packages and methods differ. A quote from Turek (1999)
illustrates this fact:

There is no software available which can provide a guaranteed lift and
drag coefficient on a car-body with an error tolerance of less that 20%;
often the sign of the lift cannot even be predicted. Hence, we stopped flow
around objects and use simulation tools for interior flow problems only, for
instance for modeling heating devices or acoustic behavior in car cabins.
Here, we are content with a qualitatively good prediction!

Notice that this quote also applies to flow with Reynolds numbers as low as 20. In
fact, in M. Schäfer and S. Turek (1996) they conducted a benchmark for flow around a
cylinder with Reynolds number 20. They compared the simulation results from various
implementation of discretization techniques and solution methods. The solutions com-
puted by 17 research groups differed by 20% in the computation of the lift coefficient.
This problem is supposed to be ”simple”.

The uncertainty related to the efficiency and accuracy of different numerical meth-
ods actually calls for software where many different methods and formulations can
easily be compared. Such flexibility was an important motivation behind the design
of the generic C++ library Diffpack, Langtangen (2003). Diffpack has been extended
with many mixed finite elements, see Mardal and Langtangen (2003), and offers the
possibility to experiment with different mixed elements for fluid flow. This is exactly
the purpose of the present paper; we want to conduct numerical experiments to learn
more about the influence of the time-stepping parameter on the stability of mixed finite
elements for incompressible viscous fluid flow. To the authors knowledge, Diffpack
is the only software package that offers a range of mixed finite elements, for widely
different applications, with ease of implementation also for unstructured grids in two
and three space dimensions.

The mixed finite element methods that scientists and engineers are using routinely
today to solve computational incompressible fluid dynamics problems have a seemingly
solid mathematical basis. However, stability and general suitability of these elements
are only proved for the stationary Stokes problem. That is, the local and convective ac-
celeration terms are left out of the analysis. The next two sections outlines the potential
instability of mixed finite elements that may occur in time-dependent flow problems
as the time-stepping parameter tends to zero. Thereafter, we try to investigate how the
theoretical results extend to time-dependent problems. Our method of investigation is
based on conducting numerical experiments. We test various mixed finite elements ap-
plied to a time-dependent, but linearized, Navier-Stokes problem with known analytical
solution such that we can measure errors and convergence rates exactly.

LINEARIZED NAVIER-STOKES EQUATIONS

The mathematical model to be addressed in this paper reads	�
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We will refer to these equations as the time-dependent Stokes problem. The reason
for studying this model, and not the full incompressible Navier-Stokes equations are
two-fold. First, we want to investigate how stability and convergence estimate estab-
lished mathematically for Stokes flow extend to more realistic cases. To this end, it is
natural to first add time-dependency and then, as a next step, add the nonlinear con-
vection term. Second, the model problem (1)–(2) constitutes an important component
in many Navier-Stokes solvers. For example, a time-stepping strategy is to split the
full nonlinear Navier-Stokes equations into simpler set of equations, where the time-
dependent Stokes problem (i.e., linearized Navier-Stokes equations) appears as one
building block in the numerical algorithm. Fractional step strategies, see for exam-
ple Dean and Glowinski (1993), are often founded on this idea. Using Lagrangian
coordinates ”to remove” the convective term, cf. Pironneau (1989), is another solu-
tion strategy for the Navier-Stokes equations that leads to the requirement of efficient
solvers for (1)–(2).

Discretizing by backward Euler in time we get the following sequence of linear
systems to be solved,
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Here � �
is the size of the time step, i.e., the time-stepping parameter, and � denotes the

time level. Babuska-Brezzi stability conditions, uniform in � �
, can be found in Mardal

and Winther (2003). A crucial point in the theory of error estimates is the ellipticity of
the operator, which involves the parameter in front of the � � -operator, i.e., ��� �

. In the
next section we briefly review the results from Mardal, Tai and Winther (2002), which
discuss the accuracy of different elements in terms of the ellipticity parameter, though
for a stationary version of our model problem (1)–(2).

RESULTS FROM A SIMPLIFIED MODEL PROBLEM

Mardal, Tai and Winther (2002) found that different mixed finite elements showed
remarkably different behavior if � was varied in the following problem:
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The relevance of this problem for incompressible fluid flow is obvious: provided that
the numerical method requires solutions of “time-dependent Stokes problems”, and
that these are discretized by a backward scheme, we arrive at (3)–(4), though with �
replaced by ��� �

.
The accuracy of standard Stokes elements for (3)–(4) was found by Mardal et

al. (2002) to decrease as � decreases. This is a kind of instability of the elements
as ��� #

. However, a new element, robust in � , was constructed in that work. It
was also found that elements with continuous pressure, such as the Mini element or the
Taylor-Hood elements, had remarkably better convergence in terms of � than elements
with discontinuous pressure. To illustrate the differences, we have included Figure 1
from Mardal et al. (2002), which shows the convergence behavior for various elements.
In this case � was small: � � �
	���
 � � # � 	 . A brief description of the elements are given
in the appendix.



The left figure displays the error in velocity, whereas the right figure shows the error
in the energy norm,� 
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where
� � �

denotes the usual 	 � norm. The energy norm is weaker than the norm we
would use to express the error estimates for the stress. Notice that all of the methods
converge asymptotically, but that not all are in the asymptotic regime. In practice, it is
hard to determine whether we are in this regime or not. However, the Mini, the Taylor-
Hood and the new element are in some sense always in the the asymptotic regime. A
short description of the elements use in this paper is provided in the appendix.
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Fig. 1: The errors in velocity, measured in the 	 � norm (left) and the energy norm
(right), as functions of the spatial discretization measure 
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element size). The value of � was
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NUMERICAL EXPERIMENTS

Although it is clear that the different mixed finite element methods have different
behavior in terms of � in the problem cited in the previous section, it is not clear that
this actually will affect the time-dependent problem (1)–(2). The important parameter
in the time-dependent problem is � � � , and it may be that the improvement in the � �

-
error as � � � #

is sufficient to handle the decrease in the spatial (element) error as
��� � � #

. In other words, if we assume that the error in terms of
�

and � �
is,
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The point from Mardal et. al. (2002) is that for most elements
�

depend on � �
. This

issue can be investigated through numerical experiments. We then need a flow problem
with known exact solution such that we can compute the discretization error in each
experiment. To this end, we manufacture a smooth solution, independent of � ,
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This is a solution of our model problem (1)–(2) if we adjust the source term � to be
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The results of our experiments are listed in tables showing how the error in velocity
varies with element size

�
and the time step � �

.
The results for � � �

and the Crouzeix-Raviart element are shown in Table 1. The
new robust element from Mardal et al. (2002) is shown in Table 2. We see that both
elements have about the same accuracy. In the right-most column (where the spatial
error is small) we see linear convergence in terms of � �

and in the lower-most row
(where the error in time is small) we have roughly quadratic convergence in terms of�

. We also have diagonal ”stairs” with quadratic convergence. The same conclusion
also apply to the Mini and

� � � ���
elements. The approximation with Taylor–Hood

is of higher order in space, and the spatial convergence is barely visible. However, in
all these numerical experiments, we conclude that the decrease in spatial accuracy is
compensated by the increased accuracy in time.

� ��� � � � � � ��� � ��� � ��� � � 	
1.00 2.99e-2 1.01e-2 5.24e-3 4.44e-3 4.31e-3

5.00e-1 3.14e-2 9.44e-3 3.28e-3 2.05e-3 1.88e-3
2.50e-1 3.20e-2 9.33e-3 2.72e-3 1.14e-3 8.87e-4
1.25e-1 3.22e-2 9.33e-3 2.56e-3 8.08e-4 4.61e-4
6.25e-2 3.23e-2 9.34e-3 2.51e-3 6.95e-4 2.76e-4
3.13e-2 3.24e-2 9.34e-3 2.49e-3 6.57e-4 2.02e-4

Table 1: The 	 � error of the velocity obtained with the Crouzeix-Raviart element for
� � �

.

� ��� � � � � � ��� � ��� � ��� � � 	
1.00 1.50e-2 5.33e-3 3.37e-3 3.03e-3 2.95e-3

5.00e-1 1.44e-2 4.20e-3 1.83e-3 1.37e-3 1.29e-3
2.50e-1 1.41e-2 3.80e-3 1.25e-3 7.05e-4 6.05e-4
1.25e-1 1.39e-2 3.64e-3 1.04e-3 4.25e-4 3.05e-4
6.25e-2 1.39e-2 3.58e-3 9.52e-4 3.07e-4 1.68e-4
3.13e-2 1.39e-2 3.55e-3 9.15e-4 2.59e-4 1.04e-4

Table 2: The 	 � error of the velocity obtained with the robust element for � � �
.

In the next example we run similar tests with a smaller viscosity parameter, � �
� # ���

. The results for the Crouzeix-Raviart elements are shown in Table 3, and the
results for the new robust element appear in Table 4. In this case we see clear differences
in the accuracy, the robust element is clearly favorable. The Crouzeix-Raviart elements
in not yet in the asymptotic range, because we see no sign of convergence either in the
lower-most row or the right-most column. We also remark that the

� � � ���
elements

behave similar to the Crouzeix-Raviart element in this case. On the other hand the
robust element is convergent. We observe the same rates as in the case with � � �

.



� ��� � � � � � ��� � ��� � ��� � � 	
1.00 1.06e+0 1.18e+0 1.09e+0 7.69e-1 4.49e-1

5.00e-1 5.06e-1 5.65e-1 5.55e-1 4.48e-1 2.77e-1
2.50e-1 2.17e-1 2.36e-1 2.48e-1 2.50e-1 1.86e-1
1.25e-1 1.12e-1 1.09e-1 1.02e-1 1.40e-1 1.48e-1
6.25e-1 1.21e-1 1.22e-1 8.38e-2 8.47e-2 1.34e-1
3.13e-1 1.44e-1 1.52e-1 1.07e-1 6.07e-2 1.30e-1

Table 3: The 	 � error of the velocity obtained with the Crouzeix-Raviart element for
� � #

�

# # # �
.

� ��� � � � � � ��� � ��� � ��� � � 	
1.00 2.01e-1 2.11e-1 2.15e-1 2.18e-1 2.19e-1

5.00e-1 1.09e-1 1.16e-1 1.19e-1 1.20e-1 1.21e-1
2.50e-1 5.66e-2 6.08e-2 6.22e-2 6.30e-2 6.34e-2
1.25e-1 3.01e-2 3.09e-2 3.18e-2 3.22e-2 3.24e-2
6.25e-2 1.95e-2 1.55e-2 1.60e-2 1.63e-2 1.64e-2
3.13e-2 1.69e-2 7.90e-3 8.01e-3 8.18e-3 8.25e-3

Table 4: The 	 � error of the velocity obtained with the robust element for � � #
�

# # # �
.

The Mini and Taylor-Hood elements also show an accuracy comparable with the robust
element.

CONCLUSION

In this paper we have seen that for relatively viscous fluids the error estimates for the
Stokes problems are maintained also for the time-dependent linearized Navier-Stokes
equations, implying that widely used mixed finite elements are well behaved. However,
in fluids with low viscosities there are clear differences between the various mixed ele-
ments. The Mini, Taylor–Hood and the robust elements are preferable to the Crouzeix-
Raviart and the

� � � ���
elements.
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APPENDIX: LIST OF ELEMENTS

We also provide a short description of the elements used in the experiments. The
Crouzeix-Raviart element is shown in Figure 2. The black circles are velocity nodes,
while the white circle shows the pressure node. This element is also often called the
linear non-conforming element. The nodes are on the midpoints of each side and are
the only place where the basis functions are continuous across element edges. This
element should be combined with the piecewise constant pressure element,

� �
.

Fig. 2: Sketch of the 2D Crouzeix–Raviart element.

The Mini element is also popular. It consists of standard linear elements for the
velocity, with an additional bubble function in the middle of the element. This element
should be combined with linear continuous pressure elements. Figure 3 shows the Mini
element. The black squares indicate that the node is associated both with the pressure
and the velocity.

Fig. 3: Sketch of the 2D Mini velocity element and the linear pressure element.

The Taylor-Hood elements are piecewise quadratic and continuous velocity ele-
ments, which are combined with piecewise linear and continuous pressure elements. It
is shown in Figure 4. The

� ��� ���
element is similar to the Taylor-Hood element except

that the pressure element is piecewise constant.

Fig. 4: Sketch of the 2D Taylor–Hood element; Quadratic velocity and linear pressure
elements.



Fig. 5: The degrees of freedom of the robust element.

The new element from Mardal et. al. (2002) is shown in Figure 5. This is a slightly
more complicated element, which is continuous only in the normal direction across
element faces. However, the mean value of the tangential component is continuous.
This element should be combined with piecewise constant pressure elements.


