Empirical Assessment of Changeability in
Object-Oriented Software

Erik Arisholm

Thesis submitted for the degree of Dr. Scient.

Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo

February 22, 2001

Abstract

The combination of evolutionary development processes and object-oriented methods
may be a new "silver bullet" for the software community. Evolutionary development
may result in poor structure and outdated documentation, which in turn may have a
negative impact on the changeability of the software. However, there is surprisingly
little scientific evidence to support or refute claims regarding evolutionary
development processes in general, and consequences regarding the changeability of
resulting object-oriented software in particular. A prerequisite for obtaining a better
scientific knowledge regarding the consequences of evolutionary development on
changeability is to assess the changeability of the developed software in an accurate
way.

The research presented in this thesis proposes and validates a measurement
framework for assessing the changeability of object-oriented software. First,
changeability is defined in a concise manner. Then, three alternative approaches to
measuring changeability are identified: Structural Attribute Measurement (SAM),
Change Profile Measurement (CPM) and Benchmarking. Methods for collection and
analysis of change data and for empirical validation of the measurement framework
are also described.

The SAM approach quantifies, amongst others, the static and dynamic coupling
between classes and the size of the classes. The CPM approach combines these
structural attribute measures with measures of the actual changes on the software. The
SAM approach can be used to quantify structural properties at the system level,
whereas the CPM approach can be used to assess how changes actually propagate
through the software structure. Based on the SAM and CPM measures, models
predicting the difference in change effort are built. These models indicate the extent
to which the structural properties of object-oriented designs affect changeability. As
an alternative approach, benchmarking can be used to determine the total effort to
implement a given collection of benchmark change tasks on different versions or
alternative designs of a software system. In addition to the impact of deteriorating
structure, other aspects (e.g., inconsistent documentation) may be reflected in the
benchmarking results.

Several empirical studies have been performed to validate the changeability
measurement framework. Most of the research has been undertaken in an industrial
context, demonstrating the practical use of the framework. Potential causes of
changeability decay in evolutionary development of object-oriented software are also
identified. This research establishes the measurement framework as a viable
foundation for future changeability assessment studies related to evolutionary
development of object-oriented software.

Acknowledgements

First of all I am indebted to my supervisor Dag Sjeberg for his continuous support,
contributions, guidance and encouragement. He has made this important period of my
life a fun and challenging learning experience.

I am grateful for the many useful comments, interesting discussions and valuable
research collaborations with Magne Jorgensen, Bente Anda, Lars Bratthall, and
Amela Karahasanovic at the ISU group. I thank my M.Sc. students, Anette Cecilie
Lien and Lars Hiim. Anette Lien contributed substantially to the design and analysis
of the TelMont interview. Lars Hiim implemented the Java coupling parser. I also
thank the students who participated in the coffee-machine experiment.

This thesis would not have been possible without the cooperation from several
companies in Norway. I gratefully acknowledge the support from Erik Amundrud,
Jon Skandsen, Knut Sagli and Stein Grimstad at Genera AS. Genera supported me
financially and gave me access to data in the Wings and Genova development
projects. Stein Grimstad implemented the Visual Basic coupling parser. I am also
indebted to Lasse Bjerde and Anne-Lise Skaar at Numerica-Taskon AS (now Mogul).
Anne-Lise Skaar implemented the dynamic coupling parser for SmallTalk. In
addition, representatives from EDB 4Tel, Telenor Nett, Icon Medialab and the SPIQ
project have contributed to the research presented in this thesis.

Furthermore, Lionel Briand, Letizia Jaccheri, Barbara Kitchenham, Harvey Siy,
Ray Welland, the ESSDE'99 workshop participants and anonymous reviewers gave
useful comments and influenced the work in several ways.

The research presented in this thesis was funded by a PhD fellowship from the
Research Council of Norway through the industry-projects SPIQ (Software Process
Improvement for better Quality) and PROFIT (PROcess improvement For the IT
industry).

Last but not least, I thank my friends and family for their support and
encouragement. A special thanks goes to my wife Farnaz for supporting me in every
possible way to finalize this work.

il

Table of Contents

[1_INTRODUCTION 1]
[1.1 THE PROBLEM OF CHANGE.........c.cvoveeveveriererereeeerererererererereerereseseneseneresennns 1]

[1.2 CHANGEABILITY IN EVOLUTIONARY DEVELOPMENTc.cocvovimininiiirnneenes 2|

(1.3 GOALS .o nennens 3]

[1.4 CONTRIBUTION ... eeeeeseeeneeeeenaeseeenas 3]

[1.5 THESIS ORGANIZATION........vvevrererereerrerrererereneseseereseseeseseseesssesessesesesnseresenns 4

R CHANGEABILITY 6|
R.1 SOFTWARE PRODUCT QUALITYcovveveerrerereeereerrereeeesereensesesnesesesnsesennnns 6
R.1.1 1SO Quality Modelccooccvoueciaciacieiace. 0|

R.2° WHAT IS CHANGEABILITY ?....oveoteteeeeteeeteieteteeeeeteieeteieeeteeeieeeeieeeeeeenens 7
.2.1_Relationship between Productivity and Changeability 9

D.2.2 Relationship between Maintainability and Changeability 9

P.2.3 Relationship between Code Decay and Changeability Decay 10

D.2.4 Relationship to the ISO quality model and Change Impact 10

B RESEARCH METHODS IN EMPIRICAL SOFTWARE ENGINEERING.12]
B.1 SOFTWARE ENGINEERING AS A SCIENCE............cocvrvererirereerrereererereererereennns 12
3.1.1 Requirements to a Scientific Approachccoceeeueeeeeennn..... 12

3.1.2 Scientific Validitycc.ccccooviuiviiiamiiiiiiiaiiiiiiieaiiieaiieaeeeieeaiaane, 13

3.1.3 State Of PracCtiCe ..o 13

3.2 RESEARCH METHODS IN EMPIRICAL SOFTWARE ENGINEERING..................... 14
B.2.1 Surveys — Research in the Large...................ccccccoocuvuaucucnncnnn... 14

B.2.1.1 Guidelines for Conducting SUIVEYS..........cceveveeeverererereerrreeennnnnes 16

2.2 Experiments — Res_earch in the_Small .. Ig

.2.2.1 Guidelines for Conducting EXperimentscc.ccveeveeveennnnen.. 17

.2.3 Case Studies — Research in the Typical............ccccccooovuveeiviaeeiann... 18

.2.3.1 Guidelines for Conducting Case Studies...........cccceovevvevrenreennnnnne. 19

B.2.4 Qualitative versus Quantitative Methods 20
B.3 SUMMARYoovevetiieteeieeteeiieteeiteteeteteteeeeteteeseseteeeeseteesesessesesesesseseseenesesnenens 20|
EVOLUTIONARY DEVELOPMENT 22|
B.1 SOFTWARE PROCESS MODELSc.c.oovoveeivereeiiereeirereersereeresereeresereenesereenas 22

Y.1.1 Linear-Sequential Development.....................ccc.ooeeueeeeeneeaaannnaann... 23

H. 1.2 Incremental Developmentccccoocuucuvcuecieneoeniniainiaaenane. 24

. 1.3 Evolutionary Development......................ccccccocviivciioieoinenininineancnee 25

4.1.3.1 Evolutionary Prototypingc..ccceeevevvevveveiecieeieeiesiieieeieeeenee 25

4.1.3.2 Evolutionary, Incremental Development...........c.cccveeveeenviennennn.... 25

il

B.2 CONSEQUENCES FOR CHANGEABILITYc.vvetteetieeeetiieeeeeeeteeeeeeieeeeeeenens 27
H. 2.1 SOMIMEIVILL ..o 27
H. 2.2 L@RMAN @F QL. ..o 27
H. 2.3 PAFTIAS .ot teeeivaeiveaniveenes 27|
1. 2.4 BOCRIM €1 Q... 28
H. 2.5 ROYVCO.....ooiiiiee s 29
1.2.6 BrOWHSWOFA € QL.c..ooccvveeieecieeeieieciieeeeeeeeeeee e 29
. 2.7 May and Zimmerc.occoooueeieieeeiiiieiiiiieeeeeeeeeeeeeees 30
H.2.8 Zamperoni €t Ql.cccoooeeiiiieiiiiiiiiieeeiieeeeeeeeeee e 30
R T T 31
. 2. 10 EMAI @ QL. ... eeaveeiveanaae e 31
H.2. 11 LICRIEE €1 QL. ..o 32
B3 SUMMARY .ottt ettt tetencaneeeneanenenees 32|
F EMPIRICAL STUDIES OF OBJECT-ORIENTED SOFTWARE 34|
[5.1 OVERVIEW OF EXISTING EMPIRICAL STUDIES..........c.ooveeeeeeeeevereesevevaeenern 34
1.1 Measurement Validation Principles.............cc.cccouuecuuvviueacuaacnnann... 35
IS—E. 1.1.1 Structural Attribute Measures for Object-Oriented Software.......... 35
5.1.2 Empirical Assessment of Object-Oriented Technologies 35
5.7.3 Qu_aliry and Productivity Models for Object-Oriented Software......... 36
5.1.3. 1 Fault PrOnenesscoocvveivevveireiieiieieiieeeeeeeeeeeeeeeeees 36
5.1.3.2Change IMPaCK........ccoouuueiiiiiiieeeiiiieeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeees 37
5. 1.3 3 EFT0T ..o 37
[5.2 SUCCESS FACTORS FOR EMPIRICAL STUDIES OF OBJECT-ORIENTATION......38
5. 2.1 NAture Of the DAtA..............ccc.uoecuuaeiaaiasiaeeesiaeaesiaeaaeaeeaanes 38
5.2.2 Consistent Terminolo@y.............ccccccuuiuueeeeiiiiieiieeeeieeiiaaeeeeceennnnnn 39
5.2.3 Nature of the ReSearch............ccococooweiiiiiiiiiiiiiiiiiiniiesceeeeenns 39
[5.3 RESEARCH DIRECTIONSveveeeeeeeeeeeeeeeerseeeeereneeeenreeeseeaneesenseseseeeneneeesne 39
5. 3.1 OBJECHIVES ..o 39
5.3.2 Research QUESIIONSccccucuieieeiniiiiiiiieiiieieieieceeeeen, 40
5.3.2.1 Identify Important Factors............ccveeveeevevveeiesieieieeeeeee 40
5.3.2.2 Evaluation of Obiect—_Oriented Technologies.......ccooeuuueveeeeeeeennnn. 41
5.3.2.3 Building Quality and Productivity Models............ccccovveeureennn..... 41
5.3.2. 4 Meta-18Vel ISSUCS ...uuiitieiieitiitiit ittt et eiie e sees 42
RS N 42|
p MEASURING CHANGEABILITY 44|
[p.1 OVERVIEW OF THE MEASUREMENT APPROACHES.........ceevrererirrerererarananas 44|
6.2 STRUCTURAL ATTRIBUTE MEASUREMENT (SAM)....c.cvoveeeveeeereee... 45
.2.1 Selection of Structural AUYiDULESccccovoveceiiiiiiaiiiaee 46
p.2.2 Specification of Static Coupling Measures............................c............ 47
p.2.3 Specification of Dynamic Coupling Measures 48
[p.2.3.1 Direction of Coupling: Import and Export Coupling 48

v

0.2.3.2 Mapping: Object-level and Class-level Coupling..........ccc.ccceee..... 48
0.2.3.3 Strength Of COUPING ...eevveeeveeeiieieeeieeeeeeeeeeeeeee e 49
6.2.3.4Resulting Coupling MEASUIESccoeveeueereeeeeeeeeeeeeeeneeeeeennnnnnnss 50

[6.3 CHANGE PROFILE MEASUREMENT (CPM)coovveveeivereerrereeeernn. 51|
(0.4 BENCHMARKINGvoveerereteeeiereeieeteeteteteneeteieenereeeneeeeetaneneetnneneneanenenenns 53
0.4.1.1 Design of a Benchmarking Procedure.............cccocovevveeveevennannnn... 53
6.4.1.2 Composition of Benchmarkscccooveeeuuiveiiiiveeeeiiieieeeeeennnns 54

[6.5 RELATIONSHIPS BETWEEN CHANGEABILITY MEASURES.............c.ccvoeven.n.... 56
b.5.1 Accuracy of the Measurement Approaches......................ccccuuu....... 56
p.5.2 Cost of the Measurement Approaches................cccccueecveeevasnnannnn.. 56|
0.5.3 PracCtiCQl US@.........cc..cccueeeiiaiiiaeiieeiiieeiiieeiieeeieeeieeeeeniaeeseenvaenseenens 56|
[6.6 VALIDATION ISSUES........ccoooevevevvveeeeeeeeeeererreneneeeeeneeeeeeseserenenesesenensnsesesenens 57
6.6.1 Evaluation of Practical ISSUES.................ccccccuuuiieieeeeciiiaaiaaecnnnnnnn... 57
p.0.2 Building Prediction Models Using SAM and CPM............................. 57
0.6.2.1 Stepwise Multiple Linear Regression.............cc..coeeeueveeeeneeeeennnnnn... 59
6.6.2.2 Principal Component Analysis..........cccveeveveveereereevesvesveeeeeennee. 59
0.6.2.3 Cross-Validation............ceecueeueeierieniieriieieeieeeeeieeieeieeieeie e 60
0.6.2.4 Checking the Model ASSUMPLIONS.......cveevevererereveiieieeveeeveeerne. 60
.6.3 Validation of the Accuracy of Benchmarking................................ 60
6.7 SUMMARY AND RELATED WORKcocveevevereereriereereteereeeeeereerereereerernerennns 61
6.7.1 Object-Oriented MetriCsccccccuuueeeeeciiiaeeeeeeeieieaaaeeeeenennnnn 61

6. 7.2 SAAM ..o 61
0.7.3 COMPARE ...t 61

0. 7.4 TACT o oo 62
7_EMPIRICAL STUDIES OF CHANGEABILITY 63|
[7.1 CHANGEABILITY IN EVOLUTIONARY DEVELOPMENT PROJECTS 64
7.1.1 The Braathens Case StUdY................ccccoocvieeiioiiiaiiaiiiacieaeieaeean, 64
L1 1 System under StUAY.....eveeeeeeeeieeeeeeeeeee e 64
[7.1.1.2Data ColleCtION........cccueeeriieiieeiie ettt et eve e teeevee e eneeas 65
7.1.1.3 Evaluation of Evolutionary Development.........c...ccccceveeveeennnnnee... 65
7.1.1.4 Validation of SAM and CPM..........ccccoovviiiiiiiiiiiiiieieeieeeeee 67
V.1.2 The Genera Case Study...............cocooceeeeeeeeneeeeeneeeeeneeeneeeannnn, 71
L1.2.1 System Under STUAY....cooeeueeueeeiiiieeeiiiieeeeeeeeieeieeeeeeeeeeeeeeeeenens 71

E. 1.2.2Data COUCCHION.veeveeeeeeeeeeeeeeeeeeee e eeeeeteeeeeeeeeeeeaee 71
.1.2.3 Evaluation of Evolutionary Development...............ccccvevvverrennnnn.n. 74
7.1.2.4 Validation of SAM and CPM..........cccvevvevevereeiaeeeieeeeeeee. 76
|7_.]$.3 SUMIATY ..ot eeeiteeeesseeeenes 83
.1.3.1Using the Change Log...........ccceeeeuieeiuieiiiieeiieeciieecie e 83
7.1.3.2 Evolutionary Development............cc...coeuveeeeuiieeeeineeeiieeenreann.. 83
{7.1.3.3 Validation of SAMand CPM ... 84

7.2 ASSESSING THE CHANGEABILITY OF TWO OBJECT-ORIENTED DESIGN
ALTERNATIVES — A CONTROLLED EXPERIMENTcvovevetitieieiiinirisnenenennes 86|

vi

V.2.1 Design of the Study............ccowowoevioaiieeeeeieeeeeeeeae. 86

7.2.1.1 Treatments: The Coffee-Machine Design Problem......................... 87
7.2.1.2 Description of the Design AIternativesccooeeeuevvvveeeeeeennnnnns 87
|;2 1.3 The Mocca Programming Languagec..cceeevevvesrvesvveeeannnn... 90
.2.1.4The Programming TasKsccccecvevuiecureerercienienieeiesiiesieeeeeneenn 91
7.2.1.5The Change Task QUEeStioNNAIreccveevveeveveereeraevevereennen. 92
7.2.1 .6_Experimental DIESIGN .o eeeeneeeees 92
7217 Design of the Pilot EXperimentc..cccueeeveevveeeveenreeereeerennee. 93
7.2.1.8 Design of the Main EXperimentcccoovuuveveiieeoeeeouenniieeeeeeennnnns 93
7.2.1.9Dependent Variablescueeeveeeveeeiieeiieeiieeieeeieeeeeeveeeveeeenn 93
[7.2.2° Results of the Pilot EXDEFiMentcoueeeeeraevaaaaaevnnn. 96
7.2.2.1 Evaluation of Blocking Strategies.............ccoccvevveevevvereereeranen.. 96
7.2.2.2 Preliminary Assessment of Change Effort for MF and RD............. 97
[7.2.3 Results of the Main EXpEriment......................cooeeeevvvvererenennnn. 98
-2.3.1Formal Hypotheses. ... 98
.2.3.2Change Effort (H1).......ccooovvoveeieeieieieeeeeeee e 99
7.2.3.3 Learning Curve (H2).....c..ooovveeviieiieeiieeiieeeiie e eeee e eneee e 100
7.2.3.4Correctness (H3)ccueeeviiiiieiiiiiiieeieecieeeite et 101
[7.2.3.5 Subjective Change (;omplexity (HA) oo 101
{7.2.3.6 Structural Stability (HS) ...ooveeeioeieieeieeeeeeeeee 101
7.2.3.7 Attempting to Explain the Results...........cccoocvveviieiiieniiaiiienneen, 102
7.2.4 Summary Of RESUILSccccocueieiiiiiiiiiieiiiiieeeeeeeee e 104
I—ﬁ.2.4.l Comparing the Results with Related Research............c.cccccoueene.... 105
[7.2.5 Threats t0 Validity..............coooooeeeiiioioioeeeeeeeeee. 106
|;.2.5.1 Experimental Materials ... R SETRTRTRRPI 107
.2.5.2Size and Choice of Design Alternatives and Change Tasks.......... 107
[7.2.5.3Pen and Paper...........c..oooeeueiiieiiiieeiiiieeeeeeeeeeeeeeeeaeen 108
[7.2.5.4 SUDJECT SEIECTION -oovooooooooooooooooooooo 108
2.5.5GToUP ASSIZNIMENL.....ccueeriiieeieeiieeiteeiteeieeesiteeeiteesreesieeesaeenaeeas 108
[7.2.6 FUture WOrkc.ccoouviioiiiiiiiiiiiiiieieeeee e 110
|7_.?_ DEFINITION AND EVALUATION OF DYNAMIC COUPLING..........cc.ccuvnnee.... 111
7. 3.1 The Case StUAY.........ccoooooviiiiiaiiiieiaiiiiiieeeeeeeeeeeen 111
.3.1.1 Collection of the Change Datac....ccccuvveeeeueeeecneeeeannn... 111
.3.1.2 Collection of the Coupling Measures..............ccceeevverereeecreenreennen.. 112
7.3.1.3 Descriptive Statistics of the Coupling Measures...............c........... 113
7.3.1.4 Principal Component AnalysiS.........ccceeevveervienieenvienieenieeerenne, 114
7.3.2 Assessing Changeability with the Change Profile Measures............. 115
7.3.3 CRANGE PUrONCIESS ..o 117
F.3.3.1 Hypotheses and Statistical AnalysiS.........c..ccveeeveeerveeerveecreeennenns 117
R 118
7.3.4 Using Dynamic Coupling for Impact Analysis.................c.ccoccuon..... 120
.3.4.1Collection of the MEasUIes...........ceecueeeueecueereeieniieniiesieeieeveeeeanns 120
7.3.4.2 Identification of Prediction Models for Common Changes........... 121
7.3.4.3 Model Evaluation — Prediction of Common Changes................... 123
|7_.3|7.5 Summary and Future Work ..o 124
.3.5.1 Comparing Dynamic Coupling with Static Coupling.................... 125
7.3.5.2 Within-Object COUPlING.........cccuveeveeerieeiieerieeiieeiieeieeeveaeveennns 125

7.3.5.3 Using Dynamic Coupling Measures to Support Impact Analysis.125
7.3.5.4Using Dynamic Coupling Measures to Assess Understandability 126
[7.3.5.5Data Collection AlGOrTthms.......cc..uuvvviieveeeuneiiiiieeieeiiieeeeeeeennnnns 127
ﬁ.3 5.6 Implementation ISSUES..........eeveeveeeeeieiieeeeeeeeeeeeeeeeee 128
[7.4 CAUSES OF INCREASED CHANGE EFFORT AND PROJECT DELAYS 129
7. 4.1 DeSign Of the StUAY. ..o 129
7. 4.2 RESUILS ..ot e e ens 129
|7. 4.3 Summary Of RESUILScc.ocoueeeeeiaiieieieeeeeeeeeeeee, 133
[7.4.3.1 Threats t0 Validity........o.ooveeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeveeerreaenen 133
.5 EVALUATION OF AN EVOLUTIONARY DEVELOPMENT PROJECT 134
I7—|7. 5.1 Design of the Study..............cccccoovuiviiiviiiiiiniiiiiiaiiiaiiaiiiiiicaiecn 134
[7.5.1.1 SUDJECT SEIECTION ...veeveeveeeee e eeeeeiveesieaanes 134
[7.5.1.2IntervVIEW TEChNIQUEvvvvveeeeeeeiiiiieeeeeeieeeeeeeeeeeeeeeeeeaaes 134
75.1.3 Transcription, Data Analysis and Unification................................ 135
7.5.1.4Quality ASSUTaNCeocoovovisisisiiiisi 135_|
7.5.2 The TelMOnt Project..........ccocuooooiiiiiaiiiaiaieieinieeieceiieeeennns 135
.5.2.1Project Activities and Milestones..............cecevevererervervenereerannnnns 136
7.5.2.2 Customer/Software Vendor Relationship..........ccccccvevevvenciiennenns 137
7.5.2 3BSUMAtION 0o 137]
(7.5 2 A PTOCESS »ooovvvroereermereeeemeeeeeereeeeereeeeeereeeeeereeeeereeeeeeerseeceeeeeecerreeecee 137
[7.5.2.5USer PartiCIPationN......cc..uuuueiiieeeeeneieiiieeeeeeeeieeieeeeeeeeeeeeeeneessennannnes 138
5.2, 0 PIOtOLYPING ..ot eeeeeeeenes 138
527 Requirements Specification.............cvevvereveereeeeeieniienieeieeeeeenne 139
7.5.2.8 UML and Rational ROSE...........cueevevveveieieieeieeieeieeeeeeen 139
7.5.2.9L.e350n8 Learned..........couevuiviniiiniiiiiiiiiiieeeceeeen 139
[7.5.3° SUMIRGIY ... 140
8 CONCLUSIONS AND FUTURE WORK 142|
[B.1 SUMMARY OF RESULTS.......c.ocvevieivereeiierieirereeriereeresereeseseseeseseseeseseseenesene 142
5.1.1 Definition of Changeability.................cc.cccoccereimeianiiaiiiaaiaiiaaanannn. 142
5.1.2 Empirical Validation of the Measurement Framework..................... 143
5.1.3 Changeability in Evolutionary Development 144
8.2 FUTURE WORK........cvevireererireerereereeeeteereereteeseesessesensersesensessssensesssseneeseesens 145
&% 1__Improvements of the Measurement Framework 145
R.2.1.1Industrial Evaluationc..ccoevvevveveveeeeieeieseeeeeeeveeeeee, 146
R.2.1.2 Building Generic Benchmarksccccovevuvvvieeienieniereieenen. 146
8.2.1.3 Combining CPM with Scenario Elicitation.............c.cccveevuveennnnnn. 146
8.2.1.4DyNamic COUPIINGoeeeneieeeeiieeeeieeeeieeeeeeeeeee e 147
B2.2 " Evolutionary Development Processes....................cooooeeoverene.... 14 7|
[8.3 CONCLUDING REMARKS.........cocoveeeeeereeeeereeeeeereeseeereeeeseneeseseransesssesesonaeann 148|
APPENDIX A: RAW DATA FOR THE GENERA CASE STUDYcccceeeveveuee 149|
PPENDIX B: THE COFFEE-MACHINE EXPERIMENT 151

vii

[B.1 EXPERIENCE LEVEL QUESTIONNAIREc.vvetenttetieceietenieeeteneateeeceeeneeannes 151|

RO N R Y 152|
[B.3 CHANGE TASK QUESTIONNAIREooooveeeeeeeeeeeeeeeeeeeeereeeeeeeeeserseseseeaeann 155|
[B.4 MESSAGE SEQUENCE CHARTS FOR THE DESIGNScoovoveuvvereererernn. 156|
[B.5 CODE FRAGMENTS FROM THE DESIGNSccevvveriirerininrerieererererenienene 158|
[B.6 RAW DATA FROM THE MAIN EXPERIMENTcvovvevevereererereerereerrerenrnnns 160)

PPENDIX C: RAW DATA FROM THE OORAM CASE STUDY................. 165

BIBLIOGRAPHY 166]

viii

1 Introduction

1.1 The problem of Change

Handling change is a fundamental research topic within software engineering. The
following problem statement from an influential early research paper illustrates the
topic:

This paper is written because the following complaints about software systems are

S0 common.

1) "We were behind schedule and wanted to deliver an early release with only a
proper subset of the intended capabilities, but found that the subset would not
work until everything worked."

2) "We wanted to add a simple capability, but to do so would have meant
rewriting all or most of the current code."

3) "We wanted to simplify and speed up the system by removing the unneeded
capability, but to take advantage of this simplification we would have had to
rewrite major sections of the code.”

4) "Our SYSGEN was intended to allow us to tailor a system to our customers'
needs but it was not flexible enough to suit us."

After studying a number of such systems, I have identified some simple concepts that

can help programmers to design sofiware so that subsets and extensions are more

easily obtained...
(Parnas, 1979)

Software systems must be changed as a result of, for example, misunderstood, new or
changing user requirements, changing laws or regulations, errors in design and code,
adaptations to new hardware and operating systems, and adaptations to other software
systems (Lientz et al., 1978). Consequently, the computer science and software
engineering communities are continuously attempting to provide better solutions for
handling change.

The last decade has seen an explosive growth in the number of software
engineering methods and tools, each one offering to improve some characteristics of
software, its development, or its maintenance (Kitchenham et al., 1995a). The
proposed solutions may be divided into the following categories:

o Improved programming languages, such as object-oriented programming
languages (e.g., SmallTalk, C++, Java).

e Improved CASE tools, such as configuration management systems, design
modeling tools, test tools, automatic code generators and tools supporting the
automatic restructuring of code.

o Improved design techniques and principles, such as those proposed in (Parnas,
1979; Coad and Yourdon, 1991a; Coad and Yourdon, 1991b; Booch, 1994).

e [mproved development processes, such as the incorporation of prototyping
(Floyd, 1984) and evolutionary, incremental development processes (Boehm,

1988; Gilb, 1988; Cotton, 1996; Kruchten and Royce, 1996; May and Zimmer,
1996).

For example, object-oriented programming languages may improve productivity
through code reuse (Basili et al., 1996a) and make it simpler to understand and
change software. CASE tools may help locate, design, code, test, deploy and track
changes. Proper design techniques or principles may reduce the cost of both
anticipated and unanticipated changes by providing an extensible design that reduces
the (negative) impact of changes. Evolutionary development may help discover the
"real" requirements of a software system early, reducing the size of the system and the
number of unanticipated and often costly changes later in the software lifecycle.

1.2 Changeability in Evolutionary Development

Evolutionary development has been proposed as an efficient way to deal with risks
regarding new technology and imprecise or changing requirements (Boehm, 1988).
The main idea is to resolve risks early by incrementally evolving the system towards
completion instead of relying on the traditional "big-bang" waterfall (Royce, 1970)
approach.

While some experience reports show a great deal of success in the application of
evolutionary development (Gilb, 1988; Zamperoni et al., 1995), the continuous
incremental changes supported by evolutionary development are believed to result in
poor structure (Boehm et al, 1984; Boehm, 1988; Sommerville, 1996). For this
reason, the design and maintenance of an "open-ended architecture" may be critical
for the success of evolutionary software engineering processes such as Gilb's EVO
(Gilb, 1988), HP Evolutionary Fusion (Cotton, 1996), Dynamic Systems
Development Method (DSDM) and Rational Unified Process (Jacobson ef al., 1999).
This is also exemplified by a rather rhetoric exercise given in Sommerville's software
engineering textbook:

Explain why programs which are developed using evolutionary development are
likely to be difficult to maintain.
(Sommerville, 2001)

In our experience, the frequent changes may also lead to inconsistent and outdated
requirement specifications and design documentation. This and similar statements or
claims are given by many researchers and practitioners in the software industry.
However, in most cases, the claims have a very limited scientific foundation.
Software engineering needs science to observe, gain general experience, establish
knowledge, and create and validate theories and models. Such scientific investigation
is essential to make software engineering a science rather than an art (Fenton et al.,
1994). Until recently, the most commonly used form of validation of new software
engineering technology has been advocacy research (Glass, 1994), i.e., the validation
has been based on intuition, subjective experience and opinions of "gurus" instead of
carefully designed scientific validation studies.

1.3 Goals

The discussion above motivates this thesis. Does evolutionary development cause
structural degradations to code, or does it actually improve the design? To get in a
position where this question can be answered, several issues need to be resolved:

e What do we mean by "structural degradation”" and "design improvements"?

e How can such "degradations" or "improvements" be measured?

e How can we determine whether one design is "better" or more "open-ended" than
another?

In an attempt to answer these questions, this thesis focuses on the assessment of one
quality aspect of software, namely changeability, reflecting the effort required to
incorporate new or changed functionality into a software system. Thus, the overall
goal of this thesis is

e to define changeability in a concise manner,
e to develop a measurement framework for assessing changeability, and
e to identify factors affecting changeability in evolutionary development.

1.4 Contribution

The main contribution of this thesis is a proposed measurement framework for
assessing changeability in object-oriented software. Three alternative approaches to
measuring changeability are identified: (1) Structural Attribute Measurement (SAM),
(2) Change Profile Measurement (CPM) and (3) benchmarking. Methods for the
collection and analysis of change data and for the empirical validation of the
measurement framework are also proposed.

The motivation for structural attribute measurement is that the (external)
changeability attribute of a software system is very difficult to quantify directly in
real-life development projects. This main reason for this difficulty is that a given
change is implemented only once, and hence there is no real baseline allowing
analysis of trends in change effort. Thus, it would be advantageous to identify
indicators of changeability based on measures of the structural attributes of the
software system. The changes in the measurement values of these attributes over time
may then be used as indicators of changeability decay.

The proposed change profile measurement combines structural attribute measures
with measures of the actual changes on the software. It quantifies structural properties
of the parts of the system being changed instead of the overall system structure. We
believe change profile measurement is a more accurate indicator of changeability than
structure measurement, because, unlike structure measurement, it accounts for how
changes actually propagate through the software structure.

As an alternative approach, we propose using benchmarks to measure change effort
more directly. Benchmarking can be used to determine the total effort to implement a
given collection of "benchmark changes" on different versions or alternative designs
of a software system. Implementing the same changes on different versions of the
software provides the necessary baseline to ensure that change efforts can be

compared. In addition to the impact of deteriorating structure, other aspects (e.g.,
inconsistent documentation and the incorporation of new technology) may be
reflected in the benchmarking results. However, the utilization of benchmarks
introduces new methodological challenges. A research methodology for the
development and use of benchmarks and benchmarking procedures is therefore
proposed.

The proposed measurement framework, the associated data collection methods,
and the empirical validation techniques have been evaluated in several industrial
development projects and controlled experiments. This research demonstrates that the
proposed measurement framework has considerable potential for changeability
assessment in evolutionary development of object-oriented software.

The second contribution of this thesis is the identification of factors potentially
causing changeability decay in evolutionary development of object-oriented software.
In several of the case studies described in this thesis, a considerable amount of
unnecessary, costly and untimely rework is observed. This rework is caused by a lack
of formal and incremental testing, too little up-front analysis and design based on
initial requirements, and too little focus on early technology prototyping. The
resulting rework may be a major contributor to changeability decay. Another problem
identified in this thesis is that frequent changes may result in outdated documentation.
Up-to-date documentation is important for understanding how to change the code
(Tryggeseth, 1997). The use of modern CASE tools, such as Rational Rose, seems to
be inadequate for keeping documentation consistent with code. This thesis illustrates
how a reverse-engineering tool producing models of dynamic aspects of a system can
be developed.

At present, only a very limited number of empirical studies of evolutionary
development projects exist. We believe the results of the case studies described in this
thesis extend the current state of knowledge regarding evolutionary development.

1.5 Thesis Organization
This thesis is organized in eight chapters. In addition, there are three appendixes

providing details of data and statistical analysis from the presented empirical studies.
Table 1.1 gives an overview of the chapters of this thesis.

Table 1.1. Overview of the thesis organization and content

Chapter

Content

Chapter 1

Introduction provides the motivation for the selected research and
gives an overview of the chosen approach and the thesis.

Chapter 2

Changeability presents an overview of the concepts underlying the
remainder of this thesis. What is changeability, and how does it
relate to other software qualities?

Chapter 3

Research Methods in Empirical Software Engineering provides
background information on the research methods used in empirical
software engineering. It also discusses validity issues related to the
different research methods.

Chapter 4

Evolutionary Development gives an overview of evolutionary
development processes and terminology, and describes important
existing empirical studies. The results from these empirical studies
are used to describe how the changeability of software may be
affected by evolutionary development.

Chapter 5

Empirical Studies of Object-Oriented Software gives an overview
of the state-of-the-art of the empirical studies of object-oriented
software that are relevant for measuring changeability.

Chapter 6

Measuring Changeability proposes a comprehensive measurement
framework for quantitative assessment of changeability in object-
oriented software. A methodology for data collection and empirical
validation of the measures is described.

Chapter 7

Empirical Studies of Changeability describes the results of four
case studies and one experiment. They are used to validate the
measurement framework proposed in Chapter 6, and to evaluate
issues related to the changeability of software in evolutionary
development projects.

Chapter 8

Conclusions and Future Work provides a detailed summary of the
results and research contributions. Several areas of future research
are outlined.

Appendix A

This appendix describes raw data from the Genera case study
(Section 7.1).

Appendix B

This appendix describes experimental materials and raw data for the
coffee-machine experiment (Section 7.2).

Appendix C

This appendix describes raw data from the Ooram case study
(Section 7.3).

2 Changeability

The main topic of this thesis is to study how object-oriented design principles and
evolutionary development processes affect the changeability of software. Software
engineering is concerned with the evaluation of the proposed solutions. A prerequisite
for such a scientific evaluation is to define the concepts under study in a precise
manner — to avoid confusions and enable accumulation of knowledge. Unfortunately,
the concept of changeability is not fully understood to the extent that one can claim to
know exactly how it should be defined and measured. The ambition of this chapter is
to provide a description of the concept changeability that defines the scope of this
thesis. The description provides the foundation for the measures and empirical studies
outlined in later chapters.

2.1 Software Product Quality

There are many different views of what 'software quality' is. By referring to the work
by Garvin (Garvin, 1984), Kitchenham points out that there are three important views
of software quality (Kitchenham, 1996a):

e The user view, in which software quality is determined by the degree of meeting
the needs of the user.

e The manufacturing view, focusing on producing the "right" product and
minimizing of costs associated with rework during development and after
delivery.

e The product view, considering the inherent characteristics of the software, such
as structural properties of the software.

A similar distinction is done by Jergensen, who points out that the most common
types of software quality definitions are determined by (1) user satisfaction, (2) by the
errors or unexpected behavior of the software, or (3) by a set of quality factors
(Jergensen, 1999).

2.1.1 ISO Quality Model

Many so-called quality models have been proposed (Kitchenham, 1996a). They
attempt to provide a consistent and comprehensive characterization of what software
quality is. One of the more recent quality models is the ISO 9126 model (ISO9126,
1992), which decomposes software quality into six quality characteristics:

e Functionality, consisting of the sub-characteristics suitability, accuracy,
interoperability and security.

e Reliability, consisting of the sub-characteristics maturity, fault tolerance and
recoverability.

e Usability, consisting of the sub-characteristics understandability, learnability and
operability

e FEfficiency, consisting of the sub-characteristics time behavior and resource
behavior.

e Maintainability, consisting of the sub-characteristics analyzability, changeability,
stability and testability.

e Portability, consisting of the sub-characteristics adaptability, installability,
conformance and replaceability.

However, according to Kitchenham,

...the selection of quality characteristics and sub-characteristics still seems to be

rather arbitrary; for example, it is not clear why portability is a top-level

characteristic but interoperability is a sub-characteristic of functionality.
(Kitchenham, 1996a)

Likewise, it seems rather arbitrary that changeability is a sub-characteristic of
maintainability whereas adaptability is a sub-characteristic of portability. Why is
adaptability not a sub-characteristic of maintainability when changeability is?
Furthermore, most of the characteristics have not been defined at an operational level.

2.2 What is Changeability?

From the previous section, it is clear that changeability is only one of many important
quality characteristics of software. Furthermore, changeability is primarily concerned
with the manufacturing and product view of software quality. The user view of
software quality represented by characteristics such as usability, reliability and
efficiency are not important aspects of changeability The changeability of a software
system characterizes the ease of implementing changes to the system. Consequently,
changeability overlaps with quality characteristics such as modifiability, adaptability,
maintainability, extensibility, testability, program comprehensibility, and fault
proneness. The ambition of this section is to provide a relatively precise description of
the concept changeability as it is used in the remainder of this thesis, but not to
provide a 'universally valid' definition.

According to Webster's Revised Unabridged Dictionary, changeability is the
quality of being capable of change. From this definition, one may deduce two
important consequences:

e Being capable of change implies that the task of changing the software requires
little effort.

e Being capable of change implies a capability of avoiding a gradual decline from a
sound or satisfactory state to an unsatisfactory state.

Thus, changeability may be viewed as a two-dimensional quality characteristic,
related both to the effort to implement changes and to the resulting quality of the
software after the changes. This view presents many issues that need clarification.
The term quality designates all kinds of quality characteristics of software, such as

! However, the quality characteristics are not independent. For example, a potential tradeoff
between usability and changeability is illustrated in the discussion of evolutionary
development (Chapter 4).

reusability, consistency, reliability, usability, efficiency, portability, and
changeability. Thus, the decline from a satisfactory to an unsatisfactory state implies
a recursive definition of changeability, since changeability is also a quality
characteristic that is prone to decline or decay! There is, apparently, no simple way to
provide an operational definition of changeability. From a more pragmatic
perspective, however, there is clearly an interesting tradeoff between the two
identified dimensions of changeability. Which system has better changeability; a
system that initially requires less effort to implement changes or a system that initially
requires more change effort but that is less prone to decay? Based on empirical
results, this is discussed further in Chapter 7.

One may also take the view that the changeability of software is ultimately
reflected by the lifetime development effort to implement changes such as new
functionality, changed functionality, adaptive changes, corrective changes and
preventive restructuring. Thus, to determine whether one design alternative actually
has better changeability than another design alternative, one would need to measure
the lifetime effort to implement real changes to the software by the actual
development team, based on both design alternatives. Such an evaluation is clearly
not practical. In addition, this "lifetime effort" view of changeability may not be very
useful when comparing design alternatives. During the lifetime of a software product,
the design may change several times (e.g., as a result of restructuring). Thus, the
"lifetime development effort" is not a measure of the changeability of a design, but
may at best be a measure that somehow combines the changeability of several,
consecutive designs of an evolving software system.

The above discussion highlights some of the difficulties in defining quality
characteristics or concepts such as changeability. In summary, the changeability is
reflected by the change effort to implement changes and the resulting quality of
software reflected by the increase in change effort for future changes. The following
working definitions are proposed:

Definition 1 (Changeability) Apply a given change ¢ to two alternative
implementations of a software system s/ and s2. Let e/ and e2 be the total
effort to implement ¢, and the consequential change propagation to preserve
the consistency of the total system, on s/ and s2, respectively. The
changeability of s/ is better than the changeability of s2, with respect to ¢, if
e2>el.

Definition 2 (Changeability Decay) Apply a given change ¢ to versions v/
and v2 of a software system, where v2 is a later version of the software than
vl. Let el and e2 be the total effort to implement ¢, and the consequential
change propagation to preserve consistency of the total system, on v/ and
v2, respectively. The changeability is decayed with respect to c if e2 > el.
(Arisholm and Sjeberg, 2000)

The "given change ¢" is not viewed in isolation, but also includes the additional work
associated with change propagation to ensure that the consistency of the system
remains at the same level as before the change (Sjeberg et al., 1997a; Sjeberg et al.,
1997b). Included in the consequences are thus new errors (the ripple effect). One
study found that more than 50% of all errors were due to previous changes (Collofello
and Buck, 1987).

As pointed out in (Eick et al., 1999), the actual change effort depends on the ability
of the developer implementing the change. Thus, changeability may be viewed not
only as an attribute of the software system but also as an attribute of "people". In
principle, when referring to "the total effort" in the definition of changeability and
changeability decay, we could have added "with respect to a given developer".
However, experimental designs and statistical techniques may be used to control for
differences in the individual skill level of developers. This is one of the main topics of
Chapters 6 and 7.

2.2.1 Relationship between Productivity and Changeability

In (Arisholm and Sjeberg, 1999; Arisholm and Sjeberg, 2000), a productivity
measure (the change size in SLOC divided by the change effort) was used as an
indicator of changeability. Based on our current understanding of the underlying
concepts, such an approach seems inappropriate. Whether 10 or 100 lines of code are
implemented per hour does not represent a good indicator of changeability. For
example, if design dI requires 100 lines of code and 2 hours to implement a given
change, the productivity is 50 LOC/hour. If design d2 requires 10 lines of code and 1
hour to implement the same, given change, the productivity is 10 LOC/hour. Still, d2
is certainly easier to change than d/ with respect to the given change.

2.2.2 Relationship between Maintainability and Changeability

Software changeability, as it has been defined above, is closely related to software
maintainability. The ISO quality model described earlier defines changeability as a
sub-characteristic of maintainability. However, we will argue that there are important
reasons to distinguish between changeability and maintainability, and that these
quality characteristics may (should) coexist on an equal level in a hierarchical quality
model. According to Peercy,

...software maintainability is a quality of software which reflects the effort required
to perform the following actions: (1) Removal/correction of latent errors (2)
Addition of new features/capabilities (3) Deletion of unused/undesirable features (4)
Modification of software to be compatible with hardware changes. Implicit in the
above definition are the concepts that the software should be understandable,
modifiable and testable in order to have effective maintainability.

(Peercy, 1981)

This definition corresponds well with the focus of this thesis. However, the empirical
studies presented in this thesis primarily study change and change effort during initial
development of software. Although there are many definitions of software
maintenance, most of them are related to modification of operational software after
system delivery (Jorgensen, 1994). The distribution of the types of changes may be
quite different in initial development compared with maintenance. Furthermore,
programmers maintaining software may be less experienced than the implementors
(Munson, 1981), and may perform different tasks and use different tools (e.g., to
convert data, to "port" code to a different platform or to improve performance).
Consequently, the quality factors affecting change effort during maintenance may be
different from the quality factors affecting the change effort during initial
development.

2.2.3 Relationship between Code Decay and Changeability Decay

Our research is related to the early work of Lehman and Belady on program evolution
(Lehman and Belady, 1985) and the recent Code Decay project (Eick et al., 1999) at
Bell Labs:

e Lehman & Belady — Law of increasing complexity: As a large program is
continuously changed, its complexity, which reflects deteriorating structure,
increases unless work is done to maintain or reduce it.

e Code Decay Project (Bell Labs) — Code is decayed if it is more difficult to change
than it should be, as reflected by three key responses: (1) COST of the change,
which is effectively only the personnel cost for the developers who implement it;
(2) INTERVAL to complete the change — the calendar/clock time required; and
(3) QUALITY of the changed software.

Like Lehman & Belady's "Law of Increasing Complexity", the research presented in
this thesis is concerned with "deteriorating structure”, but only to the extent to which
such deterioration actually affects the effort to implement changes.

The inherent difficulty of implementing different changes may of course vary
substantially. For example, the implementation of a simple bug-fix requires
significantly less effort than to implement a new accounting module in an existing
software system. Thus, unlike the definition of "Code Decay", the definition of
changeability decay refers explicitly to the increase in total effort required to
implement the same, given change (including the necessary change propagation) in
successive versions of the software system.

Like in the Code Decay definition, QUALITY is also (partially) reflected in the
definition of changeability and changeability decay since a "change" includes the
work required to ensure consistency. However, INTERVAL may not be a good
indicator of changeability as the time schedule may depend on other external factors
not related to the quality of the software. Thus, INTERVAL is not the focus of the
research presented in this thesis.

2.2.4 Relationship to the ISO quality model and Change Impact

According to the ISO 9126 model, the changeability characterizes the software's
ability to sustain an on-going flow of changes. This is very similar to our proposed
definition of changeability decay. However, the ISO definition is not operational, i.e.,
it does not prescribe how changeability should be measured. In (Chaumun et al.,
2000), the authors base their definition of changeability on the ISO standard.
Furthermore, they choose to quantify 'changeability' by assessing the impact of
changes, defined as the set of classes that require correction as a result of a change
(Chaumun et al., 2000). This is related to the modularity of software. This view of
changeability is also similar to the work of Lehman and Belady (Lehman and Belady,
1985), where trends in a count of the number of modules changed within a fixed time
span is used as an indicator of 'system decay'.

Clearly, change impact is related to our definition of changeability. We believe
that change impact may be a useful indicator of changeability. However, based on the
definitions proposed in this chapter, change impact is only a valid indicator of
changeability to the extent that it actually affects the effort to implement changes.

10

Such a relationship between change impact and change effort needs to be validated
empirically (Kitchenham ef al., 1995b). That is, we take the view that changeability is
an external quality characteristic that cannot be measured directly from the internal
characteristic of the software. According to measurement theory, the internal
characteristics of the software can only be used to predict external software quality
attributes (Jorgensen, 1999). These measurement theoretical topics are discussed
further in Chapter 6.

11

3 Research Methods in Empirical Software Engineering

Software engineering is a field of practice using methods and tools to solve problems
where the solution is a software product. Empirical software engineering is the study
of software engineering based on experiences and observations. In empirical software
engineering one attempts to identify and establish a scientific approach for software
engineering, which comprises of a set of research methods, theories, terminology, and
a collection of experiences and observations (Serumgard, 1997). The purpose of this
chapter is to give an overview of the current state of practice in empirical software
engineering, with emphasis on the research methods commonly used. Furthermore, an
attempt is made to assess the feasibility, validity, strengths and weaknesses of various
research methods.

3.1 Software Engineering as a Science

The last decade has seen explosive growth in the number of software engineering
methods and tools, each one offering to improve some characteristics of software, its
development, or its maintenance (Kitchenham et al., 1995a). The number of silver
bullets that have been proposed indicate that software engineering should be
established as a scientific discipline as well as an engineering discipline (Serumgérd,
1997). Software engineering needs science to observe, gain general experience,
establish knowledge, and create and validate theories and models.

3.1.1 Requirements to a Scientific Approach
Various research models to be applied within software engineering have been
proposed. For example, Adrion suggests four methods (Adrion, 1993):

e The scientific method is based on developing a theory to explain a phenomenon
observed in the real world. A hypothesis is formulated, and alternative variations
of the hypothesis are tested by measurement and analysis of collected data.

e The engineering method evolves existing solutions. Based on results of testing
existing solutions, better solutions are suggested, which in turn are developed,
measured and analyzed. The cycle is repeated until no further improvements are
possible.

e The empirical method is based on model proposals followed by empirical
validation. Unlike the scientific method, a formal model or theory may not the
basis for the proposal.

e The analytical method proposes a set of axioms upon which a theory is
developed. Results from the theory are deduced, and if possible compared with
empirical observations.

Jarvinen (Jarvinen, 1999) distinguishes between two different approaches for
empirical studies:

12

e Theory-testing studies attempt to answer whether a part of reality correspond to
a certain theory, model or framework, e.g. do our observations from, for example,
experiments, case studies or surveys, confirm or falsify our theory, model or
framework?

e Theory-creating studies attempt to obtain a theory, model or framework that
best describes or explains a part of reality, e.g. which kind or theories, models or
frameworks can describe the observations from, for example, experiments, case
studies or surveys? Theory-creating studies are very suitable for exploratory
investigations, i.e. when there is no prior knowledge of a part of reality or a
phenomenon.

3.1.2 Scientific Validity
There are many views of what constitutes scientific validity of theories. By referring
to Popper (Popper, 1968), Lee emphasizes that

...empirical validity (I) is just one requirement that a theory must satisfy in order to
be scientific. There are three additional requirements, which are all associated with
the concept of deductive testing of theories. One of these requirements is (II) logical
consistency: as long as the different predictions that may be deduced from the theory
are not mutually contradictory, the theory can be said to logically consistent. Another
requirement (I1l) is that the theory must be at least as explanatory, or predictive, as
any competing theory. The last requirement (IV) is that the theory, while falsifiable,
must survive the actual attempts made at its falsification.

(Lee, 1989)

Lee describes a view of science sometimes referred to as positivism. In contrast, the
interpretive view of science considers the methods of natural science to be
inappropriate where human beings are concerned, mainly because different people
(including researchers) will interpret situations in different ways (Braa and Vidgen,
1999). When observing and describing phenomena related to software development,
the phenomena cannot be assumed to be governed by general laws and rules since
there is a critical element of human behavior involved (Seaman, 1999).

In this authors opinion, both "positivistic" and "interpretive" research methods may
provide useful results. The distinction between these approaches or schools of
research within our field seems to be rather superficial. Regardless of the adopted
philosophy of science, obtaining scientific validity in software engineering will
always been complex and difficult. The complexity arises from technical issues, from
the awkward intersection of machine and human capabilities, and from the central
role of human behavior in software development (Seaman, 1999).

3.1.3 State of Practice

Until recently, the most commonly used form for validation of new software
engineering technology has been advocacy research (Glass, 1994), i.e., it has been
based on intuition, subjective experience and opinions of "gurus" instead of carefully
designed scientific validation studies. In (Zelkowitz and Wallace, 1998), a literature
survey was performed to assess the current state of practice of empirical studies of
software engineering. The survey was based on 562 published papers in IEEE

13

Software, IEEE Transactions of Software Engineering, and International Conference
on Software Engineering (ICSE) for the years 1985, 1990, and 1995.

The quantitative data suggests that the most prevalent empirical validation model
appears to be lessons learned (informal case studies) and case studies, at about 10
percent combined. About 30 percent of the papers had no empirical validation.
However, the percentages dropped from 36 percent in 1985 to 29 percent in 1990 to
only 19 percent in 1995, indicating a shift towards more empirical validation studies.
The qualitative observations made were (Zelkowitz and Wallace, 1998):

e Authors often fail to state their goals clearly or to point out the value that their
method or tool adds to the experimentation process.

e Authors often fail to state how they validate their hypotheses.

e Authors often use terms very loosely. Authors would use the term "case study"
informally and would even use terms like "controlled experiment” or "lessons
learned" indiscriminately.

The authors conclude that "While the papers with no experimental validation seem to
be dropping, clearly more work needs to be done".

Recently, many authors addressing research within software engineering
emphasize the importance of measurements and observations (Lee, 1989; Fenton,
1992; Courtney and Gustafson, 1993; Kraemer, 1993; Fenton, 1994; Fenton et al.,
1994; Yin, 1994; Briand et al., 1995; Kitchenham et al., 1995a; Kitchenham et al.,
1995b; Pfleeger, 1995; Walsham, 1995; Briand et al., 1996a; Kitchenham, 1996a;
Kitchenham, 1996b; Zelkowitz and Wallace, 1998; Jarvinen, 1999; Jergensen, 1999;
Seaman, 1999). Such empirical studies are essential to making software engineering a
science rather than an art (Fenton et al., 1994). Thus, a further investigation should
focus on how empirical studies are carried out, and what appears to be the critical
problems in conducting such studies.

3.2 Research Methods in Empirical Software Engineering

Empirical studies play an important role within both theory-creating and theory-
testing research. There are various ways of carrying out empirical studies, which are
suitable for different purposes. Thus, prior to selecting an empirical approach, one
needs to consider what is the purpose of the study, what observations will be made,
and how the observations will be analyzed. In this section, the most commonly used
methods for empirical studies of software engineering are described.

3.2.1 Surveys — Research in the Large

Surveys often try to capture what is happening broadly over large groups of projects:
"research in the large" (Kitchenham et al., 1995a). Thus, a survey may help you to
evaluate software engineering technology on a larger scale. The potential benefit of
surveys is that they can confirm and falsify theories by generalizing to many projects
and organizations, using standard statistical analysis techniques. A survey is often
formulated in a questionnaire, and is a typical theory-testing research approach.
However, if the questionnaire contains open questions, the survey may also be used as

14

a theory-creating study (Jarvinen, 1999). Surveys combine the advantages of case
studies (applicability to real-world projects) with those of experiments (replication).

However, according to Kitchenham, surveys are only able to demonstrate
association, not causality:

An example of the difference between association and causality is that it has been
observed that there is a strong correlation between the birth rate and the number of
storks in Scandinavia;, however, few people believe that shooting storks would
decrease the birth rate.

(Kitchenham, 1996b)

A survey is not conducting a literature survey, nor administering a questionnaire, nor
conducting a field interview (Kraemer, 1993). These are data collection techniques
within survey research. Survey research involves gathering information for scientific
purposes from a sample of a population using standardized instruments or protocols
(Jarvinen, 1999). According to (Kraemer, 1993), survey research has three distinct
characteristics:

1. A survey is designed to produce quantitative descriptions of some aspects of a
study population.

2. The principal means of collecting information is asking people structured, pre-
defined questions.

3. Information is collected from only a fraction of the study population — a sample —
and is collected in such a way as to be able to generalize the findings to the
population.

However, Cunningham (Cunningham, 1997) states that randomization and the
assumptions of a normal distribution are ideal but difficult to achieve in survey
research. A large percentage of organizational researchers use convenience samples
instead of random samples, and reviews of many samples indicate that distributions
are not normal (Cunningham, 1997). A typical problem is that people or organizations
that are most willing to participate are those not representative of the population,
hence resulting in biased data. Furthermore, surveys require that questions are
carefully formulated. Otherwise the validity of the results may be threatened. The
practice of using standardized questions in survey research is based on the following
assumptions (Bradburn, 1982):

1. The meaning of the questions is shared by a majority of respondents.

2. The respondents understand the stimulus or phenomenon under investigation in a
roughly equivalent way.

3. The responses will be given in a manner allowing the researcher to interpret and
compare them.

Surveys that require users to evaluate or make judgments about information systems
and their effect on specific work activities can produce misleading results if the
respondents do not interpret or answer the questions in the ways intended by the
researcher (Hufnagel and Conca, 1994).

15

3.2.1.1 Guidelines for Conducting Surveys

In (Kerlinger, 1988), several criteria for question-writing are given:

1. Is the question related to the research problem and the research objectives? All
the items of the schedule should have some research problem function.

2. Is the type of question appropriate? Some information can best be obtained with
open-ended questions, e.g. reasons for behavior, intentions or attitudes. Certain
other information, on the other hand, can be more expeditiously obtained with
closed questions.

3. Is the item clear and unambiguous? An ambiguous statement or item is one that

permits or invites alternative interpretations and differing responses resulting

from the alternative interpretations.

Is the question a leading question? Leading questions suggest answers.

5. Does the question demand knowledge and information that the respondent does
not have? To counter the invalidity of response due to lack of information, it is
wise to use information filter questions, i.e., to check whether a respondent
knows what X is and means.

6. Does the question demand personal or delicate material that the respondents
may resist? Special techniques are needed to obtain information of a personal,
delicate, or controversial nature.

7. s the question loaded with social desirability? People tend to give responses that
are socially desirable, responses that indicate or imply approval of actions or
things that are generally considered to be good.

haN

3.2.2 Experiments — Research in the Small

Since formal experiments must be carefully controlled, they are often small in scale:
"research in the small" (Kitchenham et al., 1995a). Conducting a formal experiment
means to control as many factors belonging to the phenomenon under study as
possible. For example, if you want to determine whether programming language A
produces "higher quality" code than programming language B, you must, among other
things, ensure that programmers (the experimental subjects) are at an equal skill level
for the two groups.

The application of formal experiments is particularly useful as a theory-testing
research approach, attempting to falsify an existing theory. According to the scientific
model, unless a strong conceptual-analytical theory exists, such experiments should
be preceded by an exploratory phase consisting of case studies, surveys, or even pilot-
experiments to create the initial theories to be tested subsequently.

Formal experiments are by far the most preferred scientific approach to empirical
studies of software engineering; they are the principle means for testing hypothesis
and theories according to the hypothetico-deductive method. However, even with
formal experiments, one must be careful, formal experiments do not generalize
outside the controlled experimental conditions (Kitchenham ef al., 1995a).
Furthermore, many of the validity problems of surveys are also applicable to formal
experiments:

16

It is easier to use students rather than professionals.

The curious and the exhibitionist are likely to populate any sample of volunteers.
Attendees tend to be brighter, better workers, more motivated, more highly
educated and more educated about a topic.

In order to impose full control, formal experiments are often small, which is a
problem when you try to increase the scale from the laboratory to a real project.

3.2.2.1 Guidelines for Conducting Experiments
According to (Pfleeger, 1995), there are several steps to carrying out a formal
experiment:

In

conception — define the goal of the experiment and ensure that a formal
experiment is the most appropriate research technique.

design — formulate formal hypotheses (null hypotheses and the alternative
hypotheses), decide on an suitable experimental design for applying differing
experimental conditions to the experimental subjects so that you can determine
how the condition affect the observed behavior, and determine how the results
should be analyzed.

preparation — prepare experimental materials and subjects.

execution — apply the treatments to the experimental subjects in accordance with
the experimental design.

analysis — quality assurance and analysis of collected data using statistical
techniques.

dissemination and decision-making — conclude the results and document all the
key aspects of the research.

(Harrison et al., 2000), details of an experiment involving forty-eight

undergraduate students were described; the experiment illustrates the need for care
when undertaking such a task. Features of the experiment were:

The experiment on the modifiability and understandability of inheritance in C++
systems was based on a previous experiment carried out by (Daly et al., 1996).

A pilot study with twelve students was carried out initially to identify problems
that may have hampered the larger experiment.

The students were randomly allocated to one of twelve different groups. Each
group member was allocated to one of four systems. No learning effects took
place since each student was allocated to just the one system.

Random allocation of students to the groups ensured that the results were
unlikely to suffer from experience bias.

Strict limits were placed on the time available for the experiment (carried out in a
forty-five minute weekly slot).

The materials were made available on-line via the web.

The results contradicted the earlier experiment. This was considered interesting
and added to the body of knowledge about this particular aspect of object-
orientated software.

17

Although just one example of an experiment, a number of overriding features are
highlighted:

e Proper materials, for example, code listings, need to be readily available and
tested to ensure that minor problems are ironed out before embarking on the full
experiment. The pilot study mentioned revealed several features of the tasks
required that could have undermined results of the later experiment (e.g., the
wording of the questions).

e Subjects should know the tasks they have to carry out to obtain representative
results, e.g., careful training may be a pre-requisite if the subjects are unfamiliar
with the experimental tasks.

e The groups should be comparable in terms of experience. This is important as
we know individual capability can be an overriding factor in software
development. However, this is far from trivial since we do not know very well
how to characterize experience in software engineering.

e The experiment should be repeatable, and the materials should be made available
to a wider community. A replication package should be made available
containing details of the experiment.

The last point is important for building up a knowledge base of past experiments. One
possible offshoot of the work described would be to undertake the same experiment
using experienced practitioners. This could reveal differences between student and
experienced programmers; a worthwhile area of research. In the OO community, so
little is known about many facets. This situation can only improve via sharing of
results and resources.

3.2.3 Case Studies — Research in the Typical

A case study allows in-depth understanding of one particular case or development
project: "research in the typical" (Kitchenham et al, 1995a). Case studies are
particularly important for industrial evaluation of software engineering technology
(methods and tools) because they can avoid scale-up problems. The case study
research is also considered particularly suited when studying information systems in
organizations (Braa and Vidgen, 1999). Braa and Vidgen distinguish between 'hard'
case studies, e.g., (Yin, 1994), 'soft' (or interpretative) case studies, e.g., (Walsham,
1995), 'action case' (Braa and Vidgen, 1999) and 'action research' (Whyte, 1991).
Regardless of the detailed approach taken, case study research enables reality to be
captured in detail and many variables can be analyzed.

Case studies are often incorporated into the normal software development
activities. The potential for in-depth knowledge obtained from a case study means that
the case study may be a good explorative means for establishing new theories, i.e.,
theory-creating research. Both qualitative and quantitative data collection techniques
may be used to strengthen the validity of the results. Furthermore, case studies allow
us to determine whether predicted effects from an existing theory apply in a given
organization — hence it may be used for the purpose of "falsification" of existing,
more general, theories, i.e., theory-testing research.

However, case studies cannot achieve the scientific rigor of formal experiments or
surveys (Kitchenham et al., 1995a). There are problems with generalization due to

18

lack of control and possible effects caused by the intervention of the researcher. A
case study can show you the effects of a technology in a typical situation, but it
cannot be generalized to every possible situation (Kitchenham ef al,, 1995a).
However, this is not necessarily a problem. For example, the purpose of the case
study might be to explore ways of building better effort prediction models for a given
type of organization. The actual prediction model based on the local effort and
product data may not be valid outside the project or organization, but the results are
still useful from the software organization's point of view. Furthermore, the case study
research may have resulted in the development and preliminary evaluation of an
estimation method that probably can be reused on other projects. Several case studies
will together form a broader picture from which both researchers and industry can
draw knowledge.

3.2.3.1 Guidelines for Conducting Case Studies

While case studies may be useful to get in-depth understanding of a phenomenon,
hence potentially resulting in the creation of well-founded theories, conducting
industrial case studies are inherently difficult. Care must be taken to ensure validity of
data and usefulness of results for the studied organization. This section describes
guidelines that are a result of the lessons learnt in six industrial case studies, some
successful and others unsuccessful, presented in (Arisholm et al., 1999a).

High-risk items

e Avoid large geographic distance between researcher and organization. Frequent,
direct contact may alleviate communication problems and subsequent conflicts.

e Keep the number of organizational "layers" between the researcher and the
studied organization to a minimum.

e Ensure necessary involvement and backing from the organization(s) before
initiating the research project.

e A negative attitude may be created if a developer feels that the study can be used
for individual monitoring purposes. Ensuring that this is not the case may
improve the cooperation from the developers.

How to get inside?

e Know the organization (its goals, focus, earlier research on that organization,
etc.).

e First presentation/discussion is essential and should focus on a realistic
assessment of the usefulness of the research for the organization (ask yourself,
what would make you as a manager to say "yes" to this project).

e Use your personal network.

e Organizations may consider regular contact with students as a good opportunity
for recruitment.

e Results from the case study may have a marketing effect for the organization if
presented in the right media. Capitalize on this factor during initiation and
planning, and follow up after the results are available.

e Agree on plans (but be open to redirect goals and scope).

19

e Discuss expectations with each other.
e Discuss major risk factors.

How to get high quality data?

e An initial "pilot-study" might be useful to assess and reduce risks, improve the
data collection process and focus the research goal.

e When introducing a tool that automatically checks the quality of software, one
should ask: Who should use the tool? How should the working process be
organized to benefit as much as possible from the tool? How should the project
management motivate and encourage active use of the tool?

e Whenever possible, collect "real time" data. Historical data may have lower
quality and validity.

How to present the results?

e Sensitive data should be considered left out of the study.

e Sign a confidentiality agreement with the organization. Let the organization read
and accept publications before submission.

e Intermediate results should be presented frequently to ensure that the
organization understands the motivation, goals and potential organizational
benefits from the research. Write and present reports in addition to scientific
papers.

3.2.4 Qualitative versus Quantitative Methods

In software engineering, the blend of technical and human behavioral aspects lend
itself to combining qualitative and quantitative methods in order to take advantage of
both (Seaman, 1999). The distinction between qualitative and quantitative methods
are in many respects orthogonal to research method classifications. A common
misconception is that qualitative data is more subjective than quantitative data.
However, clearly the degree of subjectivity of observations is orthogonal to the (more
or less mechanical) coding of the data. Qualitative data is just data represented as
words and pictures, not numbers (Gilgun, 1992). Qualitative methods collect data
mainly from participant observation and interviews, for example, in the context of a
"think-aloud" experiment or a case study. Data is not coded into numbers; instead, the
researcher delves into the complexity of the problem rather than abstracting it away.
In (Arisholm et al., 1999b), interviews and participant observations were the principle
means to explain the irregularities indicated by related quantitative data. Thus, the
analysis of qualitative data may be particularly well suited to create theories related to
software development, and is often useful to explain and clarify quantified
phenomena.

3.3 Summary
The design and performance of empirical studies is a difficult craft. Many pitfalls may

compromise the validity of scientific results. Although general principles and
techniques are available to perform empirical studies (e.g., experiments and case

20

studies), each discipline needs to develop its own body of experience and strategies to
answer its most pressing research questions. For example, although this is an
oversimplification, sociology has focused on the design of surveys, medicine on
longitudinal studies, and psychology on controlled experiments. Each strategy reflects
the working constraints of the respective field. In other disciplines than software
engineering, many of the more revealing empirical studies have been based on prior
studies that either support or refute prior claims. Progress in empirical research comes
from questioning past research and learning from past mistakes or insights.

If you are trying to choose among several competing methods or tools, you may
organize your study as a survey, a case study or a formal experiment, or as a variation
or combination of these methods. You may also use a combination of qualitative and
quantitative data collection and data analysis techniques. The choice of investigative
method depends in the goal of the research. For example, a case study combining both
qualitative and quantitative data may be useful for the creation of theories
subsequently tested empirically through a formal experiment or a survey. All of the
research methods discussed in this chapter have potentially serious validity problems,
and, in our opinion, any empirical study of software engineering should contain a
careful assessment of the validity issues outlined. In most cases, utilizing a
combination of the research methods may increase the empirical validity of any study.

Is the current state of practice of empirical software engineering a science? There
is a large amount of research to be done in terms of studying software engineering
empirically. In general, there is still a need for more empirical studies to establish
software engineering as a scientific discipline — moving away from the "advocacy
research" approach. However, even among the studies that ~ave been conducted using
empirical validation methods, improvements can be made. Since the empirical study
of software engineering is a relatively new field of research, we often do not have an
a-priori formal theory to be "falsified" through empirical tests. According to Adrion's
classification, one may conclude that software engineering increasingly uses the
"empirical method" for theory creation, but may not yet have reached the maturity
level of the "scientific method".

We are still exploring ways to design empirical studies and overall research
programs to answer efficiently the most pressing research questions. How can we, in
our field, investigate new technologies in a way that limit the cost of investigation, the
risks in pilot projects, and ensure maximal benefits for software development
organizations? This is a question that will take time to answer and that will require
more experience. Field experiments are prohibitively expensive. Thus, controlled
experiments will likely involve students during the early stages of research. If the
results of such experiments show promise, this will likely be followed by low risk,
small-scale pilot projects, before moving to representative development projects. Such
a scheme implies the close collaboration of academic institutions and industry but
also the acceptance, like in medicine, that empirical studies are worthwhile
investments.

21

4 Evolutionary Development

The aim of this chapter is to describe how evolutionary development may affect the
changeability of software. A prerequisite for meaningful discussions is use of
terminology that is agreed upon and understood. The semantics of terms such as
prototyping and evolutionary development is unclear, cf. (Patton, 1983). What is the
difference between incremental development and evolutionary development? Is
prototyping a technique or a process, or both? Thus, Section 4.1 proposes a
categorization of common software process models and describes each model in some
detail. Based on existing empirical research, Section 4.2 identifies important issues
that may affect the resulting changeability of software. Section 4.3 summarizes.

4.1 Software Process Models

During the past decades, several system development models (also known as software
life-cycle models, software process models, etc.) have been proposed. The code-and-
fix paradigm of early software projects was deemed no longer adequate to deal with
the increasing size and complexity of the development of software systems. One of
the first proposed models was the waterfall model (Royce, 1970). It prescribes a
sequence of activities, milestones and deliverables that are supposed to aid in the
development of more complex software systems. The milestones and deliverables
provided a formalized means of communication between customer or user and
software development teams. However, one may argue that the waterfall model
represents a mechanized view of software development, focusing on project
management aspects and neglecting problem solving aspects. For example, what is
required of users and development teams to produce a software system according to
the "real" needs of the customer or end user? In an attempt to address these and other
critical aspects of the waterfall model, other models of software development, such as
incremental development and evolutionary development, were proposed.

There are many ways to view the process models described in the literature. In this
section, common process models are categorized to clarify the terminology and the
underlying concepts for the subsequent discussions.

22

Life-cycle models

\ 4
Linear-sequential Incremental Evolutionary
Waterfall Cleanroom Evolutionary Evolutiopary
and Prototyping
incremental
DSDM
EVO/HP Fusion Unified Process

Fig. 4.1. Categorization of common process models. The semantics of the arrows is "inherits
properties from the higher level model". The gray leaf-nodes are actual manifestations of
process models based on higher level conceptual models.

Figure 4.1 depicts one possible view of software life-cycle models. The life-cycle
models are divided into three main categories:

¢ Linear-Sequential Models,
¢ Incremental Models, and
¢ Evolutionary Models.

These categories will be described in the following subsections.

4.1.1 Linear-Sequential Development

The waterfall model effectively helps developers determine what they need to do. The
simplicity of the model makes it easy to explain to customers who are not familiar
with software development. Each phase of the process produces deliverables that
constitutes concrete milestones for easy progress monitoring.

| Analysis |_’l Design |_>| Code |_>| Test |_>| Delivery

prototyping

Fig. 4.2. A simplified view of the waterfall model

23

The biggest problem of the waterfall model is that it may not reflect the way software
systems are really developed (Pfleeger, 1998). Except for very well understood
problems, software development may be viewed as a problem solving process, in
which software delivers a solution to a problem that has never been solved before.
Such problem solving often requires a great deal of iteration, in which end users may
play an integral part. The waterfall model provides no guidance to managers and
developers on how to handle changes to products and activities that are likely to occur
during development, typically as a result of natural but unprescribed interaction with
end-users and customers. The waterfall process tells us nothing about the back-and-
forth activities that are needed to create a final product.

To address some of the problems of waterfall development, one may incorporate
prototyping in the early phases, as depicted in Figure 4.2. The underlying assumption
is that early prototypes supply the necessary knowledge to implement a complete
system following a sequential life-cycle. However, empirical results presented in
(Lichter et al., 1994) show that this assumption is problematic:

e Control techniques developed for waterfall development tend to hinder the
incorporation of prototyping.

e Contractual enforcement of milestones and deliverables, and the results of
consecutive prototyping cycles rarely fit together.

e The effort necessary for explicit evaluation of prototypes by end users is often
ignored or underestimated.

4.1.2 Incremental Development

With incremental development, the product is partitioned in increments that are
delivered either sequentially or in parallel. The main difference between waterfall
development and incremental development is that the implementation phase contains
staggered or parallel development of code modules.

Incremental development is depicted in Figure 4.3. One well-known incremental
development process is the Cleanroom process (Linger, 1993). Each increment is
frozen after delivery, and subsequent increments must use the interfaces provided by
modules implemented in other increments. This means that process activities are
repeated for new increments, but there is, in principle, no evolution of the actual
incremental deliverables. Thus, existing functionality does not evolve. Incremental
development may be useful to shorten time-to-market by staging system functionality
in incremental deliveries.

Analysis [Jp{ Design [Code [Pl Test [P Deliveryincrement 1

Analysis | Jp{ Design [Code [Ppf Test [Ppf Delivery increment 2

Analysis | Jp{ Design [Code [P Test [Pl Delivery increment3

Fig. 4.3. Incremental development, adapted from (Pressmann, 1997)

24

4.1.3 Evolutionary Development

Evolutionary development is related to the "iterative enhancement" technique
proposed in (Basili and Turner, 1975). This technique was proposed as a result of the
realization that the problem (the requirements) and solution (the software) are often
not understood at the inception of the project. An important objective of evolutionary
development is to identify the "real" needs of the customer early, hence achieving
improved customer satisfaction and avoiding expensive last-minute rework. In
contrast to the linear sequential and incremental development, evolutionary
development can be characterized by having unfinished incremental deliveries that
evolve towards the final product. Each increment may be delivered to end users for
feedback. Risks are assessed and plans are modified in response to the provided
feedback. The following sections provide an overview of some common, evolutionary
life-cycle models.

4.1.3.1 Evolutionary Prototyping

Prototyping may be regarded as techniques or process activities that can be
incorporated in other process models, such as the waterfall model and the spiral
model. At the point when a prototype has fulfilled its primary exploratory purpose,
the prototype is often thrown away and a production system is developed. Throw-
away prototypes are often built with little or no robustness, and serve only to evaluate
parts of the system that are not well understood. When prototypes are not thrown
away, the process is sometimes called evolutionary prototyping (Floyd, 1984; Bersoff
and Davis, 1991; Lichter et al., 1994).

Evolutionary prototypes are high-quality programs used to validate presumed
requirements, to gain experience required to uncover new requirements, or to
validate a possible design; and are repeatedly modified and re-deployed whenever
new information is learned.

(Bersoff and Davis, 1991)

4.1.3.2 Evolutionary, Incremental Development

Evolutionary, incremental development can be seen as a mixed approach between the
specifying approach (e.g., linear-sequential development and "pure" incremental
development) and evolutionary prototyping. Some examples include Gilb's EVO
(Gilb, 1988), HP Evolutionary Fusion (Cotton, 1996) and Rational Unified Process
(RUP) (Jacobson et al., 1999).

25

Analysis |—>| Architecture + H.L. Design |—>| Plan increments |

» :I Analysis, design, coding and test increment Deliver increment |
micro-iteration | User validation |

Enhance previous increments + add functionality System

complete?

no

Complete system
delivery

Fig. 4.4. The Genova Development Process (Arisholm et al., 1999b)

Genova is another manifestation of an evolutionary and incremental development
process (Arisholm et al., 1999b). Figure 4.4 depicts the evolutionary delivery of
increments, prescribed by the Genova process. The process prescribes the delivery of
an initial architectural baseline and a high-level design. Each increment is developed
by iteration of all major process activities, including analysis, design, coding and test.
Note that each increment sub-project may itself be evolutionary, that is, each
increment evolves through iteration of process activities until the increment is
delivered. Hence, evolution occurs both within increments and between successive
incremental deliverables. The Genova process prescribes up to three iterations per
increment:

e [teration 1: Implement the most important functional requirements of the
increment. Iteration 1 serves as an evaluation of the design of the increment.

e [teration 2: Implement the remaining functional requirements of the increment.
Enhance functionality developed in iteration 1.

e [teration 3: Stabilize increment.

The increment is then delivered to end-users for evaluation. The next increment will
contain enhancements to the previous increments as well as new functionality. The
system delivery is completed when all functionality has been delivered and no further
enhancements are required.

Another example of evolutionary, incremental development is the spiral model
(Boehm, 1988). The spiral model has a strong emphasis on the evaluation of
requirements and the reduction of risks throughout the software life cycle. The spiral
model differs from "pure" incremental development in that delivered increments are
not "frozen", but may change over time based on evaluation of risk. Prototyping is
primarily used to identify and resolve risks. The prototype does not evolve into the
final product as in evolutionary prototyping. The risk assessment may in turn change
system requirements and development plans. Thus, the spiral model for software
development is evolutionary and incremental. Each increment is an enhancement of
the previous increment, and the development of new increments uses feedback from
the previous increment to converge towards the final system.

26

4.2 Consequences for Changeability

Does evolutionary development result in software with poor changeability? If so,
what are the typical causes of decay, and how can it be reduced? Or perhaps the
constant change in evolutionary development means that the structure can evolve and
become better than if a sequential process had been used?

Some existing work has studied (or made claims regarding) how evolutionary
development projects may affect the quality of the code, primarily focusing on
usability. Only a few papers have made claims regarding quality aspects related to
changeability. Even fewer papers have empirically investigated how evolutionary
development may affect the changeability of the resulting software. In this section, an
overview of existing claims and empirical studies related to changeability in
evolutionary development is given.

4.2.1 Sommerville

According to Sommerville, following an evolutionary development process results in
a product that is often difficult and expensive to change, because the constant changes
to the software degrade its structure (Sommerville, 1996; Sommerville, 2001).

4.2.2 Lehman et al.

Studies regarding the effect of changes have been made for software evolution in
general, most notably by Lehman's law of increasing complexity (Lehman and
Belady, 1985). This 'law' of software evolution was also tested empirically in (Chong
Hok Yuen, 1987). Using response times and number of outstanding fixes as
dependent variables, the law of increasing complexity was confirmed. An overview
of this and other related studies of software evolution is given in (Eick et al., 1999;
Kemerer and Slaughter, 1999). However, these studies are related to the maintenance
of old and large legacy systems, not the initial development of software. Clearly,
changes may eventually lead to decay unless work is done to avoid it. It is, however,
unknown whether the results from studies of the evolution of legacy systems
generalize to initial development of software using an evolutionary development
process.

4.2.3 Parnas
Parnas introduced the concept of software aging (Parnas, 1994), which has two
primary causes:

e The failure of the product owner to meet the users' changing needs.
e Changes made by people who do not understand the original design concept
almost always cause the structure to decay.

To avoid software aging, Parnas recommends the principle of "designing for change"
by means of information hiding and encapsulation, ensuring consistent
documentation, and performing design reviews.

In the context of evolutionary development, the first cause implies that
evolutionary development is also a way to avoid (or delay) software aging because
more of the users' needs might be met during initial development.

27

4.2.4 Boehm et al
Boehm states that evolutionary development is generally difficult to distinguish from
the 'code-and-fix' model, resulting in "spaghetti" code (Boehm, 1988).

In (Boehm et al., 1984), a prototyping approach was compared with a specification
approach. The study involved an experiment where seven teams developed their own
versions of the same product, an interactive version of COCOMO (Boehm, 1981).
Four teams used a specification approach and three teams used an evolutionary
prototyping approach. The experiment attempted, among other things, to assess what
effect prototyping had on a software project's effort distribution, schedule distribution,
and productivity; and on the product's size, quality and maintainability. The results
are summarized below:

e The development teams using the prototyping approach used less overall effort,
less design effort and more testing effort compared with the development teams
using the specification approach.

e Based on a subjective assessment of the quality of the resulting systems, the
results indicated that a specification approach produced more coherent designs
and more robust software that was easier to integrate than did the prototyping
approach. Consequently, Boechm suggests that prototyping should be followed by
a reasonable level of specification of the product and its internal interfaces,
especially for larger products.

e The systems developed using the prototyping approach were smaller and the ease
of learning and ease of use was better than for the systems developed with a
specification approach.

e The prototyping approach had a reduced "deadline effect" at the end of the
project, because it always had something that "worked".

Thus, the experiment indicated that the prototyping projects produced code with
lower changeability but better usability. However, the resulting code was also smaller,
and required less total effort to develop. This is reiterated in another paper, in which
Boehm states that a primary source of difficulty with the waterfall model has been its
emphasis on fully elaborated documents as completion criteria for early analysis and
design phases:

Document-driven standards have pushed many projects to write elaborate

specifications of poorly understood user interfaces and decision-support functions,

followed by the design and development of large quantities of unusable code.
(Boehm, 1988)

Furthermore, the most significant influence on software costs is the number of source
instructions one chooses to program (Boehm and Papaccio, 1988). Thus, it seems that
prototyping projects have time to spare — which could be used on improving the
design.

28

4.2.5 Royce

Royce (Royce, 1990) describes the results of using the Ada Process Model, which is
an evolutionary and incremental development process focusing on early design
integration, design reviews and risk management. According to Royce, an
evolutionary and incremental process results in a higher probability of producing a
higher quality product:

Given a complex software system, there are far too many subtle interactions,
miscommunications, and complex relationships to predictably achieve quality design
verification without actually building subsets of the product and getting factual
feedback. The real evaluation of goodness occurred very late in conventional
programs when components were integrated and executed in the target environment
together for the first time. This usually resulted in excessive rework and caused late
"shoehorning” of less than desirable solutions into the final product. These late,
reactive changes resulted in added fragility and reduced product quality.

(Royce, 1990)

Royce points out that evolutionary development may shift rework to an earlier phase
of the software life cycle. Many studies have shown that the rework effort is much
smaller in the earlier phases of software development (Fagan, 1976; Boehm and
Papaccio, 1988). Royce also describes the concept of a software architecture skeleton
(SAS) as being fundamental to evolutionary development.

4.2.6 Brownsword et al.

Lessons learned from three case studies using evolutionary, incremental development
processes are described in (Brownsword and McUmber, 1991). Their experiences are
summarized as follows:

e Some of the iterations focused on resolving requirements issues, while others
improved the software design.

e Evolutionary, incremental development was the most efficient means for
validating the proper layers of abstraction in an object-oriented design.

e An object-oriented design proved most resilient when adding system capabilities
to the design in each successive iteration.

e Projects that leveraged the use of modern software design techniques had the best
experiences with evolutionary, incremental development.

e Adding or changing the system requirements typically impacted only on the top-
level design properties, not the entire design.

The results in (Brownsword and McUmber, 1991) suggest that evolutionary,
incremental development may have a positive effect on the changeability of the
resulting software. However, the experiences also imply what is also stated by Gilb:
the design of an open-ended architecture is critical for the success of evolutionary
development processes (Gilb, 1988).

29

4.277 May and Zimmer

Case studies on the experiences on the use of the Hewlett-Packard Evolutionary
Fusion model have been reported (Cotton, 1996; May and Zimmer, 1996). The
following summarizes the experiences in (May and Zimmer, 1996):

e The teamwork with end-users was improved and more time was spent by the
developers thinking of alternative solutions to the given problems.

e After gaining some experience with the process, both developers and
management felt that it was easier to focus on the right things in the development
process and to uncover key issues early.

e The selection of users, and the management of the selected users, were important
tasks when using the process. Selecting the right users had a major impact on the
quality of the feedback. The closer the users are to real external users, the higher
the quality of the feedback, but the more external they are, the harder they are to
manage.

e The management focus in traditional software development was 95% on
deployment. When using the evolutionary process, one third of the management
effort was spent on getting feedback from the users and to make decisions based
on the feedback. This may be seen as an indicator that the user feedback was
regarded as a cost-effective means to improve the quality and usability of the
software system.

4.2.8 Zamperoni et al.

This section reports some of the results from a case study where evolutionary
prototyping (also referred to by the authors as 'incremental and iterative') was used
within the TNO Institute of Applied Geoscience (Zamperoni et al., 1995).
Evolutionary prototyping projects were compared with projects using a waterfall life
cycle. The projects were compared in pairs of very similar sequential and
evolutionary projects or a total duration between 18 and 30 months and team sizes
ranging from 4 to 15. Early development used the Objectory method (Jacobson et al.,
1992). Some of the highlights of the study are summarized below:

e Design activities had a considerably bigger share of the total percentage of the
total project man-hours in projects with the evolutionary approach (18.1%
compared with 10.8% for sequential projects). This was not primarily an
indication of more complex systems, but was mainly due to the fact that
evolutionary prototyping required a better-designed system architecture, which
did not only aim at an optimal final product, but also facilitated reconstruction
and change of system subcomponents during development.

e The evolutionary prototyping projects required much less time for testing (7.4%
compared with 12.9% for sequential projects).

Thus, the case study reported in (Zamperoni et al., 1995) observed a completely
opposite effect of the experiment reported in (Boehm et al., 1984). Other qualitative
observations regarding the success of evolutionary prototyping projects were also
described in (Zamperoni ef al., 1995). These are summarized below:

30

e Communication between users and developers was an important prerequisite for
capturing the real system requirements. Sometimes users or customers had a
certain, very specific perception of the future system, but were unable to
communicate or formulate this perception in an adequate manner (for the
developers to build the system).

e Evolving prototypes acquire two crucial roles: (1) The means of communication
with users and domain experts, i.e., the mediator to reach agreement with the
users and their expectations, and (2) the central project repository about acquired
specification knowledge, design decisions, and development solutions, and
therefore also the primary source for evaluation of development progress.

e If users are involved in the development process, the likelihood of acceptance
increases. Furthermore, if future users are identical to the test users, this causes a
significant decrease of the learning expenses concerning the introduction of the
final system at the users' site because the users have already been accustomed to
the system during its development.

However, the success of evolutionary prototyping has the following prerequisites:

e Commitment of users and short communication channels between users and the
development team are important prerequisites for an effective application of
evolutionary prototyping.

e Selection of the appropriate types of users for evaluation of prototypes is
important. This selection depends on the state of completion of the system.
Obviously, not every potential user should be burdened with testing partial or
unstable prototypes. In the early stages of the software, it may be more practical
to recruit members of the development team to evaluate prototypes. The actual
users may be recruited once the functionality and stability of the prototypes
increase.

429 Ehn
In the UTOPIA project, requirement specifications and systems descriptions based on
information from interviews were not very successful:

What is it that the users know, that is, what have they learned that they can express

in action, but not state explicitly in language?
(Ehn, 1993)

Prototyping design artifacts make it possible for ordinary users to use their practical
skill when participating in the design process (Ehn, 1993).

4.2.10 Emam et al.

Emam et al. (Emam et al., 1996) conducted an empirical study of user participation in
the requirements engineering process. The results indicate that as uncertainty
increases, greater user participation alleviates the negative influence of uncertainty on
the quality of requirements. Increased user participation seems to be conductive
towards greater user consensus, and also helps them reason about what their business-
or work-processes should be like and what they want the software system to do.
However, as uncertainty decreases, the beneficial effects diminish. When uncertainty

31

is low, user participation has no impact on the quality of requirement. Furthermore,
users resent participation when they feel that they are unable to contribute
substantially. This resentment may bring about reductions in quality of service as user
participation increases.

These empirical results support the common belief that user participation is
primarily wuseful for projects where requirements uncertainty is high, cf.
(Sommerville, 1996). However, as pointed out in the following case studies (Section
4.2.11), there are many potential problems in obtaining the benefits of user
participation.

4.2.11 Lichter et al.

In (Lichter et al., 1994), a critical view of the prerequisites for successful prototyping
and end-user involvement is presented. The results are based on interviews with
developers in several industrial software projects, most of which used an evolutionary
prototyping approach. Two remarks regarding the quality of the resulting systems are
given in the paper:

e In one project, system components that became redundant due to modifications of
the system design could still be found in the final system.

e In general, developers may make the mistake of encouraging the users to voice
all the ideas and wishes that come into their minds when evaluating a prototype.
This may result in the incorporation of absolutely every conceivable function or
design option. This may increase the complexity and reduce the usability of the
final system.

In addition to the above points, the general assessment given by Lichter et al. is that
there are substantial problems in getting the users involved. Often, user management
is reluctant to allow the actual end-users of an application system to participate in the
evaluation of prototypes, let alone in discussions on design options. Even when end-
users are involved, there are other problems that may limit the benefits of user
participation in evolutionary development projects:

e The effort necessary for explicit evaluation of prototypes by end-users are often
ignored or underestimated.

e Many developers expect too much from the users concerning creativity and
innovative ideas about the technical design of a prototype. Since the users lack
experience in everyday use of the system, they seldom can make suggestions for
the design of a technical aspect that does not yet exist. Their suggestions are
generally confined to criticism of what already exists.

4.3 Summary

In this chapter, common life-cycle models were described in some detail.
Furthermore, an overview of existing claims and empirical results related to the
consequences for changeability in evolutionary development was provided.

The results from several of the studies suggest that attention must be placed on the
design of an open-ended architecture, that is, a design that can easily incorporate new

32

or changing requirements. Evolutionary software development may also result in
software systems of smaller size, since the exploratory approach focusing on user
participation may ensure that unnecessary functions are not developed. It is likely that
both size and structure affect the changeability of software. Thus, the smaller size of
the developed software may counteract some of the potentially negative influences of
the frequent changes on the structure. Evolutionary development may also result in
systems with high usability and user acceptance, given effective user participation.
However, an important prerequisite is that the user participation is effective. Empirical
studies have shown that achieving this is not straightforward.

Existing empirical studies constitute insufficient data to either support or refute the
claim that evolutionary development often result in poorly structured designs. The
presented studies are contradicting. Some of the studies suggest that evolutionary
development result in poor structure. Other studies suggest the opposite. Perhaps
more importantly, there is insufficient knowledge regarding what potentially causes
decay, or how it can be avoided. The existing papers that have assessed consequences
related to changeability are either based on a subjective assessments of the resulting
code, e.g., (Boehm et al., 1984; Brownsword and McUmber, 1991), or the results are
based on the author's experience, e.g., (Parnas, 1994; Sommerville, 1996).

The questions outlined in this chapter are fundamental in software engineering. For
example, iow do we design for change? How do we determine whether a structure is
actually deteriorating? Such questions have motivated the proposed measurement
framework described in Chapter 6 and the empirical studies described in Chapter 7.
As pointed out in Chapter 3, the accumulation of results from carefully designed
empirical studies may increase our knowledge leading to a better understanding of the
complex questions discussed.

33

5 Empirical Studies of Object-Oriented Software

Object-oriented technologies are becoming pervasive in many software development
organizations. However, many methods, processes, tools, or notations are being used
without thorough evaluation. Empirical studies aim at investigating the performance
of such technologies and the quality of the resulting object-oriented software
products. In other words, the goal is to provide a scientific foundation for the
engineering of object-oriented software.

Some of the material presented in this chapter is based on the results of a working
group at the Empirical Studies of Software Development and Evolution (ESSDE)
workshop in Los Angeles in May 1999, in which this author participated. The results
were published in (Briand et al., 1999b).

Section 5.1 provides an overview of representative existing empirical studies,
focusing primarily on studies assumed to be relevant for changeability assessment.
Section 5.2 describes success factors or guidelines for conducting empirical studies of
object-oriented software. Important directions for future research are described in
Section 5.3. Section 5.4 summarizes.

5.1 Overview of Existing Empirical Studies

Do we have support for the claims that object-oriented technologies improve the
quality of software product deliverables, support reuse, and reduce the effort needed
to develop and maintain the software product? Which of the available technologies
are more likely to yield benefits? This section attempts to give an overview of
empirical validation methodologies and existing empirical studies to shed some light
on some of these questions.

Existing research of the object-oriented paradigm can be classified according to the
following (non-comprehensive and overlapping) research areas:

e Methodology for formal definition, theoretical, and empirical validation of
object-oriented product measures.

e Empirical evaluation of object-oriented quality and productivity models, such as
fault proneness, testability, and maintainability.

e Empirical evaluation of object-oriented technologies, such as programming
languages, tools, methods, and processes.

These three broad categories of research provide the basis for the research outlined in
this thesis: The measurement framework (Chapter 6) describes object-oriented
product measures and methods for their empirical validation. The measurement
framework is validated empirically by building a (quality) prediction model for
changeability (Chapter 7). After careful validation, the framework may eventually be
used for technology assessment, more specifically, for the assessment of
consequences of evolutionary development on the changeability of object-oriented
software.

34

5.1.1 Measurement Validation Principles

Several authors have suggested that measures should adhere to measurement
theoretical principles (Zuse, 1991; Fenton, 1992; Fenton, 1994) as a means for
evaluating software measures and to qualify the use of certain statistical techniques
(depending on the measurement level of the measures). Briand ef al. (Briand et al.,
1996a) argue, however, that a more pragmatic approach is likely to provide the
software engineering community with more practical results. Several guidelines and
frameworks for theoretical and empirical validation of measures have been proposed
(Weyuker, 1988; Briand et al., 1995; Kitchenham et al., 1995b; Briand et al., 1996b).
These frameworks argue that measures should obey certain fundamental properties,
that compound measures must be justified by an explicit theory, and that internal
measures should be validated empirically against external (quality) attributes.
Methodologies for the definition and construction of object-oriented coupling and
cohesion measures are proposed in (Churcher and Shepperd, 1995; Briand et al.,
1998b; Briand ef al., 1999c). Finally, there are many different statistical approaches
that may be used for establishing empirical validation of relationships between
internal product measures and external software quality attributes, cf. (Kitchenham
and Pickard, 1987; Briand et al., 1992; Briand et al., 1995; Kitchenham et al., 1995b;
Briand et al., 1998c; Khoshgoftaar and Allen, 1998).

5.1.1.1 Structural Attribute Measures for Object-Oriented Software

Several measures for object-oriented designs have been proposed (Li and Henry,
1993; Chidamber and Kemerer, 1994; Brito ¢ Abreu and Melo, 1996; Briand et al.,
1997b; Bieman and Kang, 1998) and validated (Basili ef al., 1996b; Brito ¢ Abreu
and Melo, 1996; Briand et al., 1998b; Harrison et al., 1998a; Harrison et al., 1998b;
Briand et al., 1999c; Briand et al., 1999d; Briand et al., 2000). The "CK metrics
suite" proposed by Chidamber and Kemerer (Chidamber and Kemerer, 1994) are the
most frequently referenced object-oriented design measures.

5.1.2 Empirical Assessment of Object-Oriented Technologies

Object-oriented technologies (programming languages, tools, methods, and processes)
are claimed to improve the quality of software product deliverables, to support reuse
and reduce the effort of developing and maintaining a software product. However,
little evidence exists to support these claims (Jones, 1994; Daly et al., 1996).
Surprisingly few papers exist that empirically compare OO technologies and
processes with traditional structured techniques. Jones has identified lack of empirical
evidence for several claims related to gains in productivity and quality of OO
technologies (Jones, 1994). For example, inheritance and polymorphism are claimed
to provide benefits such as greater extensibility and reusability of OO systems
(Booch, 1994). However, (Jones, 1994; Daly et al., 1996) showed results suggesting
that, beyond a certain level, inheritance was a serious hindrance to maintainability.

In (Henry et al., 1990), an experiment is described that supports the claim that
systems developed with object-oriented languages are more maintainable than those
developed with procedural languages. In this empirical study, student subjects
determined the maintainability of systems developed with two languages by
performing maintenance tasks on two functionally identical large programs, one

35

written in an object-oriented language and the other written in a procedural language.
Maintenance times, error counts, change counts, and programmers' impressions were
collected. The analysis of the data from this experiment showed that systems using
object-oriented languages were indeed more maintainable than those built with
procedural languages.

In a study described in (Basili et al., 1996a), object-oriented reuse techniques were
applied to eight medium-sized management information systems, using the waterfall
life-cycle model. The study indicated "significant benefits from reuse in terms of
reduced defect density and rework as well as increased productivity”.

Results described in (Briand et al., 1997a) strongly suggest that quality guidelines
based on Coad and Yourdon's design principles have a significant beneficial effect on
the maintainability of OO design documents. However, preliminary results showed
that there was no strong evidence that OO designs were easier to maintain than
structured designs.

Houdek et al. (Houdek et al., 1999) conducted an experiment comparing structured
and object-oriented methods applied to embedded software systems. The results
identified only minor differences in development time and quality of the developed
systems.

In (Sharble and Cohen, 1993), one of the few experiments comparing alternative
object-oriented design methods is reported. The authors conducted an experiment
where they compared a data-driven and a responsibility-driven design method. Two
systems were developed based on the same requirements specification — using the
data-driven and the responsibility-driven design method, respectively. Structural
attribute measures of the two systems were collected and compared. Based on the
measured values, the authors suggested that responsibility-driven design produces
higher quality software than data-driven design. However, whether the design
measures used in this experiment actually measured "quality" was not empirically
validated. In other words, the experiment did not involve any direct measurement of
external quality attributes.

5.1.3 Quality and Productivity Models for Object-Oriented Software
A large portion of empirical research in the OO research arena has been involved with
the development and evaluation of quality models for OO software. The immediate
goal of this research is to relate structural attribute measures intended to quantify
important characteristics of object-oriented software, such as size, polymorphism,
inheritance, coupling, and cohesion to external quality indicators such as fault
proneness, change impact, reusability, development effort and maintenance effort.
The main motivations are to be able to assess quality early on in the software life
cycle and to be able to use structural attribute measures as surrogates for external
software quality attributes. This would greatly facilitate technology assessment and
comparisons, e.g., in studies such as (Sharble and Cohen, 1993). Indeed, this is also
the main motivation for the measurement framework proposed in Chapter 6.

5.1.3.1 Fault Proneness
Briand et al. (Briand et al., 1999d; Briand et al., 2000) report that highly accurate
predictive models of fault-prone classes can be developed based on various

36

dimensions of coupling in OO systems. The same data suggests that current measures
of cohesion, including Lack of Cohesion in Methods (LCOM) (Chidamber and
Kemerer, 1994), are poor indicators of fault-proneness.

In (Basili et al., 1996b), all CK measures except LCOM seem to be useful for
predicting class fault-proneness during high- and low-level design phases.

In an investigation of a large object-oriented software system, Cartwright and
Shepperd (Cartwright and Shepperd, 2000) found that classes participating in an
inheritance structure was approximately three times more defect-prone than classes
that did not.

Benlarbi and Melo (Benlarbi and Melo, 1999) conclude that polymorphism may
increase the fault-proneness of OO software. However, as discussed below, these
results should be interpreted with care as fundamental flaws undermine the analysis.

5.1.3.2 Change Impact

A few studies have shown that object-oriented design measures can be used to predict
the impact of changes (Briand et al., 1999¢; Chaumun et al., 2000). Both studies show
high correlation between change impact (for example, quantified as the number of
classes that require some sort of modification as a result of a change) and various
types of coupling between classes. Furthermore, the results in (Chaumun et al., 2000)
do not support the hypothesis that the depth of the inheritance tree influence the
change impact.

5.1.3.3 Effort

One frequently referred early paper investigating how structural attributes of object-
oriented software affect maintenance effort is (Li and Henry, 1993). In this study, the
number of lines of code changed per class was the dependent variable. Thus, an
assumption was made that the number of lines of code changed is an indicator of the
maintainability of the class. However, the validity of this assumption, i.e., the actual
relationship between the change volume and change effort, has not been established
empirically. Most of the CK measures were the independent variables. The study
showed that the addition of CK measures other than size measures improved the
prediction accuracy for the number of lines of code changed per class.

More recent studies have attempted to evaluate development effort prediction
models at the class level (Nesi and Querci, 1998; Briand and Wust, 1999). In both
studies, measures of class size are significant explanatory variables of development
effort. Only limited improvements in effort estimation accuracy was obtained by also
including coupling measures (Briand and Wust, 1999).

Binkley and Schach collected maintenance data from four development projects
written in COBOL, C, C++ and Java, respectively (Binkley and Schach, 1998). The
results suggest that a significant impediment to maintenance is the level of interaction
(i.e., coupling) between modules. Modules with low coupling were subjected to less
maintenance effort and had fewer maintenance faults and fewer run-time failures.

In (Chidamber et al., 1998), an exploratory case study indicated that high coupling
between objects (high value of CBO) and low cohesion (high value of LCOM) were
associated with lower productivity, greater rework and greater design effort.

37

In (Daly et al., 1996), an experiment was conducted to evaluate the effects of
inheritance depth on the maintainability of OO software. The results suggest that
systems with approximately three levels of inheritance may result in reduced time
required to perform maintenance tasks by 20% compared with no use of inheritance.
However, results from the same study indicate decreased maintainability at five levels
of inheritance depth.

Harrison et al. (Harrison et al., 2000) describe an empirical investigation into the
modifiability and understandability of object-oriented software. The results indicate
that the systems without inheritance were easier to modify than the corresponding
systems containing three or five levels of inheritance. Also, it was easier to
understand the system without inheritance than a corresponding version containing
three levels of inheritance. The results also indicate that larger systems are equally
difficult to understand whether or not they contain inheritance.

A model for effort prediction of the adaptive maintenance of object-oriented
software was presented in (Fioravanti ef al., 1999). A selection of metrics for effort
estimation was applied to a general model for evaluating maintenance effort. The
validation showed that some (rather complex) object-oriented metrics might be
profitably employed for effort estimation.

5.2 Success Factors for Empirical Studies of Object-Orientation

A large number of empirical studies have been undertaken in the past. The need for
meta-analysis of the results of such studies underlies a number of inherent problems
in the way that empirical studies have been carried out. For example, if an experiment
is carried out, and the results are interesting, it would be useful for other researchers
to replicate that experiment as closely as possible. The research reaches a dead end if
this is impossible, thereby blocking the path to what may be more interesting and
insightful research. Consequently, a number of what could be called success factors
(broad-based factors) which create the conditions for a successful empirical study
should be identified.

5.2.1 Nature of the Data

By its nature, an empirical study requires the collection, dissemination and analysis of
data. In many OO studies, collection of the data alone is problematic. As an example,
consider state-of-the-art in cohesion measures (Briand ef al., 1998b). The emphasis on
cohesion measures seems to have been based on the distribution and use of instance
variables of a class. Hence, a class with a single attribute used in all methods of that
class is considered cohesive. Alternatively, a class with ten attributes, each of which
is used in only one method is considered lacking in cohesiveness.

The problem with such proposed metrics is the following: most are theoretically
flawed either because they produce meaningless and incomparable values or there are
counter-examples that render the metric inadequate. Many measures that are
theoretically sound are computationally intensive or unsupported by tools to aid the
collection.

One success factor is therefore to ensure in any empirical study that quality of data
collection is maintained. This entails ensuring reliability, completeness and efficiency

38

of the data collected. Furthermore, although no measurement is perfect, it must be
clearly justified and its underlying assumptions must be made explicit to aid the
interpretation of the results. Since the replication of studies is the key to successful
empirical research, it is also crucial that any measurement reported is defined in an
operational and unambiguous manner.

5.2.2 Consistent Terminology

A common problem in the software engineering community is the inconsistent use of
terminology and notation. A good example of this is in the use of the terms analysis
and design for OO development. These two terms are used interchangeably. The
empirical studies community is no different in this respect; arguments on the correct
approach to, and use of, measurement theory in empirical research have only started
to abate recently. There have also been questions raised as to the exact meaning of
case-studies vs. experiments, the conditions that must hold for research to be claimed
to be based on either, and hence whether the results are credible.

Another example of misuse of terminology in the OO world regards the term
coupling. Many forms of coupling can arise in OO systems. Establishing what the
different forms of coupling are and which are most harmful, is still an open research
question, although some work has already been done in this area (Briand et al.,
1999c).

5.2.3 Nature of the Research

In many cases, empirical research is undertaken without establishing beforehand
whether the problem is either worth investigating, is too complex at this stage of
knowledge or addresses a different underlying issue. A good example is the study of
program complexity, where the goals and the concepts under study have lacked clarity
(Briand et al., 1996b). There were confusion regarding the practical software
engineering problems to be addressed by the research and regarding the meaning of
complexity. Successful empirical research seems to require a clearly defined problem,
the results of which are useful to the community and that addresses the problem head-
on.

5.3 Research Directions

This section first discusses objectives for further research in the field of empirical
studies of object-oriented software development. Then, a non-exhaustive list of open
research questions matching those research objectives are described.

5.3.1 Objectives

The overall objective of empirical studies of object-oriented technologies and
products is to gather tangible evidence about its properties and gain deeper insights
into the nature of the object-oriented paradigm and its relationship to other
approaches. More precisely, we have identified four interdependent goals.

Identify important productivity and quality factors. The performance and quality of
object-oriented technologies and products may depend on many factors, e.g.,

39

training and support tools. It is a prerequisite for valid empirical research to know
about these factors and control for them. Without such control, research results
can only be questionable in the sense that they may be due to other causes than
the ones hypothesized. Relevant factors may be related to human factors (e.g.,
staff experience and training), development processes (e.g., time pressure and
methodology) and the product itself (e.g., class coupling and depth of inheritance
hierarchy). However, there may also be dependencies between factors (e.g., staff
experience may influence the use of inheritance and therefore the depth of
inheritance hierarchy). A lot of the work on object-oriented measures can be seen
as contributions to this goal (see Section 5.1) as it helps understand what product
characteristics make the software fault-prone or expensive to develop.

Evaluate OO technologies: Alternative OO technologies (e.g., methods and tools)

should be assessed and compared. In order to determine the external validity of
the obtained results, the studies should specify very clearly the context in which
such an evaluation is performed, i.e., characterizing and controlling influential
factors.

Building quality and productivity models. Important factors may be used as

independent (explanatory) variables in quality or productivity models. Quality
and productivity, regardless of the specific way they are measured, are then the
dependent variables of the models. In other words, the relationships between
independent and dependent variables can be explored and modeled. The resulting
models form an essential input to plan, control, or evaluate processes and
products. For example, these models can be used to trigger defect-detection
activities on specific parts of a system, support impact analysis during
maintenance, or devise design guidelines.

Meta-analysis. In the current literature, there are many instances of research

contributions that do not specify clearly the goal of the research. It is often
difficult to draw any useful, tangible conclusion. In addition, the setting of the
study and the characteristics of the data collected are most of the time
superficially described. These problems limit our capability to generalize
conclusions to other settings.

5.3.2 Research Questions

The list of potentially relevant research questions seems endless. We will provide
some of the most important ones below. They are based on our experience and the
discussions that took place during the workshop. We will group the questions
according to the goal structure proposed above.

5.3.2.1 Identify Important Factors

One important part of determining influential factors is to perform proper
measurement. Several useful measurement frameworks have been provided in the
recent past. However, the proposed metrics are mainly related to static aspects of
object-oriented systems. Measurement of dynamic attributes (e.g., coupling at
run-time) has not yet been considered in depth.

Measurement of single classes has been investigated to a great extent (see
references in Section 5.1). But typical systems are not built as a collection of

40

single, independent classes but from a collection of class clusters (e.g., when
using COTS products). Therefore, measuring only single classes is not sufficient;
clusters of classes are also of interest. To date, it is unclear how to transfer the
existing measurement techniques from single classes to class clusters.

The number of measures that have been proposed for object-oriented products is
very large. And yet every conference in this field proposes new ones. At this
point, there needs to be a shift of effort from defining new measures to
investigate their properties and applications on replicated studies. We need to
better understand what these measures are really capturing, whether they are
really different, and whether they are useful indicators of quality or productivity
properties of interest. The need for new measures will then arise from, and be
driven by, the results of such studies, cf. Sections 7.2 and 7.3.

The application domain is usually seen as a major factor determining the
usefulness of measures or the effectiveness of technologies. Application domains
may be defined in different ways, but we mean here to characterize the type of
functionality delivered, the type of development technologies used, the scale of
development, the level of complexity of products, and any other characteristic
that is typically associated with a domain.

5.3.2.2 Evaluation of Object-Oriented Technologies

The Unified Modeling Language (Booch et al., 1998) (UML) is now becoming a
de-facto standard; it is important to investigate its use more thoroughly. It is, for
example, possible that a subset of the notation could be used more efficiently (the
UML being a quite large set of notations at the moment). Also, certain parts of
the formalism may lead to confusion and need more precise semantics.

Different tools are available to support UML-based development. They need to
be evaluated and their prerequisite for successful use must be investigated. Many
studies have shown that the success of the use of CASE tools is driven by
extraneous factors, e.g., training (Bruckhaus et al., 1996).

OO development processes are also proposed such as the Rational Unified
Process (Jacobson et al., 1999). The introduction of such processes should be
carefully monitored since it is likely that they will require some degree of
tailoring in each organization.

5.3.2.3 Building Quality and Productivity Models

Most quality models reported in the literature are based on measurements that can
only be obtained at late stages, e.g., detailed design or coding. Quality models
need to be available earlier in the life cycle in order to, for example, drive
inspections and ensure early built-in quality.

Certain aspects of quality have been subject of very little research. For example,
although testability is recognized as an issue in object-oriented development, it
rarely been addressed in the research community. Different aspects of
maintenance have also been subject of little attention, for example, factors that
affect design and code comprehension (von Mayrhauser et al., 1997), or impact
analysis (Briand et al. 1999¢).

41

e There are studies trying to relate productivity or cost to product characteristics
(Chidamber et al., 1998; Nesi and Querci, 1998). But these studies are scarce and
use information that can only be obtained in the late stages of design. We need
productivity models that can be used earlier on in the course of development, so
that accurate project planning and risk analysis can be performed. This may not
be solved only through new measurement models and empirical studies, but also
by the selection of a development process that documents requirements,
specifications, and design decisions early on.

5.3.2.4 Meta-level issues

e Most studies of OO processes and products are exploratory in nature. In order to
interpret quantitative results coming out of exploratory empirical studies,
qualitative methods should be used. Without such techniques, the conclusions
based on the quantitative data may be invalid (cf. Section 7.1.1). For example, it
is rarely the case that quantitative results are interpreted by performing structured
interviews of the study participants, administering a debriefing questionnaire, or
organizing feedback sessions with the development teams.

e In order to build a body of evidence from a set of empirical studies, results need
to be combined and conclusions need to be generalized. This is the field of meta-
analysis, which is well developed in other fields such as medicine. However, to
allow for meta-analysis, software engineering studies need to be better reported.
Important details are often missing from research papers or case study reports. A
typical example is that, although significance levels of the effect of an
independent variable on the dependent variables are usually reported, the size
effect is almost systematically missing (Pickard et al., 1998).

5.4 Summary

There is no simple answer regarding the use and performance of object-oriented
technologies. Although they are changing the face of software development, they do
not bring the unconditional improvements that were promised or hoped for. From a
more general perspective, the software engineering community seems to have
followed, once again, the traditions of the past: technology adoption is mostly the
result of marketing forces, not scientific evidence.

In addition, many different choices can be made in terms of which processes to
follow, which tool support to employ, or which languages and notations to use. It is
very likely that various OO technologies will show different properties, advantages
and drawbacks. An overview of existing empirical studies aimed at empirically
evaluating such processes was provided in Chapter 4. We need to better understand
them.

Object-oriented code and design measures have been used to empirically assess
how internal characteristics of object-oriented systems affect developer productivity
and product quality. A large amount of work has focused on understanding how the
quality of OO artifacts (e.g., design and code) could be assessed. External quality
attributes, such as maintainability and reliability, can only be measured late in the

42

software life cycle. We therefore need to identify early indicators of such qualities
based on, for example, the structural properties of artifacts. Existing data suggests that
there are important relationships between structural attributes and external quality
indicators. For example, there is some evidence that some forms of coupling have a
negative impact on fault proneness. However, in general there exists insufficient
empirical evidence supporting the usefulness of a vast number of proposed object-
oriented measures.

The goals or hypotheses underlying many of the proposed measures are often not
clearly stated. The measures are often not defined in a fully operational form, making
it difficult to replicate the studies by other researchers. Even among the measures that
have been properly defined and validated empirically, external factors (such as
architectural design, developer experience, tools, software engineering processes,
organizational maturity, etc.) may limit the external validity of the results.
Consequently, work is required to replicate existing studies in different development
environments. This would allow us to better understand how to build quality models
under a variety of circumstances, i.e., understand what relationships between early
indicators and external quality attributes are stable and what makes them vary across
environments.

When the internal product measures are properly defined and implemented, and
after extensive empirical validation against externally observable quality indicators,
the use of the internal product measures may eventually provide a common, validated
measurement framework, which would allow researchers and industry

e to evaluate and improve the efficiency of OO technologies, and
e to evaluate and improve the quality of the resulting OO software products.

43

6 Measuring Changeability

This chapter describes a measurement framework for assessing changeability in
object-oriented software. Some of the material has been published in (Arisholm and
Sjeberg, 1999; Arisholm and Sjeberg, 2000). However, the measurement framework
described in this chapter has matured as a result of the experiences with its use and
validation (Chapter 7). The intended use of the measurement framework is:

e To compare the changeability of alternative implementations of a software
system, s/ and s2.

e To assess changeability decay of a software system, i.e., predicting whether the
changeability of a later version (e.g., v2) of a software system is decayed
compared with an earlier design (e.g., vI) of a software system.

Both of these potential applications of the framework were motivated by the
discussion of evolutionary development processes (Chapter 4). The comparison of
alternative implementations of a software system may be important to choose an
implementation with the most "open ended" design, supporting the frequent changes
during evolutionary development of software systems. The assessment of
changeability decay may, for example, be used as an instrument to determine factors
of changeability decay in evolutionary development, such that preventive guidelines
can be developed.

In both cases, the framework attempts to determine which of the software systems
has better changeability. Thus, in the following descriptions, we will simply refer to
software systems s/ and s2, regardless of whether s2 is a later version or an
alternative implementation of s/. When comparing the changeability of s/ and s2, the
framework predicts the difference in change effort between s/ and s2 for a given set
of changes. This predicted difference in change effort is used as an indicator of the
difference in the changeability of the systems. Thus, the framework attempts to
operationalize the definitions of changeability (Chapter 2).

The remainder of this chapter is organized as follows. Section 6.1 gives a short
overview of the measurement approaches. Sections 6.2, 6.3 and 6.4 describe the three
different approaches to measuring changeability in more detail. Section 6.5 compares
the approaches in terms of accuracy, cost and practical use. Section 6.6 describes
issues and methods for empirical validation. Section 6.7 summarizes and describes
related work.

6.1 Overview of the Measurement Approaches

The proposed framework has three alternative approaches to measuring changeability:
Structural Attribute Measurement (SAM), Change Profile Measurement (CPM) and
Benchmarking. Figure 6.1 depicts an overview of the measurement approaches.
Structural Attribute Measurement (SAM) quantifies the structure of the software
and uses the obtained values in a prediction model, which can be used as an indicator

44

of changeability. The proposed Change Profile Measurement (CPM) combines
structural attribute measures with measures of the actual changes on the software. It
attempts to quantify some dimensions of "complexity" of the actual changes carried
out instead of the "complexity" of the overall system structure. We believe that
change profile measurement is a more accurate indicator of changeability than
structure measurement, because, unlike structure measurement, it accounts for how
changes propagate through the software structure.

Both CPM and SAM only indicate how structural properties affect changeability.
However, in addition to the impact of the structural properties, other aspects (e.g.
inconsistent documentation) may affect changeability. Thus, as an alternative
approach, we propose using benchmarks where change effort can be measured more
directly. Benchmarking can be used to determine the total effort to implement a given
collection of "benchmark changes" on s/ and s2. Implementing the same changes on
sI and s2 provides the necessary baseline that ensures that change efforts can be
compared directly.

Structural Attribute measures Structure of affects

Measurement —p system classes

Change Profile Structure of iffects Change

measures a

Measurement ——P»{ changed classes [—————» Complexity

'ndicatesT laffects
measures

Benchmarking p| Change Effort

aﬁfectsT lindicates

Changeability

Fig. 6.1. Simplified view of relationships between the assessment framework and changeability

6.2 Structural Attribute Measurement (SAM)

It is commonly believed that a deteriorated structure has a significant negative impact
on changeability. There is a growing body of results indicating that measures of
structural attributes such as class size, coupling, cohesion, inheritance depth, etc. can
be reasonably good predictors of development effort and product quality (Li and
Henry, 1993; Chidamber and Kemerer, 1994; Basili ef al., 1996b; Brito ¢ Abreu and
Melo, 1996; Harrison et al., 1998b; Briand et al., 2000). Further details were provided
in Chapter 5. Thus, it is conceivable that such structural attribute measures can be
used as indicators of changeability.

45

6.2.1 Selection of Structural Attributes

Only a few and relatively simple measures that capture some important and intuitive
dimensions of an object-oriented structure have been selected as changeability
indicators: "coupling" quantifies interclass dependencies; "class size" and "method
count” are supposed to indicate the amount of functional responsibility of a class. In
theory, low coupling and small class size may reflect an object-oriented design with
good functional responsibility alignment among classes, which in turn may affect the
changeability of the software system.

It is commonly believed that size is a major contributor of "complexity". Two
dimensions of the overall system size are measured: System Size (SS) and Class
Count (CC). Furthermore, two measures of the class size are measured: Class Size
(CS) and Method Count (MC).

There are several good reasons for using existing structural attribute measures
instead of inventing new ones (Chapter 5). However, the current state-of-the-art
indicates that it is premature to select only one type or dimension of coupling (Briand
et al., 1999b). Consequently, we are investigating several dimensions of coupling, in
particular the static, class level coupling measures defined in (Briand et al., 1997b) (at
present adapted to Java and Visual Basic), as well as dynamic import and export
coupling measures (at present adapted to SmallTalk). Note that the coupling measures
in Table 6.1 (/C and EC) refer to all of these import coupling and export coupling
measures, respectively.

Other structural properties related to, for example, cohesion and inheritance could
also have been considered. However, based on the existing empirical results, size and
coupling seem to be the most consistent predictors of changeability. Class size and
coupling affect fault proneness, productivity, development costs, and change impact
(Li and Henry, 1993; Briand et al., 1997b; Binkley and Schach, 1998; Chidamber et
al., 1998; Briand et al., 1999a; Briand and Wust, 1999; Chaumun et al., 2000). The
impact of cohesion is less understood and it is more difficult to measure precisely
(Briand et al., 1996b; Briand et al., 1998b). Several of the studies reported in Chapter
5 showed that inheritance may be a serious hindrance to aspects related to
changeability, such as fault proneness and maintainability (Daly et al, 1996;
Cartwright and Shepperd, 2000; Harrison et al., 2000). However, the use of
inheritance in many object-oriented systems is limited (Harrison et al., 2000). The
same observations were made in the systems studied in this thesis. Consequently, we
have chosen to focus our investigation on coupling and size. Future extensions of the
framework should clearly also consider cohesion and inheritance.

46

Table 6.1. Summary of Proposed Structural Attribute Measures

Name Definition Description

Class Count CcC Total number of implemented (non-library) classes in the system

Class Size CS(c) Class size is measured as the number of Source Lines Of Code
(SLOC) for the class ¢

System Size

cc
SS ZZCS(C‘.) System size is defined as the sum of the class sizes for the total

i=1 number of implemented (non-library) classes in the system

Method Count MC(c) Method count is defined as the number of implemented methods in a
class c. A formal definition is provided in (Briand et al., 1999c¢)

Import 1C(c) The class level import coupling measures defined in Tables 6.2 and 6.5

Coupling

Export EC(c) The class level export coupling measures defined in Tables 6.3 and 6.5

Coupling

6.2.2 Specification of Static Coupling Measures

The selected static coupling measures distinguishes between many dimensions of
coupling. A precise mathematical definition and justification for these dimensions is
given in (Briand et al., 1997b). Tables 6.2 and 6.3 summarize the measures. The
dimensions and the notation of the measures are given below:

e Type of class: Other classes (Oxxxx), Ancestors (Axxxx) or Descendents (Dxxxx)

e Type of interaction: Method-Method interactions (xMMxx) or Method-Attribute
(xMAxx) interactions

e Direction: Import Coupling (xxxIC) or Export Coupling (xxxEC)

e Stability of server: non-library (xxxIC) versus library (xxxIC L)

The coupling measures count every statically distinct class-level interaction. For
example, if a method X is called twice (in two different places) from class 4 to class
B, the method-method import coupling of class A4 is incremented by 2 and the method-
method export coupling of class B is incremented by 2.

Table 6.2. Summary of static import coupling measures

Measure Name Description

OMMIC(c) Number of static method invocations from a class ¢ to non-library classes not within
the inheritance hierarchy of ¢

OMMIC L(c) Number of static method invocations from a class c to library classes

OMAIC(c) Number of direct accesses by class ¢ to attributes defined in non-library classes not
within the inheritance hierarchy of ¢

OMAIC IL(c) Number of direct accesses by class ¢ to attributes defined in library classes not
within the inheritance hierarchy of ¢

AMMIC(c) Number of static method invocations from a class ¢ to non-library ancestor classes
ofc

AMMIC L(c) Number of static method invocations from a class c to library ancestor classes of ¢

AMAIC(c) Number of direct accesses by class ¢ to attributes defined in non-library ancestor
classes of ¢

AMAIC IL(c) Number of direct accesses by class ¢ to attributes defined in library ancestor classes

of ¢

47

Table 6.3. Summary of static export coupling measures

Measure Name Description

OMMEC(c) Number of static method invocations to a class ¢ from non-library classes not within
the inheritance hierarchy of ¢

OMAEC(c) Number of accesses to attributes defined in class ¢ by non-library classes not within
the inheritance hierarchy of ¢

DMMEC(c) Number of static method invocations to methods implemented in class ¢ from
descendants of ¢

DMAEC(c) Number of accesses to attributes defined in class ¢ by descendants of ¢

The method-attribute (MA) coupling measures are not described in Briand's coupling
framework. In one of the case studies conducted in this thesis, a considerable amount
of coupling due to the direct access to public attributes in other classes (e.g., OMAIC)
and access to protected attributes of ancestor classes (e.g., AMAIC) were found.
Thus, the proposed method-attribute interaction measures extend Briand's framework.

6.2.3 Specification of Dynamic Coupling Measures

The current knowledge regarding dynamic coupling in general, and object-oriented
systems in particular, is very limited. Results from the empirical studies in Chapter 7
motivated the specification and preliminary validation of dynamic coupling in object-
oriented systems. Amongst others, the dynamic coupling measures may be better
predictors of the understandability in object-object oriented software than the static
coupling measures.

The dynamic coupling measures proposed in this section quantify different
dimensions of dynamic collaboration between entities. A convenient way to describe
these dimensions is through the concept of role-models (Reenskaug et al., 1995). A
scenario is a part of the system implementing a given function or task. A role is an
abstract representation of the functional responsibility of an entity (i.e., a class or an
object) in a given scenario. A role-model is a representation of the interaction
between roles in a functional scenario. Thus, an entity can have many roles because it
may participate in many scenarios. Within one scenario, the role-model reflects the
dynamic coupling between the roles along several orthogonal dimensions. These
dimensions are direction, mapping and strength.

6.2.3.1 Direction of Coupling: Import and Export Coupling

One may distinguish between import coupling and export coupling. Dynamic import
coupling counts the messages sent from a role (in which the role acts as a client)
whereas dynamic export coupling counts the messages received (in which the role
acts as a server). For example, if role 4 sends a message to role B, then the message
contributes to import coupling for role 4 and export coupling for role B.

6.2.3.2 Mapping: Object-level and Class-level Coupling

Roles are only an abstract representation of the responsibilities of the entities
collaborating to implement a given functional scenario. Roles are ultimately mapped
to object-oriented code. Messages may be "understood" through methods defined
within an object's class itself as well as through reference to methods inherited from
ancestor classes. Thus, a role is mapped to only one object but (potentially) many

48

classes: a distinction is made between the objects sending and receiving the messages
and the classes that actually implement the methods.

Dynamic, object-level coupling quantifies the extent to which messages are sent
and received between the objects in the system. Dynamic, class-level coupling
quantifies the extent of method interactions between the classes implementing the
methods of the caller object and the receiver object. Due to inheritance, the class of
the object sending or receiving a message may be different from the class
implementing the corresponding method. For example, let object @ be an instance of
class 4, which is inherited from ancestor 4". Let 4’ implement the method mA’. Let
object b be an instance of class B, which is inherited from ancestor B’ Let B’
implement the method mB’. If object a sends the message (i.e., calls the method) mB’
to object b, the message may have been sent from the method source mA’
implemented in class A' and processed by a method target mB’ implemented in class
B’ Thus, in this example, the message passing caused two types of coupling: object-
level coupling between class 4 and class B, and class-level coupling between class 4’
and B'.

6.2.3.3 Strength of Coupling

The strength of coupling quantifies the amount of association between the roles. The
amount of association between roles may be quantified in at least three levels of
granularity:

Number of dynamic messages. Within a run-time session, it is possible to count the
total number of times each message is sent from one role to another to implement
a certain functional scenario. In the scenario depicted in Figure 6.2, 4 sends a
total of four messages {mIB, mIB, mIC, m2B} and receives one message {mlA}.
Thus, at the dynamic message granularity level, 4 has import coupling 4 and
export coupling 1 (Table 6.4).

Number of method invocations. An alternative is to count the number of distinct
method invocations between two roles. In Figure 6.2, 4 sends four messages
using three different methods {miB, mIC, m2B}. Thus, at the method invocation
granularity level, 4 has import coupling 3 (Table 6.4).

Number of associations. Two roles are associated if they exchange one or more
messages to implement the given scenario. In Figure 6.2, 4 sends messages to B
and C and receives messages from C. Thus, at the association granularity level, 4
has import coupling 2 and export coupling 1 (Table 6.4).

Table 6.4. Summary of coupling measures from the example scenario in Figure 6.2

Role A Role B Role C
Import Export Import Export Import Export
Dynamic Messages 4 1 1 3 1 2
Method Invocations 3 1 1 2 1 1
Associations 2 1 1 1 1 1

49

[>
|
lo

m1B
m1B
m1C
m1A
m1C
m2B

Fig. 6.2. Example message interaction diagram between roles 4, B and C

6.2.3.4 Resulting Coupling Measures

In the preceding sections, three orthogonal dimensions of dynamic coupling were

described:

e Direction of coupling: Import Coupling (/C_xx) versus export coupling (EC xx)

e Mapping: Object-level (xx_Ox) versus class-level (xx_Cx) coupling

e Strength of coupling: Number of dynamic messages (xx_xD) versus number of
distinct method invocations (xx xM) versus number of distinct associations

(xx_xA)

These dimensions define 12 different dynamic coupling measures, summarized in
Table 6.5. A procedure for collecting the dynamic coupling measures is described in

Section 7.3.

Table 6.5. Summary of the dynamic coupling measures

Direction Mapping Strength Name
Import Coupling Object-level Number of Dynamic messages IC_OD
Number of Method invocations IC_ OM
Number of Associations IC_OA
Class-level Number of Dynamic messages IC_CD
Number of Method invocations IC_ CM
Number of Associations IC_ CA
Export Coupling Object-level Number of Dynamic messages EC OD
Number of Method invocations EC_ OM
Number of Associations EC OA
Class-level Number of Dynamic messages EC CD
Number of Method invocations EC CM
Number of Associations EC CA

50

6.3 Change Profile Measurement (CPM)

The proposed change profile measurement is a combination of structure measurement
and measures of the actual changes carried out during a development project. It
measures properties of the change itself, as well as structural attributes of those parts
of a software system that are affected by that change. Thus, it attempts to measure
some dimensions of "complexityﬂ' of the actual changes carried out instead of the
"complexity" of the overall system structure. The hypotheses underlying this
approach are:

HI1. Changes affecting large classes or classes with high coupling result in higher
change complexity (which in turn affects the change effort) than changes
affecting small classes or classes with low coupling.

H2. Classes that are not changed contribute /ess to the change complexity than classes
that are changed.

H3. Not all classes are changed the same amount. In particular, there may be a trend
towards some classes becoming more change prone whereas other classes
become less change prone. An example is the development of a combination of
classes that eventually become a "framework" of stable classes. Thus, although
the overall structural attributes of the software (as reflected by the SAM
approach) may, for example, remain more or less constant, there may still be a
positive or negative trend in changeability.

For hypothesis HI, the studies outlined in Chapter 5 described many instances in
which class-level structural attributes, such as coupling and size, affected fault
proneness, ripple effects, and development effort. Thus, it is plausible that the
structural attributes of classes being changed also affect the change effort. Hypotheses
H2 and H3 state that the CPM approach is a better way of measuring the impact of
structural attributes on change complexity at the system level than the SAM approach.
However, it is important to note that the SAM approach may also be useful: A2 does
not rule out that classes that are not changed may also contribute to change
complexity. A quite obvious example is that changing one class with coupling=X and
size=Y in a system involving 100 classes may still be more difficult than changing a
class with the same level of coupling (X) and size (Y) in a system with only 10
classes. Thus, assuming that HI-H3 are valid, SAM and CPM are complementary:
the combined set of SAM and CPM measures may provide a better indication of the
changeability of object-oriented software than when using only one approach, i.c.,
SAM or CPM.

Table 6.6 describes the proposed measures in some detail. The main idea is to
consider how changes propagate through the various classes in the software structure.
For each class affected by a change, the proportion of work carried out on that class is
recorded. This measurement is called the "change profile" (CP). The structural
attributes "class size" (CS), "import coupling" (IC), "export coupling" (EC) and
"method count" (MC) for those classes affected by the change are also measured. By

2 According to (Fenton, 1992), "It is counter-productive to insist on equating measures of
specific (and often important) structural attributes with the poorly understood attribute of
complexity".

51

using the class level change profile as a weighting factor on the structural attribute
measures, we obtain the "change profile measures" CSCP, MCCP, ICCP and ECCP
for a given change.

ChangeSpan =2

CP(A)=0.2 CSCP = CS(A)*CP(A) + CS(D)*CP(D) = 100*0.2 + 200*0.8 = 180
CS(A) =100 e MCCP = MC(A)*CP(A) + MC(D)*CP(D) = 20*0.2 + 10%0.8 = 12
MC(A) =20 ICCP = IC(A)*CP(A) + IC(D)*CP(D) = 0*0.2 +2*0.8=1.6
IC(A)=0 / ECCP = EC(A)*CP(A) + EC(D)*CP(D) = 2*0.2 + 1*0.8 =1.2

EC(A)=2 e

CP(D)=0.8
CS(D)=200
MC(D) = 10
IC(D) =2
EC(D)=1

Fig. 6.3. Change profile measures for a given change affecting classes 4 and D.

Figure 6.3 depicts a hypothetical change affecting classes 4 and D and the resulting
change complexity measures. In this figure, the nodes represent classes and the edges
represent static method invocations from a client class to a server class. Example
values for the structural attribute measures (CS, MC, IC and EC) and the change
profile (CP) for class 4 and D are provided together with the resulting change
complexity measures CSCP, ICCP, ECCP and MCCP.

Table 6.6. Summary of Proposed Change Profile Measures

Name Definition Description
SLOCAdd(c) + SLOCDel(c) The proportion of the total amount of
Change Profile CP(e) =47 changes (in SLOC added and deleted)

on class ¢ for a given change to the
ZSLOCAdd(Ci)+ SLOCDel(¢;) ofiware system. CC is the Class Count
i=l measure defined in Table 6.1

Change Span ChangeSpan Number of classes changed for a given
change to the software system

cc Class size weighted by the change
Class Size CSCP = ZCS(C[)X CP(c;) profile for a given change to the
Change Profile i=l software system. CS is the Class Size

measure defined in Table 6.1

cc Method count weighted by the change
Method Count MCCP = ZMC ()X CP(c,) profile for a given change to the
Change Profile i=1 software system. MC is the Method

Count measure defined in Table 6.1

cc Import coupling weighted by the

Import Coupling ~ [CCP = ZI C(c)xCP(c;) change profile for a given change to the

Change Profile i=l software system. IC is any of the
Import Coupling measures outlined in
Tables 6.2 or 6.5

cc Export coupling weighted by the
Export Coupling ~ ECCP = ZEC(Ci) xCP(c,) change profile for a given change to the
Change Profile =l software system. EC is any of the
Export Coupling measures outlined in

Tables 6.3 or 6.5

52

6.4 Benchmarking

An intuitively appealing approach for the assessment of changeability is
benchmarking. A given collection of "representative changes" ¢ are implemented on
different versions of the software, s/ and s2. The resulting change efforts, e/ and e2,
respectively, are recorded. Hence, our operational definition of changeability is
reflected in this approach.

Some related work exists where benchmarking was used to evaluate the efficiency
of different development tools by implementing the same changes with different tools
(Jorgensen et al., 1995; Sjeberg et al., 1996). The effort required to implement the
small, generic changes using the different tools was then used as an indicator of tool
efficiency. In the approach proposed in this paper, the changes, the tools, the
developers and the software system are fixed; only the software version varies.

6.4.1.1 Design of a Benchmarking Procedure
Performing a benchmark requires a specific benchmarking procedure to ensure
accurate and reliable results. In our case, one must particularly deal with questions
related to the learning curve and the skill level of the individuals who perform the
benchmark.

There are at least two aspects of learning that need to be considered:

e Learning the system — if the versions of the software system have many
similarities, most of the development team's initial system comprehension effort
will be spent on the version first subjected to the benchmark assessment.

e Learning the changes — if a developer implements the same change on two
versions of the software system, it is likely that the developer will be more
efficient during implementation of the change on the second version.

To deal with this situation, we suggest an experiment where the developer implements
the same change only once, while controlling for the differences in individual skill
levels, as follows:

Step 1 (skill level assessment). The developers implement a small change on a fictive
software system. The effort to implement the change is recorded for each
developer.

Step 2 (division in groups)l] The developers are divided in two groups (g/, g2), such
that the mean and variance of the change effort data obtained in Step 1 of each
group are approximately equal.

Step 3 (benchmarking). All members of group g/ implement the benchmark on
version s/ of the software system. All members of g2 implement the benchmark
on version s2. The individual effort required by each developer to implement the
benchmark is recorded.

3 Tt is also possible to use randomization without blocking. Then, the skill level assessment can
be used to adjust for differences affer the experiment has been conducted. An example of this
alternative approach is described in Section 7.2.

53

Step 4 (statistical analysis). Version s/ has better changeability than version s2 if the
mean change effort for group g/ is significantly smaller than the mean change
effort for group g2. Assuming a normal distribution, this test can be performed
using a two-sample Student's T-test. Otherwise, a non-parametric test such as the
mean rank Kruskal-Wallis test can be used.

However, other, simpler experimental designs may be appropriate if one can ignore
the learning effect — for example, when the time span between performing the
benchmark is large, or when the software systems are sufficiently different. In those
cases, each individual developer could implement the same benchmark on versions s/
and s2. This design would eliminate the need for the skill level assessment (Step 1),
and a paired Student's T-test or a paired Wilcoxon test could be used where each
observation is the difference in individual effort, d = e(s2) — e(s1), for each developer.

Although the main dependent variable is the difference in change effort, other
dependent variables may also be used to provide a more comprehensive set of
changeability indicators. For example, the SAM measures may be used in conjunction
with the benchmarking to assess the impact on structural properties by implementing
the benchmark tasks (i.e., structural stability). Other examples are provided in Section
7.2.9.

6.4.1.2 Composition of Benchmarks
The benchmark results are only valid for the particular collection of changes given by
the benchmark. Thus, it is important that the changes prescribed by the benchmark
represent typical changes performed on the software product. If benchmarking is
performed on the same system from which actual change statistics have been
collected, we can use this change statistics to compose a dedicated benchmark that is
representative of the actual changes performed on that system. It is obviously a
greater, long term, challenge to compose more general benchmarks that are
representative of changes to different software systems in different application
domains.

As a means to collect empirical data to develop representative benchmarks for a
specific system, a change data collection process has been developed. It ensures that
the developers

e classify all changes and assign a change ID,

e tag each file-level check-in with the correct change ID, and

e report process data (change effort, subjective change complexity, number of
discovered faults, etc.) per change.

A change logger tool has been implemented to support this process (Figure 6.4). Note
that the resulting data may also be used as a source of actual change effort data used
to build prediction models using SAM and CPM. Further details of this change data
collection process is provided in Section 7.1.2.

54

@, Genova Change Log [_ O]

File Edit Yiew Insert Format Records Tools ‘Window Help |
- HESRY 2@ Q@83 %a (4% B
Bohngetog —— — mE|

F| —General Change Description

Change 1D

|

Opened time Mow | I E/21/99 10:44:33 Ak
Responzible Developer [email initials] EAR Clozed time Mow | I B/30/99 7:44: 35 AM

Change Description Add undo-functionality for the "Edit" command

Previouz Change 1D [if fault correction]

— Change Classification [when in doubt, refer to field help at bottom of the screen])

Correction of requirement Fault (i Improvved performance r
Corection of design Fault (i Presventive restructuring T3
Correction of coding fault r Adaptations for reuse r
Implementation of existing "user” requirement r Adaptation to external libraries r
Implementation of new "uzer'* requirement (i Adaptations to changed development tools r
Implementation of changed "uzer” requirement v Other r
— Effort Report [hours] — Subjective Estimates
Preparation E xperienced Experienced Fiezulting
. Task Size Tazk Complexity Changeability
FRElED L0 BETTER
; MEDILIRM MEDILIM UNCHANGED
D
esign LARGE
Coding

Integration/deplayment

— List unexpected problems

| -

Spstem test

Wwiite user documentation

Other:

JULLLLL

Mumber of faults during system test

Far an explanation of figlds, click on field and refer to figld kelp in the status bar at the bottom of the screen.

Record: 14 4 || 1 > | vi]e#|of 2 i
|Pr0\-'ide a general description of any unexpected problems encountered during the impleme G

Fig. 6.4. The user interface of the change logger tool, developed by this author

55

6.5 Relationships between Changeability Measures

This section describes the relationships among the three approaches (structural
attribute measurement (SAM), change profile measurement (CPM) and
benchmarking) regarding the measurement of changeability. These relationships are
explained according to assessment accuracy (Section 6.5.1), assessment cost (Section
6.5.2) and practical use (Section 6.5.3). Validation issues are described in detail in
Section 6.6.

6.5.1 Accuracy of the Measurement Approaches

Benchmarking is the most direct way to assess changeability. Unlike SAM and CPM,
benchmarking does not rely on an underlying theory relating changeability to
structural attributes of software; it measures change effort directly. Therefore, it may
account for other factors affecting the changeability of software, such as inconsistent
or outdated documentation. One requirement for accurate benchmarking results is that
benchmark changes are representative of typical changes. Otherwise, the results may
be biased. Selecting such changes is not trivial. However, we believe that the data
collection procedure described in Section 6.4.1.2 will provide important insight for
the composition of benchmarks.

Our hypothesis is that structure measurement can be used to indicate changeability.
A common belief is that the structure affects the changeability of software. SAM is
intended to measure the structure. Increasing values of the structural attribute
measures are thus intended to be indicators of changeability decay. The accuracy of
these indicators depends on to what extent structural deterioration, as measured by the
structural attribute measures, actually affects changeability.

Change complexity measurement is intended to measure the complexity of
implementing changes to the software, where "complexity" is reflected by the
structural attributes of the parts of the system actually being affected by a given
change. We believe that change complexity measurement may be a more accurate
indicator of changeability than structure measurement, because, unlike structure
measurement, it accounts for how changes propagate through the software structure.
This hypothesis must of course be tested empirically.

6.5.2 Cost of the Measurement Approaches

Benchmarking is by far the most expensive approach, as it requires implementation of
changes by developers. Change complexity measurement and structure measurement
are inexpensive in comparison, since the measures can be collected by semi-automatic
data-collection tools if the software system has been subject to version control. Thus,
from a cost perspective, structure measurement and change complexity measurement
are superior to benchmarking.

6.5.3 Practical Use
Benchmarking does not provide much insight into the cause of differences in
changeability. Increases in benchmark change effort may be due to, for example,

56

inconsistent or outdated documentation, or a deteriorated structure. Validating
structure measurement and change complexity measurement using benchmarking
results may provide further insight into the cause of the observed difference in
benchmark change effort. Thus, the approaches can be combined to give
complementary indicators of changeability. For example, in Section 7.2,
benchmarking is used to assess change effort, whereas SAM is used to assess the
structural stability of the designs by implementing the change tasks. Using
benchmarking in conjunction with CPM may be used to assess the extent to which the
structural attributes of the changed classes explain the observed differences in
benchmark change effort.

6.6 Validation Issues

Before the measurement framework can be used to assess changeability, it needs to be
validated empirically. There are two important aspects of such a validation:

e A qualitative evaluation of the practicality of the proposed methods (Section
6.6.1).

e A quantitative validation of the accuracy of the measurement approaches. There
are two aspects of this validation. As a first step, the ability of the prediction
models to explain the variation in change effort needs to be validated (Sections
6.6.2 and 6.6.3). Furthermore, there is a need to evaluate how good the
predictions really are. Our long-term goal is to conduct field experiments in
industry, where the predictions using various approaches are compared with
actual project change data over long periods of time (Chapter 8).

6.6.1 Evaluation of Practical Issues

The evaluation of the practical issues regarding the proposed framework is qualitative
in nature. For example, how easy is it to collect actual logical change data from real
development projects? What are the problems involved in building prediction
models? What types of statistical techniques are appropriate? When are the different
approaches applicable? How difficult or costly are the different approaches when
applying them in practice? The research methodology used for such an evaluation is
rather ad hoc, based on the subjective experience and observations of using the
framework. Many such practical issues are described in conjunction with the
empirical studies (Chapter 7), and summarized in Chapter 8.

6.6.2 Building Prediction Models Using SAM and CPM

The first step in the validation of the accuracy of the SAM and CPM approaches can
be performed by building, for example, regression models (Draper and Smith, 1981;
Bolviken and Skovlund, 1994; Christensen, 1996). Alternative modeling techniques,
such as pattern recognition, may be more appropriate in some circumstances (Briand
et al., 1992; Jorgensen, 1995), but this has not been considered in this thesis. To
validate the structural attribute measures with regression, the response variable may
be the differences in change effort. The structural attribute measures (Table 6.1) are
used (either individually or in combination) as explanatory variables. For example,

57

using the differences in measurement values between s/ and s2 as explanatory
variables one obtains the following candidate regression model:

Effortg, , — Efforts; , = b0 + bl *(ChangeSize,, ,— ChangeSizeg; ,) + b2*(CCy, — CCyy)
+ b3*(SS;,—-SS,;) + b4*(AvgCS,; — AvgCSy;) + b5 *(AvgMC; —
AvgMCy;) + b6*(AvgICy; — AvgICyy)

The subscript b on the Effort and ChangeSize measures refers to the change tasks used
in the model validation. The corresponding example regression model for validation
of change profile measures (Table 6.6) is:

Effortg, , — Efforts; , = b0 + bl *(ChangeSize;;— ChangeSizey;) + b2*(ChangeSpany, ,
— ChangeSpany;) + b3*(CSCPy,,— CSCPy;) + b4*(MCCPy;), —
MCCPy;) + bS*(ICCPyy, — ICCPy;) + b6*(ECCPy;), —
ECCPy;,)

Both models include the difference in ChangeSize (total SLOC added and deleted) as
a candidate explanatory variable. The SAM and CPM measures are included to
determine the extent to which the measures explain additional variance in change
effort, beyond what can be explained by ChangeSize. Note that the coupling measures
can be any number of the ones described in Section 6.2. Interaction terms, higher
order terms or other non-linear relationships are not considered at present; the
consequential increase in the complexity of the models make interpretation difficult
and increases the chance of overfitting the models.

The validation of the SAM and CPM measures can use either actual changes from
real projects or benchmark changes as the source of the change effort data for
building the regression models. Using benchmark changes has the advantage that the
changes are identical (or very similar) on the two designs being compared.
Furthermore, confounding factors such as differences in individual skill level can be
controlled. When no actual change data is available, e.g., for the evaluation of initial
design alternatives, the only option is to use benchmarks. However, using the
benchmarks to validate SAM and CPM also assumes that the tasks are representative,
which may be difficult if no change history is available. By using actual changes, the
changes are certainly representative, but confounding factors may influence the
results of the validation attempts. Thus, using actual change effort data as the source
of the validation attempts will require a careful analysis of the development project in
an attempt to identify factors that may have affected (and somehow biased) the results
of the validation. An example is provided in Section 7.1.

By evaluating the explanatory power of the regression models (using, for example,
cross-validated R-squared) in combination with the p-values for each regression
coefficient (e.g., b1, b2, b3), one can determine to what extent each of the explanatory
variables can explain the variance in the difference in change effort. Unfortunately,
interpreting software engineering data with regression is far from trivial. The
following subsections attempt to describe some of the most relevant issues of the
regression analysis that should be considered. Further details can be found in many
books discussing regression, cf. (Christensen, 1996).

58

6.6.2.1 Stepwise Multiple Linear Regression
The models in the previous section represent the complete regression model where all
measures are used as explanatory variables. In practice, however, some measures may
be strongly correlated with each other. Other measures may be uncorrelated with
change effort. Thus, variable selection procedures such as stepwise regression can be
used to determine a subset of the measures that

e explains a large portion of the variance in the difference in change effort, and
e ensures that the coefficients of each variable are significantly different from zero.

Thus, stepwise regression can be a valuable technique for data analysis, particularly in
the early stages of building a model. At the same time, this procedure presents certain
dangers:

e Since the procedures automatically “snoop” through many models, the model
selected may fit the data “too well.” That is, the procedure can look at many
variables and select those that, by pure chance, happen to fit well. The stepwise
regression procedure is actually testing a large number of hypotheses (depending
on the number of candidate variable).

e Stepwise regression often works very well but may not select the model with the
highest R-squared value.

e Automatic procedures cannot take into account special knowledge the analyst
may have about the data. Therefore, the model selected may not be the best from
a practical point of view.

For these reasons, stepwise regression should be used with caution. In particular, to
account for the multiplicity of tests, it is important to ensure that the p-values of each
coefficient are very low before they are included in the final model. This reduces the
risk of committing type I errors (i.e., falsely rejecting the null-hypotheses). For
example, with 10 candidate variables, one may consider using the Bonferroni
adjustment, and select alpha/I0 as an acceptable level of significance. With the
commonly used alpha=0.05, the acceptable level of significance could be
alpha/10=0.005. If many variables are correlated, the individual hypotheses tests are
also correlated, in which case the less conservative Holm's multiple test procedure
(Holm, 1979) may be used.

6.6.2.2 Principal Component Analysis

The mathematical formulation of multiple linear regression assumes that explanatory
variables are independent. Thus, preferably, only one variable among variables that
are either strongly correlated or can be expressed as linear combinations of other
explanatory variables should be included in the final model. One way to determine
these subsets of variables is through Principal Component Analysis (PCA).

PCA can be used to analyze the covariance structure of the measures. Based on the
PCA, the number of underlying dimensions of the data can be quantified. The number
of principal components is usually decided based on the amount of variance explained
by each component, using the rule of thumb of eigenvalues (variances) larger than
1.0. To ease the interpretation of the PCA, the Varimax rotation is often used. Based

59

on the resulting principal components, one may choose to select only one variable
from each component as a candidate for the regression model. Such an approach will
ease the interpretation of the confidence intervals and the p-values of the coefficients.

6.6.2.3 Cross-Validation

The cross-validated R-squared should be used to evaluate the prediction ability of the
model. The usual multiple regression estimate of R-squared increases whenever more
parameters are added to the prediction equation. This problem does not occur with the
cross-validated R-squared. To calculate the cross-validated estimate of R-squared, the
data is split in / subsets. For i = 1, 2, ..., I, the least squares fit and the mean are
calculated for all cases but the i-th subset. The regression model and the mean are
each used to predict the observations in the i-th subset. Note that it is possible for the
cross-validated estimate of R-squared to be negative, especially when overfitting,
because the regression model is competing with the mean. This indicates that the
mean is a better predictor than the regression. For the studies conducted in this thesis,
the cross-validated R-Squared was calculated in BLSS, using the number of subsets /
equal to the number of data-points 7.

6.6.2.4 Checking the Model Assumptions
Regression is a quite robust statistical technique, and small deviations from the
underlying assumptions are not critical (Belviken and Skovlund, 1994). However,
gross violations from the assumptions should be detected.

For linear regression, the hypothesis tests on the coefficients are based on a number
of conditions:

The expected error mean must be zero
Homogeneous error variance

Uncorrelated errors (e.g., no serial correlation)
Normally distributed errors

For the resulting models, these assumptions should be checked. One way of
performing such model diagnostic is through plots of the residual errors. Examples
are provided in Sections 7.1 and 7.3.

6.6.3 Validation of the Accuracy of Benchmarking
The benchmarking technique also needs to be validated. There are several aspects of
this validation:

e [tinvolves an assessment of threats to validity caused by the experimental design.
For example, does the group assignment affect the results?

e [t involves an assessment of threats to validity caused by the experimental
material. For example, how representative are the selected change tasks?

Such investigation would ideally involve meta-level experiments where
benchmarking is evaluated using different experiment designs, varying the number of
subjects, the way subjects are assigned to groups, and the benchmark composition
(e.g., the number, type and size of benchmark change tasks).

60

6.7 Summary and Related Work

This chapter proposed a comprehensive measurement framework describing how
object-oriented design measures, change data collection and analysis, measure
validation and experimental designs can be combined and used to assess
changeability. Furthermore, the concept of changeability was defined in an
operational form. CPM and the required change data collection process have, to our
best knowledge, not been described before. Furthermore, very little is known about
dynamic coupling in general. The empirical validation in Section 7.3 shows that
dynamic coupling may be a very useful concept for changeability assessment.

As with any measurement framework, a fundamental requirement for a useful
assessment framework is its empirical validity. Many aspects of the framework have
been validated in terms of practical aspects and accuracy (Sections 7.1, 7.2 and 7.3).
However, much more work is required before one can claim to know exactly what is
the most accurate, practical and cost effective way to measure changeability.

The next subsections describe work that is related to the proposed framework
described in this chapter.

6.7.1 Object-Oriented Metrics

Within the object-oriented "metrics" community, there is a large amount of work that
has proposed object-oriented measures and empirically validated them against
external quality characteristics, such as fault proneness or development effort
(Chapter 5). Many of these studies are certainly related to different aspects of the
framework presented in this chapter. In particular, the SAM approach is based on
existing results and many existing measures. As discussed in Chapter 5, there are
many reasons to reuse and extend existing measures and results.

6.7.2 SAAM

An alternative approach is the scenario-based methods, such as Software Architecture
Analysis Method, SAAM (Kazman et al., 1996). These methods are intended
primarily for supporting architecture design decisions during the early phases of
development. SAAM consists of four major steps: (1) identify scenarios, (2) describe
candidate architectures, (3) evaluate scenarios and (4) carry out an overall evaluation.
SAAM is a systematic qualitative method where experts play a central role. An
important aspect of the method is the scenario elicitation, aimed to identify those
changes that may affect the system. Based on the identified scenarios, the effects of
the change scenarios are analyzed. Several aspects of SAAM could probably be
integrated into the framework described in this chapter. For example, when change
history is not available, the composition of benchmarks could be based on a scenario
elicitation process.

6.7.3 COMPARE

A combination of SAAM and quantitative assessment of the architecture was
proposed in (Briand et al., 1998a). A recent elaboration of this approach proposes the
Change Difficulty Index (CDI), which combines scenario elicitation with structural
attribute measures (Briand and Wust, 2000). The specification of the CDI measures

61

corresponds to the CPM approach described in this chapter. The main difference is
that while CDI uses impact analysis techniques based on likely future change
scenarios to determine the amount of change to each class, CPM uses the change
history as a prediction of future changes. Clearly, the approaches are complementary
and could probably be combined to produce better predictions.

6.7.4 TAC++

TAC++ is a method and a tool for the assessment and control of object-oriented
projects (Fioravanti and Nesi, 2000). One interesting aspect of TAC++ is the use of
histograms and other plots to assess the product at various stages of development. A
problem with the SAM approach is the need to compute summary measures at the
system-level for the structural attribute measures, by calculating totals or averages.
Consequently, a lot of the underlying variability at the class-level is lost. Such
information would be available if histograms as in TAC++ could be utilized in the
prediction models. One idea could be to use both the average and median values in
the prediction models proposed in this chapter. Thus, for each measure, two numbers
would be calculated, to capture more of the class-level data distribution.

62

7 Empirical Studies of Changeability

This chapter describes the empirical studies that have been conducted. The goal of
these studies was

e to validate the measurement framework described in Chapter 6, and
e to evaluate evolutionary development projects, focusing on changeability.

The studies consist of case studies and experiments. The data collection and analyses
are both quantitative and qualitative.

Section 7.1 describes the results of two case studies. The primary goal of these
studies was to validate the SAM and CPM measures proposed in Chapter 6. However,
a comprehensive evaluation of the evolutionary development processes used in the
studied projects is also provided. This evaluation suggests interesting improvements
of evolutionary development processes, focusing on improving the changeability of
the software. Furthermore, the detailed evaluations of the processes are important to
understand the results of the SAM/CPM measure validation.

Section 7.2 describes the results of using benchmarking to assess the changeability
of a given responsibility-driven design versus an alternative control-oriented
("mainframe") design. According to Coad and Yourdon's OO design quality
principles (Coad and Yourdon, 1991a; Coad and Yourdon, 1991b), the responsibility-
driven design represents a "good" design, with low coupling and small classes. The
mainframe design represents a "bad" design, with higher coupling and large classes.
To investigate which of these designs have better changeability, we conducted two
controlled experiments — a pilot-experiment and a main experiment.

Section 7.3 presents initial ideas and preliminary results on using dynamic
coupling measures to assess the effort to understand and implement changes to a
scenario. A preliminary empirical validation is provided. The coupling measures are
used to build reasonably accurate models for predicting hot-spots and ripple effects
within a given functional scenario.

Section 7.4 describes the results from an interview with four developers. The
purpose of this interview was to gain insights into which factors experienced
developers consider important to reduce change effort in object-oriented software.
The results may be used as an empirical basis for formulating theories from which
hypotheses can be tested more formally in future studies, for example through case
studies and controlled experiments.

Section 7.5 describes the results from a case study in which evolutionary
development was used to develop a telecommunications support system. The study
provides insight into the role of end-user participation, documentation and technology
risks in evolutionary development projects. These aspects of evolutionary
development may influence the changeability of the developed software.

63

7.1 Changeability in Evolutionary Development Projects

This section describes case studies involving two evolutionary development projects.
The goal of the case studies was two-fold:

e One goal was to identify opportunities for process improvements in evolutionary
development projects, focusing on improving changeability. To assess the
evolutionary development projects, the distribution of effort for various process
activities was studied in conjunction with an assessment of rework and
distribution of changes.

e Another goal was to validate the Structural Attribute Measures (SAM) and the
Change Profile Measures (CPM), proposed in Chapter 6. To validate the
measures, SAM and CPM measures were calculated for (1) weekly changes in the
Braathens case study, and (2) logical changes in the Genera case study. These
measures were the independent variables in addition to the size of each change
(in SLOC added or deleted). The dependent variable was change effort, measured
in person-hours for each change.

Results from the development project for the Norwegian airline Braathens are
reported in Section 7.1.1. Results from the Genera case study are reported in Section
7.1.2. Section 7.1.3 summarizes. The results of the Braathens case study have been
published in (Arisholm and Sjeberg, 1999; Arisholm et al.,, 1999b; Arisholm and
Sjeberg, 2000). The Genera case study incorporates many methodological
improvements resulting from the experiences from the Braathens case study.

7.1.1 The Braathens Case Study

7.1.1.1 System under Study

The Braathens case study used an evolutionary development process called the
Genova Process, which is quite similar to the Rational Unified Process (Jacobson et
al., 1999). A detailed description of the process can be found in (Arisholm et al.,
1998; Arisholm et al., 1999b). The development team consisted of four developers
and one experienced project manager. The experience level of the developers varied
from 1 year to 5 years. The system being studied implemented an automated customer
service for Braathens frequent flyer program, "Wings". The system is a three-tier
application consisting of Java/HTML clients, a middle-tier component for transaction
processing and business logic, and a mainframe database server. The middle-tier
module was implemented as classes in Visual Basic 6 and bundled in ActiveX
components running on a Microsoft Transaction Server. Data from this middle-tier
module was collected based on weekly versions of the software through a 22-week
period. After week 22, the system became operational. Three increments were
delivered during these 22 weeks, at week 6, 11 and 22, respectively. Weekly effort
data in person-hours was available for different activities (analysis, design, code, test
and administration) to implement the module and provided the effort data reported in
this section.

64

7.1.1.2 Data Collection

The process was instrumented with a small number of process and product measures.
Weekly effort data (in person-hours) for the various activities was recorded by each
team member. Coding effort data was reported individually for each module of the
system, and was used as the dependent variable in the validation of the collected SAM
and CPM measures. Using the configuration management tool and a code parser for
Visual Basic, a few SAM and CPM measures were collected from the middle-tier
module based on weekly versions of the software throughout the 22-week period. The
internal product measures consisted of system size (SS), class count (CC), class size in
SLOC (CS), number of methods per class (MC) and method coupling between
classes. We implemented a parser to collect the OMMIC import coupling and the
OMMEC export coupling measures described in Chapter 6.

Unfortunately, we encountered a problem with the collection of the coupling
measures for Visual Basic. In this particular project, many variables were declared as
a generic base class "object", and the class constructors were implemented in a way
that the actual type of the variable could not be determined from static code parsing.
This means that the target of the method could not be determined accurately.
Consequently, the OMMEC export coupling measure collected from this module is
inaccurate. Hence, data for export coupling is not reported. For the same reason, it is
impossible to distinguish between coupling to library and non-library classes. Thus,
the import coupling measure /C really represents message import coupling to non-
library and library classes, OMMIC + OMMIC L. This limits the scope of the
validation of SAM and CPM. Fortunately, the Genera case study provided a better
opportunity to validate a much larger portion of the measures proposed in Chapter 6.

7.1.1.3 Evaluation of Evolutionary Development

The summary data in Table 7.1 indicates that, during the development of the middle-
tier module, there was a significant amount of rework. This rework is indicated by the
ratio between net productivity and gross productivity for implementation of this
module. For example, during the five weeks of the second increment, 3191 source
lines of code (SLOC) were added or deleted from the module but the module grew by
only 1128 SLOC. Only about 35% of the total amount of coding on the module
contributed to increased module size (yielding a rework ratio of 65% for the second
increment).

Table 7.1. Summary process data for the middle-tier module

Process/product measure Incr.1 Incr.2 Incr.3
(week 1-6) (week 7-11) (week 12-22)
Coding effort per incr. (person-hours) 149 209 517
Changes per incr. (SLOC added + deleted) 1120 3191 5203
Gross productivity (SLOC added + deleted per hour) 7.5 153 10.1
Net productivity (SLOC growth per hour) 4.6 5.4 4.8
Rework ratio (% of effort not contributing to code growth) 39% 65% 52%
System size (SLOC) 687 1815 4307

65

Interviews with the development team indicate that the amount of rework
experienced on the development project may in part be explained by uncertainties
caused by the new technology used in the project. In particular, there was a mismatch
between the promised and actual quality of certain development tools and libraries. A
significant amount of coding effort was spent on trying alternative "work-around"
solutions to compensate for flaws in the development tools and libraries. The rework
is probably also a result of the evolutionary and incremental way in which the module
was developed.

A certain amount of rework is a natural part of evolutionary development — it is
necessary in order to produce a good product. However, too much rework may result
in unacceptably low productivity. Furthermore, the rework may cause a gradual
deterioration of the initial design structure, i.e., changeability decay. For rework to be
a useful and valid process performance indicator, it needs to be used in conjunction
with other quality indicators, such as customer satisfaction, the number of change
requests from users after system delivery, etc. This balanced view of initial rework
versus customer satisfaction and later change requests may provide a meaningful
baseline for improvement activities in future evolutionary development projects.

Effort Distribution

Person-hours

250 —

200 —

150 —

100 —

[Documentation/Test
M Administration

[Installation
— O Coding

M Design

[Analysis g

Increment 1 Increment 2 Increment 3

T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21 22
Week#

Fig. 7.1. Effort distribution for activities during the Braathens project

Figure 7.1 depicts the distribution of effort (in person-hours) for various process
activities (analysis, design, codingﬂ documentation/test, administration and
installation) during the 22 weeks. While there is some overlap in the process
activities, there is still a somewhat "phased" distribution of activities over time — to
some extent resembling that of the traditional waterfall development process. For
example, formal testing was only conducted in the third increment, not in the first two
increments as prescribed in the Genova process (Arisholm et al., 1999b). Informal
testing was done by each developer throughout the coding activity. However, the

4 The coding effort in Figure 7.1 reports the total coding effort for all modules in the system;
not only for the middle-tier module as in Table 7.1.

66

separate, formal test activity including, for example, deployment in a dedicated test
environment, writing test cases and applying test-logging tools, was not initiated
before towards the end of the last increment.

Process Conformance

The degree of process conformance determines whether the defined and actual
process coincide. Ensuring process conformance is important

e to ensure a stable process execution, that is, achieving a predictable process, and
e to ensure the validity of the data, information, experiences and knowledge that
are acquired throughout the development projects (Serumgard, 1997).

Without a "reasonable" degree of process conformance, it may be difficult to
determine the effect of process improvement activities. In the Braathens case study,
testing was not performed as prescribed by the defined process. Interviews with the
developers indicate that the delayed testing contributed to many costly last-minute
changes to the software. For example, many of the detailed requirements of the client-
tier of the application were not discovered before the detailed write-up of the test
cases, resulting in late rework. This provides a partial explanation for the large
volume of coding effort towards the end of the final increment (Figure 7.1).

One explanation for this lack of process conformance was that the initiation and
execution of the Genova process at Braathens were quite informal. However,
insufficient guidelines for initiation and execution of the testing activities may also
have contributed to this "flaw". In the Braathens case, one problem was that machine
resources for deployment and load testing were made available very late by the
software customer. Thus, it is uncertain whether the resulting lack of process
conformance could have been avoided by the development team. Both the software
vendor and the customer would have benefited if test facilities had been made
available from the beginning of the project, allowing early testing according to the
prescribed evolutionary life cycle. This aspect should have been addressed explicitly
in the initial contract between the software vendor and customer. The result of this
experience is thus a suggestion for improvement of one aspect of the defined Genova
process: contractual guidelines regarding test facilities should be incorporated in the
process description.

7.1.1.4 Validation of SAM and CPM

To validate the SAM and CPM measures, the weekly coding change effort for the
module was used as the dependent variable. The ChangeSize, SAM and CPM
measures were candidate explanatory variables.

Table 7.2 shows the correlation between class-level Import Coupling (/C), Method
Count (MC) and Class Size (CS), based on the operational software system from week
22. Although the correlation coefficients with CS are high, there is sufficient variance
in /C not explained by CS to consider both of them as candidate explanatory variables
in a regression model for change effort. In a similar comparison, less correlation
(r=0.59) was found between a similar import coupling measure and a similar size
measure (Briand et al., 2000).

67

Table 7.2. Pearson correlation between class-level structural attribute measures

Correlation (p-value) IC CS
CS 0.760 (0.000)
MC 0.442 (0.031) 0.742 (0.000)

80

70 -
60 -
50 -
40 q
30 -
20 -

Figure 7.2 compares change profile measures (/CCP and MCCP) with the
corresponding structural attribute measures (4vg. IC and Avg. MC). The results
illustrate that more work is often done on classes with higher than average import
coupling and higher than average message counts. Average structural attributes do not
reflect the variation in weekly "change complexity", as such variation depends on
which parts of the software structure that happens to be affected by the changes
implemented during a given week. Hence, change profile measurement is useful for
assessing structural properties of actual changes, whereas structural attribute
measurement is useful for assessing trends in the overall structural properties of the
software system.

For the Braathens case study, ChangeSize, ChangeSpan, SS, CC, Avg. IC, Avg.
CS, Avg. CS, Avg. MC, ICCP, CSCP and MCCP were the candidate explanatory
variables in a linear multiple regression model for weekly change effort.
Unfortunately, the weekly data from this study was quite noisy as a result of
irregularities in file check-in times. Consequently, weeks 1 and 15 were not included
in the regression because no changes occurred. Weeks 14 and 17 were not included
because the changes were very small compared with the rest (12 SLOC). Note that
there was still a substantial amount of fofal coding effort allocated to weeks 14, 15
and 17 (Figure 7.1). In part, this is a result of noisy data, although the coding effort in
Figure 7.1 depicts the total coding effort including al/ modules, not only the studied
middle-tier module. The results from the linear regression are given in Table 7.3.

The explanatory power of the model in Table 7.3 is given by R-Sq = 68.2%. As
explained in Chapter 6, it may also be necessary to assess the cross-validated R-Sq
(cross), as the "normal" R-Sg may be too optimistic. The cross-validated R-Sq(cross)
of the model is 52.8%, indicating that the model has limited usefulness for prediction
purposes; a large portion of the variance is still not accounted for. None of the CPM
measures contributed to a significant increase in the explanatory power of the
regression.

—e—ICCP 14 —e— MCCP
—=—AwlC 12 —=— AwgMC

o

12345678 91011121314151617 1819202122 12345678 910111213141516 171819202122
week week

Fig. 7.2. Weekly plot of ICCP vs Avg. IC, and MCCP vs Avg. MC

68

Table 7.3. Preliminary regression model of change effort in the Braathens case study

The regression equation is

Effort = - 5.7 + 0.0163 ChangeSize - 1.78 AvgIC + 10.3 AvgMC
Predictor Coef StDev T P

Constant -5.71 26.90 -0.21 0.835

ChangeSize 0.016255 0.004471 3.64 0.002

Avg.IC -1.7773 0.3948 -4.50 0.000

Avg.MC 10.262 4.523 2.27 0.038

S = 8.508 R-Sg = 68.2% R-Sg(adj) = 61.8% R-Sqg(cross) = 52.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 2323.92 774 .64 10.70 0.001
Residual Error 15 1085.74 72.38

Total 18 3409.66

Source DF Seq SS

ChangeSize 1 756.32

Avg.IC 1 1194.96

Avg.MC 1 372.64

There is another possible problem with the above model, however. The obtained
model poses a question of why an increase in average import coupling results in a
decrease in change effort. Intuitively, one might expect a positive correlation, not a
negative correlation as in this case. One plausible explanation is indicated by Figure
7.2. For the first increment (weeks 1-6), the average import coupling is low. At the
beginning of the second increment, the import coupling rises quickly to a much higher
level, and remains high for the rest of the project. Thus, one explanation of the
negative sign of the coefficient for 4vg./C in Table 7.3 is simply that the productivity
was considerably lower than average during the initiation of the project, before the
coding had really started. Low values of the Avg./C measure may simply serve as a
substitute indicator of "increment 1". High values of the 4vg./C measure may serve
as a substitute indicator of "increment 2 or 3". This suggests that import coupling
actually may not affect changeability in the way indicated by the model.

To investigate this further, the first six weeks were removed from the data-set.
Repeating the regression, none of the candidate variables entered the model except
ChangeSize (Table 7.4). Thus, in the revised analysis, neither SAM nor CPM
measures seem to explain any significant amount of the variation in change effort
after accounting the "time" explanation of 4Avg./C by removing the first six rows.
These conflicting results make it difficult to conclude.

The results illustrate one of the difficulties associated with the validation of
structural attribute measures in case studies. As opposed to a controlled experiment, a
case study does not provide control of other factors that may be the real cause of
observed statistical relationships. A careful analysis of the development project
suggested an alternative (more conservative) interpretation of the results; other factors
were more important for the variation in the change effort measure than structural
attributes of the code. Indeed, the main risks for the project were related to design
decisions and the incorporation of new and unfamiliar technology.

69

Table 7.4. Alternative regression model for change effort in the Braathens case study

The regression equation is
Effort = 33.6 + 0.0177 ChangeSize

Predictor Coef StDev T P
Constant 33.590 3.853 8.72 0.000
ChangeSize 0.017710 0.005240 3.38 0.006
S = 8.869 R-Sq = 50.9% R-Sqg(adj) = 46.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 898.42 898.42 11.42 0.006
Residual Error 11 865.16 78.65

Total 12 1763.58

However, the validation of the measures would probably be more reliable if effort
and product data were collected from logical changes (i.e., implementing a given
function), rather than from weekly changes (i.e., the changes that occurred within a
weekly time span). For this case study, change data for logical changes were not
available. Instead, we accumulated weekly changes until approximately 1000 SLOC
had been changed (added or deleted). In this manner, we tried to obtain more accurate
effort data by reducing potential noise caused by irregularities in file check-in times.
Then, we calculated the total effort for the changes that occurred within each time
span (e.g., from week 1 to week 5, and from week 6 to week 7). The resulting data is
shown in Table 7.5. No statistically significant correlation was found between the
structural attribute measures and the measured change effort, nor the change profile
measures and the measured effort.

Table 7.5. Accumulated Change Effort, Change Size, SAM and CPM measures for the
Braathens Wings development project

Week # 1-5 67 8 9-11 12-13 14-19 20 21-22
Effort (hours) 209 132 55 120 83 227 65.5 108.5
Change Size 1057 1086 1150 1018 1473 1187 1556 987
SAM:

SS (System Size) 645 1202 1864 1815 2543 2894 4023 4305
CC (Class Count) 13 12 12 10 14 15 22 25
Avg. IC 2.7 3.1 113 141 14.1 140 114 10.1
Avg. CS 50 67 155 182 182 181 183 172
Avg. MC 6.3 4.8 6.0 6.6 59 6.1 6.8 6.2
CPM:

ChangeSpan 13 12 8 9 13 12 12 15
ICCP 6.0 7.5 389 315 394 342 148 232
CSCP 75 133 316 320 307 334 311 268
MCCP 9.9 6.8 8.7 7.5 7.4 10.5 12.6 10.0

70

7.1.2 The Genera Case Study

The results from the Braathens case study motivated a follow-up case study using the
proposed Change Log data collection process and tool (Chapter 6). Using the tool, it
was possible to collect change data based on logical changes instead of weekly
changes.

7.1.2.1 System under Study

The Genera case study was initiated in conjunction with an internal product
development project (of the Genova tool itself) in Genera AS. The programming
languages used were C++ and Java. This development project was larger than the
Braathens case, consisting of about nine developers. The project was expected to last
for several years, and this internal project was in many respects more stable and "laid
back" than the Braathens project. The module studied was an independent part of the
Genova tool providing run-time support for automatically generated source code
based on the UML and Dialog Models specified in Genova (Arisholm ef al., 1998).
The development of the module was organized as a separate development project,
lasting approximately five months and consisting of three developers (one assigned to
C++ and two assigned to Java) in addition to project management. For most of the
changes, the two Java programmers cooperated in the implementation. For this
project, no defined process was followed but the project was still evolutionary in
nature. During the months this system was studied, existing, changed and completely
new requirements were incorporated in an incremental fashion, with iterative analysis,
design, coding and test activities. Two versions of the module were released within
the five month time span.

7.1.2.2 Data Collection
The developers logged each logical change in the change log. For each logical
change, the following change data was provided:

Change ID: A unique number identifying the change. This number was used to
identify the classes changed. Each time a class was "checked in" to the configuration
management system, the change ID was attached to the comment field of the change
record. This information was subsequently used to select files for the calculation of
SAM and CPM.

Description of the change: A short textual description of the change, such as "Write a
Condition Parser to evaluate GOAL condition expression to strings”.

Classification of the change: Each change was classified into the following
categories. Some changes may be classified into several categories:

e Correction of requirement fault, i.e., fixing a bug originating from the
requirement specification.

e Correction of design fault, i.e., fixing a bug that may be classified as a design
fault.

71

e Correction of code fault, i.e., fixing a coding bug for which the design was
correct but there was an actual error in the code.

o Implementation of existing user requirement, i.e., implementation of functionality
specified in the initial requirements.

o Implementation of new user requirement, i.e., implementation of new
functionality not in the initial requirements.

o Implementation of changed user requirement, i.e., modification of code as a
result of changes to existing functionality requirements.

e Improved performance, i.e., changes that were intended to improve the execution
speed.

e Preventive restructuring, i.e., changes that were intended to restructure the code,
to improve the design in some way (e.g., improved changeability).

® Adaptations for reuse, i.e., changing the design so that parts of the module could
be reused in some way (a special case of preventive restructuring).

e Adaptations to external libraries, i.e., changes in external libraries on which the
module depends, requires changes in the code.

e Adaptations to changed development tools, i.e., changes in development tools
that requires changes in the code.

e Other (specified in a text field), i.e., a logical change that cannot be adequately
classified into any of the other categories.

Effort Data: For each change, the following effort data (in hours) was reported:

Preparation: Number of hours spent on preparing for the change
Analysis: Number of hours spent on analysis

Code: Number of hours spent on the actual coding of the change
Test: Number of hours spent on testing the change

Documentation: Number of hours spent on documenting the change

Subjective Task Assessment: For each change, the change was assessed by the
developer as follows:

e Task Size: (Low, Medium, High)
e Task Complexity: (Low, Medium, High)
e Resulting Changeability: (Better, Unchanged, Worse)

Collection of Structural Attribute Measures and Change Profile Measures:

The Structural Attribute Measures (SAM) and Change Profile Measures (CPM) based
on the description provided in Chapter 6 were collected for each logical change,
which was written either in Java or in C++. Only changes to the Java module have
been parsed. The SAM measures were collected based on the software all software
files belonging to a particular change ID had been checked in. All other files were
selected based on the timestamp of the last check in for a given change ID, using file
selection scripts in the configuration management system (ClearCase). ClearCase was
queried to give a list of all changes belonging to a given change ID. The result was a
list of files. For each file, a version stamp and a time stamp were provided.

72

Table 7.6. Example ClearCase "config spec" file selection macro before a given logical change

element \s-rt\no\genova\goal\wrappers\GoalDbConnection.java \main\1l
element \s-rt\no\genova\goall\helpers\GoalHelper.java \main\12
element \s-rt\no\genova\goallgas\ClientGoalHelperGas.java \main\4
element \s-rt\no\genovalgoallejb\ClientGoalHelperEjb.java \main\12
element * \main\LATEST -time 7-Jul.14:18

Table 7.7. Example ClearCase "config spec" file selection macro after a given logical change

element \s-rt\no\genova\goal\wrappers\GoalDbConnection.java \main\2
element \s-rt\no\genova\goal\helpers\GoalHelper.java \main\20
element \s-rt\no\genova\goall\helpers\GoalHelper.java \main\19
element \s-rt\no\genova\goal\helpers\GoalHelper.java \main\18
element \s-rt\no\genova\goal\helpers\GoalHelper.java \main\1l6
element \s-rt\no\genova\goal\helpers\GoalHelper.java \main\1l5
element \s-rt\no\genova\goall\helpers\GoalHelper.java \main\1l4
element \s-rt\no\genova\goall\helpers\GoalHelper.java \main\13
element \s-rt\no\genova\goallgas\ClientGoalHelperGas.java \main\é
element \s-rt\no\genova\goallgas\ClientGoalHelperGas.java \main\5
element \s-rt\no\genovalgoallejb\ClientGoalHelperEjb.java \main\14
element \s-rt\no\genovalgoallejb\ClientGoalHelperEjb.java \main\13
element * \main\LATEST -time 7-Jul.14:18

Based on this information, a file selection macro (a "config spec" in ClearCase) was
written to collect the versions of the files as they were immediately before the change,
and immediately after the change. All files that were not attached a given change ID
were selected based on the timestamp of the last check in for a given change ID. An
example "config spec" is provided in Tables 7.6 and 7.7. The instructions in the file
selection macros have the following semantic:

element <file> <version-selector>: For the file specified in the <file> field, select the
version of the file specified in <version-selector>. For example, the first line in
Table 7.6, (element \s-rt\no\genova\goal\wrappers\GoalDbConnection.java
\main\l) will select version \main\l, ie., version 1 of the class
GoalDbConnection.java on the "main" branch. Note that the same file may be
checked in several times on the same change ID. Thus, several versions of the
same file are specified in the config spec, but only the /ast version is selected. For
example, for the GoalHelper class in Table 7.7, only version \main\20 is selected.
The version-selectors in Table 7.6 are equal to the version prior to the smallest
version of the same file in Table 7.7. For the GoalHelper class, this corresponds to
version \main\12.

element * -time <time-stamp>: This file selector selects the remainder of the files in
the database based on the <time-stamp> field.

73

7.1.2.3 Evaluation of Evolutionary Development

Figure 7.3 shows a histogram of the distribution of change effort among activities
throughout the development project. The histogram shows the iterative nature of the
process activities. In a waterfall process, one would expect to find much less overlap
(in time) of the various activities. Figure 7.4 shows how the 39 changes are
distributed among the various change categories. Note the large number of changes
classified as restructuring. Most of this restructuring occurred early, that is, during the
first two months of the development project.

350
—_ 300 | m October
g 250 O September
<]
< 200 O August
£ 150
(s} = July
= ,
w 100 i = June
. — -
0
& &) 6\(9 & <
& N 2 @
L & S
4 X <
Q % &

14
& 12 H m October
8 10 O September
g 8 O August

6 W July
'g ‘21 | H: = June
2 0 A =R .

Q0§\QO§Q§ Q-é) Q‘%Q‘QOQQOQ Qﬁ\cg 0\)60 \\‘\Q \\90\ O\"{\é

o > O NP P E RS

@ P cpb R &2 L€ PV NS
FTF S L

Fig. 7.4. Distribution of number of changes for different change categories throughout the 5-
month period

74

There are at least two plausible interpretations of these results:

e FEach change contained too small amount of analysis and design activities.
Consequently, the changes resulted in increasingly unstructured code that needed
frequent restructuring to avoid changeability decay.

e An insufficient amount of initial analysis and design was conducted before the
main (existing) requirements were implemented.

It is difficult to accurately determine the relative significance of these possible
explanations for the large number of restructuring changes in this project. However,
there are reasons to believe that the second interpretation is more likely than the first
one. Figure 7.5 shows that a large portion of the total design effort was spent during
restructuring. Thus, the project is perhaps best characterized as a "code-and-fix"
project. Too little analysis and design was performed for the non-restructuring
changes.

These results suggest several opportunities for process improvements.
Restructuring does not produce more functionality. The restructuring is primarily
consequential rework from other changes. The question is whether the need for
restructuring can be reduced, for example by increasing the amount of initial analysis
and design. In this development project, it might have been possible to reduce the
number of restructuring changes, because most of the other changes are
implementations of existing requirements. There were only three new requirements,
and no changes to the existing requirements (Figure 7.4). Thus, by increasing the
amount of initial analysis and design based on the existing requirements, a more
stable design could have been produced. In addition to more initial analysis and
design, more analysis and design could clearly be incorporated for each change, too.
To be cost-beneficial, it is assumed that the required increase in analysis and design
effort would be less than the obtained decreases in restructuring efforts at later stages.

300
250
200

@ Restructuring
150 m Other Changes
100]

50
04 | I-_

Effort (hours)

Fig. 7.5. Distribution of effort for restructuring versus other changes

75

A related idea is to prioritize the changes in a better order, such that the
requirements that define the largest portion of the design would be implemented early.
Less critical requirements could be implemented once a stable design had been
developed.

7.1.2.4 Validation of SAM and CPM

Selection of Changes

For the validation purposes, 10 changes were selected among the available 39 logical
changes reported in the change log. The remainder of the changes were not selected
for the validation purposes for one of the following reasons:

e they were primarily related to documentation or administration (e.g., makefiles or
configuration management)

e they included C++ code (no C++ parser was implemented)

e they had not been tagged correctly (or consistently) in the change log.

e they were mixed with other changes, making it difficult to determine the
contribution of a specific change to the SAM and CPM measures

For the Genova module, a large number of measures were calculated for the selected
changes (Table 7.8).

Measuring the Effect of Restructuring

Among the changes in Table 7.8, the first six changes occurred during the first
increment. The remaining four changes occurred during the second increment. The
first change in increment two (change number 7) was a large restructuring change.
This change gives valuable information on how the restructuring affected the SAM
and CPM measures. The changeability of the module was assessed by the developers
as "better" after the change. Assuming the subjective assessment of the developers are
correct and hence the restructuring was "successful", the SAM and CPM measures
after change 7 should be indicative of a better structure. For change 7, the SAM and
CPM measures that changed noticeably and consistently as a result of the
restructuring are marked in bold (for an increase) and in italic (for a decrease).

76

Table 7.8. Change Effort, ChangeSize, Total SAM, Avg. SAM and CPM for the selected
logical changes (ordered by check-in time) for the Genera project. Note that for Total SAM and
Avg. SAM values, the import coupling value is always equal to the corresponding export
coupling value. For example, TotOMMIC equals TotOMMEC.

Change number 1 2 3 4 5 6 7 8 9 10
Effort (hours) 1 2 31 26 7 10 150 18 6 13
ChangeSize 153 42 308 9 209 164 1421 111 106 72
SAM:

cc 33 35 35 35 35 35 47 47 47 47
SS 399 406 531 701 610 662 946 961 932 965
TotMC 118 121 139 168 155 167 200 200 193 203
TotOMMIC, TotOMMEC 30 34 54 78 66 75 66 72 67 76
TotOMMIC L 67 66 81 102 90 94 162 167 167 174
TotOMAIC, TotOMAEC 66 66 106 168 119 150 178 190 164 199
TotOMAIC L 5 5 5 5 5 5 15 15 15 15
TotAMMIC, TotDMMEC 2 5 5 15 15 15 0 0 0 0
TotAMMIC L 1 1 1 1 1 1 1 1 1 1
TotAMAIC, TotDMAEC 0 0 0 0 0 0 0 0 0 0
AvgCs 12.1 11.6 15.2 20.0 17.4 18.9 20.1 20.4 19.8 20.5
AvgMC 3.6 3.5 4.0 4.8 4.4 4.8 4.3 4.3 4.1 4.3
AvgOMMIC, AvgOMMEC 0.9 1.0 1.5 2.2 1.9 2.1 1.4 1.5 1.4 1.6
AvgOMMIC L 2.0 1.9 2.3 2.9 2.6 2.7 3.4 3.6 3.6 3.7
AvgOMAIC, AvgOMAEC 2.0 1.9 3.0 4.8 3.4 4.3 3.8 4.0 3.5 4.2
AvgOMAIC L 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
AvgAMMIC, AvgDMMEC 0.1 0.1 0.1 0.4 0.4 0.4 0.0 0.0 0.0 0.0
AvgAMMIC L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AvgAMAIC, AvgDMAEC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CPM:

ChangeSpan 4 3 6 2 4 3 22 3 6 10
CS_Cp 44.3 12.0 96.9 148.3 88.0153.0 65.3 70.8 50.5 49.7
MC_CP 12.3 2.9 22.3 35.4 23.7 38.6 11.6 13.2 10.8 7.7
OMMIC_CP 4.3 2.6 16.6 23.0 16.5 25.9 5.3 6.7 4.9 3.0
OMMEC_CP 0.3 0.3 1.8 0.4 0.3 0.0 1.8 1.9 1.3 2.1
OMMIC_L_CP 4.0 5.4 11.9 17.0 13.1 17.8 16.1 12.5 9.9 9.6
OMAIC _CP 17.0 0.0 42.7 75.8 34.8 78.0 8.8 31.1 7.0 19.5
OMAEC_CP 0.1 0.0 1.8 0.0 0.0 0.0 0.4 0.6 0.0 1.1
OMAIC L CP 0.6 0.0 0.0 0.0 1.1 0.5 1.6 0.0 0.4 0.3
AMMIC_CP 0.3 2.0 0.1 0.0 3.1 1.2 0.0 0.0 0.0 0.0
DMMEC_CP 1.5 0.0 3.4 11.7 8.0 12.4 0.0 0.0 0.0 0.0
AMMIC_ L CP 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AMAIC_CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DMAEC_CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

77

The changes in the measures caused by the restructuring can be summarized as
followsf] The restructuring resulted in more code, and several new classes.
Furthermore, there was more coupling to library classes after the change. The total
non-library message coupling remained unchanged, but the restructuring resulted in
considerably lower average message coupling to non-library classes. Furthermore,
although the average class size (Avg. CS) remained unchanged, the CS_CP measure
detected that classes actually being changed after the restructuring was smaller. The
decrease in many of the CPM measures (e.g., MC_CP and OMMIC_CP), indicate a
trend towards changing smaller classes with fewer methods and lower import
coupling. From this analysis one may conclude that SAM and CPM are
complementary, and may be used to capture different aspects of changes in structure:
the CPM measures are sensitive to trends in the design that are "invisible" in the SAM
measures (e.g., Avg. CS versus CS_CP).

Another interesting observation is made when comparing the changes in structural
attributes seen in Table 7.8 with another restructuring described in Section 7.2. The
changes in the structural attributes seen in Table 7.8 correspond very closely to the
restructuring done on the coffee-machine design described in Section 7.2.

Principal Component Analysis

Table 7.9 shows the results of a PCA based on the class-level measures based on the
47 classes of the final release of the system. The even distribution of the variance
among the components suggests that the measures capture many distinct dimensions
of the software structure. The proposed method-attribute coupling measures OMAIC
and OMAEC belong to different components than the method-method coupling
measures OMMIC and OMMEC. Thus, they may represent a useful extension to
Briand's coupling framework (Briand ef al., 1997b).

Table 7.9. Rotated Principal Components of the class-level SAM measures

Variable PC1 PC2 PC3 PC4 PC5 PC6
SLOC 0.383 0.337 -0.745 -0.044 0.382 -0.009
MC 0.608 -0.028 -0.447 -0.528 0.164 -0.164
OMMIC 0.960 0.086 -0.196 -0.065 0.111 -0.053
OMMEC 0.079 -0.040 0.029 -0.980 0.048 -0.064
OMMIC L 0.286 0.647 -0.651 0.091 0.187 -0.067
OMAIC 0.130 -0.046 -0.206 -0.076 0.963 -0.063
OMAEC -0.075 -0.048 0.034 0.083 -0.055 0.990
OMAIC L 0.004 0.977 -0.148 0.024 -0.083 -0.037
Variance 1.549 1.501 1.283 1.267 1.159 1.023
% Var 0.194 0.188 0.160 0.158 0.145 0.128

3 Not all of these structural changes can be attributed to restructuring. There may be some more
functionality as well.

78

Regression of Change Effort

To validate the measurement approaches, regression models were built according to
the guidelines given in Chapter 6. The restructuring change (change 7) was
considerably larger than the other changes, and was considered as an outlier in the
regression analysis (Figure 7.6). Change Effort (in hours) was used as the dependent
variable. The ChangeSize, SAM and CPM measures were the independent variables.

150 — °

/

100 —| Restructuring change
(Change number 7)

Change Effort (hours)

~— Other changes

T T T
500 1000 1500

ChangeSize

Fig. 7.6. Plot of Change Effort versus Change Size. The restructuring change is treated as an
outlier in the regression model validation.

Table 7.10. Stepwise regression using ChangeSize, SAM and the CPM measures as candidate
explanatory variables of change effort

F-to-Enter: 4.00 F-to-Remove: 4.00
Response is Change Effort (hours) on 25 predictors, with N = 9

Step 1 2 3

Constant 8.477 -2.021 1.890

OMAEC_CP 10.2 10.5 8.5

T-Value 2.26 3.47 3.25

Cs_Cp 0.131 0.132

T-Value 3.06 3.90

OMAIC L_CP -10.1

T-Value -2.12

S 8.50 5.74 4.57

R-Sg 42.27 77.46 88.11

79

Table 7.10 shows the results of the stepwise regression using ChangeSize, system-
level and class-level SAM measures and the CPM measures as candidate explanatory
variables. None of the SAM measures were significant predictors of change effort.
The final model consisted of CS CP, OMAEC CP and OMAIC L CP.
OMAIC L _CP was removed because the coefficient was not significant (p=0.08).
Using backward selection, a better model was found, using OMMEC CP and
OMMIC CP as explanatory variables. Regardless of the chosen variable selection
heuristics, only CPM measures were included. The two best models are summarized
in Table 7.11.

Figure 7.7 shows the residual model diagnostic for one of the resulting models. No
serious violations of the conditions for valid interpretation of the regression model
(Chapter 6) were found. According to the Anderson-Darling normality test, the
residuals seem to be normally distributed (p=0.45). There may be some serial
correlation. This is discussed further in Section 7.1.3.3.

OMMEC CP (or alternatively OMAEC CP) and OMMIC CP (or alternatively
CS _CP) are significant explanatory variables of change effort in the data set, and
explain almost 80% of the variance of the change effort. Higher values of export
coupling and import coupling of the classes being changed result in higher change
effort. None of the SAM measures could explain any significant amount of variation
in change effort. This indicates that the CPM measures may be better indicators of
changeability.

Furthermore, for the small logical changes investigated, the CPM measures explain
the variance in change effort considerably better than the number of lines of code
added or deleted (ChangeSize). Although the models are significant, the predictive
power of these models are limited, as indicated by the relatively small value for the
cross-validated R-Sg(cross). For larger changes, ChangeSize would probably play an
important part in explaining change effort, as it did in the Braathens case study. This
is also indicated by the plot in Figure 7.6.

Table 7.11. Resulting regression models for change effort in the Genera case study

Variables Coefficient Coefficient R-Sq | R-Sq (cross)
p-value

Intercept 9.083 0.210 5.7% negative

ChangeSize 0.027 0.536

Intercept -2.021 0.641 77.5% 51.5%

OMAEC_CP 10.546 0.013

Ccs_CP 0.131 0.022

Intercept -7.404 0.164 78.5% 56.8%

OMMEC_CP 10.072 0.008

OMMIC CP 0.936 0.008

80

Residual

Frequency

Residual Model Diagnostics

Normal Plot of Residuals

-15 -1.0 -05 00 05

10 15
Normal Score

Histogram of Residuals

HHTH

-2.0-15-1.0-050.0 0.5 1.0 1.5 2.0
Residual

3.05L=3922

=001025

-3.0SL=-3.902

| Chart of Residuals
5
2 -
3
—_ 2 -
S 14 //«\
D 0o N
] YN/
X
34
4
S
0123 4586 78 9
Observation Number
Residuals vs. Fits
2
_ 14
©
3
2o
Q
4
1
2

Fit

20

30

Fig. 7.7. Residual diagnostics for ChangeEffort = - 2.02 + 10.5 OMAEC_CP +0.131 CS_CP

Regression on the difference in Change Effort

Recall from Chapter 6 that the purpose of the validation is not primarily to build effort
prediction models, but to determine how structural attributes affect changeability.
Thus, one may also attempt to build models that attempt to explain the difference in
change effort between any two pair of changes, as explained in Chapter 6. The nine
logical changes were grouped into distinct pairs (i.e., changes {x, y} 1<=x<=9; x>y)
forming N=36 pairs of logical changes. Then, the differences in change effort for each
distinct pair, i.e., ChangeEffort(x) — ChangeEffort(y), and the differences in each
SAM/CPM measure, e.g., OMMIC CP(x) — OMMIC CP(y), were calculated.

Table 7.12. Regression models for the difference in change effort between logical changes

Variables Coefficient Coefficient R-Sq R-Sq (cross)
p-value

Intercept 1.607 0.521 6.4% negative

DiffChangeSize 0.029 0.135

Intercept -0.668 0.590 77.6% 74.7%

DiffOMAEC CP 10.620 0.000

DiffCS CP 0.131 0.000

Intercept -5.106 0.000 87.5% 85.7%

DiffOMMEC_CP 12.379 0.000

DiffOMMIC CP 0.994 0.000

81

Table 7.13. Details of the regression model using the method export and import coupling
change profile measures

The regression equation is

DiffHours = - 5.11 + 12.4 DiffOMMECiCP + 0.994 DiffOMMICliCP
Predictor Coef StDev T P

Constant -5.106 1.047 -4.88 0.000

Dif fOMME 12.3793 0.9641 12.84 0.000

Dif fOMMI 0.99421 0.07811 12.73 0.000

S = 5.462 R-Sg = 87.5% R-Sg(adj) = 86.7% R-Sqg(cross) = 85.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 6863.6 3431.8 115.05 0.000
Residual Error 33 984 .4 29.8

Total 35 7848.0

Residual Model Diagnostics

Normal Plot of Residuals | Chart of Residuals
2 . :] 3.08L=2.230
- 2 0sL=2:
i .
3 o T 14 2
33 0 - ,.““’ 'g 0 - A X=0001671
: : 201 WiV
= " @ -1
1 4 o
L. . -2 -308L=-2.227
2 - T T T T T -3 r T T T T
2 -1 0 1 2 0 10 20 30 40
Normal Score Observation Number
Histogram of Residuals Residuals vs. Fits
6 2 .
.
5 . .
- |
S 4 g . .
S > M . .
> 3 S 9 . .
g 3 . M
L2 = Loe e
14 B .
I s 2
-15-1.0-0500 05 1.0 15 2.0 30 20 10 0 10 20 30
Residual Fit

Fig. 7.8. Checking the model assumptions for DiffHours = - 5.11 + 12.4 DiffOMMEC _CP +
0.994 DiffOMMIC1_CP

Two of the resulting prediction models are shown in Tables 7.12 and 7.13. In this
case, a cross-validated R-Sq(cross)=85.7% suggests that the resulting model is quite
useful for predicting the difference in change effort. The p-values for each coefficient
are clearly significant. Other alternative CPM measures also yield good models, but
when restricting the models to only two explanatory variables (to reduce the chance of
overfit), the best variables seem to be the same as those predicting change effort
(Table 7.11).

There are some indications of serial correlation (Figure 7.8). This is discussed
further in Section 7.1.3.3.

82

7.1.3 Summary

In the described studies, CPM and SAM were validated using change data from two
case studies. Furthermore, the evolutionary development processes of the projects
were studied in depth. The following subsections summarize the findings.

7.1.3.1 Using the Change Log

The Genera case study illustrated a practical method for analysis of logical changes
using the change log coupled with a configuration management system. Each
individual change reported in the log can be traced in the source code using
configuration management file selection macros. This traceability allows us to collect
internal product measures related to each change, coupled to external indicators such
as change effort and defect data. The data may be used to validate SAM and CPM.
The change log can also be used to assess evolutionary development projects.

Our long-term goal is to implement this data collection process in all internal
product development projects at Genera AS, enabling many opportunities for
evaluation of products and processes. An initial meeting with the developers in
Genera suggests that they in general are positive towards the tool. The programmers
using the tool so far expressed some concern regarding the use of the tool as a way to
monitor each individual in terms of their individual productivity, fault rates, etc. The
tool could easily be used for such purposes, although, as pointed out by this author
during the meeting, such monitoring of individuals is not the purpose of the tool.
Furthermore, there is some overhead using the change log, and there were a few
suggestions for improvements. For example, the tool should be better integrated with
the configuration management system, so that the developers do not have to manually
attach the change ID each time a file is checked in. Using the ClearCase macro
language (e.g., "triggers"), this is a straightforward extension of the change log. In
general, the developers recognize the potential long-term benefits of using the tool.

7.1.3.2 Evolutionary Development
A preliminary evaluation of the Genova process was conducted in an industrial
development project at Braathens in Norway. The case study provided one instance of
an evolutionary development project that succeeded. However, based on quantitative
and qualitative data, we identified improvements related to the distribution of test
effort: the late initiation of formal testing contributed to unnecessary rework. We
believe that less rework would have been required if formal testing had been
conducted in each increment according to the prescribed process. Thus, more accurate
contractual guidelines will be incorporated in the process description to ensure better
process conformance for the test activity in future development projects. The effect of
the suggested process changes still needs to be evaluated. Such effect measurement
will use the change log for empirical assessment of the cost of implementing changes.
A case study at Genera, in which changes on the Genova tool were recorded,
showed that a considerable amount of effort was spent on restructuring. The results
raise challenging issues regarding how analysis and design may be distributed
throughout the development project in an attempt to reduce the need for restructuring.

83

7.1.3.3 Validation of SAM and CPM

Change Profile Measurement was empirically evaluated against Structural Attribute
Measurement. In the Braathens case study, there was some evidence that the SAM
measures may be used as indicators of changeability. However, in an alternative
analysis of the Braathens change data, neither structural attribute measures nor the
change profile measures seemed to explain a significant amount of variation in
change effort. Thus, it is difficult to interpret the results from the Braathens case
study. However, we believe the collection of the measures in the Braathens case study
would have been more reliable if effort and product data were collected from logical
changes, as in the Genera case study.

The results from the Genera study indicate that CPM may account for some
dimensions of the changeability of object-oriented software not provided with the
SAM approach. A reasonably accurate model of change effort was developed based
on the import coupling and export coupling change profile measures.

The investigation of the restructuring change reveals that SAM and CPM are in
many ways complementary because they are "sensitive" to different dimensions of the
changes to a design. This is exemplified by the results of the restructuring change
summarized in Table 7.8: the overall structural attributes (i.e., SAM) of the software
system remained unchanged while the CPM measures showed a clear trend towards
changing smaller classes with lower coupling after the restructuring.

The Genera study also illustrates a potentially serious problem with the SAM
approach. Measuring the overall structural attributes of a system assumes that all the
parsed files are actually "live" code. After the large restructuring change (change
number 7 in Table 7.8), several of the classes were no longer part of the module, but
they were not removed from the file system. Thus, they were "hanging around"
causing erroneous values for the SAM measures. Fortunately, we were able to remove
the "dead" files after studying the comments in the change log and after talking with
the developers. Thus, the reported SAM measures are correct. However, this means
that it may be difficult to obtain reliable SAM measures if the measure collection is
completely automated, unless the file structure is always up-to-date and consistent.
The CPM measures were not sensitive to the dead files because only structural
attributes of code being changed were accounted for.

In summary, the case studies provide some support for our hypothesis that the
change profile measures may be good predictors of changeability, and better
predictors than the structural attribute measures. Of course, the exploratory nature of
this research cannot rule out that this apparent relationship between CPM and Change
Effort is not due to "shotgun correlation" (Courtney and Gustafson, 1993). Thus, the
validation should be interpreted with caution. One can often find statistical
relationships between variables. This is not the same as proving a cause-effect
relationship. Furthermore, it seems to be some serial correlation in the residuals of the
models. The logical change data was collected in a specific time order. Serial
correlation is due to some phenomenon not captured by the model, affecting the data
over several consecutive observations. The consequences of such effects are that the
error assessment may be too optimistic. Fortunately, the results from cross-validation
indicate that this violation of the regression assumptions may not be that serious, at
least for the prediction of the difference in change effort.

84

The problem discussed regarding serial correlation is just one manifestation of a
more general threat when attempting to validate product quality measures using case
study research. It is not possible to control for factors that may influence the results
without our knowledge. In the Braathens case study, one such factor was found,
which made the validity of the regression model, in our opinion, questionable. We
believe that several of the problems discussed above can be addressed by a
benchmark approach. If measurements were performed on benchmarks instead of
actual changes, the validation may have avoided important threats to validity caused
by:

e Inaccuracies in reported effort data (since a controlled benchmark experiment
may allow better report and control of time expenditure).

e Differences in inherent change difficulty (since benchmarking prescribes the
implementation of the same, given change — as described in Chapter 6).

e Differences in individual skill levels of the developers (since the benchmarking
experimental design may control for individual ability — as described in Chapter
6).

85

7.2 Assessing the Changeability of two Object-Oriented Design Alternatives —
a Controlled Experiment

The goal of the study reported in this section was

e to get a better understanding of how design decisions influence changeability,
and
e to gain experience regarding the experimental design of benchmark experiments.

This study is also published in (Arisholm et al., 2001). Chapter 4 suggested that the
design of an open-ended object-oriented structure that easily supports change is
critical for the success of evolutionary development. This section attempts to improve
our understanding of the changeability of object-oriented software by studying the
impact of identical changes on two alternative designs.

The changeability of a given responsibility-driven design was compared with an
alternative control-oriented ("mainframe") design. According to Coad and Yourdon's
0O design quality principles (Coad and Yourdon, 1991a; Coad and Yourdon, 1991b),
the responsibility-driven design represents a "good" design. The mainframe design
represents a "bad" design. To investigate which of the designs has better
changeability, we conducted two controlled experiments — a pilot-experiment and a
main experiment. In both experiments, the subjects were divided in two groups in
which the individuals designed, coded and tested several identical changes on one of
the two design alternatives.

The results clearly indicate that the "good" responsibility-driven design requires
significantly more change effort for the given set of changes than the alternative "bad"
mainframe design. This difference in change effort is primarily due to the difference
in effort required to understand how to solve the change tasks. Consequently,
reducing class-level coupling and increasing class cohesion may actually increase the
cognitive complexity of a design. With regards to correctness and learning curve, we
found no significant differences between the two designs. However, we found that
structural attributes change less for the responsibility-driven design than for the
mainframe design. Thus, the responsibility-driven design may be less prone to
structural deterioration. A challenging issue raised in this study is therefore the
tradeoff between change effort and structural stability.

The remainder of this section is organized as follows. Section 7.2.1 describes the
design of the study, including the chosen design alternatives, the change tasks and the
dependent variables. Section 7.2.2 describes the results of the pilot experiment used to
formulate the hypotheses. Section 7.2.3 describes the results of the main experiment.
Section 7.2.4 summarizes the results and relates them to existing research. Section
7.2.5 discusses validity issues. Section 7.2.6 describes future work.

7.2.1 Design of the Study

An important goal of our research is to investigate how design characteristics affect
the changeability of object-oriented software. However, changeability can also be
affected by other characteristics of the software, such as programming style and
quality of documentation. Thus, to study how design decisions affect changeability, it

86

is necessary to restrict our study to software systems where only software
characteristics directly related to the structural attributes (e.g. coupling, class count)
of the software are varied. In this study, both systems implemented the same
functionality and had similar programming style, naming conventions and
documentation. Subjects of similar skill level designed, coded and tested a given set
of changes on one of the two alternative software designs. The study consisted of two
experiments:

1. the pilot experiment — to evaluate experimental design and material, and
formulate the hypotheses, and

2. the main experiment — to replicate the pilot experiment with different subjects
and test formal hypotheses on a larger scale.

7.2.1.1 Treatments: The Coffee-Machine Design Problem

We wanted to find alternative designs for the same system, in which one alternative
adhered to Coad and Yourdon's quality design principles (the "good" design) and one
did not (the "bad" design). The coffee-machine designs seemed to be good candidates
for the experiment. These designs have been discussed at a workshop on object-
oriented design quality at OOPSLA'97 and are described in two articles in C/C++
User's Journal (Cockburn, 1998):

This two-article series presents a problem I use both to teach and test OO design. It is a
simple but rich problem, strong on "design," minimizing language, tool, and even
inheritance concerns. The problem represents a realistic work situation, where
circumstances change regularly. It provides a good touch point for discussions of even

fairly subtle designs in even very large systems...
(Cockburn, 1998)

The initial problem statement was as follows:

You and I are contractors who just won a bid to design a custom coffee vending
machine for the employees of Acme Fijet Works to use. Arnold, the owner of Acme Fijet
Works, like the common software designer, eschews standard solutions. He wants his
own, custom design. He is, however, a cheapskate. Arnold tells us he wants a simple
machine. All he wants is a machine that serves coffee for 35 cents, with or without
sugar and creamer. That's all. He expects us to be able to put this little machine
together quickly and for little cost. We get together and decide there will be a coin slot
and coin return, coin return button, and four other buttons: black, white, black with

sugar, and white with sugar.
(Cockburn, 1998)

7.2.1.2 Description of the Design Alternatives

The MainFrame Design

According to (Cockburn, 1998), the type of design that most students come up with
when faced with the problem of designing the given coffee-machine software is a so-
called mainframe (MF) design. The MF design, adapted from "Design 3" in
(Cockburn, 1998), consists of seven classes:

87

e CoffeeMachine: Initiates the machine, knows about the hardware components.

e (CashBox. Knows amount of money put in; gives change; answers whether a
given amount of credit is available.

e FrontPanel. Captures selection; knows price of selections, and materials needed
for each; asks Cash Box if enough money has been put in; knows how to talk to
the dispensers.

e Dispensers (cup, coffee powder, sugar, creamer, water). Knows how to dispense
a fixed amount; knows when it is empty.

e Output. Knows how to display text to the user.

e Input. Knows how to receive command-line input from the user.

e Main. Initializes the program.

The Responsibility-Driven Design

The alternative responsibility-driven design was a result of a restructuring effort after
the "customer" had requested several changes to the coffee-machine. For example, the
coffee-machine was extended to make bouillon. For this reason, we thought that the
restructured, responsibility-driven (RD) design would be an interesting design
alternative to compare with the initial mainframe design. The RD design, adapted
from "Design 4" in (Cockburn, 1998), consists of twelve classes:

e CoffeeMachine. Knows how the machine is put together; handles input.

e (CashBox. Knows how much credit is available; handles money.
FrontPanel. Knows products and selection; coordinates payment and drink
making; knows the price of coffee.

ProductRegister. Knows what products are available.

Product. Knows its recipe.

Recipe. Tells dispensers to dispense ingredients in sequence.
DispenserRegister. Acts as a librarian for the dispensers; controls nothing.
Dispenser. Controls dispensing; tracks amount it has left.

Ingredient. Knows its name only.

Output. Knows how to display text to the user.

Input. Knows how to receive command-line input from the user.

Main. Initializes the program.

Message sequence charts of the main functional scenario for the two designs were
given to help clarify the flow of messages between the objects of the designs
(Appendix B.4). The two designs were coded using similar coding style, naming
conventions and amount of comments. Variable names and method names were long
and reasonably descriptive. Two small code fragments from the MF and RD designs
are given in Appendix B.S5.

Comparing the Designs Against Coad and Yourdon's Quality Principles

According to Coad and Yourdon's design principles (Coad and Yourdon, 1991b; Coad
and Yourdon, 1991a), a "good" design adheres to (among others) the following
guidelines, based on (Briand et al., 1999a):

88

Coupling. Interaction coupling between classes should be kept low, by decreasing the
number of messages that can be sent and received by an individual object.

Cohesion. A class should carry out one, and only one, function. The attributes and
services should be highly cohesive, i.e., they should all be descriptive of the
responsibility of the class.

Clarity of design. The names in the model should closely correspond to the names of
the concepts being modeled. Second, the responsibilities of a class should be
clearly defined and adhered to. Furthermore, the responsibilities of any class
should be limited in scope.

Keeping objects and classes simple. First, avoid excessive numbers of attributes in a
class. A class should map to a type of entity in the problem description.

Although these design principles require a certain degree of subjective interpretation
(Briand et al., 1999a), clearly the RD coffee-machine design adheres significantly
better to these design principles than does the MF design. The RD design has lower
class-level coupling, more cohesive classes, better clarity of design and simpler
classes. The MF design is assessed as follows:

Although the trajectory of change in the mainframe approach involves only one object,
people soon become terrified of touching it. Any oversight in the mainframe object
(even a typo!) means potential damage to many modules, with endless testing and
unpredictable bugs. Those readers who have done system maintenance or legacy system
replacement will recognize that almost every large system ends up with such a module.
They will affirm what sort of a nightmare it becomes.

(Cockburn, 1998)

Furthermore, Cockburn assessed the RD design as follows:

The design we come up with at this point bears no resemblance to our original design.
It is, I am happy to see, robust with respect to change, and it is a much more reasonable
"model of the world." For the first time, we see the term "product” show up in the
design, as well as "recipe" and "ingredient.”" The responsibilities are quite evenly
distributed. Each component has a single primary purpose in life; we have avoided
piling responsibilities together. The names of the components match the
responsibilities.

(Cockburn, 1998)

For this experiment, we had to do certain modifications to the designs presented by
Cockburn, so that they delivered the same functionality. Primarily, we removed the
modifications done on the RD design in order to make bouillon, since we thought this
functionality to be a particularly good candidate for a change task. This also
motivated leaving the price of coffee where it was originally — in the front-panel class.
However, it would be a simple task to move the price attribute from the front-panel
class to the product class in order to provide differentiated pricing (to make bouillon).
Otherwise, the main concepts underlying the two designs have been kept as far as
possible. Although the modified RD design may represent a slightly less "pure"
design than the one presented by Cockburn, we believe his assessment is also
applicable to the MF and RD design alternatives.

89

Structural Attributes of the Design Alternatives

Table 7.14 shows the values of coupling (OMMIC, OMMIC L and OMMEC) and size
(MC and CS) for the two designs. The RD design has about 40% lower class-level
coupling to non-library classes (OMMIC and OMMEC). OMMIC L quantifies the
number of method invocations to library classes, which in this case are String and
Vector. Because the RD design uses vectors to represent products and dispensers, the
class level OMMIC L measure is slightly higher for the RD design (mean = 1.3) than
for the MF design (mean = 1.1). The MF design has larger classes and fewer methods
per class than the RD design.

At the system level, however, Table 7.14 (the "Sum" column) shows that the
overall non-library coupling remains almost unchanged, whereas the coupling to
library classes, the total number of methods and the total system size have increased
for the RD design. Thus, to 1) reduce coupling, 2) increase cohesion, 3) improve the
clarity of the design, and 4) keeping classes simple, the values for some system-level
measures have increased. These findings are consistent with the restructuring change
reported in Section 7.1.2. Thus, it would seem that, at least to some extent,
experienced developers apply similar heuristics for restructuring a design.

Table 7.14. Descriptive statistics of structure and size attributes for the MF and RD designs

Measure Description Design |Median |Mean [Sum
OMMIC (c) The number of static method invocations from a|MF 2] 4.7 33
(client) class ¢ to non-library classes =D 1 2.8 32
OMMIC L(c) [The number of static method invocations from a|MF of 1.1 8
(client) class c to library classes RD ol 1.3 16
OMMEC (c) The number of static method invocations to a|MF 3] 4.7 33
(server) class ¢ =D T 2.8 32
MC (c) The number of implemented methods in a class ¢. |MF [1.6 11
RD 2 1.8 22
CS(c) The size (in SLOC) of each class. MF 9] 11.0 77
Note that the sum corresponds to system size. RD 8.9 107

7.2.1.3 The Mocca Programming Language

We had to make some decisions regarding the choice of programming language. It
should be easy to understand for subjects with some prior experience with common
OO programming languages — to minimize the learning curve. However, the
programming language should also contain sufficient OO constructs and flexibility to
allow the development of realistic code for the change tasks. Thus, we created a
scaled-down version of Java, called Mocca. Mocca has the same syntax as Java, but is
restricted in several ways:

e It does not contain inheritance mechanisms or constructs for interfaces.
e It has no explicit type-casting.
e It has a globally available (static) INPUT and OUTPUT class.

90

e [t contains only the elementary types void, int and boolean.
e [t contains only two library classes: String and Vector.

A relatively complete documentation of the Mocca language was written in eight
pages. While the restrictions in Mocca may be too limiting as a general purpose,
experimental OO programming language, we believe that Mocca was a reasonable
tradeoff between realism and simplicity for the given change tasks on the coffee-
machine designs.

7.2.1.4 The Programming Tasks

The programming tasks consisted of one calibration task and three change tasks (cl,
c2 and ¢3) for the coffee machine. For practical reasons, the changes were coded with
pen and paper. For small designs and change tasks, we believe this may be a better
choice than using a computer to reduce the possibility of errors caused by technical-
and tool-oriented problems. Each task description contained a test case that each
subject used to manually "test" the solution. Of course, this is not a real test, which
would require running the program on a computer. The main purpose of the test was
to motivate the subjects to produce solutions of good quality before starting on the
next change task. Judging from the actual correctness score of the solutions (Table
7.19), this strategy seems to have worked quite well.

The Calibration Task

The first programming task to be completed by all subjects was the calibration task.
The calibration task consisted of adding transaction log functionality in an automatic
teller machine, and was not related to the coffee-machine designs. Since all subjects
implemented the same change on the same design, the calibration task provided a
common baseline for comparing the programming skill level of the subjects. The
calibration task was almost the same size as the change tasks ¢/, ¢2 and ¢3 combined.
The size of the calibration task ensured that most aspects of the Mocca programming
language (e.g. class constructors, vectors, strings, input and output) were exercised,
thus reducing the influence of the programming language learning curve.

The Change Tasks

Each change task was coded by the students directly on the coffee-machine code
printout for the given design. The change tasks consisted of three changes to the
coffee-machine, to be implemented in the given order. The actual change task
descriptions are given in Appendix B.2.

cl. Implement a coin return-button. The actual solution was identical for the RD and
the MF design. In both cases, it involved a modification to the menu handling
routine (to include the "Return Coins" menu choice) and the addition of
corresponding event handling routine. In addition, the developers had to call the
"ReturnCoins" method in the CashBox class.

c2. Make bouillon. Extend the machine with a menu choice and the functionality to
make bouillon in addition to coffee. Bouillon costs more than coffee. The
solution involved making a menu-choice and event handling routine for bouillon

91

by modifying the front panel. It also involved making a new dispenser for
bouillon, and checking whether the customer had deposited sufficient funds.

c3. Fix a bug: Check whether all ingredients are available for the selected drink. 1If
one or more dispensers are empty, the user should get an error message and can
try another drink or get his money back. This change task was motivated by a
"bug" found in both of the code listings for the original design alternatives
presented in (Cockburn, 1998). If the machine was empty of a required ingredient
(e.g. creamer), the machine would still produce the "drink" using only the
remainder of the ingredients, i.e., the customer would receive black coffee when
asking for white coffee. The solution involved checking whether all required
ingredients were available before making the drink.

For subjects that managed to complete all change tasks within the allocated time, an
"extra assignment" was given. This change task was included to ensure that none of
the subjects finished before the end of the allocated time of the experiment. We did
not want the subjects to leave early, disturbing the other subjects. Furthermore,
without change task c4, subjects may have been inclined to use more time on change
task ¢3 than they would otherwise. Change task c4 is not included in any subsequent
analysis since only very few subjects managed to complete the task:

c4. Add the option "make your own drink”, by selecting among any meaningful
combination of the available ingredients.

7.2.1.5 The Change Task Questionnaire

After completing each programming task (including the calibration task), the
participants reported the effort to understand, code and test each task. In addition, the
subjects reported on subjective task difficulty, solution strategy (explorative or
systematic) and confidence in the correctness of their solution. The questionnaire is
given in Appendix B.3.

7.2.1.6 Experimental Design

To ensure accurate and reliable results we had to deal with issues related to the
learning curve and the skill level of the individuals who participated in the
experiment. To control for the differences in skill level of the individuals, we
considered a cross-over design where each developer implements the same (or
similar) changes on both design alternatives. However, this experimental design does
not control for the following learning effects:

e Learning the system — if the design alternatives have many similarities, most of
the developer's initial system comprehension effort will be spent on the first
design.

e Learning the changes — if a developer implements the same change on two
alternative designs, it is likely that the developer will be more efficient during
implementation of the change on the second design.

Thus, we used a design where each developer implements the same change only once,
while still controlling for the differences in individual skill levels by assigning the

92

developers in two groups by means of randomization and blocking. This is described
further in the following sections.

7.2.1.7 Design of the Pilot Experiment

The subjects consisted of twelve graduate students and professionals enrolled in a
course in software process improvement at University of Oslo. The experiment was
divided in three separate, one-hour sessions consisting of:

Session 1. Experience level assessment and training. During this session, the
students completed the experience questionnaire (Appendix B.1). Then,
we trained the subjects in Mocca and distributed the programming
language documentation.

Session 2. Skill level assessment and group assignment. All students implemented
the calibration task and completed a change task questionnaire
(Appendix B.3). Based on the results of the calibration task, the students
were divided into blocks and then assigned at random (within each
block) into two groups, one for each design alternative.

Session 3. Coffee-machine experiment. The subjects to the first group implemented
the change tasks on the MF design. The subjects assigned to the other
group implemented the change tasks on the RD design.

7.2.1.8 Design of the Main Experiment

Subjects of the main experiment were mainly undergraduate students in computer
science at University of Oslo. Unlike the pilot-experiment, the subjects volunteered
for the experiment and were paid to participate. The experiment took place within one
3-hour session. The subjects were introduced to the experimental procedures and
trained in Mocca during the first hour. During the next two hours, the subjects first
implemented the calibration task and then the change tasks.

With regards to the group assignment, we were unable to use blocking based on the
calibration task because the experiment consisted of only one session. Furthermore,
results from the pilot-experiment suggested that it was not useful to use the reported
experience level data (Appendix B.1) to create blocks. Consequently, the students
were assigned at random into two groups of equal size, one for each design
alternative. Some students did not show up for the experiment, while some other
students that had failed to register for the experiment showed up just prior to the
session. They were assigned at random when they arrived. The resulting group
assignment consisted of 17 subjects on the MF design and 19 subjects on the RD
design. In the unlikely event that the randomization would fail to provide
approximately equal groups, we could use the results from the calibration task in
subsequent analyses to adjust for such differences (Section 7.2.5.5).

7.2.1.9 Dependent Variables
Figure 7.9 depicts the dependent variables of the study. They are explained further in
the following sections.

93

Understand (minutes)
Code (minutes)
Test (minutes)

Change Effort Total Effort (minutes)
Correctness)
Diff(CS)
Learning Curve Diff(MC)
Dependent Difff OMMIC)
Variables Structural Diff([OMMIC_L)
Stability Diff(ChangeSize)

Subj. Change) .
Complexity Solut;on Difficulty
Solution Confidence

Fig. 7.9. Summary of the dependent variables of the study

Change Effort

Before starting on a task, the subjects wrote down the current time. When the subjects
had completed the task, they reported the total effort (in minutes) to complete the
change task. The primary dependent variable of the study was the combined total
effort to complete all change tasks. After completing each change task, the subjects
also estimated how much time was spent to

e understand the task (analysis and design of the solution),
e code the solution, and
e "test" the paper solution against the test case.

Correctness

It is possible that one design is more error-prone than another design, resulting in
errors that are not discovered and subsequently corrected by each subject in the
experiment. Furthermore, the reported change effort for the change tasks may contain
lower values for solutions that contain errors. This may bias the change effort results
if one design is more error-prone than the other design. Consequently, each change
task solution was reviewed and given a (subjective) correctness score by this author.
Table 7.15 gives the coding scheme.

Table 7.15. Coding scheme of the correctness measure

Correctness Score Interpretation

Correct solution, passes the test case

Small deviations from the test case, but no logical errors

Small logical errors that are estimated to be very simple to fix
Some errors that are estimated to take some time to fix
Incomplete solution that are estimated to take a long time to fix
Very incomplete solution

— N W Bk 0

94

Learning Curve

The experiment contains only a small number of change tasks. Thus, the recorded
total change effort for the combined change tasks may fail to reflect trends in change
effort caused by the system learning curve. For example, a given design may be
difficult to change until the developer understands the intricate structural properties
and abstraction mechanisms of the design. However, the subsequent changes may be
easy to implement, hence resulting in a trend towards less change effort compared
with another design.

To perform statistical tests on differences in the learning curve we need to quantify
it such that the measure is normalized and hence comparable for different subjects.
We measure the learning curve with respect to the given change tasks as the
normalized difference in effort to understand the last change (c¢3) versus the first
change (c!) for each subject, for design RD and MF, respectively:

Understand(d,cl) — Understand(d, c3)
Understand(d, c1) + Understand(d, ¢3)

A larger number indicates a stronger learning effect. The measure is not meaningful
as an absolute measure of the learning curve since change task ¢3 is probably more
difficult to solve than change task c/. Thus, in this case one may even get "negative"
learning. The measure is only meaningful when comparing the relative difference in
the learning curve on MF versus RD. The measure also assumes that most of the
learning occurs early.

LearningCurve(d) = de {RD,MF}

Subjective Change Complexity

We also asked the subject two questions that may reflect the perceived complexity of
each change task:

e Solution Difficulty — how difficult did the subjects think it was to solve each
change task (1 = very simple; 6 = very difficult).

e Solution Confidence — how confident were the subject that the solution of a
change task did not contain serious errors (1 = very unsure; 6 = very confident)

Structural Stability

When studying the changeability of an object-oriented design, it may be appropriate
to assess the impact changes have on the design. Consider Lehman & Belady's "law
of increasing complexity":

As a large program is continuously changed, its complexity, which reflects
deteriorating structure, increases unless work is done to maintain or reduce it.

(Lehman and Belady, 1985)

In general, changes in structural attributes do not necessarily indicate decay; there
could be restructuring or re-engineering going on. However, in the coffee-machine
experiment, there is no "restructuring" of the design. The change tasks represent
functional additions (c¢/ and c¢2) and bug-fixes (¢3). Thus, when assessing the
changeability of design alternatives it may also be appropriate to measure trends in

95

structural attributes (i.e. structural stability) that may indicate changeability decay
(Arisholm and Sjeberg, 2000). The differences in the average values of the measures
before and after each change (e.g., from change task c/ to change task c¢2) may be
used to assess whether the structural attributes of one design change faster than an
alternative design.

A summary of the structural stability measures is given in Table 7.16. To measure
the structural change of the solutions, five paper solutions were selected at random for
each of the two design alternatives, for a total of ten solutions to each of the change
tasks. To ensure accurate structural attribute measures, only solutions with a
correctness score of five or six (i.e., "correct" solutions) for all three change tasks
were considered. The selected paper solutions were coded into a computer by one of
the authors, and subsequently compiled and tested to ensure that the solutions actually
were correctly implemented. A Java parser was used to collect the measures. In
addition to the change in structural attributes, the size of each change was calculated.
For the ChangeSize measure, we manually counted (based on the paper solutions) the
number of lines of code added, deleted or modified for all solutions that were
correctly implemented.

Table 7.16. Summary of Structural Stability Measures

Definition Detailed explanation

Diff(CS) The difference in average class size before and after a change task

Diff(MC) The difference in average number of implemented methods in a class ¢
DiffflOMMIC) The difference in average import coupling for a class ¢ to non-library classes
DifffOMMIC_L) The difference in average import coupling to library classes

ChangeSize SLOC added+deleted+modified for each change task

7.2.2 Results of the Pilot Experiment
The goals of the pilot experiment were

e To evaluate and improve the quality of the experimental materials (e.g.
questionnaires, change tasks and programming language). This is described
further in conjunction with analysis of threats (Section 7.2.5).

e To evaluate the usefulness of different blocking strategies to reduce random
errors, i.e., blocking on the results from the calibration task and blocking based
on data from the experience level questionnaires.

e To formulate hypotheses and to develop meaningful dependent variables through
an exploratory analysis of the preliminary results from the pilot-experiment.

7.2.2.1 Evaluation of Blocking Strategies

The pilot-experiment used the correctness score of the calibration task to create
blocks on skill level. An equal number of subjects were assigned at random to each
design (MF and RD) from each block. Unfortunately, only eight of the twelve
subjects attended session 3. This resulted in the average skill level being slightly
higher for subjects assigned to the RD design, despite the randomized block scheme
(Figure 7.10). Clearly, the usefulness of blocking may be limited unless one can be
sure that the assigned subjects will attend the experiment.

96

Correctness Score, Calibration Task

RD

MF

- —®
weQ —|ee
r—0 —®
o-{e —|e
o-{® —|e

Block number (1-6)

® = Subject Assigned but did not show
® = Subject Assigned

Fig. 7.10. Dot-plot of group assignment with the correctness score (1 to 6) from the calibration
task as the blocking factor

We also evaluated whether data from the experience level questionnaire could be
used to create blocks for the main experiment. We found no significant correlation
between the experience level data and the results of the calibration task in the pilot-
experiment. This suggests that it may be ineffective to use the experience level data to
create a randomized block design.

7.2.2.2 Preliminary Assessment of Change Effort for MF and RD

Figure 7.11 depicts the difference in total effort to change tasks ¢/ and ¢2 (most
subjects did not have time to complete ¢3 within the 1-hour session of the pilot
experiment). Although subjects assigned to design RD had performed better on the
calibration task in the previous session, they still needed on average 30 percent more
time to complete change tasks ¢/ and c2 than the subjects assigned to design MF.

30 —

20 —

Total Change Effort

15 —

Design
Fig. 7.11. Box-plot of the total change effort (in minutes) to complete change tasks ¢/ and ¢2

for design MF and RD, respectively. A line is drawn across the box at the median. The box
represents the 95% confidence interval for the median.

97

7.2.3 Results of the Main Experiment

The explorative analysis of the results from the pilot experiment was used to
formulate the hypotheses of the main experiment. According to design principles such
as Coad and Yourdon's, we would expect that the RD design enables a more efficient
and correct implementation of changes. However, the results of the pilot experiment
do not support this theory. The theory underlying the formulation of the hypotheses is
that the more fine-grained delegation of responsibilities of the RD design results in
added complexity that more than outweighs its theoretical advantages with regards to
change effort and correctness (H1 to H4). However, the improved delegation of
responsibilities of the RD design should result in a more stable design (HS5).

7.2.3.1 Formal Hypotheses

H1. Change Effort: The RD design requires more change effort than the MF design.

H2. Learning Curve: The RD design has a stronger learning effect than the MF
design. We regard H2 as a validity-check on H1. If both H1 and H2 are accepted,
it will be difficult to determine whether Hl would have been valid if we had
included even more change tasks.

H3. Correctness: The solutions for the RD design contain more errors than the MF
design.

H4. Change Complexity: The RD design has higher change complexity than the MF
design.

HS. Structural Stability: The RD design has better structural stability than the MF
design.

The statistical tests will attempt to reject the null-hypotheses, which are just the
opposites of H1 to H5. For H1 and H2, a one-sided two-sample T-test (assuming
unequal variances) on the difference in means was used. Before using the T-tests, the
samples were checked for normality using the chi-square based Kolmogorov-Smirnov
normality test. No significant deviations from the normal distribution were found. For
H3 and H4, the tests were performed using Mood's median test, which is a robust,
non-parametric sign scores test for ordinal scale measures such as the Correctness
Score and Subjective Task Difficulty. H5 was not tested formally, but was assessed
based on a subjective interpretation of the results.

The more tests are performed on the same dataset, the more likely is it that one will
find significant results occurring by chance. Thus, to make a scientific statement with
a reasonable degree of confidence, the significance level for the hypotheses tests were
initially set to alpha = 0.1, and subsequently reduced to account for multiplicity using
Holm's multiple test procedure (Holm, 1979). Holm has shown that, for K statistical
tests, the adjusted significance level must be set equal to alpha/(K-i+1), where (i =
1,...,K) is the index of each test ordered by the p-value (p; <= p, <= ... <= pg). This
means that p;, the smallest p-value, must be compared with alpha; = alpha/K. The
largest p-value px must be compared with alphayx = alpha. In our case, adjusting the
significance level using Holm's procedure is more appropriate than using the even
more conservative Bonferroni adjustment, i.e., alpha/K, since the Bonferroni
adjustment ignores the correlation between tests. A practical discussion of the power
of tests and presetting the level of significance is provided in (Briand et al., 1999a).

98

7.2.3.2 Change Effort (HI)

Hypothesis HI is supported (p=0.0072, two-sample T-test on the difference in mean
total change effort to implement c/, c2 and ¢3). On average, the total change effort on
RD was about 20% higher than the total effort on MF (Table 7.17). Most of the
difference in change effort is due to differences in time to understand how to
implement the change tasks (p=0.0006). There are smaller differences in the coding
and testing effort, but all results are in favor of the MF design. Figure 7.12 depicts the
average change effort for the change tasks.

Only eight out of nineteen subjects assigned to the RD design reported that they
completely finished change task c¢3, whereas sixteen out of seventeen subjects
assigned to the MF design completed change task c¢3. The analysis of the effort data
on the RD design therefore includes data points for those subjects that almost
finished, i.e., some testing remained but they still reported effort data. All subjects
completed the first two change tasks. When only counting change tasks ¢/ and c2, the
results show more than 40% difference in change effort (p=0.0004).

Based on the results of the pilot experiment, we had estimated that more subjects
would have completed all change tasks within the allocated time. It is interesting that
the professional programmers and graduate students of the pilot experiment
implemented ¢/ and c¢2 significantly faster than the undergraduate students of the
main experiment, even though the undergraduate students had more experience with
Java. On average, the graduate students/professionals used about 40% less time than
the undergraduate students. In retrospect, we should have allocated more time for the
change tasks.

Table 7.17. Summary of change effort (in minutes) for the change tasks c/, ¢2 and ¢3

Changeability Group | N Mean StDev | SE H1: Holm's alpha
Indicator Mean | mu (MF)<mu (RD) 0.1/(15-1i+1)
(p-value)

Total clic2 MF | 17 | 26.88 | 8.28 | 2.0 | 0.0004 0.0067

RD | 19 | 38.30 | 10.20 | 2.3 (i=1)
Total MF | 16 | 49.20 | 12.60 | 3.1 | 0.0072 0.0083
cl+c2+c3 (HI) RD | 18 | 59.22 | 9.29 | 2.2 (i=4)
Understand MF 16 16.03 7.31 1.8 0.0006 0.0071
cl+c2+c3 RD | 17 | 26.06 | 8.88 | 2.2 (i=2)
Code cl+c2+c3 MF | 16 | 27.13 | 9.26 | 2.3 | 0.42 0.0143

RD | 15 | 27.77 | 7.95 | 2.1 (i=9)
Test cl+c2+c3 MF | 16 | 6.09 | 4.07 | 1.0 | 0.43 0.0200

RD | 14 | 6.36 | 3.77 | 1.0 (1=11)

99

minutes
D
o
Il

Ooc3
mc2
mci

Fig. 7.12. Avg. change effort (in minutes) for each change task (c/, ¢2, ¢3) for MF and RD

7.2.3.3 Learning Curve (H2)

The hypothesis H2 is not supported. The results indicate that there is no significant
difference in the relative learning effect for designs MF and RD (Table 7.18). The
average values for the effort to understand each change is shown in Figure 7.13. The
results show that the time to understand each change task on MF is lower than the
time to understand the same tasks on RD. Furthermore, there is no visible difference
in the trend in the learning curve (from c/ to c3).

12
10
|
o 8N
2
g°
1S 40 &
2
0 ‘
1 2
Change Task

@ Understand MF
M Understand RD

Fig. 7.13. Trend in the comprehension effort from change task c/ to change task c3

Table 7.18. Two-sample T-test on difference in learning curve

Changeability Group | N Mean StDev | SE H1l:mu (RD) < Holms alpha=
Indicator Mean mu (MF) 0.1/(15-i+1)
LearningCurve MF 16 -0.096 0.354 0.088 p = 0.52 0.0250
(c1,c3) RD 17 | -0.103 | 0.370 | 0.090 (1=12)

100

7.2.3.4 Correctness (H3)

Hypothesis H3 is not supported. There is no significant difference in correctness
(Table 7.19). On average, the solutions had high quality. This suggests that the change
effort results are reliable — they are not confounded by low correctness or differences
in correctness.

Table 7.19. Summary of Mood's median test on correctness on MF and RD

Changeability Popul. Group | N Group N< N>= Chi-Sq | p-value | Holms alpha=
Indicator median Median 0.1/(15-1i+1)
Correctness 6 | MF 17 6 4 13 0.04 0.847 0.1000

cl RD 19 6 5 | 14 (1=15)
Correctness 4 | MF 16 6 6 10 2.29 0.130 0.0111

c2 RD 19 4 12 7 (1i=7)
Correctness 5 | MF 16 5 9 7 0.32 0.571 0.0500

c3 RD 9 6 4 5 (i=14)

7.2.3.5 Subjective Change Complexity (H4)

Hypothesis H4 is partially supported. There are no significant differences for change
tasks c/ and c¢2 (Table 7.20). For change task c3, subjects assigned to the RD design
were less confident about the correctness of the solution. There is some evidence that
subjects assigned to the RD design also thought it was more difficult to solve change
task ¢3 (p=0.033). However, this result is not significant with respect to Holm's
adjusted alpha-value, which in this case requires a p-value less than 0.0091.

Table 7.20. Summary of Mood's median tests on subjective task difficulty

Changeability Popul. Group | N Group N< N>= Chi-Sq | p-value | Holms alpha=
Indicator median Median 0.1/(15-i+1)
Subj. Task 1 | MF 17 1 12 5 0.63 0.429 0.0167
Difficulty CI1 RD 19 1|11 8 (i=10)
Subj. Task 3 MF 17 2 10 7 1.74 0.187 0.0125
Difficulty C2 RD 19 3 7 | 12 (i=8)
Subj. Task 3 | MF 16 2 10 6 4.57 0.033 0.0091
Difficulty C3 RD 16 3| 4 |12 (i=5)
Confidence C1 5 | MF 17 5] 11 6 0.34 0.559 0.0333

RD 19 5 14 5 (1=13)
Confidence C2 4 | MF 17 5 7 10 2.70 0.101 0.0100

RD 19 4 13 6 (i=6)
Confidence C3 3 | MF 16 4 3 13 15.2 0.000 0.0077

RD 16 3 14 2 (1=3)

7.2.3.6 Structural Stability (H5)

Figure 7.14 suggests that the structure of the MF design is affected more than the RD
design when subjected to the changes c/, ¢2 and c¢3. The data is based on ten
randomly selected solutions to the change tasks, five for the MF design and five for
the RD design. In particular, the average class size (CS) and the average import
coupling to non-library classes (OMMIC) change much more for the MF design than
for the RD design.

101

o

4
3.5 A
Tt —
o 2.5 A
2 2 mc2
o 1.5 mc
% 1
.5
0

I
I
|
|
I
w

A < N A 5\ A N
o@(< \o@o NN o®<< Q@'O &@Q %\0
@\\ & 7 W N o
) N &

Fig. 7.14. Changes in structural attribute measures of the MF and RD designs after
implementing change task c/, ¢2 and ¢3

The results also indicate that the RD design requires smaller changes (in SLOC
added+deleted+modified) for the third change task (Figure 7.15). More interestingly,
the changes in these measures are not reflected by corresponding changes in change
effort, correctness and subjective change complexity. However, a qualitative
assessment of the resulting MF design after changes c/, c2 and c3 suggests that the
FrontPanel class of the MF design is indeed becoming a "maintenance nightmare",
piling up with more and more responsibilities and high class-level coupling.

35

30 —
A 25
% 20 aMF
-]
FR mRD
ol
) 1(; _.: E

o | [T

cl c2 c3

Change Task

Fig. 7.15. Comparison of the size of each change task for the MF and RD designs

7.2.3.7 Attempting to Explain the Results

Investigating the delivered solutions and the comments given by the subjects on the
change task questionnaires, we attempt to explain why there is a significant difference
in change effort for the design alternatives.

One difference between the designs is size. The RD design is larger than the MF
design. Although size in general may be an important contributor to complexity, we
do not believe that the difference in size is that important for the MF and RD designs.
Both designs are "small". Furthermore, most of the difference in size is due to simple
initialization code in the RD design (e.g., declaration of identifiers and construction of

102

the objects). In our opinion, this initialization code is quite simple compared with the
remainder of the RD design.

For change task ¢/ (the "return button"), the solution is identical for the two design
alternatives, involving two small changes to the CoffeeMachine class after
determining that the CashBox class already contains a returnCoins method. Still, it
required less effort to understand how to solve ¢/ on the MF design compared with
the effort to understand the same solution for the RD design. With regards to the RD
design, and in particular for change tasks ¢2 and ¢3, we found comments such as "I
keep nesting through the classes, but it is too complicated — I give up". Although the
MF design has classes with higher coupling, the dynamic depth of the message
interactions among classes to implement a given functional scenario is significantly
smaller than for the RD design. Thus, it may be more difficult to perform a systematic
trace of the RD design. The fact that the subjects had access to a message sequence
chart (Appendix B.4) did not seem to help much. Furthermore, for change task c3, the
RD design involved changing four classes whereas only two classes had to be
changed in the MF design. The same change task was also reported to have higher
subjective complexity for the RD design than for the MF design. Thus, we believe
that the number of classes changed and the depth of the message interactions among
classes are important contributors to the complexity of a design.

These results are supported by existing theory. The first mental representation
programmers build to understand completely new code is a control flow abstraction of
the program (von Mayrhauser et al, 1997). Some developers use a systematic
approach (e.g., line-by-line) to build the control-flow abstraction. Other developers
used a more opportunistic approach, studying code in an as-needed fashion based on
hypotheses guided by clues in the code (von Mayrhauser et al., 1997). According to
this theory, one may expect an increase in the time required to understand how to
implement a change when the amount of collaboration between objects participating
in the implementation of a functional scenario increases. Furthermore, the effect may
be larger for programmers with a systematic approach.

To assess whether the solution approach affected the change effort for each change
tasks, we performed a one-way analysis of variance using "solution approach" as the
explanatory factor with three levels, and the total time for a given change task (e.g.,
c2) as the response variable. The solution approach was given by the subjects on the
change task questionnaire (Appendix B.3), and coded as follows for the analysis.

1. explorative: Subject characterized the solution approach as 1 or 2
2. mixed: Subject characterized the solution approach as 3 or 4
3. systematic: Subject characterized the solution approach as 5 or 6

The solution approach does not necessarily correspond directly to "opportunistic"
versus "systematic" program understanding using von Mayrhauser's terminology.
However, it seems plausible that explorative programmers are also more
"opportunistic" than the systematic programmers.

For change task c/ there was no difference in the change effort depending on the
solution approach. The change task may be too small to uncover differences in change
effort due to the solution approach. For the larger change task c2, the exploratory
programmers were significantly faster than the systematic programmers on the RD
design (Table 7.21). For change task c2, the exploratory programmers were actually

103

slower than the systematic programmers on the MF design (Table 7.22), although the
difference in change effort is not significant. For change task c3, the effect of the
solution approach was similar to change task c¢2. However, there were too few
subjects completing the ¢3 task for the RD design to give reliable results. The results
based on change tasks ¢/ and c¢2 can be summarized as follows.

e The solution approach may have a significant impact on the change effort.

e The effect of the solution approach on the change effort depends on the size of
the change and on the design approach. The RD design seems to be better suited
for an explorative solution approach than the MF design.

Table 7.21. ANOVA for the solution approach on change task c2 for the RD design

Analysis of Variance for Total c2

Source DF SS MS F P
Strategy 2 663.7 331.9 5.59 0.014
Error 16 950.3 59.4

Total 18 1614.0

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------- Fommm - Fommm - Fommm -

expl. 9 19.111 5.442 (mmmmkemmem)

mixed 8 25.875 9.015 (----- LEEE)

syst. 2 38.500 12.021 (=== ---- Kmmmmm oo)
——————— bt R

Pooled StDev = 7.707 20 30 40

Table 7.22. ANOVA for the solution approach on change task c2 for the MF design

Analysis of Variance for Total c2

Source DF SS MS F P
Strategy 2 99.0 49.5 1.26 0.314
Error 14 551.0 39.4

Total 16 650.0

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev --------- Fommm - tommm - tommm -

expl. 7 18.857 6.594 (--------- L)

mixed 7 14.286 5.851 (---------- L)

syst. 3 13.333 6.506 (-=------------- T)
————————— e e

Pooled StDev = 6.273 10.0 15.0 20.0

7.2.4 Summary of Results

In the coffee-machine study, cohesion was effectively increased by splitting the
"mainframe" class, and delegating some of its functional responsibilities to several
smaller classes, resulting in the RD design. The RD design also had significantly
lower class-level coupling. The RD design adhered better to Coad and Yourdon's
design principles than the MF design. However, the RD design contained twice as
many classes and slightly more code (in SLOC) compared with the initial, mainframe
design. With respects to the given change tasks, the results can be summarized as
follows:

104

e The responsibility-driven (RD) design requires significantly (20-50%) more
change effort than the alternative mainframe (MF) design.

e The RD design is harder to understand for the "average" programmer than the
MF design, and the learning curve is not better for the RD design than for the MF
design.

e The RD design does not result in fewer errors than the MF design.

e The RD design may have higher structural stability than the MF design.

Although one must be careful when generalizing results based on a single study, the
results indicate that using delegation of responsibilities to reduce class-level coupling
and increase class cohesion may not necessarily improve the changeability of a
design. On the contrary, the resulting structure may contain deeply nested class
interactions, which average programmers may find difficult to understand. Thus,
decreasing coupling and increasing cohesion may increase complexity and the costs
of changes.

The only indicator that shows potential benefits of the RD design is structural
stability. In the RD design, new functionality is divided among the collaborating
classes. In the MF design, most subjects piled the code onto the already overloaded
"mainframe" class. However, what are the practical consequences of the potentially
increased stability? In our study, the changes in structural attributes are not reflected
by external quality attributes (e.g., increased change effort and decreased correctness).
Thus, when does the added "stability" of the responsibility-driven design justify the
increased complexity and costs of changes? For the coffee-machine, it is difficult to
envision a sufficient number of future changes to justify the more complex
responsibility-driven design. The mainframe approach works well for the types of
changes likely to occur. Furthermore, we believe that a prerequisite for achieving the
potential advantage of the RD design is that the programmers are confident with the
design, and understand the abstract delegations of responsibilities so that they do not
break the underlying structure. Our results indicate that this understanding may be
difficult to achieve for the average programmer.

7.2.4.1 Comparing the Results with Related Research

Current research in object-oriented design quality often concludes, based on empirical
data, that classes with low coupling and/or high cohesion are less error-prone, easier
to maintain, etc. There is a growing body of results indicating that measures of
structural attributes such as coupling, cohesion, inheritance depth, etc. can be
reasonably good predictors of development effort and product quality (Li and Henry,
1993; Chidamber and Kemerer, 1994; Basili et al., 1996b; Daly et al., 1996; Briand et
al., 1999d; Briand et al., 2000). Thus, it seems conceivable that such measures can be
used to compare the changeability of alternative designs. However, for practical
reasons, many of these studies have validated the measures by comparing different
systems or different classes within one system. For example, in (Briand et al., 1997a;
Briand et al., 1999a), they investigated whether a "good" design (adhering to Coad
and Yourdon's design principles) was easier to maintain than a "bad" design. The
results strongly suggest that Coad and Yourdon's design principles have a positive
effect on the maintainability of object-oriented designs. However, as pointed out by
the authors, the designs represented two different systems — a temperature controlling

105

system and an automatic bank teller machine, respectively. Thus, it is difficult to
determine what the practical consequences of the results are. For example, fow can
coupling be reduced without increasing other attributes that also contribute to the
complexity of the software? In this paper, we compare alternative designs of the same
system. While this approach introduces new problems (e.g., group assignments, how
not to bias the designs and the change tasks), it enables us to assess how different
design tradeoffs of the same system actually affect the overall complexity.

In (Sharble and Cohen, 1993), one of the few experiments comparing alternative
OO technologies was reported. The authors conducted an experiment where they
compared a data-driven and a responsibility-driven design method. Two systems were
developed based on the same requirement specification — using the data-driven and
the responsibility-driven design method, respectively. Structural attribute measures of
the two systems were collected and compared. Based on the measured values, the
authors suggested that responsibility-driven design produced higher quality software
than data-driven design, because the responsibility-driven method resulted in designs
with less coupling and higher cohesion than the data-driven method. We believe it
may be premature to draw such conclusions. Whether the design measures used in the
experiment actually measured "quality" was not empirically validated. In other words,
the experiment did not involve any direct measurement of external quality attributes.

The combined results of (Briand et al., 1997a; Briand et al., 1999a), (Sharble and
Cohen, 1993) and the results presented in this section can be summarized as follows:

e A system adhering to Coad and Yourdon's design quality principles is easier to
maintain than another system not adhering to those principles (Briand et al.,
1997a; Briand ef al., 1999a).

e Responsibility-driven design may result in lower coupling between classes and
higher class cohesion (Sharble and Cohen, 1993).

e However, a practical concern is zow to adhere to design quality principles such as
those proposed by Coad and Yourdon. Reducing coupling and increasing
cohesion of the same system may result in changing other aspects of the design
that contribute to an increase in system complexity.

7.2.5 Threats to Validity

The external validity of this study depends on, for example, the choice of design
alternatives, the choice of change tasks, and how representative the sample is of the
population. We cannot eliminate these threats within the context of this study. The
ultimate means to improve the validity of the study is by replication, using other
subjects, other design alternatives and other change tasks. The main experiment may
be viewed as a replication of the pilot experiment with different population samples
and group assignments. However, it may be more important to use different design
alternatives and other change tasks. In addition, internal validity may be threatened
by, for example, skewed group assignments, ambiguous questions and otherwise
unclear experimental materials. This is elaborated in the following sections.

106

7.2.5.1 Experimental Materials

Conducting a pilot experiment effectively results in "throwing away" data, but such
an investment may significantly reduce threats and, hence, improve the validity of the
study. For example, we used the pilot experiment to evaluate and improve the quality
of the experimental materials before the main experiment took place.

Mocca

With regards to the Mocca programming language, the subjects of the pilot-
experiment reported that Mocca was very easy to learn. Two of the subjects had
problems understanding how to program in Mocca, but they had no previous
experience with object-oriented programming. Furthermore, informal discussions
with the subjects indicate that Mocca did not restrict their choice of solutions for the
given change tasks on the coffee-machine designs. Among the subjects of the main
experiment, all subjects had previous experience with Java and similar OO
programming languages.

Written Materials

The evaluation of the pilot experiment resulted in important improvements of the
design descriptions and the change task descriptions. Some subjects had
misunderstood certain aspects of the change task descriptions. Furthermore, one
subject had misunderstood how and where the code was supposed to be written.
Although the process had been explained in detail during session 1 of the pilot-
experiment, we discovered that there was a need to be extremely clear and explicit in
the written materials to avoid confusion and misunderstandings.

One problem we found after the main experiment was that one of the messages in
the message sequence chart for the RD design had an incorrect sequence number. For
developers relying on the MSC for understanding the design, this may have
influenced the time to implement the tasks, in particular for task c2. Although this
threat cannot be ruled out, it is in our opinion very unlikely that this "bug" can explain
the large difference in change effort. Otherwise, we believe that the written materials
of the main experiment were of high quality.

7.2.5.2 Size and Choice of Design Alternatives and Change Tasks
The coffee-machine designs and the changes to them are small. The RD design may
support "opportunistic" programmers better than the MF design. As the size of the
programs increases, memory limitations may eventually result in that it becomes too
difficult to use a systematic approach, even for the "MF" type of designs. Thus,
different results may have been obtained if the programs were larger. This threat to
external validity should be considered in future experiments.

With regards to internal validity, it is possible that adding more than three change
tasks would have produced different results:

e Adding a fourth change task may have resulted in a total "breakdown" of the MF
design.

107

e It is possible that most of the system learning occurred during change task ¢3 for
the RD design, after which subsequent changes would have been simple to
understand.

7.2.5.3 Pen and Paper

The changes were coded with pen and paper. This represents another important threat
to the external validity. Using a computer one has access to advanced editors, multiple
windows, class browsers, etc. Some subjects preferred an exploratory approach to
changing the program, which may be difficult to do with pen and paper compared
with using a computer. For this experiment, the designs and the change tasks were
small. Furthermore, there was a quite even distribution of subjects characterizing their
solution approach as exploratory for the MF and RD designs. Finally, the students are
accustomed to working with pen and paper programs on their written exams. This
means that the advantage of using a computer is probably not that great.

Using a computer would have introduced many new problems regarding training,
learning effects and biases towards certain solution approaches depending on the
available tool functionality. In this particular experiment, it was in our opinion a
better approach to use pen and paper rather than a computer. Still, the only way to
eliminate the resulting threats is to replicate the experiment using computers instead
of pen and paper.

7.2.5.4 Subject Selection

One important question regarding external validity is whether the subjects form a
representative sample of the population. The subjects (mostly undergraduate students,
but also some graduate students and professional developers) of the experiment may
not be representative of the "general programmer”. Furthermore, according to
Cockburn, the MF design is typical of the initial designs most students propose. Thus,
it is possible that the MF design has an unfair advantage when using students as
experimental subjects. The results may have been quite different if the subjects were
OO design experts. Thus, we cannot rule out that the subject selection may have
biased the results.

Another threat is whether some subjects actually have read Cockburn's article
series or otherwise knew the details of the designs prior to the experiment. Because of
randomization and the number of subjects involved in the experiment, we believe it is
very unlikely that this have affected the results of the experiment.

7.2.5.5 Group Assignment

A serious threat to the validity of the results of between-subject experiments is the
group assignment (Briand et al., 1999a). It is difficult to ensure that the skill levels of
the two groups are approximately equal. In our case, we used the results of the
common calibration task as an indicator of the skill level of each subject. The
randomized block group assignment in the pilot experiment became skewed towards
higher skills for subjects assigned to the RD design, because some subjects did not
attend the third session of the experiment (Figure 7.10). Still, the average change
effort for the RD design was significantly higher than for the MF design (Figure

108

7.11). Thus, for the pilot-experiment, the uneven group assignment actually
strengthens the results.

In the main experiment, we checked the skill level of the two randomized groups
by calculating confidence intervals for the mean effort to implement the common
calibration task:

Calib. 95% CIs For Mean (minutes)
Group N Mean StDev --+--------- +o------- - +o------- - +----
MF 17 46.24 14.22 (------------ F oo)
RD 19 50.37 13.70 (mmmmmmemmem ¥)
S Fommm - Fommm - +----
40.0 45.0 50.0 55.0

The confidence intervals show that the 17 subjects assigned to the MF design on
average performed slightly better on the calibration task than the 19 subjects assigned
to the RD design, that is, the opposite of what was the case in the pilot experiment.
The difference in means is not significant, however. We also checked whether more
even group assignments might have produced results that are inconsistent with the
results of the main experiment. First, we created two blocks based on the calibration
task effort, using the median (49 minutes) as a boundary. We then "balanced" the
group assignment by randomly removing subjects from the initial groups such that an
equal number of subjects (seven, in our case) remained in each block for each group
(Table 7.23).

Table 7.23. Initial and adjusted group assignment cross-tabulated on skill level

Initial Group Adjusted Group
Block Assignment (count) Assignment (count)
(minutes) MF RD MF RD
<49 10 7 7 7
>=49 7 12 7 7
Total 17 19 14 14

Furthermore, we tested whether the mean calibration task efforts for the adjusted
groups were different, using a two-sided T-test on the difference in means (H/, Table
7.24). Finally, we tested whether the mean total effort to implement change tasks
cl+c2+c3 were lower on the MF design than on the RD design, using a one-sided T-
test on the difference in means (H2). This process was repeated six times (Run 1—6)E|
The results are shown in Table 7.24. The sub-samples of the initial groups have very
even mean effort to implement the calibration task (p-values from 0.66 to 0.87).
Furthermore, the differences in mean total effort to implement c/-+c2+c3 are
consistent with the results presented in Section 7.2.3 (p-values from 0.0012 to 0.024).
Thus, we have no reasons to believe that the group assignment threatens the results of
this study.

6 There are (12!/7!5!)(10!/7!31)=95040 ways to select such balanced sub-samples from the
initial group assignment. We selected only six of these possible samples at random.

109

Table 7.24. Adjusted results based on sub-samples of the original group assignment

Run Group N Effort | Hl:Unequal Effort H2:
Calib. groups? cl+c2+c3 mu (MF) <mu (RD) ?

1 MF 14 46.6 p = 0.84 47 .4 p = 0.0023
RD 14 47.6 59.6

2 MF 14 44.9 p = 0.66 49.9 p = 0.0087
RD 14 46.7 60.5

3 MF 14 45.3 p = 0.86 50.5 p = 0.0071
RD 14 46.0 61.3

4 MF 14 44.8 p = 0.85 50.9 p = 0.024
RD 14 45.6 59.7

5 MF 14 46.6 p = 0.66 47 .4 p = 0.0012
RD 14 45.1 60.4

6 MF 14 45.6 p = 0.87 47.1 p = 0.0024
RD 14 46.2 59.1

7.2.6 Future Work

To further explain the results of this experiment, we are in the process of conducting a
follow-up experiment with professional programmers in industry where the subjects
"think aloud" while trying to understand the change tasks. The comments and actions
made by the subjects are carefully recorded and subsequently analyzed. The
preliminary results from that experiment suggest that instead of creating "hypotheses"
about how the design works (i.e., a more opportunistic solution approach), many
subjects perform a systematic trace of the functionality related to a given change task.
Thus, the deeply nested interactions among classes to implement a given functional
scenario of the RD design may, to some extent, explain the increase in change effort
compared with the MF design. For this reason, we are also investigating whether
dynamic coupling measures (to measure the scenario depth) are useful in building
predictive models of the changeability of object-oriented designs (Section 7.3).

110

7.3 Definition and Evaluation of Dynamic Coupling

This section presents initial ideas and preliminary results on using dynamic coupling
measures to assess the effort to understand and implement changes to a scenario. To
our knowledge, very little research has been done on the investigation of dynamic
coupling, in particular with regards to its relationships to changeability.

Dynamic coupling measures based on the underlying concept of role-models were
proposed in Chapter 6. In this section, a preliminary empirical validation is provided.
An important aspect of such a validation is to ensure that the measures actually
capture what they are intended to capture. Unlike many static coupling measures, the
proposed dynamic coupling measures are not surrogate size measures. The results
show that the measures capture several distinct dimensions of dynamic coupling.
Furthermore, the coupling measures are used to build reasonably accurate models for
predicting hot-spots and ripple effects within a given functional scenario.

The remainder of this section is organized as follows. Section 7.3.1 describes a
case study used to evaluate the measures. Dynamic coupling data and change data
from ten versions of the Ooram case tool is used to provide a preliminary validation
the measures. Section 7.3.2 illustrates how the changes to classes identified by the
dynamic coupling measures can be assessed with change complexity measurement.
Section 7.3.3 evaluates whether the dynamic coupling measures can explain the
change proneness of classes. Such models can be useful to identify "hot-spots" and
unstable classes in a design. Section 7.3.4 uses the change data and the coupling
measures to build prediction models for common changes, which in turn may be an
indicator of ripple effects in a given change scenario. Section 7.3.5 summarizes and
describes future research.

7.3.1 The Case Study

To evaluate the dynamic coupling measures, a case study was conducted. The
software system studied is a commercial object-oriented analysis and design CASE
tool — the Ooram system (Reenskaug et al., 1995). The collected data was based on
nine maintenance releases (version g0/ — g09) of the system, which in turn were
based on the major system version called Ooram Version g. The nine maintenance
releases were produced within a time span of approximately one and a half years. The
system is implemented in VisualWorks SmallTalk and consists of more than 1000
classes and close to 300 KSLOC.

7.3.1.1 Collection of the Change Data

The dependent variables of the study were collected from change data for the system.
For each of the 10 versions of the Ooram system, versions g00 to g09, the SmallTalk
"image" was dumped to ASCII-files. Each file corresponded to one class, and was
machine formatted using a standard VisualWorks utility. Using some shell-scripts, the
size of each class (in SLOC) and the number of lines of code added to and deleted
from each class between two successive versions were calculated using Unix diff.
These elementary measures were used to calculate change profile measures, change

111

proneness and common changes, as described in Sections 7.3.2, 7.3.3 and 7.3.4.
Based on the elementary measures, a number of system-level summary measures
were also calculated (Table 7.25):

System Size is the total number of SLOC for the system

SLOC Add is the number of SLOC added compared with the previous version
SLOC Del is the number of SLOC deleted compared with the previous version
CC is the total class count

Change Span is the number of classes changed (i.e., at least one line added or
deleted) from one version to the next

Class Add is the number of new classes

e (lass Del is the number of classes deleted

e AvgCSs is the average size (in SLOC) of the classes

Table 7.25. Summary measures for the minor releases g0/—g09 of Ooram

Version Build date System SLOC SLOC cc Change Class Class AvgCS

(dd/mm/yy) Size Add Del Span Add Del
g0l 20/08/97 272840 4793 3383 1107 164 8 10 246
g02 14/11/97 277030 7169 2979 1120 173 13 0 247
g03 28/11/97 277030 9 9 1120 3 0 0 247
g04 26/01/98 277031 44 43 1120 27 0 0 247
g05 18/03/98 281843 9759 4947 1133 219 19 6 249
g06 12/05/98 284959 8284 5168 1143 142 11 1 249
g07 25/09/98 287796 5033 2196 1152 208 10 1 250
g08 08/10/98 288971 1902 727 1157 66 0 250
g09 22/12/98 291503 4688 2156 1164 144 7 0 250

7.3.1.2 Collection of the Coupling Measures

The coupling measures were collected using a reverse-engineering utility
implemented on version g09 of the Ooram-system. This utility generates role models
corresponding to a run-time session. The actual implementation is specific to the
VisualWorks programming environment and the Ooram code. In principle, the
implementation modifies source code at run-time (using the VisualWorks "doit"-
command) such that each object is associated with a "shadow object". These shadow
objects intercept all messages sent and received at run-time. A repository is updated
in real time with information about the sender object, receiver object, sender class and
receiver class for each message. At any time during the run-time session, the
repository can be dumped to an ASCII-file (Table 7.26). The ASCII-file contains a
row for each pair of interacting roles (client and server) at the object-level and at the
class-level. In Table 7.26, OM is the number of distinct methods used in the
interaction between the client object and the server object. OD is the total number of
messages sent between the objects. CM is the number of methods used in the
interaction between the client class and the server class. CD is the total number of
messages sent between the client class and the server class. The ASCII-file was

112

imported into a relational database providing a convenient way to calculate the 12
dynamic coupling measures from the raw coupling data.

A given, well-defined functional scenario limited to one important GUI dialog of
the Ooram-system was selected as the target of the investigation. The scenario was
executed while the dynamic coupling parser intercepted each run-time message. The
algorithm used was as follows.

Start the Ooram system

Load the reverse-engineering utility into memory

Start the functional scenario

Iterate: Perform some (new) sub-function within the scenario

Dump ASCII-file

If new classes are added or values (OM, CM) in the ASCII-file are different
from the previous iteration, goto 4. Otherwise, goto 7

7. End run-time session

AR

As will be pointed out in Section 7.3.5, there is considerable room for improvement of
this algorithm, depending on the intended use of the measures.

Table 7.26. ASCII-dump (edited) showing raw coupling data. In the selected scenario, the
object-level coupling between {listview2, rmrolemodelwithscenarios2} is reflected as class-
level coupling between {listview2, rmnode2} and {listview2, rmrolemodel2)}.

'From VisualWorks®, Release 2.5.2 of September 26, 1995
{IMAGE: g09.im3} on October 5, 1999 at 2:38:15 pm'!

Object-level Coupling

Client role Server role OM oD
listview2 rminteraction 1 4
listview2 rmport2 1 18
listview2 rmrolemodelwithscenarios2 2 3

<other role pairss>

Class-level Coupling

Client role Server role CM CD
listview2 rminteraction 1 4
listview2 rmnode2 1 1
listview2 rmport2 1 18
listview2 rmrolemodel2 1 2

<other role pairs>

7.3.1.3 Descriptive Statistics of the Coupling Measures

The descriptive statistics of the coupling and size measures based on version g09 for
the identified classes are shown in Table 7.27. Note that the mean values for a given
import coupling measure (e.g., IC_OA) is always equal to the mean values for the
corresponding export coupling measure (e.g., EC_OA) because the total number of
messages sent is always equal to the total number of messages received. There are
large differences between the lower 251 percentile, the median, and the 75M percentile,
however.

113

Table 7.27. Descriptive statistics for the measures collected from the given scenario

Variable Max 75% Median 25% Min Mean StDev
Cs 2590 1499 638 340 21 924.0 736.0
IC oA 7 4 2.5 1 0 2.5 2.0
IC OM 35 13.75 7 2 0 8.7 8.8
IC OD 5962 267 42 7 0 715.0 1642.0
IC CcA 9 4 2.5 2 1 3.1 2.0
IC CM 23 9 5 3 1 6.9 5.6
IC CD 5513 737 60 12 5 712.0 1397.0
EC_OA 8 5.5 0 0 0 2.5 3.2
EC_OM 39 17.5 0 0 0 8.7 12.2
EC_OD 4383 760 0 0 0 715.0 1390.0
EC_CA 13 6 1 0 0 3.1 3.6
EC_CM 23 12.75 1.5 0 0 6.9 8.2
EC_CD 6250 1090 6 0 0 712.0 1412.0

7.3.1.4 Principal Component Analysis

Principal Component Analysis (PCA) was used to analyze the covariance structure of
the measures. Based on the PCA, the number of underlying dimensions of the data
can be quantified. The number of principal components is usually decided based on
the amount of variance explained by each component, using the rule of thumb of
eigenvalues (variances) larger than 1.0. In this case, PCA with four components
should be used for the interpretation. Table 7.28 shows the results from PCA using
the Varimax rotation to ease the interpretation.

The results from the principal component analysis show that most of the dynamic
coupling measures are not surrogate size measures; they represent a significant
amount of variance in the data set not accounted for by the size measure. None of the
measures are correlated with CS. Only the class-level export coupling measures
belong to the same principal component as size, but there is also some overlap with
class-level import coupling and CS. The dimension strength of coupling is not
represented in different principal components. Thus, it may be sufficient to measure
either association coupling or method coupling or dynamic coupling. Based on the
coefficients of the rotated components, the dimensions are interpreted as follows:

PC1: Object-level Export Coupling
PC2: Class-level Import Coupling
PC3: Class-level Export Coupling/Size
PC4: Object-level Import Coupling

114

Table 7.28. Rotated Principal Components

Variable PC1 PC2 PC3 PC4
CS -0.351 0.465 0.503 -0.156
IC OA 0.195 0.117 -0.192 0.893
IC OM 0.361 0.309 -0.011 0.848
IC OD 0.048 0.526 0.098 0.793
IC cA 0.098 0.854 0.017 0.374
IC CM 0.390 0.885 -0.002 0.122
IC CD 0.106 0.890 0.058 0.314
EC oA 0.895 0.144 0.104 0.297
EC_OM 0.927 0.128 0.119 0.212
EC_OD 0.838 0.151 0.223 0.070
EC_CA 0.284 0.052 0.925 -0.052
EC_CM 0.529 0.100 0.818 -0.021
EC_CD 0.008 -0.059 0.937 -0.010
Eigenvalue 3.191 2.985 2.781 2.564
% Variance 0.245 0.230 0.214 0.197
$Cumulative 0.245 0.475 0.689 0.886

7.3.2 Assessing Changeability with the Change Profile Measures

The goal of this section is to illustrate how change profile measurement (CPM) can be
used in practice — to assess trends in how changes propagate through the structure of
the selected scenario. This, in turn, may be useful to assess changeability decay within
the selected scenario. Based on the 24 identified classes, change profile measures for
the scenario were calculated for version g0/ to g09 according to the descriptions
provided in Chapter 6.

Figure 7.16 shows the resulting change complexity measures. No changes were
performed on the scenario for version g03 and g04, hence they are excluded from the
graph. The graph of Change Span shows the percentage of classes changed for the
scenario (i.e., number of classes changed in version g0Ox divided by 24) versus the
percentage of classes changed for the total system (i.e., number of classes changed in
version g0x divided by the total number of classes CC for each version of the Ooram
system). These measures show that the relative change ratio is higher for the selected
scenario than for the remainder of the system.

Thus, having poor design for this part of the system may have bigger consequences
on the total change effort from version g0/ to g09 than for other parts of the design.
However, there is no trend towards an increase in change span for the scenario
compared with the rest of the system. Furthermore, the graph of the Class Size
Change Profile shows that the average size of the 24 classes (4vgCS) increased
slightly from g01 to g09, but during the same period, the weighted average size of the
classes changed (CS_CP) decreased quite dramatically from g0/ to g09. Thus, there
is a trend towards changing the smaller classes of the scenario more than the larger
classes.

115

Change Span Class Size Change Profile

—e— Scenario —e— AvgCS
3 1 A —=— System 2500 = Cs.cP
> 08 //c\/ 2000 2.
©
S 0.6 » O 1500
P / \./ S \-\-/.\
[} -
¢ 04 ¥ » 1000 ° L - » -
3 — + \-\.
3 02 .___.,/_=\./.\./. 500
L) ; — : 0 ; ‘ ‘ ‘ ‘ ‘
g01 g02 g05 g06 go07 g08 g09 g01 g02 g05 g06 go07 g08 go9
Version Version
Import Coupling Change Profile Export Coupling Change Profile
6 ——IC_OA_CP 6 —e—EC_OA_CP
0 5] = —=—|C_CA_CP ° 5 —=—EC CA_CP|__
2 S
S 4 Y - S 4 A
>
23)\\\l”‘\‘\"”':—"‘/\.//‘ 231w A\-/.\ /.
3, 302 \\/M
o o /
o 1 & o 1 &
0 T T T T T T 0 T T T T T T
g01 g02 g05 g06 g07 go08 g09 g01 g02 g05 g06 g07 g08 go9
Version Version

Fig. 7.16. Change Complexity Measurement for the change scenario from version g0I to g09

The change profile measures IC OA CP, IC CA CP, EC OA CP and
EC CA CP are also plotted (Figure 7.16). To calculate these measures, the
association level coupling measures /C OA, IC CA, EC OA and EC CA collected
from release g09 were used in conjunction with the change profile (CP) for each
release (g0/ to g09) of the scenario. Thus, an assumption is made that the coupling
data at the association level have been stable across the releases. Based on the
resulting measures, trends in the coupling of the classes being changed are visualized.
Studying the relative differences in the class-level versus object-level measures, there
seem to be a trend towards changing large classes with high class-level coupling for
the early releases (e.g., g0/) and a trend towards changing small classes with high
object-level coupling in the later releases (e.g., 209).

The relative magnitude in class-level versus object-level coupling can be used to
determine where the changed classes are located in the inheritance hierarchy:

e Large classes with low object-level coupling and high class-level coupling were
changed in the first two or three releases. These classes are ancestor (framework)
classes that are not instantiated directly, because they have low objects-level
coupling.

e Once they stabilized, the classes further down in the inheritance hierarchy (that
is, classes that are instantiated as objects, and hence having higher relative object-
level coupling compared with the class-level coupling) were changed.

116

According to the developers in Numerica-Taskon, changing framework classes are
much more difficult than changing other classes (Section 7.4). Furthermore, results
from the Genera case study (Section 7.1.2) indicate that larger classes are also more
difficult to change than smaller classes. Thus, this analysis suggests a positive trend in
changeability of the selected scenario from g0/ to g09. The results presented in this
section only illustrate the use of the CPM approach in conjunction with dynamic
coupling data of a selected scenario. A more in-depth analysis would be required to
improve the validity of the results by, for example, combining the results with expert
opinion.

7.3.3 Change Proneness

If class 4 is changed more often than class B, then class 4 is more change prone than
class B. Change proneness have been used in other studies as an indicator of effort (Li
and Henry, 1993). This section investigates whether the number of changes to a class
depends on the dynamic coupling of the class. This knowledge could subsequently be
used to aid in design refactorinﬂ (e.g., removing "hot-spots"), when choosing among
design alternatives or when assessing changeability decay.

7.3.3.1 Hypotheses and Statistical Analysis

The dependent variable in this study is the total number of changes (NumChanges) to
each of the 24 classes participating in the scenario from version g0/ to g09. None of
these classes were deleted or added during the changes in the maintenance releases
from g0I to g09. Thus, the number of changes to these classes from version g0/ to
209 reflects the change proneness of these classes. The independent variables are the
class-level size measure CS and the twelve dynamic coupling measures of the
scenario based on version g09. Raw data is provided in Appendix C.

Many of the coupling measures show a positive correlation with NumChanges. An
important part of the validation is to determine whether the measures may be used to
build better models than when using only simple measures, such as CS. Consequently,
it may be appropriate to first test whether the class size measure affects change
proneness. Then, one may test whether the dynamic coupling measures are significant
additional explanatory variables, above what has already been accounted for by size.

Hypothesis formulation for class size:
e HO: The number of changes to a class does not depend on the size of the class.
e Hcg: The number of changes to a class depends on the size CS of the class.

Hypotheses formulation for the dynamic coupling measures:

e HO: The number of changes to a class does not depend on the dynamic coupling
of the class when the size of the class has been accounted for.

e Hcg,: The number of changes to a class depends on the dynamic coupling x of the
class, above what can be explained by the size CS of the class alone.

7 This assumes that there is a cause-effect relationship between coupling and change proneness.
By reducing coupling for a class one would expect a reduction in change proneness for that
class. However, showing a covariance between two variables is not sufficient to show such
causality.

117

To test hypotheses involving one dependent variable and more than one independent
variable, and assuming the independent variables are not correlated (as is the case for
the selected variables), multiple linear regression may be used. There are twelve
coupling measures and one size measure, resulting in a total of 13 hypotheses to be
tested. With that many tests, it is more likely that one discovers empirical
relationships by chance, i.e., shotgun correlation. Consequently, the alpha-level is set
to a = 0.05/13 = 0.004, according to the Bonferroni procedure. The null-hypotheses
are rejected when the p-value for HO: Bcsx = 0 is smaller than 0.004. However, the
reader may choose to be less strict by interpreting the actual p-values directly.

7.3.3.2 Results

The results of the tests are shown in Table 7.29. Just because there is a significant
relationship between some variables it does not mean that the relationship is very
useful in building predictive models. Thus, the table also includes the R-Sq to assess
the explanatory power of each model and the adjusted R-Sq to assess the prediction
ability of each model.

At the pre-determined alpha-level, none of the class-level export coupling
measures (EC C4, EC CM, EC CD) are significant explanatory variables of
NumChanges after taking into account the class size measure CS. This is perhaps not
that surprising since the class-level export coupling measures belong to the same
principal component (PC3) as CS. Regardless of the choice of level of significance o,
it is clear that EC_OA and EC_OM explain considerably more of the data variability
of NumChanges than the other coupling measures when size has been accounted for.

Table 7.30 shows the results of the best linear regression model for the
NumChanges independent variable. The same model was also the result when
forward, backward and stepwise variable selection heuristics were applied. For this
data-set, 72% of the variability of the number of changes to a class is explained by the
measures CS and EC_OA.

Table 7.29. Linear regression used to test hypothesis H_x: f,#0

Hypothesis Principal p-value p-value R-Sqg R-Sg (adj)

H s, Component HO: Bcs=0 HO: Rx=0

H s PC3 0.003 N/A 34.0% 31.0%
H s, 1c_on PC3,PC4 0.001 0.159 40.1% 34.4%
H s, 1c_om PC3,PC4 0.001 0.016 50.2% 45.4%
H cs, 1c_op PC3,PC4 0.003 0.120 41.4% 35.8%
Hoes, 1c ca PC3,PC2 0.007 0.101 42.1% 36.6%
Hoes, 1cam PC3,PC2 0.006 0.051 45.2% 40.0%
Hcs, 1cop PC3,PC2 0.006 0.154 40.3% 34.6%
H s, EC:OA PC3,PC1 0.000 0.000 72.0% 69.3%
H cs, c_on PC3,PC1 0.000 0.000 64.6% 61.2%
H cs, Bc op PC3,PC1l 0.001 0.016 50.3% 45.6%
H s, Bc ca PC3 0.012 0.048 45.5% 40.3%
H cs, o om PC3 0.006 0.015 50.5% 45.8%
H s, mc op PC3 0.009 0.437 36.0% 29.9%

118

Table 7.30. Regression model for NumChanges using EC_OA and CS as explanatory variables

The regression equation is

NumChanges

Predictor

Constant
EC_OA
CSs

S = 1.151

= 1.84 + 0.403 EC_OA + 0.00197 Cs
Coef StDev T P
1.8391 0.4539 4.05 0.001
0.40304 0.07560 5.33 0.000
0.0019701 0.0003316 5.94 0.000
R-Sg = 72.0% R-Sqg(adj) = 69.3%

Analysis of Variance

Source DF SS MS F
Regression 2 71.491 35.746 26.96
Residual Error 21 27.842 1.326

Total 23 99.333

Source DF Seq SS

EC_OA 1 24.704

Cs 1 46.787

0.000

Residual

Frequency

Normal Plot of Residuals

Residual Model Diagnostics
| Chart of Residuals

5 —
. 4 3.08L.=4.028
‘¢ . 3 -
5 2]
. 1 A
e -B 1A NAA A [\/\ X=-21E-15
. 0+ B4
@ vV
. EE RAVARAaaY
x 24
-3 4
e -4 -30SL=-4.028
r r r S5 T T : :
-2 1 1 2 0 5 10 15 20 25
Normal Score Observation Number

Histogram of Residuals

Residuals vs. Fits

2 =
%
14
E - .
=1
S 0 L N
% 3
&) 3
w N ' ‘
—— 21 r r r —
-2.0-1.5-1.0-0.5-000.5 1.0 1.5 2.0 2 3 4 5 6 7 8
Residual Fit

Fig. 7.17. Checking the model assumptions for NumChanges = 1.84 + 0.403 EC_OA + 0.00197 CS

As with any type of hypothesis test, there are a number of model conditions that, if
not met, may invalidate the results. For linear regression, the hypothesis tests on the
coefficients are based on a number of conditions. These are: (1) that the expected
error mean is zero, and assumptions of (2) homogeneous error variance, (3)
uncorrelated errors and (4) normally distributed errors. For the resulting model, these

assumptions were checked and no serious deviations were found (Figure 7.17).

The results are interpreted as follows. The larger the class (CS), the more
functionality is allocated to it, and hence it is more likely to be affected by changes.

119

The higher object-level export coupling of a class, the more objects are dependent on
services provided by the object, and hence it is more likely that the class of which the
object is an instance will be changed. Furthermore, whether the services provided are
implemented by methods in the actual class of the object or in an ancestor class of the
object is less relevant for the change proneness of the class.

7.3.4 Using Dynamic Coupling for Impact Analysis

The section investigates whether the dynamic coupling measures can help perform
impact analysis. The ripple effect refers to the phenomenon that changes made to one
part of a software system ripple throughout the system. As pointed out in (Kung ef al.,
1994), the complex relationships between the object classes due to OO features such
as inheritance, polymorphism and dynamic binding make it difficult to anticipate and
identify the ripple effect of changes. This means that changes may be prone to errors.
Hence, reducing the amount of ripple changes may improve the changeability of the
software. In order to reduce ripple effects one needs to identify factors causing ripple
effects. However, a simpler task may be to predict ripple changes, without necessarily
having to reduce the amount of ripple changes.

One way to support impact analysis is through formal dependency-analysis of the
source code (Kung et al., 1994). However, in (Briand et al., 1999¢), a simpler
approach was proposed, in which static coupling measures were used to predict
common changes between pairs of classes. A class pair {4, B} has a common change
if both classes are changed within the same logical change. Such common changes
may in turn be a result of ripple effects. This study investigates whether the dynamic
coupling measures can be used to identify classes with common changes similar to
that outlined in (Briand et al., 1999¢), but using dynamic coupling instead of static
coupling. More precisely, the goal of our study is to

e investigate whether dynamic coupling affect the probability of common changes,
which in turn may be used as an indicator of ripple effects, and

e cvaluate a prediction model for common changes. The model is intended to
predict the answer to the following question: if class 4 is changed, how likely is it
that class B is also changed?

Note that common changes (and hence ripple effects) may also be caused by non-
functional dependencies such as common programming style, documentation,
performance requirements, user interface look-and-feel, etc. This investigation
focuses on how functional dependencies affect the probability of common changes.

7.3.4.1 Collection of the Measures

To determine which measures are useful indicators of common changes, and
subsequently to build and evaluate prediction models, change data and coupling
measures were collected for version g09 of the Ooram system. The following
calculations were carried out:

120

Calculation of Dynamic Coupling Between Pairs of Classes

The dynamic measures described in Chapter 6 were modified to count the coupling
between each individual pair of classes, using the data exemplified in Table 7.26.
With 24 classes in the scenario, there are 276 class pairs. For prediction of common
changes in this scenario, the direction of coupling is not relevant, because the order in
which the classes are changed is to a large extent a random process (Briand et al.,
1999¢). Thus, for each class pair {4, B}, the coupling measure was calculated as the
coupling from class 4 to class B summed with the coupling from class B to class 4, as
suggested in (Briand et al., 1999¢). This results in the six dynamic coupling measures
in Table 7.31. In addition to the coupling measures, the size of the class pair (CS P)
was calculated. This is just the sum of the CS measure for the two classes in the class
pair.

Table 7.31. Dynamic coupling measures at the class-pair level

Mapping Strength Scope Name
Object-level ~ Number of Dynamic messages Between Pair OD P
Number of Method invocations Between Pair OM_P
Number of Associations Between Pair OA P
Class-level Number of Dynamic messages Between Pair CDh P
Number of Method invocations Between Pair CM_P
Number of Associations Between Pair CA P

Calculation of Common Changes

The dependent variable is a binary response variable taking the value 1 when there
was a common change within a class-pair among the 24 classes in the scenario and
the value O if there was no common change between a class-pair. In this preliminary
investigation, only common changes occurring in version g09 of the selected scenario
were considered. Because these 24 classes collaborate in the implementation of the
same functional scenario, the common changes are likely to belong to the same
logical change.

7.3.4.2 Identification of Prediction Models for Common Changes

To identify useful dimensions of explanatory variables, principal component analysis
was first used to identify the covariance structure of the data (Table 7.32). It shows
that object-level coupling and class-level coupling capture different dimensions of
coupling. Furthermore, there may be problems with collinearity if several covariates
from the same component are used within one regression model. This is considered
when interpreting the regression models. The variables selected were determined by
the logistic regression model that had the best fit (smallest deviance) between model
and data.

Table 7.33 shows the results from stepwise logistic regression on common
changes. The column G — G’ is the deviance reduction for nested models, that is,
models where one model is contained in the other such as when doing forward
variable selection. By computing the deviance reduction and comparing with
percentiles from the chi-square distribution with 1 degrees of freedom, the

121

significance of the slope of the logistic regression can be evaluated. Referring to
Table 7.33, the best univariate model with significant deviance reduction over the
constant model is {OM P}. Both OM P and OA P are significant explanatory
variables. However, the model including {O4 P, OM P} does not yield better fit than
{OM P} because these measures belong to the same principal component. The best
nested model with significant deviance reduction over {OM P} is {OM P, CA_P}.
No further models have significant deviance reductions.

The resulting model is shown in Table 7.34. There are more complicated models
providing additional improvements in fit, such as models including interaction terms
and indicator variables. However, such models are difficult to interpret and may also
overfit the data.

Table 7.32. Rotated Principal Components

Variable PCl PC2 PC3 PC4
Cs_P -0.064 -0.121 0.046 0.988
OA P 0.889 -0.310 0.021 -0.071
OM_P 0.871 -0.314 0.287 -0.035
oD P 0.518 0.038 0.787 0.039
CA P 0.297 -0.880 0.069 0.141
CM_P 0.334 -0.822 0.294 0.060
CDh_P -0.054 -0.474 0.804 0.047
Eigenvalue 2.024 1.885 1.443 1.009
% Variance 0.289 0.269 0.206 0.144
% Cumulative 0.289 0.558 0.764 0.908

Table 7.33. Logistic regression on ripple-effects using forward stepwise variable selection
heuristics using the deviance reduction G - G' as selection criterion

x1 x2 G G - G' p-value p-value

HO: Bsx1=0 HO: Bx2=0
OA P N/A 39.477 39.477 0.000 N/A
OM:P N/A 43.228 43.228 0.000 N/A
oD P N/A 40.210 40.210 0.005 N/A
CA_ P N/A 2.335 2.335 0.126 N/A
CM P N/A 6.164 6.164 0.023 N/A
CD_P N/A 0.170 0.170 0.678 N/A
CS_P N/A 2.882 2.882 0.093 N/A
OoM_P oA P 43.874 0.586 0.109 0.405
OM_P OD_P 45.654 2.366 0.031 0.291
OM P CA P 48.086 4.798 0.000 0.040
OM_P CM_P 45.705 2.417 0.000 0.149
OM_P CDh_P 46 .552 3.264 0.000 0.130
OM_P Cs_P 44.813 1.525 0.000 0.212

122

Table 7.34. Resulting logistic regression model for the prediction of common changes

Logistic Regression Table

Odds
Predictor Coef StDev Z P Ratio
Constant -0.8060 0.1397 -5.77 0.000
OM P 0.6820 0.1747 3.90 0.000 1.98

Log-Likelihood = -161.726
Test that all slopes are zero: G = 43.228, DF = 1, P-Value = 0.000

7.3.4.3 Model Evaluation — Prediction of Common Changes

To determine the accuracy of the prediction models, the data was split such that 75%
of the data (207 rows) was selected at random to build prediction models for common
changes. Then, the models were evaluated on the remainder 25% of the data (69
rows). For the evaluation, a threshold of 0.5 was picked, such that any prediction
above that threshold was classified as a common change. If the prediction was below
0.5, the given class pair is predicted to have no change in common. The results can be
displayed in a contingency table showing correct positives, false positives, false
negatives and correct negatives. Alternative prediction models using the K Nearest
Neighbors technique (KNN) and PCA logistic regression were also considered. These
techniques may sometimes provide better results for non-linear data and when using
correlated independent variables, respectively.

The results for the simplest model using univariate logistic regression with OM P
as predictor, is shown in Table 7.35. On the evaluation data, 73.9% of the class pairs
were correctly predicted as either having a common change or not, using only OM P
as predictor. Among the class pairs predicted to have a common change, 83.3%
actually did have a change in common. Thus, if the model predicts a common change
between class pair {4, B}, it is very likely that there will be a common change
between these classes.

However, one problem with the model is that it is quite conservative. It only finds
10/26 = 38.5% of the actual common changes, that is, 61.5% are false negatives.
Using both OM P and CA_P, the overall accuracy of the model increases to 75.4%,
but there are still 57.7% false negatives (Table 7.36). The models using the KNN
technique perform no better than logistic regression. The model that finds the largest
number of actual common changes is the PCA logistic regression model, at the
expense of slightly more false positives. Which model is "better" depends on the
chosen tradeoff between the accepted level of false positives versus false negatives. A
higher portion of false positives means that more classes with common changes are
found but also that more classes may be investigated for ripple effects in vain.

It is difficult to compare the results in Table 7.36 directly with the results using
static coupling in (Briand ef al., 1999¢) because they used a different evaluation
method and the prediction model was developed based on a different data set. To
determine whether dynamic coupling is better than static coupling or vise versa, one
would at least need to use the same underlying change data. However, to give a
preliminary indication of the relative merits of dynamic versus static coupling, the
main results in (Briand et al., 1999¢) are compared with the results reported here.
Using static coupling, Briand et al. found on average about 50% of the common

123

changes, which is slightly better than the best results reported here (using PCA
regression, 46.1% of the common changes where found). However, the results in
(Briand et al., 1999¢) had a substantially higher ratio of false positives (50% to 60%)
compared with between 4.7% to 9.3% for the best models reported here (Table 7.36).
Thus, using dynamic coupling may provide a significant improvement in the overall
accuracy of the models compared with using static coupling, at the expense of slightly
lower sensitivity.

Table 7.35. False Positives and False Negatives Contingency Table using Logistic Regression
on OM_P. Overall Accuracy = 51/69 = 73.9%. Correct Positive Ratio = 10/12 = 83.3%. False
Positives = 2/43 = 4.7%. False Negatives = 16/26 = 61.5%.

Actual Actual

Common Change No Common Change Total
Predicted Common Change 10 2 12
Predicted No Common Change 16 41 57
Total 26 43 69

Table 7.36. Model Evaluation Summary

Model type Variables Overall Correct False False

Accuracy Positive Positive Negative
Logistic regression OM_P 73.9% 83.3% 4.7% 61.5%
Logistic regression OM_P, CA_P 75.4% 84.6% 4.7% 57.7%
KNN OM_P 73.9% 83.3% 4.7% 61.5%
KNN OM_P,CA_P 73.9% 83.3% 4.7% 61.5%
KNN all variables 55.1% 38.1% 30.2% 69.2%
PCA regression all variables 73.9% 75.0% 9.3% 53.9%

7.3.5 Summary and Future Work

Dynamic coupling measures based on the concept of role-models have been proposed.
A preliminary validation of the measures was conducted using change data from ten
versions of the Ooram system. The investigation has demonstrated how dynamic
coupling measurement can be used to

identify classes collaborating in the implementation of a given scenario,
assess trends in "change complexity" of a given scenario,

identify hot-spots within an important scenario, and

build prediction models supporting impact analysis at the scenario-level.

The preliminary results show that it is probably worthwhile to continue the
investigation into dynamic coupling and its relationship to changeability. The work
poses interesting challenges for future research, presented in the following sub-
sections.

124

7.3.5.1 Comparing Dynamic Coupling with Static Coupling

There are important aspects of coupling that probably cannot be quantified using
static code parsers. With static coupling measurement, class-level coupling measures
quantify the coupling to every other class in the system. Dynamic coupling
measurement allows us to identify the classes involved in the implementation of a
given functional component or scenario of a system. Furthermore, the resulting
coupling measures only quantify coupling based on the actual messages sent from and
received to the role played by the individual classes collaborating in the execution of
the given functional scenario. This may explain why the proposed dynamic coupling
measures are not just surrogate size measures, unlike many static coupling measures.
Finally, dynamic coupling allows the distinction between object-level and class-level
coupling. Problems of static coupling measures, such as attempting to determine the
target class of polymorphically invoked methods are thereby solved with dynamic
coupling measures. So clearly, there are important theoretical advantages with
dynamic coupling.

However, an important question is whether the potential benefits of dynamic
coupling measures outweigh the cost of collecting them. In the Ooram case study, it
was not possible to investigate this question because SmallTalk is a dynamically
typed language in which there is no type information associated with identifiers, but
rather with the objects themselves. Consequently, it was not possible to quantify
coupling from static code parsing. With other object-oriented programming languages
such as Java, it may be possible to compare static coupling with dynamic coupling, to
assess whether the collection of dynamic coupling data is cost-effective compared
with static coupling.

7.3.5.2 Within-Object Coupling

The coupling measures investigated in this case study use messages sent between
distinct objects to quantify object-level and class-level dynamic coupling, i.e.,
between-object coupling. A possible extension of the proposed coupling measures
could be to also measure within-object coupling. To illustrate within-object coupling,
let object a be an instance of class 4, which is inherited from class A’ Let 4
implement the method mA4 and let A’ implement the method mA". If object a sends the
message mA' to itself from the method source mA4, the message caused two types of
coupling: within-object, object-level coupling for class 4 and 4, and within-object,
class-level coupling between class 4 and 4"

For each of the 12 between-object coupling measures described in Section 6.2.3,
there would be a corresponding within-object coupling measure. Thus, in total there
would be 24 dynamic coupling measures. By comparing within-object, object-level
coupling (e.g., IC_OM_W) with the corresponding within-object, class-level measures
(e.g., IC_CM W) one may be able to assess the relative amount of functional
dependency to classes higher up in the inheritance hierarchy.

7.3.5.3 Using Dynamic Coupling Measures to Support Impact Analysis
In this case study, 24 classes that collaborate in implementing the scenario were
identified out of more than 1000 classes. These 24 classes are a good starting point for

125

impact analysis when changing the scenario. However, changes may ripple through a
large variety of dependencies. One cannot rule out that no other classes participate in
the scenario in ways that have not been detected by the dynamic coupling parser. The
within-object dynamic coupling measures could potentially cover even more of such
dependencies, and hence be used to identify more classes potentially affected by
ripple effects. However, there are of course sfatic dependencies in code as well. It
may be interesting to investigate how dynamic coupling based prediction models of
the type evaluated here can be combined with traditional static dependency analysis
techniques of object-oriented software, e.g., (Kung et al., 1994). Such hybrid
techniques could for example use dynamic coupling measures to identify the classes
with run-time dependencies within the scenario. Among those classes, the classes
with the highest predicted probability of ripple effects may be selected as a starting
point for a detailed dependency analysis.

Another use of dynamic coupling is to use the data to generate models of the
dynamic behavior of the classes in a selected scenario. Such models may be used to
support impact analysis and code comprehension by providing a graphical model of
the interactions between collaborating classes. Figure 7.18 gives an example of such
a model, generated using the modified Ooram tool, which collects the dynamic
coupling measures and then generates the corresponding collaboration model.

7.3.5.4 Using Dynamic Coupling Measures to Assess Understandability

According to von Mayrhauser, the first mental representation programmers build to
understand completely new code is a control flow abstraction of the program (von
Mayrhauser et al., 1997). Some developers use a systematic approach to build the
control-flow abstraction. Other developers use a more opportunistic approach,
studying code in an as-needed fashion based on hypotheses guided by clues in the
code (von Mayrhauser et al., 1997). According to this theory, one may expect an
increase in the time required to understand how to implement a change when the
amount of collaboration between objects participating in the implementation of a
functional scenario increases. Furthermore, the effect may be larger for programmers
with a systematic approach.

The theories proposed by von Mayrhauser and the results of the coffee-machine
experiment indicate that a large portion of the cognitive complexity of object-oriented
designs are related to the way the objects collaborate. One way to represent the object
collaboration of a functional scenario is in a role-model. The message flow between
the roles is quantified using the proposed dynamic coupling measures. However, there
is still a need to determine how the dynamic coupling measures can be combined to
provide a useful model of cognitive complexity based on the message-flow of a
functional scenario. This is an interesting venue for future research.

126

Diagram |nterfaces Messages Parametre Baszis Derived

& %ﬁ?—sé|s§’:o| || a'3||,é,| n|£| n|i| OlFIyt‘troIIel
Interfaces Messages Parametre C Basizs (& Derived
- - - =l
FAN 75447 14677/13023/11369/2536/8428/15612/13038/2179/10650/11942/10288/15813/ =
FibdRefOhject?) 10846/5140/330010112/7387/3154/3712/4084/10604/11896/106814/14299,/10624
Bl
Texiview? I
- =
1| 11

Fig. 7.18. A role-model generated from the dynamic coupling data from a run-time session,
using the modified Ooram tool. Such models may support impact analysis and code
comprehension for a selected scenario. Whether the models are useful needs to be evaluated.
One obvious problem is related to the size and layout of the models.

7.3.5.5 Data Collection Algorithms

The accuracy of the dynamic coupling measures depends on being able to execute as
many sub-functions as possible within a selected scenario. If one misses a small sub-
function, say a user-input error condition, then the coupling measures will not reflect
the dependencies to the objects implementing that sub-function. If the purpose of the
measures is impact analysis, running the scenario to completion may be crucial in
order to detect as many dependencies as possible. The problem is that it may be very
difficult to guess when the scenario has been run to completion unless one knows the
detailed functionality of the system extremely well. However, running only a portion
of the complete scenario may also be quite useful: one may distinguish between

127

"happy-day" scenarios and "error" scenarios. For example, to understand how to
implement a change, it may be unnecessary to have an overview of all possible error
conditions; initially it may be more useful to get an overview of the flow of messages
within the happy-day case.

Clearly, the proposed data collection algorithm can be improved. It does not
guarantee that all sub-functions have been executed at least once. Perhaps more
importantly, the algorithm does not reflect how users actually use the system.
Depending on the intended use of the coupling measures, a better data collection
"algorithm" may be to let actual users run the system over a long period of time while
collecting the measures. The resulting data may be used to assess the system in ways
that have not been discussed so far. For example:

e How much are different parts of the system actually being used?

e Functionality (e.g., classes) that is never or seldom used are candidates for
deletion. By deleting classes implementing unused functionality one may
improve execution speed, usability and reliability. Furthermore, the system will
become smaller and hence probably easier to maintain.

e Functionality that is used often are also candidates for improvements. For
example, can the execution speed, reliability or usability of this functionality be
improved?

e Are the parts of the system that is used often also changed often? If so, one may
focus restructuring efforts on those parts of the system.

7.3.5.6 Implementation Issues

In this case study, extensive modifications of source code of the Ooram system was
carried out in order to collect the dynamic coupling measures. This is a time-
consuming, error-prone, language-dependent and clearly not very practical approach.
In the Java programming language, it may be possible to modify the Java Virtual
Machine to trace messages between objects for any application written in Java. In
compiled programming languages such as C++, it may be possible to use the
debuggers in integrated development environments (e.g., Microsoft Visual Studio) for
collecting the measures. Alternatively, if the system to be evaluated has not been
implemented yet, the object-level coupling measures could be collected from object
interaction diagrams (e.g., UML sequence diagrams and collaboration diagrams).
However, these are initial ideas that may prove very difficult to implement in practice.

128

7.4 Causes of Increased Change Effort and Project Delays

This section describes results from an interview with four experienced developers on
matters related to the changeability of object-oriented systems. The purpose of the
interview with developers in Numerica-Taskon was to gain insights into what factors
experienced developers consider important to reduce change effort in object-oriented
software. This qualitative study was primarily intended to identify factors that may
affect the changeability of object-oriented software. The results may be used as an
empirical basis for formulating theories from which hypotheses can be tested more
formally in future studies, for example through case studies and controlled
experiments. Using triangulation in this way may improve the validity of the
conclusions of the studies, as discussed in Chapter 3.

7.4.1 Design of the Study

A choice had to be made between conducting a semi-structured interview and a
questionnaire-based survey. Because the time of the developers were a limited
resource, using an interview approach meant that we would not get a sufficient
number of data points for statistical analysis. On the other hand, we believe that we
could obtain higher quality data using a semi-structured interview approach:

e We could ensure that the subjects interpreted questions in approximately the
same way, and we could do a subjective assessment of the quality of responses.

e We could follow up interesting issues raised by the subjects by asking new
questions.

The quality of questionnaire-based surveys may be reduced because of the factors
mentioned above (Jorgensen, 1994). Thus, we believe that, given the time-limitations
and exploratory nature of the study, a structured interview approach was appropriate.

We developed a simple questionnaire that guided the interview. However, the
questionnaire was modified slightly during the interview sessions based on issues
raised by the interviewed developers. Answers were typed directly into the
questionnaire data form in cooperation with the subjects. Each interview took
approximately 3 hours. The subjects were selected based on the experience level in
cooperation with the department manager, but the selection was also limited by the
availability of the developers.

7.4.2 Results

Numerica-Taskon has been one of the leading consulting companies for object-
oriented processes, methods and tools in Norway during the past several years. They
have developed a concept called role-modeling in the OORAM method (Reenskaug et
al., 1995) and have been an important consulting resource for Norwegian companies
wanting to use object-oriented tools (e.g., OORAM, Rational Rose) and processes
(e.g., Rational Unified Process). Table 7.37 gives an overview of the project

129

experience of the interviewed developers. The subjects cover important functions

within object-oriented development,

e.g.,

product management,

development

management, key account manager and system developer. They have varied work
experience and a high level of education.

Table 7.37. Overview of project experience for the interviewed subjects

Question Subject 1 Subject 2 Subject 3 Subject 4
Current work title Systems Product Key Account Development
Developer Manager Manager Manager

Work Experience 35 12 3 12

(years)

Education level Master Master Bachelor Master

Typical team Size 6 1-5 1-5 3-15

Project Size 4 1-10 1 2-90

(person-years)

Number of projects N/A 10 2 6

Number of delayed N/A 2 4

projects

Typical delay 40% 50-100% 50% 20%-150%

Reasons for delays (1) N/A Requirement Waited for Poor analysis &
analysis was not development design resulted in
correct product rework

Reasons for delays (2) N/A Technology risk, Improper planning/ Failure to
availability of resource allocation evaluate
key resources technology risks

Reasons for delays (3) N/A Too little design Delays associated Untimely change

with external vendor requests,
dependencies communication
with customer

Per-hour consulting X X X X

Product development X X X

In-house development X X X

Mentoring X X X X

Research X X

C++ X

Smalltalk X X X

Java X

Jasmine (OO database) X X

Taskon Integrator X X

OOAD X X X X

OORAM X X X X

Rational Unified X

Process

Windows X X X X

Unix X X

130

Table 7.38. Most influential factors of change effort

Subject Factors

Subject 1 N/A
Subject 2 1: Reusability, quality of component/interface design
2: Flexibility/openness of design; Portability
3: Availability of test resources; test environment
Subject 3 1: Complexity of analysis/design model
2: Exists GUI standards
3: Availability of resources
1: New functionality or bugfix requiring changes in framework classes
2: How well resources know system
3: Testability (equipment, test environment, human skill)

Subject 4

The subjects were asked to name the three most influential factors for the effort to
implement changes in object-oriented software (Table 7.38). For subject 2, the first
two responses are related to design quality; for subject three and four, the first
response is related to design quality.

The subjects were also asked to grade the importance of various given factors that
we believe influence change effort. The subjects ranked each factor between 1 (not
important) and 5 (very important). The results are depicted in Figure 7.19, showing
the minimum, median and maximum score for each factor ordered from left to right
by decreasing importance. To our surprise, the subjects do not think that the size of
object-oriented software (i.e., 'Code size') is particularly important for the required
effort to implement changes. Among the given factors, only the educational level of
the programmers is judged as less important than code sizeﬁ In a follow-up question,
the developers answered that the design mechanisms of object-oriented languages
often prevent code size from being a major contributor to "complexity". Design
complexity, however, is rated among the most important factors along with
knowledge of the code. Design complexity is as important as the programming
experience of the developers implementing the change. Code size and code
complexity are believed to affect change effort less than design level complexity.

Finally, we asked the subjects to judge how difficult it is to change various
components of object-oriented software systems. The results in Figure 7.20 indicate
that (reusable) framework classes are more difficult to change than, for example, user
interface logic and database schema changes. This may be related to the higher design
complexity of reusable framework components. Thus, the development of object-
oriented frameworks can be regarded as a long-term investment at the expense of
increased short-term change effort. This tradeoff in changeability is clearly an
interesting research topic worth further investigations.

8 Note that one should be careful in generalizing the results because of the small sample size
and because the subjective assessment of the importance of individual factors may be biased
by the developers.

131

Change Effort

5
45
4
8
% 35
£ 3
)
CE). 25
- 2
15
1 } } } } } } } } }
. . AN
$ &SN ¢ S & & 0
N N o @ & N N <4 @ N
N Q & & S N & K S o
& oo(° N S N O & O X
et Q ~) O o8 o & R
& &L 8 € & F &
Q <t o~ &
Factor

Fig. 7.19. Relative importance of factors affecting change effort in object-oriented
development, sorted by importance from left to right based on the median, maximum and
minimum values of the ordinal importance score (1=not important; 5=very important) by the
subjects.

Change Effort

Importance
w

Framework Business logic Database GUI

System Component

Fig. 7.20. The subjects reported that the change effort in object-oriented development depends
on the component being changed. According to the developers, it is more difficult to change
framework logic and business logic than the graphical user interface logic (GUI).

132

7.4.3 Summary of Results

The results of this qualitative study was primarily intended to serve as an empirical
basis for formulating theories from which hypotheses can be tested more formally in
future studies.

The results of the interviews presented in this section identify code knowledge and
design complexity as the two most influential factors for change effort. These factors
are rated as more important than code size and code complexity. The results also
motivate further investigation into the understandability aspect of object-oriented
designs.

Furthermore, framework classes and business logic are more difficult to change
than databases and GUI components. This knowledge may be utilized when assessing
the changeability of designs using CPM, as illustrated in Section 7.3. Furthermore, the
results also suggest that better indicators of changeability might be developed if
design-level measures, such as SAM and CPM, differentiate between the various
design layers of an object-oriented system, such as framework, business logic,
databases and GUL

Finally, design decisions and technology risks are important reason for project
delays. These results are corroborated by the results of the case study presented in
Section 7.5.

7.4.3.1 Threats to Validity

One must of course be careful drawing general conclusions based on interviews with
four developers within one company. The small number of data points and the
informal analyses are not sufficient to obtain statistically valid results. Furthermore,
no 'post-mortem' data quality assurance was performed; we have assumed that the
answers reflect the actual experience of the subjects and that they remember details
from the development projects reasonably well. Furthermore, the selection of the
questions and the interpretation of the answers may also be biased by the
preconceived theories of the researcher (Hufnagel and Conca, 1994).

133

7.5 Evaluation of an Evolutionary Development Project

This section describes experiences from an evolutionary development project in
Norway. The study provides insight into the role of end-user participation,
documentation and technology risks in evolutionary development projects, and
describes how these factors may influence the changeability of the software.

The described study is a part of a process improvement project funded by the
national research project PROFIT. The goal of a sub-project of PROFIT is to develop
guidelines for evolutionary development of web applications. Based on these
guidelines, the Genova Process (Arisholm ef al., 1998; Arisholm ef al., 1999b) will be
extended to provide specific support for web projects (Genova Web Process). The
resulting process will subsequently be instantiated and evaluated on a new project.
The guidelines are based on the experiences collected through interviews with
developers, project management and end-users on several existing web development
projects. This section reports the results from one of these projects, called TelMontﬂ

7.5.1 Design of the Study

The study consisted of semi-structured interviews with subjects involved in the
TelMont project. To reduce biases due to different perspectives and interpretations of
the researchers, two researchers (this author and one of his master's students) were
involved in most aspects of the study, consisting of

subject selection,

formulation of the interview guide and conducting the actual interviews,
transcription, analysis and unification and

post-mortem quality assurance.

This process is described further in the following sections.

7.5.1.1 Subject Selection

Several interviews were conducted with subjects selected to cover different roles on
the development project. From the development organization, three persons were
selected. Two of these were the two most central developers responsible for many
different functions within the project, from database design, middle-tier development
and web user-interface development. The third person was the project manager from
the contractor. Interviews with the end-users and project management for the
customer have also been conducted, but these results have not been analyzed at
present.

7.5.1.2 Interview Technique

Before the interview sessions, several specific questions were formulated by each of
the two researchers. The questions were combined and prioritized to form an
interview guide. The questions were categorized into different topics such as "project

9 All names have been altered for confidentiality reasons

134

nn

initiation", "end-user contact", "experience", "CASE support", etc. As a starting point
for data collection, the interview guide worked very well. Other, more open-ended
questions were also asked. The number and type of open-ended questions depended
on the responses given by a particular interviewee to the specific questions in the
interview guide. For example, the project manager was more interested in questions
related to project costs and process establishment, whereas the developers were more
interested in technical aspects. Thus, the interviews were designed not only to elicit
the information foreseen, but also unexpected types of information.

7.5.1.3 Transcription, Data Analysis and Unification

The interviews were recorded on a tape recorder in order to avoid loss of information.
Subsequently, each question and answer from the recorded interviews were written
down in detail. Although this transcription process is very time consuming, it is in our
opinion essential to improve the accuracy and comprehensiveness of the analyses. It is
particularly important for the unforeseen types of information, which may be
scattered and intermixed within several answers to specific and open-ended questions.
Each researcher used the transcribed material to perform the analysis in parallel. Each
researcher used "copy and paste" to group questions and answers into categories
determined by keywords or themes such as "customer contact". The keywords were
determined during the exploratory search and analysis of the transcribed interview
text. A given question/answer that spanned many categories was copied into each of
the categories. Questions/answers that did not fit in an existing category resulted in
the creation of a new category. Each researcher wrote an analysis report based on the
data from the interviews. Finally, these reports were combined into a unified analysis
report. The experiences from this analysis process clearly show the benefits of
performing the analyses in parallel. Each of the two researchers analyzed the data
using different perspectives resulting in distinct themes or categories of experiences.
If only one researcher had analyzed the data, important information would have been
lost.

7.5.1.4 Quality Assurance

The unified analysis report was given to the interviewees for quality assurance. The
purpose was to uncover any errors or ambiguities in the analysis. The interviewees
made modifications to the report using a change tracking system. The results reported
in this section are based on the revised report.

7.5.2 The TelMont Project
TelMont is a support system used by a Norwegian telecommunication company,
TeleX. The support system simplifies and automates the work processes required for
performing compression and optimization activities for ISDN telephony hardware.
The web-based system is accessible within the TeleX intranet. The users of the
system are professional engineers.

The company InterDev developed the product for TeleX. The development phase
of the project required 8400 person-hours over a nine-month period. The project
consisted of a total of 10 to 15 persons from TeleX and InterDev, in addition to some

135

external consultants. A dedicated test team within InterDev was used for integration
test and system test activities. Each developer in InterDev was responsible of one
"module". In addition, most developers participated in common activities such as
analysis, design and communication with project management and users in TeleX.
Specialists in TeleX who knew the ISDN compression and optimization work
processes contributed to the analysis and design. Furthermore, TeleX was also
involved in the specification of user interface design and testing. The project was paid
on a per-hour basis. The maintenance of the system is performed by InterDev.

7.5.2.1 Project Activities and Milestones

May 1999 - August 1999 (Inception)

A pilot project was initiated by TeleX in May 1999. The goal of the pilot project was
to determine the need for an automated software solution. The pilot project involved
one person from InterDev and 3-4 persons from TeleX. The deliverable from the pilot
project was an analysis report.

August 1999 - October 1999 (Elaboration)

The requirement specification activities started in August. In this phase of the project,
the main work processes that the TelMont system was intended to support were
discussed. The work resulted in a requirement specification and an analysis model
consisting of a work-flow model and some use cases, as well as a simple prototype of
the user interface.

October 1999 — March 2000 (Iterative Elaboration and Construction)

In this phase of the project, a large evolutionary prototyping activity was initiated.
The prototype had two purposes: 1) to evaluate the feasibility of the chosen
technology platform, and 2) to elaborate requirements by providing a detailed user
interface of the most important functionality. The product was modeled in UML. The
model was made available on a local server such that the customer, and later the end-
users, had access to it throughout the development project.

The first construction increment (or prototype) in the project was finished in March
2000. This increment served as an architecture release and as a requirements
specification. However, there was also an intermediate delivery in January, used to
evaluate the user interface and the work processes automated by the TelMont
prototype. In October/November InterDev asked TeleX to provide end-users in order
to evaluate the system iteratively. However, these end-users were very important
engineering resources within TeleX, and there was considerable debate within
different groups in TeleX regarding how and when to assign these resources to the
TelMont project. Finally, in early February, end-users were assigned to the TelMont
project.

The increment took much more time and effort than planned. The part of the
prototype intended to evaluate the architecture and technology became very large.
Based on the workshops with the end-users, the developers in InterDev discovered
that there was too much complexity in the initial requirement specification. A
considerable amount of rework occurred as a result of the end-user feedback provided

136

from January/February. These end-users had not been involved in the specification of
the initial requirements, and did not feel any ownership to it. In addition to the
workshops, the end-users had access to the actual development environment through
the web, and could at any point in time evaluate the progress and latest additions to
the system.

March 2000 (Changed Process)

From March 2000 the TeleX and InterDev agreed on changing from the evolutionary
process (called the "Solution Delivery Process" in InterDev) used up to that point, to a
waterfall process. The evolutionary construction phase had taken much longer time
and effort than expected. The workshops and the continuous evaluation of the system
by the end-users produced a large number of change requests that were not always
handled through formal channels. Thus, the project management (especially on the
customer side) felt that they were loosing control of the project. The customer was
very unhappy about the continuous changes, the cost overruns and the schedule
delays.

May 2000
A detailed system specification was accepted.

June 2000 (Transition)

The first main release was in June 2000, and consisted of a fully operational system.
At this time, the project had used 8600 person-hours, whereas the initial estimate was
4300 person-hours. The release was delayed by three months.

7.5.2.2 Customer/Software Vendor Relationship

In the TelMont project, TeleX and InterDev assumed the role of "customer" and
"software vendor", respectively. In earlier projects, the two companies had worked
more as one team. In this project, there was a lot of discussion between TeleX and
InterDev about progress plans and other project management activities.

7.5.2.3 Estimation

Function point estimation was used to estimate project effort. The estimates were
based on other web projects within InterDev using function points. However, the data
was not as relevant as assumed. Amongst others, the TelMont system contained
considerably more business logic than the web application projects upon which the
estimates were based. Furthermore, the business logic was implemented in new (and
error-prone) multi-tier technology (COM/MTS) with which the developers had no
prior experience. Integration between the Oracle and Microsoft products was also
much more complicated than anticipated.

7.5.2.4 Process

The process used on the project is an evolutionary process called the "solution
delivery process", consisting of three month time-boxes. The developers had
experience using this process in previous projects. However, those projects were

137

internal projects. In general, the interviewees were quite negative to using an
evolutionary development process for external development projects, such as
TelMont. For external projects, evolutionary development may be a serious hindrance
to project control. However, as pointed out by one of the interviewees, many of the
experienced problems were not caused by the process itself, but were rather a result of
a lacking formal change management process.

Both customer and end-user had access to the evolving system at all times. Thus,
users could test solutions and suggest changes continuously. However, this access
actually caused some frustration for the customer and the end-users. It resulted in
changes in requirements even after requirement specifications had been "frozen".
Consequently, project management on both sides lost control. Furthermore, the end-
users were not accustomed to testing partially implemented functionality. Only the
developers had an overview of the status of the different functional components of the
system.

At some point (March) the evolutionary process was abandoned and replaced by a
formal waterfall process, requiring formal acceptance of detailed specifications and
code at the method level. This radical change in the project was determined necessary
to get economy and time schedules under control. InterDev could no longer defend
using the solution delivery process because of the delays and the complaints voiced
by the customer caused by the continuously changing requirements. The project
manager in TeleX felt that he lost control because the requirements changed
continuously, without the formal documentation being changed accordingly.
However, the developers strongly believe that the changes requested by the end-users
were crucial in order to achieve a realistic and useful product.

7.5.2.5 User Participation

During the early construction phase, the developers wanted contact with the end-
users. Up to some point, they were depending on the customer's understanding of the
work processes. When the end-users finally were allocated to the project, they did not
feel much ownership to the requirement specifications. This resulted in that it took
some time before they actually started criticizing the initial specifications, even when
they believed that they contained faulty, unnecessary or missing requirements. Before
the end-users started to comment on the requirements, the developers spent
considerable time implementing unnecessarily and complicated functionality into the
product. The end-users wanted a simpler system that did not allow for several
different ways of doing the same things. From January to March, three workshops
were held with the end-users. The developers describe the end-users as positive and
interested in spending time on the project. These workshops resulted in many
important changes to the system. According to the interviewees, the contact with the
end-users enabled the developers to make a very good product, tailored towards the
way the end-users actually worked.

7.5.2.6 Prototyping

The prototype was developed to evaluate both the development technology and the
functional requirements. By the time the prototype was "finished", it had become very
large. Because of the large amount of effort spent on the prototype, it was decided to

138

base the actual product on the prototype. It was not cost-effective to throw away the
prototype, even after it became clear that the chosen technology was error-prone and
had obvious limitations. Most of the interviewees felt that a different technology
platform would have been chosen if the prototype had not contained so much
functionality and could have been thrown away.

7.5.2.7 Requirements Specification

The interviewees thought that the requirement specification took too much time. The
representatives from TeleX initially involved in requirement specification were taken
out of the project. The end-users took over their role, and these users had a completely
different view of the requirements of the system.

InterDev ended up with having a mediator role, in which they had to defend the
initial requirement specification to the end-users, and at the same time listen to their
suggestions. This process took a lot of time, and it was perceived as very inefficient.
Initially, the customer wanted a very complex and flexible system, and it was not
before the end-users were allocated to the project that InterDev managed to define
realistic requirements. However, the end-users also wanted more functionality, but
different in content from the initial requirement specification. The customer was not
very willing to pay for these changes requested by the end-users. Furthermore, the
continuous change requests made it difficult to keep requirement specification
documents consistent and up-to-date, which was demanded by the customer.

7.5.2.8 UML and Rational Rose

The system was modeled in UML, using use-cases, class diagrams and some
sequence diagrams. The modeling was supported using the CASE tool Rational Rose.
One of the interviewees regarded the use of UML as useful in the early phases of the
project, but only as a means to evaluate and discuss design alternatives internally
between the development team in InterDev. In general, none of the interviewees
considered UML as successful for the project.

Code generation (i.e., from model to C++ code) for the COM/MTS architecture
using Rational Rose did not work. Reverse engineering (i.e., from code to models)
also had many flaws. Thus the UML documentation became inconsistent with the
code, and the manual maintenance of the UML documents was very time consuming.
Furthermore, the UML models (including the use-case model) were not useful as a
means for communicating requirements and designs with the customer or end-user. It
was too difficult to explain the semantics of the UML models. To communicate with
the customer, simple process flow diagrams and user interface mockups, in addition
to the available implementation, are far superior to UML.

7.5.2.9 Lessons Learned
The interviewees were asked what they would have done differently if they could start
the project again. The results are summarized below:

e They should have made a simple prototype that only evaluated the technology,
not technology and requirements.

139

The choice of technology should have been considered more -carefully.
Unfortunately, the developers had insufficient experience with the alternatives to
make an educated choice.

Considerable cost savings could have been achieved if the end-users had been
involved in the project from the inception.

It is very important to determine the customer's expectations of the project early.
Milestones must be clearly defined and agreed upon.

In general, evolutionary development may be appropriate for internal
development projects, but difficulties with project management activities such as
cost control suggests that evolutionary development processes may be difficult to
use in external development projects. When using an evolutionary development
process with an external customer, the changes must at least be documented very
thoroughly. A formal change management process most be followed and agreed
upon by the customer and the developer. Otherwise, the customer may fail to
recognize the importance of the changes, and may contest the project costs and
time schedule.

Web development technology is immature, time-consuming and error-prone. The
development of web applications requires a considerable amount of new
knowledge acquisition. This must be accounted for when estimating new web
projects.

7.5.3 Summary
The TelMont project was a success in the sense that the customer received a very
good product:

The customer and its end-users are extremely happy with the provided
functionality and the reliability of the product. The analyses suggest that the
evolutionary development process resulted in a more usable product than what
would have been obtained with waterfall development.

A significant amount of the functionality initially specified was never developed
as a result of frequent user feedback. Furthermore, the design did not have to
account for future "extensions" since such flexibility was determined to be
unnecessary. The design was better adapted to the final functionality of the
product. Thus, the product became smaller and probably easier to change than if
waterfall development had been used.

However, the project was delayed and project costs were doubled compared with
initial estimates. This resulted in conflicts between the project management of the
customer and the software developer. Based on the experiences, two simple but
probably quite important process guidelines are proposed:

An important prerequisite for success in evolutionary development is that
detailed and formal change management guidelines are in place. Otherwise, the
frequent changes may become a serious hindrance to efficient and reliable project
management. Furthermore, the informal changes may have a negative effect on
the changeability because design documentation is not updated. For external
development projects, i.e., when the customer and software vendor represent
separate companies, it may be necessary to restrict the informal discussions of

140

requirements between developers and end-users, and instead organize such
communication in formal workshops.

The project experiences emphasize the potential risks of cost and schedule
overruns when applying new software development tools and libraries. New
technology should be evaluated through early prototyping activities that should
be kept small in size and schedule. The technology prototyping should be
organized as an activity separate from the evolutionary elicitation and
implementation of functional requirements. Otherwise, the technology prototype
may incorporate too many functional requirements and consequently become too
large and too costly to throw away — even if the chosen technology is determined
inadequate (e.g., unstable or hard to change).

141

8 Conclusions and Future Work

A prerequisite for obtaining a better scientific knowledge regarding the consequences
of evolutionary development on changeability is to assess the changeability of the
developed software in an objective and accurate way. The current knowledge
regarding how to quantify the changeability of object-oriented software is very
limited, however.

The main contribution of this thesis is the development and validation of a
measurement framework that may be used to assess changeability of object-oriented
software. The proposed measurement framework, the associated data collection
methods, and the empirical validation techniques were evaluated in several industrial
development projects and controlled experiments.

The second contribution of this thesis is the identification of factors potentially
causing changeability decay in evolutionary development of object-oriented software.
At present, only a very limited number of empirical studies of evolutionary
development projects exist. The results of the case studies described in this thesis
extend the current state of knowledge regarding evolutionary development.

8.1 Summary of Results

The goal of this thesis was to

e to define changeability and changeability decay in a concise manner,
e to develop a measurement framework for assessing changeability, and
e to identify factors affecting changeability in evolutionary development.

This section describes the results of this thesis in more detail according to the above
goal structure. Section 8.1.1 summarizes issues related to the definition of
changeability. Section 8.1.2 summarizes the main contributions regarding the
empirical validation of the proposed measurement framework. Section §.1.2
summarizes the results of the empirical studies of evolutionary development projects.

8.1.1 Definition of Changeability

This thesis has attempted to define changeability and changeability decay in an
operational form, focusing on the effort required to implement changes. The intention
of the definitions has been to provide a sufficiently unambiguous fundament for the
formulation of useful indicators of changeability. With this regard, the working
definitions serve their purpose. However, the empirical studies have shown that the
underlying concepts are more complex than what is reflected explicitly by the
definitions. One challenging issue illustrated by the empirical studies is the tradeoff
between changeability and changeability decay. As exemplified by the coffee-
machine experiment, a design that has better initial changeability may still be more
prone to changeability decay than another design. Furthermore, the changeability of a
design is very much linked to the skill level and prior knowledge of the system by the

142

developers implementing changes. For example, it seems that the solution approach
has a considerable impact on the change effort. In summary, it seems that
changeability, and the tradeoff between changeability and changeability decay,
depends on the developers that will implement the changes and on the expected
number and type of future changes to the system. Further empirical work will
hopefully allow us to develop more concise definitions that reflect these issues in a
better way.

8.1.2 Empirical Validation of the Measurement Framework

The proposed Change Profile Measurement (CPM) approach can be used to develop
accurate models for the difference in change effort. Consequently, the CPM measures
may be useful indicators of changeability. However, it is difficult to generalize the
models. Although an accurate model of changeability was developed for one
particular development project, the resulting model is not necessarily valid for other
development projects. At present, it may be necessary to calibrate the indicators for
specific projects. It is highly plausible that the impact of the structural properties on
changeability are influenced by many factors specific to a given project, such as
developer experience, familiarity with the code, tool and library dependencies, and
other project characteristics.

Studying the details of a large restructuring change in the Genera case study, the
CPM measures seem more sensitive to the resulting changes in the design than the
SAM measures. Similar results were found in the Ooram case study, in which there
was a clear trend towards changing the smaller classes of a given module in later
releases, whilst the corresponding average class size (i.e., SAM) increased.
Apparently, large framework classes were changed in the early releases, but
eventually they stabilized. According to the Numerica-Taskon interview, classes in
object-oriented frameworks are much more difficult to change than other classes.
Consequently, the CPM approach seemed to indicate a positive trend in changeability
for the studied Ooram module.

The results of the empirical studies suggest that the CPM measures are better
indicators of changeability than the SAM measures. The added cost of the CPM
approach compared with the SAM approach may be worthwhile. However, since the
SAM measures are included as components of the CPM measures, there are no
practical reasons not to utilize the simpler SAM measures also. The two approaches
offer complementary views of software structure evolution. CPM can be used to
assess how changes actually propagate through the software structure, whereas the
SAM approach can be used to quantify structural change at the system level.
Consequently, by combining the SAM and CPM approaches, one may get a more
complete assessment of the changeability of object-oriented software than when using
only one of them.

The benchmarking approach was used to compare the changeability of two
alternative object-oriented designs. The results show that object-oriented design
decisions have a significant impact on the changeability of a system; the design may
affect the change effort at almost the same order of magnitude as the differences in
individual programmer productivity or skill level. These results are corroborated by
the results of interviews with the developers in Numerica-Taskon. As expected, the
design with low coupling and small classes had high structural stability. The changes

143

had less effect on the structure, indicating that it was more "open ended" than the
alternative design with high coupling and large classes. However, surprisingly, the
design alternative with high coupling and large classes required considerably less
change effort than the design with low coupling and small classes. Most of the
observed effect was due to the difference to understand how to implement changes.
Furthermore, the results suggest that the observed effect depends on the solution
approach (e.g., explorative or systematic) used by the developers.

The results of the coffee-machine experiment apparently contradict the results of
the Genera case study. The Genera case study indicates that high coupling and class
size have a negative impact on changeability, whereas the opposite effect is observed
in the coffee-machine experiment. However, the two studies investigated different
aspects of changeability. In the Genera case study, the developers were familiar with
the software, hence understandability was less important. In the coffee-machine
experiment, the developers had no prior knowledge of the software before
implementing the change tasks. The preliminary results from a follow-up "think-
aloud" experiment indicate that it might be useful to also consider how the dynamic
aspects of code affect the comprehension effort, in particular when developers are
unfamiliar with the code.

This motivated the proposal for a comprehensive set of dynamic coupling
measures. These measures may be used to quantify the depth of the dynamic message
interactions between objects in object-oriented software, which in turn may affect the
cognitive complexity of a design. A preliminary validation of the measures was
performed. Using dynamic coupling data, classes collaborating in the implementation
of a given functional change scenario could be identified. This provides a useful
starting point for change impact analysis. Furthermore, the results indicate that
dynamic coupling measures can be used to build prediction models of common
changes within the identified classes (i.e., if class 4 is changed, how likely is it that
class B is changed). Thus, the proposed dynamic coupling measures and the resulting
prediction models can support change impact analysis, which can be seen as a
technique to improve the changeability of the software.

8.1.3 Changeability in Evolutionary Development

The case studies conducted in this thesis show that there are many important
requirements for a successful application of evolutionary development. Several
factors that may cause changeability decay have been identified. These factors need to
be investigated further, as explained in Section 8.2.

One of the case studies illustrates that it is crucial that formal testing is performed
for each increment to avoid last-minute expensive rework. Such untimely rework may
otherwise be a major contributor to changeability decay. In another case study, a
considerable amount of the total effort was spent on restructuring activities during the
project. This particular project had characteristics of a "code-and-fix" process. The
analysis of the change data suggests that the need for restructuring would probably
have been reduced if more analysis and design had been performed based on the
initial (and quite stable) requirements of the system.

These studies have also identified the need to take the evaluation of the chosen
technology more seriously than what seems to be current practice. In several of the
studied development projects, problems related to the incorporation of new

144

technology was a major contributor to schedule delays and cost overruns. The rework
resulting from technology-dependent work-around solutions may cause decay. If new
technology is used, considerable cost savings can probably be obtained if the first
incremental delivery is a technology evaluation prototype. This prototype should be
no bigger than that it can be thrown away if the technology is proven inadequate for
the task at hand.

Another problem identified in this thesis is that frequent changes may result in
outdated documentation. Up-to-date documentation is important for understanding
how to change the code (Tryggeseth, 1997). On the TelMont project, a considerable
amount of manual work was required to update the requirements and design
documentation, even when a modern CASE tool was used. Consequently, the
documentation was updated infrequently, resulting in documentation inconsistent with
code. CASE tools such as Rational Rose may alleviate some of the documentation
problems, but mainly for the static parts of the code, such as the class diagrams.

To document the dynamic aspects of a system, this thesis illustrated how a reverse-
engineering tool producing models of the collaboration between run-time objects can
be developed. Thus, CASE tool support may eventually solve a major potential cause
of changeability decay in evolutionary development of software.

Fortunately, these studies show that users participating in the evolutionary
development of software may contribute to the construction of software systems that
reflect the requirements of the end-users better than what would otherwise be
possible. A design that has evolved to reflect the requirements results in smaller
software. UML-based user-interface prototyping tools, such as Genova, can support
the user participation (Arisholm et al, 1998). In the TelMont case study, user
interface prototypes were considerably more useful for communication with the
customer and end-user than "use cases" and other design descriptions. Thus,
evolutionary development may improve the changeability of the resulting software if
issues such as those addressed above are dealt with.

8.2 Future Work

This section outlines areas for future research related to the two main contributions of
this thesis: the measurement framework (Section 8.2.1) and the empirical studies of
regarding changeability in evolutionary development projects (Section 8.2.2).

8.2.1 Improvements of the Measurement Framework

The empirical validation studies performed in this thesis constitute, in our opinion, a
useful first step towards a validated measurement framework for changeability.
However, further validation is necessary. Furthermore, there are several potential
improvements in the way changeability is measured. This is outlined in the following
subsections.

145

8.2.1.1 Industrial Evaluation

The accuracy and practical use of the changeability measurement framework needs to
be evaluated on longitudinal, industrial development projects. One such project is the
Genova project. Further measurement on this project will provide a large amount of
data for longitudinal validation of the SAM and CPM approaches. Furthermore, the
collected change data may also be used to develop product-specific benchmark tasks
necessary to evaluate the benchmarking approach in an industrial setting. The
measures will also be validated on new evolutionary development projects in
conjunction with a new national research project called PROFIT.

8.2.1.2 Building Generic Benchmarks

In the coffee-machine experiment, the composition of benchmarks was based on
guessing likely change tasks. When change history is available, the distribution, size
and types of earlier changes may be used to compose representative product-specific
benchmarks. Our long-term goal, however, is to build more generic benchmarks, for
example for a specific application domain. The assumption is that a given application
domain has many similarities with respect to the types and distribution of changes. If
so, pools of representative benchmark tasks corresponding to given application
domains can be developed. These benchmark tasks are not specific to a given product;
they must be more generic, such as "add input field to the most central user interface
dialog" or "implement an undo functionality". To develop generic benchmarks that
are sufficiently representative of a given application domain, a considerable amount
of change data from many similar products needs to be collected. The change data
collection could, for example, use the change log described in this thesis. The types of
changes that occur frequently within the application domain can then be used as the
basis for the composition of benchmark tasks.

8.2.1.3 Combining CPM with Scenario Elicitation
At present, the class-level Change Profile (CP) component of the CPM measures (i.e.,
the proportion of change to each class), is calculated from the change history. This
approach seems to be appropriate because the change history fully describes how the
changes propagate through the design right up to the point when the designs are
compared. However, when comparing early design alternatives, the change history
may be limited. One possible extension of the CPM approach is to combine change
history with scenario elicitation and impact analysis as a basis for the calculation of
the class-level Change Profile. In this way, the CP measure might reflect future
changes better than when only considering the change history. Furthermore, when no
change history is available, the CP measure could be estimated based solely on class-
level impact analysis of likely change scenarios. The latter approach is similar to the
one proposed in (Briand and Wust, 2000). However, using scenario elicitation and
impact analysis as a basis for the CP calculation is certainly more costly and
subjective than using actual change data.

Another potential use of such hybrid CPM approach (i.e., scenario elicitation and
impact analysis as the basis for calculation of CPM) is for change effort estimation.
Evolutionary development projects are characterized by frequent, incremental

146

changes. Thus, it is important to be able to predict the effort required to implement the
changes, e.g., to support prioritization of changes within increments, to decide on how
many changes can be implemented within a given time box, and to determine the
costs of including new change requests. In the Genera case study, quite accurate
models of change effort using the CPM measures as explanatory variables were
developed. Although the primary purpose of the CPM measures is changeability
assessment, it seems plausible that the hybrid CPM measures also may be used for
effort prediction for nmew actual changes. Consequently, it may be worthwhile
investigating the hybrid CPM approach further, because it expands the potential uses
of the measurement framework.

8.2.1.4 Dynamic Coupling

Dynamic coupling measurement opens up a variety of interesting new opportunities
for assessing (and improving) the changeability of object-oriented software. For
example, better explanatory models of the effort required to understand how to
implement changes can probably be built based on dynamic coupling. Dynamic
coupling may also be used to support impact analysis in many different ways. For
example, the coupling data can be used to identify collaborating classes and construct
reverse-engineered collaboration diagrams for a functional scenario. Furthermore,
prediction models can be built to help identify ripple effects when changing the
scenario. However, as explained in Section 7.3, several data collection and
implementation issues need to be resolved. For example, the collection of dynamic
coupling data depends on running the system, and it is nontrivial to determine when
the system has been exercised sufficiently to give useful coupling data. Another
challenge is how to implement dynamic coupling parsers that are independent of the
product source code, in particular for compiled languages, such as Java. Future
research will investigate whether the Java virtual machine can be modified to track
run-time messages between objects.

8.2.2 Evolutionary Development Processes
Several factors that may potentially cause changeability decay in evolutionary
development were identified through the case studies. These factors are related to

e the distribution of analysis and design effort — to reduce the need for expensive
restructuring,

e carly technology prototyping and incremental testing — to reduce rework, and

e frequent updates of design documentation — to support understandability.

However, the studies have been quite exploratory in nature. These factors should thus
be considered as preliminary theories that need validation. Unfortunately, it is
difficult to validate the theories in case study research because there is no reliable
baseline for comparisons. As a first step, each factor could be adjusted and evaluated
separately in controlled experiments similar to Beohm's prototyping experiment
(Boehm et al., 1984). The proposed measurement framework (e.g., benchmarking)
should be used to assess the impact of the adjustments on the resulting changeability.
Cost issues dictate that such experiments might be rather small in scale. Small scale
studies are often affected by threats to external validity, as exemplified by the

147

contradicting results of (Boehm et al., 1984) versus (Zamperoni et al., 1995). Thus,
the results from small, controlled experiments need to be triangulated with further
case study research of the type conducted in this thesis.

8.3 Concluding remarks

During the past years, there seems to be a trend towards more companies using
evolutionary and incremental development processes, supported by object-oriented
development methods and tools. Object-oriented software is claimed to be easier to
change, hence supporting the frequent changes of an evolutionary life-cycle better
than procedural software. Evolutionary development is claimed to be useful for
reducing or controlling risks and to build software systems that better reflect the end-
user requirements. Unfortunately, the combination of evolutionary development
processes such as Rational Unified Process, object-oriented modeling notations such
as UML, and object-oriented programming languages such as Java may be a new
"silver bullet" for the software community. There is very little scientific evidence to
support or refute claims regarding evolutionary development processes in general, and
consequences regarding the changeability of resulting object-oriented software in
particular.

Clearly, many of the proposed solutions for technology and product assessments,
in this thesis and elsewhere, need further validation before it can deliver its potential
benefits. After further empirical validation, we believe that the proposed measurement
framework may facilitate technology assessment studies related to evolutionary
development of object-oriented software:

e Potential causes of changeability decay in evolutionary development of object-
oriented software can be identified and preventive guidelines can be evaluated.
Consequently, evolutionary development processes can be tailored to improve the
changeability of the software.

e Design decisions can be supported by quantitative assessments, e.g., to provide a
more "open-ended" design that more easily can incorporate changes.

Although the awkward interaction between developers, users, organizations, products,
tools and processes make empirical studies of software engineering a difficult task, it
is not an impossible task. This thesis has proposed solutions that have been used to
improve the current knowledge regarding evolutionary development and
changeability.

148

Appendix A: Raw Data for the Genera Case Study

Most of the raw data for the Braathens and Genera case studies were presented in
Section 7.1. The principal component analysis presented in Table 7.9 was based on
the raw data given in Table A.1.

Table A.1. Raw data for the class-level coupling and size measures based on the final version
of the system

Class name OMMIC OMMIC L OMAIC OMAIC L OMMEC OMAEC MC Cs
EJBGoalHome 0 0 0 0 0 0 1 1
EqualInsertInSource 0 40 0 9 0 0 3 94
GDBC 0 0 0 0 6 0 16 16
GDBCodbc 0 1 0 0 0 0 0 1
GDBCoracle 0 1 0 0 0 0 0 1
GDBCsybase 0 1 0 0 0 0 0 1
Goal 0 0 0 0 0 0 0 0
GoalAppServerMisc 0 0 0 0 0 0 0 0
GoalAppServerMiscImp O 0 0 0 0 0 0 1
GoalBaseCondition 0 0 0 0 0 19 0 15
GoalBean 0 0 0 0 0 0 5 0
GoalCondition 0 0 0 0 0 36 0 14
GoalConstants 0 0 0 0 0 0 0 38
GoalContext 0 0 0 0 17 0 12 12
GoalContextEjb 11 17 0 4 0 0 13 43
GoalContextGas 11 11 0 0 0 0 12 26
GoalDatabase 2 4 15 0 1 0 9 51
GoalDbConnection 0 0 0 0 0 8 0 2
GoalDbMisc 0 0 0 0 0 0 4 4
GoalDbMiscImpl 2 11 7 1 4 0 4 37
GoalDbMiscWrapper 0 0 0 0 0 12 0 5
GoalErrorHandler 0 0 0 0 0 0 0 0
GoalException 0 0 0 0 0 0 1 5
GoalHome 0 0 0 0 0 0 1 1
GoalImpl 15 0 0 0 11 0 15 29
GoallIterator 14 36 15 0 0 0 22 157
GoalLogWriter 0 0 0 0 0 0 1 0
GoalManipulation 0 0 0 0 0 0 4 4
GoalManipulationImpl 5 10 25 0 4 0 4 66
GoalManipulationWrap 0 0 0 0 0 51 0 8
GoalNavigation 0 0 0 0 0 0 5 5
GoalNavigationImpl 1 1 6 0 5 0 6 30

149

GoalNavigationWrappe
GoalQuery
GoalQueryImpl
GoalQueryWrapper
Manipulation

Query
AppServerContextObje
AppServerProxy
AppServerProxyBase
AppServerProxyWeblog
ArgParser
ConditionBuilder
CondParser
DocBasisScanner

EJBGoal

O N O O O O O O O O W o N o o
o VW B O N O O N O LV W o BB o o

14

27
35

o o W KB O o o
o o

ul ul
o N N O

=
w w

O B O O O O O O O O o o o o o
P O W ©® N O O OO o M o o N o o
O O W O O O O O O O o uW o o ¥
P DM 9 9 W o o r»r o -

ul

32
13
39
61

17
19
55
35
15

150

Appendix B: The Coffee-Machine Experiment

B.1 Experience Level Questionnaire

Name:

Total number of credits:

Total number of credits in programming:

Estimate the total number of lines of code you have written in the
following programming languages:

Prog. Language 0 0, but knows some <100 <1000 <10000 10000+
Java [1] [1] [1] [] [1] []
C++ [] [] [] [1] [1] [1]
Simula [1] [1] [1] [1] [] [1]
SmallTalk [1] [1] [1] [] [1] []
C [1] [] [1] [1] [1] [1]
Pascal [1] [1] [1] [] [1] []
Other lang. [] [] [] [] [] []
()

Other lang. [] [] [] [] [] []
()

Which design methods and notations do you know:

Method/Notation No Experience Some Experience Experienced
UML/Rose [] [1 []

OMT [] [1] []
Responsibility-driven design [1] [1] []

CRC [] [1] []
role-modeling [1 [1 [1
Structured analysis and/or [] [1] [1]
structured design

Data-driven design [1 [1] []

Other () [] [1 []

Other () [] [1] []

151

B.2 Change Tasks

NAME: <THIS FIELD WAS FILLED OUT BY THE AUTHORS BEFORE THE EXPERIMENT>

IMPORTANT:

e THE CODE YOU WILL CHANGE IS ATTACHED AT THE END OF THIS DOCUMENT. DO
YOUR CHANGES DIRECTLY IN THE SOURCE CODE LISTING.

e BEFORE YOU START THE CHANGE TASK, WRITE DOWN THE START TIME IN THE
QUESTIONNAIRE THAT FOLLOWS THIS CHANGE TASK DESCRIPTION.

e WHEN YOU HAVE FINISHED THE CHANGE TASK, YOU COMPLETE THE REMAINDING
QUESTIONS OF THE CHANGE TASK QUESTIONNAIRE, BEFORE YOU START THE
NEXT ASSIGNMENT.

In this experiment you shall implement changes to a "virtual" coffee-machine. At the moment,
the machine can make four different types of coffe (black, white, black w/sugar, white
w/sugar). The customer must give textual commands to insert money and select coffee, and will
subsequently receive the "coffee", given that he has deposited sufficient funds and assuming all
necessary ingredients are available. At present, coffee costs 5 credits. The test run given below
shows how the machine works at present:

Example Test Run:
Menu: [=insert S=select Q=quit
I
Amount>
4
CashBox: Depositing 4
You now have 4 credits.
Menu: [=insert S=select Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream)>
2
FrontPanel: Insufficient funds
Menu: I=insert S=select Q=quit
I
Amount>
2
CashBox: Depositing 2
You now have 6 credits.
Menu: [=insert S=select Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream)>
2
Dispensing cup
Dispensing coffee
Dispensing water
Dispensing cream
CashBox: Returning 1

152

CHANGE TASK 1]

In this assignment, you shall extend the coffee machine with "return button" functionality that
returns the deposited funds. The menu choice is called "Return".

Test Case:

Menu: I=insert S=select R=return Q=quit
I
Amount>
4
CashBox: Depositing 4
You now have 4 credits.

Menu: I=insert S=select R=return Q=quit
R
CashBox: Returning 4

Menu: I=insert S=select R=return Q=quit

CHANGE TASK 2

In this assignment, you shall extend the machine to make bouillon. Bouillon costs more than
coffee. While coffee costs 5 credits, bouillon costs 6 credits.

HINT: You must, among others, make a "dispenser " for bouillon powder.

Test Case:

Menu: I=insert S=select R=Return Q=quit
1
Amount>
6
CashBox: Depositing 6
You now have 6 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar &
Cream, 5=Bouillon)>
5
Dispensing cup
Dispensing bouillon
Dispensing water
CashBox: Returning 0

Menu: I=insert S=select R=Return Q=quit

10 Tn the actual handouts, each change task was described on a separate printed page. The
subjects were instructed not to look at the next change task before they had completed the
change task questionnaire for the previous change task.

153

CHANGE TASK 3

Unfortunately, there is a quite serious problem with the coffee machine at present. If the user
chooses for example "coffee with cream", and the cream dispenser is empty, the machine gives
a small error message, after which it dispenses black coffee (without cream). If the machine
does not contain any more cups, the machine dispenses the drink right into the drain... The user
will of course get quite irritated over having to pay for this!

The simplest solution to this problem is that the user receives a message if the machine is out of
a required ingredient of the selected drink. Then, the user is given the option to choose another
drink. The following test case illustrates what should happen when the machine runs out of
cream:

Test Case:

Menu: I=insert S=select R=Return Q=quit
1
Amount>
5
CashBox: Depositing 5
You now have 5 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffeec w/Sugar &
Cream, 5=Bouillon)>
2
Dispensing cup
Dispensing coffee
Dispensing water
Dispensing cream <after this the machine is out of cream>
CashBox: Returning 0

Menu: I=insert S=select R=Return Q=quit
I
Amount>
5
CashBox: Depositing 5
You now have 5 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar &
Cream, 5=Bouillon)>
2
Sorry, no more cream! Select another.

Menu: I=insert S=select R=Return Q=quit

154

B.3 Change Task Questionnaire

Time for start of the change task:

Time for completing the change task (not including answering
this questionnaire):

Effort (in minutes) to solve the change task:
A. Effort to understand how to solve the change task:
B. Effort to code the change task:
C. Effort to evaluate/test the solution (run test-case):

How would you characterize your strategy to solve the task?

Very explorative (1) - Very systematic (6):
(Very explorative = "trial and error")
(Very systematic = "analysis, design, code, test")

What is your subjective assessment of your skill 1level as a

programmer?
Very poor (1) - Very skilled (6):

What is your subjective assessment of the quality of your
solution?
Very poor (1) - Very good (6):

How confident are you that the solution does not contain serious
faults?

Very unsure (1) - Very confident (6):

How difficult did you think the change task was?
Very easy (1) - Very difficult (6):

OTHER COMMENTS:

' The subjective skill-level question was asked only once, in the calibration change task
questionnaire. The other questions were answered for all change tasks.

155

B.4 Message Sequence Charts for the Designs

X

: User

1: "user inserts money"

3: "user selects a drink"

CoffeeMachine FrontPanel CashBox Dispenser(s)
2: deposit(i‘nt amount)
4: select(int choice, ..)
5: haveYou(int price)
6: di :
lsp‘ense() dispenses
‘ cup, coffee,
7: dispense() water, etc
8: "user receives drink"
9: deduct(int price)
10: "user receives change"

Fig. B.1. Message Sequence Chart for the MF design

156

x

1: "user inserts money"

3: "user selects a drink"

11: "user receives drink"

CoffeeMachine FrontPanel CashBox Product Product Recipe Dispenser Dispenser(s)
Reqgister Register
2: deposit(int amount)
4: select(int choice, ..)
5: haveYou(int price)
6: productFromindex(int choice) (returns product)
7: makeDrink(..)
8: makeDrink(..)

dispenses 9: for all Ingredients: getDispenserOf(Ingredient)
cup, coffee,

water, etc —+— 10: dispense()

1

: "user receives ch

2: deduct(int price)
>

ange"

Fig. B.2. Message Sequence Chart for the RD design

157

B.5 Code Fragments from the Designs

Table B.1. Code fragment from the MF design

class FrontPanel

{

// knows price of selection;

// knows ingredients needed for each selection
// asks CashBox how much money was put in

// instructs dispensers

<..snip...>

// constructor method for the FrontPanel class

FrontPanel () {
cupDisp = new Dispenser("cup", 50); // 50 cups
waterDisp = new Dispenser ("water", 50);
<..snip..>

}

// user selected a drink. Make drink!
void select (int choice, CashBox cashBox)

{

if (cashBox.haveYou (drinkPrice))
{

//1 = Black Coffee, 2=Coffee w/Cream, 3 = Coffee w/Sugar,

//4 = Coffee w/Sugar & Cream

if (choice == 1)

{
cupDisp.dispense () ;
coffeeDisp.dispense() ;
waterDisp.dispense() ;

}

<..snip..>

else // cream & sugar

{
cupDisp.dispense () ;
coffeeDisp.dispense () ;
waterDisp.dispense () ;
sugarDisp.dispense() ;
creamDisp.dispense () ;

}

cashBox.deduct (drinkPrice) ;

1
else

{
}

Output.print ("\tFrontPanel: Insufficient funds");

158

Table B.2. Code fragment from the RD design

class FrontPanel
{
// knows price,
// knows products,
// asks CashBox how much money was put in
// instructs the correct product to make the drink
// instructs CashBox to return change

private int drinkPrice = 5;

void select (int choiceIndex, CashBox cashBox, ProductRegister
productReg, DispenserRegister dispenserReg) {

if (cashBox.haveYou (drinkPrice))

{

Product product;

product = productReg.productFromIndex (choiceIndex) ;

//1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar,
//4 = Coffee w/Sugar & Cream

product .makeDrink (dispenserReqg) ;
//make product using the dispensers

cashBox.deduct (drinkPrice); //deduct price
}

else

Output.print ("\tFrontPanel: Insufficient funds\n");

159

B.6 Raw data from the main experiment

Table B.3. Summary measures of change effort

Subject [Design Total Total Understand Code Test LearningCurve
cl+c2 cl+c2+c3 cl+c2+c3 cl+c2+c3 cl+c2+c3

1 RD 32 56 30 23 3 -0.520000
2 MF 26 48 15 23.5 9.5 0.200000
3 RD 42 58 29 26 3 -0.090909
4 RD 40 53 36 13 4 0.076923
5 MF 38 63 30 25 8 0.000000
6 RD 56 * * * * *
7 RD 26 61 12 40 9 0.333333
8 RD 28 42 18 19 5 -0.333333
9 RD 23 38 23 * * -0.500000
10 MF 43 79 13 54 12 -0.111111
11 RD 29.5 57.5 20 33.5 4 0.411765
12 RD 31 56 8 38 10 -0.200000
13 MF 30 56 23 28 5 -0.375000
14 RD 49 64 35 * * 0.200000
15 MF 20 35 17 13 5 -0.166667
16 RD 39 48 25 21 2 0.000000
17 MF 21 36 14 18 4 0.111111
18 RD 54 69 34 26 9 0.142857
19 MF 17 42 8 27 7 -0.428571
20 MF 13 36 10 26 0 -0.250000
21 RD 45 65 35 24 6 -0.500000
22 MF 24 44 11 22 12 -0.666667
23 MF 25 40 11 25 4 0.250000
24 RD 51 67 21 29 * 0.384615
25 MF 24 48 8 34 6 0.000000
26 RD 33.5 61.5 * * * *
27 MF 35 41 9.5 26.5 5 0.846154
28 RD 49 71 39 28 9 0.166667
29 MF 26 52 13 31 8 0.000000
30 MF 40 65 30 35 0 -0.200000
31 MF 31 61 20 29 12 -0.333333
32 RD 29 64 33 29 2 -0.818182
33 RD 30 70 20 42 8 0.000000
34 MF 24 41 24 17 0 -0.411765
35 RD 40 65 25 25 15 -0.500000
36 MF 20 * * * * *

160

Table B.4. Data for the calibration task

Subject |[Total Cal| Understand Code Test |Strategy| Subj [Confidence |Correctness| ChangeSize
Cal Cal Cal Cal Qual. Cal Cal Cal
Cal

1 55 15 35 5 2 2 2 2 39

2 39 20 14 5 2 4 3 3 17

3 60 28 30 2 4 4 5 6 25

4 65 35 20 10 2 3.5 3 3 14

5 50 25 20 5 5 4 4 5 22

6 56 25 15 16 3 4 4 3 21

7 38 10 23 5 2 5 4 4 19

8 31 14 15 2 2 5 5 4 26

9 55 30 20 5 2 2 3 2 19
10 23 10 10 3 5 5 5 4 18
11 29 14 12 3 3 3 5 5 20
12 37 10 20 7 3 3 6 6 28
13 62 20 40 2 5 5 5 5 23
14 55 10 40 5 2 3 4 3 23
15 40 20 15 5 4 3 5 6 18
16 87 37 40 10 5 4 4 3 30
17 42 16 25 1 5 4 5 4 21
18 50 25 20 5 2 2 3 2 11
19 55 17.5 32.5 2.5 3 4 5 6 24
20 50 20 20 10 3 2 2 2 14
21 55 20 30 5 2 4 4 6 25
22 25 7 15 3 4 5 5 6 15
23 33 7 20 5 4 5 6 4 24
24 51 14 30 7 4 4 3 3 20
25 40 8 25 7 2 5 6 6 28
26 57 30 25 2 4 5 5 4 16
27 50 20 28 2 5 4 5 3 23
28 43 20 10 13 5 4 5 5 19
29 52 10 30 12 4 4 4 6 24
30 45 20 20 5 5.5 4.5 6 5 21
31 45 20 20 5 4 4 5 6 24
32 55 20 30 5 5 6 2 2 15
33 33 15 15 3 4 5 6 3 9
34 50 40 10 0 6 6 6 4 15
35 45 20 20 5 3 4 4 4 18
36 85 60 20 5 3 1 1 3 19

161

Table B.5. Data for change task cl

cl

cl

cl

Confidence [Difficulty |Correctness |ChangeSize

cl

Subj

Qual.

cl

Strategy

cl

Test

cl

cl

10

10

10

10

cl

10

14
10

12

15

12

10

14

10

10

cl

12
10

13
20

16

14

10

10

20

10

12
21

10

26

10

10

10

14

13

18

19
12

20

11

10

13

10

20

10

Subject | Total [Understand| Code

10

11
12

13

14

15

16

17
18

19
20

21
22
23

24

25

26

27

28

29
30
31

32
33
34

35
36

162

Table B.6. Data for change task c2

Subject | Total |Understand| Code | Test | Strategy Subj Confidence |Difficulty |Correctness | Change-
c2 c2 c2 c2 c2 Qual.c2 c2 c2 c2 Size c2

1 20 5 14 1 2 3 4 3 4 12
2 16 5 8 3 2 5 4 3 6 13
3 29 7 20 2 4 5 5 3 4 17
4 20 10 7 3 1 3 2 4 3 5
5 22 10 10 2 3 4 4 2 6 10
6 47 30 5 12 5.5 3 2 4 4 6
7 12 6 4 2 1 5 5 2 4 8
8 20 9 9 2 2 5 5 3 4 7
9 13 3 8 2 1 4 4 2 4 6
10 33 4 26 3 1 1 5 5 6 27
11 9 3 5.5 0.5 3 5 5 1 3 4
12 21 3 16 2 3 3 5 2 4 14
13 18 7 10 1 2 4 4 2 4 8
14 28 10 15 3 4 5 4 3 6 8
15 10 5 3 2 3 3 4 3 6 11
16 31 15 15 1 2 2 1 4 3 8
17 13 5 7 1 5 6 5 1 4 11
18 28 13 10 5 3 5 4 3 4 7
19 7 1 5 1 5 6 6 1 3 7
20 6 2 4 0 4 5 5 1 3 11
21 35 15 15 5 3 4 4 3 6 15
22 20 5 10 5 2 4 5 3 6 14
23 15 3 10 2 3 5 5 1 6 11
24 37 8 15 14 4 5 3 3 6 17
25 17 2 13 2 2 5 5 2 5 16
26 20 * * * 2 5 5 1 5 10
27 17 3 12 2 4 4 3 3 6 12
28 30 15 16 4 5 3 3 4 6 8
29 14 3 8 3 2 4 4 2 6 16
30 20 5 15 0 5 4 6 1 4 25
31 20 5 10 5 3 4 5 4 6 9
32 19 0 18 1 1 5 4 2 6 9
33 17 0 15 2 2 4 3 3 5 14
34 14 7 7 0 2 5 5 2 3 14
35 20 5 10 5 3 3 2 2.5 4 6
36 10 2 8 0 4 4 4 4 * *

163

Table B.7. Data for change task c3

Subject [Total | Understand | Code |Test| Strategy Subj Confidence |Difficulty |Correctness| Change-
c3 c3 c3 c3 c3 Qual. c3 c3 c3 c3 Size c3

1 24 19 4 1 2 3 3 4 2 *

2 22 4 12 6 2 3 4 2 5 15

3 16 12 4 0 4 4 3 4 * *

4 13 12 1 0 3 * * * * *

5 25 10 10 5 4 3 3 3 6 67

6 * * * * 5 * * * * *

7 35 2 28 5 3 3 3 5 6 16

8 14 6 6 2 1 2 3 3 4 11

9 15 15 * * 6 1 1 1 * *
10 36 5 25 6 * 3 3 5 5 22
11 28 5 20 3 3 4.5 4 3 6 18
12 25 3 15 7 3 4 3 2 4 10
13 26 11 12 3 1 4 4 2 2 60
14 15 10 * * 3 * * 3 * *
15 15 7 7 1 2 1 3 3 6 70
16 9 5 4 0 1 1 1 * * *
17 15 4 10 1 5 4 5 2 4 62
18 15 9 6 0 4 3 3 3 * *
19 25 5 15 5 2 5 5 2 3 28
20 23 5 18 0 4 4 4 2 3 60
21 20 15 5 0 2 2 3 3 * *
22 20 5 10 5 4 4 5 4 6 13
23 15 3 10 2 2 3 4 2 3 56
24 16 4 12 * 3 2 2 2 6 14
25 24 3 19 2 1 5 4 2 6 24
26 28 * * * 1 4 3 2 6 16
27 6 0.5 4.5 1 5 5 4 1 1 2
28 22 10 9 3 5 4 4 3 5 9
29 26 5 18 3 * 3 4 4 6 16
30 25 15 10 0 6 4 6 2 5 11
31 30 10 15 5 2 3 4 4 6 29
32 35 30 5 0 2 2 1 4 * *
33 40 10 25 5 3 3 3 5 6 20
34 17 12 5 0 5 6 5 2 6 20
35 25 15 5 5 3 2 1 3 * *
36 * * * * * * * * * *

164

Appendix C: Raw data from the Ooram Case Study

Table C.1. Raw data for the dynamic coupling measures and NumChanges for Section 7.3.3

Class CS IC_IC_ IC_ IC_ IC_ IC_ EC EC EC_ EC_ EC EC_ NumC
OA OM OD CA CM CD OA OM OD CA CM CD hang
es

1 210 4 13 46 1 3 5 7 26 113 1 1 2 5
2 193 1 2 8 2 2 8 0 0 0 0 0 0 2
3 53 1 4 158 1 4 158 0 0 0 0 0 0 3
4 60 1 5 62 1 5 62 0 0 0 0 0 0 1
5 21 2 2 7 1 1 7 0 0 0 0 0 0 0
6 642 4 8 10 3 5 10 0 0 0 0 0 0 4
7 2590 0 0 0 6 20 3763 0 0 0 1 1 10 7
8 2382 0 0 0 1 1 152 0 0 0 13 23 6250 6
9 1798 0 0 0 3 3 6 0 0 0 0 0 0 6
10 1515 0 0 0o 4 6 23 0 0 0 6 10 35 4
11 1903 7 35 5962 6 9 2199 2 4 12 1 2 2 7
12 1449 2 15 104 2 12 84 8 39 3790 6 21 1220 6
13 1569 3 5 14 2 3 9 2 3 9 1 1 1 6
14 1235 6 10 107 2 107 0 0 0 0 0 0 3
15 1175 0 0 0 2 2 18 0 0 0 10 19 2673 6
16 936 3 16 959 3 12 882 8 30 4383 7 22 932 7
17 731 6 27 5531 9 23 5513 8 28 1200 6 16 1143 6
18 573 1 7 303 2 7 303 0 0 0 0 0 0 3
19 570 3 4 25 4 4 25 0 0 0 0 0 0 1
20 603 2 7 38 2 5 31 4 13 451 3 9 436 6
21 570 4 16 1573 5 13 1557 4 13 2438 4 10 2315 6
22 460 311 79 4 7 57 8 22 863 5 13 528 6
23 633 3 7 32 3 5 4 3 11 55 4 5 20 6
24 300 4 14 2139 5 9 2076 6 19 3843 6 12 1512 5

165

BIBLIOGRAPHY

Adrion, W.R. (1993). Research Methodology in Software Engineering. ACM
Software Engineering Notes, 18 (1), 36-37.

Arisholm, E., Anda, B., Jorgensen, M. and Sjoberg, D. (1999a). Guidelines on
Conducting Software Process Improvement Studies in Industry. In: 22nd
IRIS Conference (Information Systems Research Seminar In Scandinavia),
Keuruu, Finland, pp. 87-102.

Arisholm, E., Benestad, H.C., Skandsen, J. and Fredhall, H. (1998).
Incorporating Rapid User Interface Prototyping in Object-Oriented
Analysis and Design with Genova. In: Proceedings of NWPER'98 Nordic
Workshop on Programming Environment Research, Sweden, pp. 155-161.

Arisholm, E. and Sjeberg, D. (1999). Empirical Assessment of Changeability
Decay in Object-Oriented Software. In: ICSE'99 Workshop on Empirical
Studies of Software Development and Evolution, Los Angeles, CA, pp.
62-69.

Arisholm, E. and Sjeberg, D.L.K. (2000). Towards a Framework for Empirical
Assessment of Changeability Decay. The Journal of Systems and Software,
53 (1), 3-14.

Arisholm, E., Sjeberg, D.LK. and Jergensen, M. (2001). Assessing the
Changeability of two Object-Oriented Design Alternativers — a Controlled
Experiment. Empirical Software Engineering, Accepted for publication.

Arisholm, E., Skandsen, J., Sagli, K. and Sjeberg, D.L.K. (1999b). Improving
an Evolutionary Development Process — A Case Study. In: Proceedings of
the EuroSPI'99 (European Software Process Improvement Conference),
Pori, Finland, pp. 9.40-9.50.

Basili, V., Briand, L. and Melo, W. (1996a). How Reuse Influences
Productivity in Object-Oriented Systems. Communications of the ACM, 39
(10), 104-116.

Basili, V.R., Briand, L.C. and Melo, W.L. (1996b). A Validation of Object-
Oriented Design Metrics as Quality Indicators. I[EEE Transactions on
Software Engineering, 22 (10), 751-761.

Basili, V.R. and Turner, A.J. (1975). Iterative Enhancement: A Practical
Technique for Software Development. [EEE Transactions on Software
Engineering, 1 (4), 390-396.

Benlarbi, S. and Melo, W.L. (1999). Polymorphism Measures for Early Risk
Prediction. In: 21st International Conference of Software Engineering
(ICSE'99), Los Angeles, CA, pp. 334-344.

Bersoff, E.H. and Davis, A.M. (1991). Impacts of Life Cycle Models on
Software. Communications of the ACM, 34 (8), 104—118.

Bieman, J.M. and Kang, B.K. (1998). Measuring Design-Level Cohesion.

166

IEEFE Transactions on Software Engineering, 24 (2), 111-124.

Binkley, A.B. and Schach, S.R. (1998). Validation of the Coupling
Dependency Metric as a Predictor of Run-Time Failures and Maintenance
Measures. In: 20th International Conference on Software Engineering
(ICSE'98), pp. 452-455.

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ.,
Prentice-Hall.

Boehm, B.W. (1988). A spiral model of software development and
enhancement. /[EEE Computer, 21 (5), 61-72.

Boehm, B.W., Gray, T.E. and Seewaldt , T. (1984). Prototyping versus
Specifying — A Multiproject Experiment. /[EEE Transactions on Software
Engineering, 10 (3), 290-302.

Boehm, B.W. and Papaccio, P.N. (1988). Understanding and Controlling
Software Costs. IEEE Transactions on Software Engineering, 14 (10),
1462-1477.

Bolviken, E. and Skovlund, E. (1994). Lectures in Applied Statistics. Dept. of
Mathematics, University of Oslo.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications.
Benjamin/Cummins Publishing Company Inc.

Booch, G., Rumbaugh, J. and Jacobson, 1. (1998). The Unified Modeling
Language Users Guide. Addison-Wesley.

Braa, K. and Vidgen, R. (1999). Interpretation, intervention, and reduction in
the organizational laboratory: a framework for in-context information
system research. Accounting Management and Information Technologies,
1999 (9), 25-47.

Bradburn, N.M. (1982). “Question-wording effects in surveys”. In: New
directions for methodology of social and behavioral science: Question
framing and response consistency. Hogarth (editors), Jossey-Bass, San
Francisco, pp. 65-76.

Briand, L., Bunse, C. and Daly, J.W. (1999a). A Controlled Experiment for
Evaluating Quality Guidelines on the Maintainability of Object-Oriented
Designs. [EEE Transactions on Software Engineering, Accepted for
publication. (4lso available as technical report ISERN-99-07).

Briand, L.C., Arisholm, E., Counsell, S., Houdek, F. and Thevenod, P.
(1999b). Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of The Art and Future Directions. Empirical Software
Engineering, 4 (4), 387-404.

Briand, L.C., Basili, V.R. and Thomas, W.M. (1992). A Pattern Recognition
Approach for Software Engineering Data Analysis. I[EEE Transactions on
Software Engineering, 18 (11), 931-942.

Briand, L.C., Bunse, C., Daly, J.W. and Differding, C. (1997a). An
Experimental Comparison of the Maintainability of Object-Oriented and
Structured Design Documents. Empirical Software Engineering, 2 (3),

167

291-312.

Briand, L.C., Carriere, S.J., Kazman, R. and Wust, J. (1998a). COMPARE: a
comprehensive framework for architecture evaluation. In: Object-Oriented
Technology. ECOOP'98 Workshop Reader. ECOOP'98 Workshops,
Demos, and Posters. Berlin, Germany, Springer-Verlag, pp. 48-49.
Extended version available as ISERN Technical Report TR-98-29.

Briand, L.C., Daly, J. and Wust, J. (1998b). A Unified Framework for
Cohesion Measurement in Object-Oriented Systems. Empirical Software
Engineering, 3 (1), 65-117.

Briand, L.C., Daly, J.W., Porter, V. and Wust, J. (2000). Exploring the
Relationships between Design Measures and Software Quality in Object-
Oriented Systems. Journal of Systems and Software, 51 (3), 245-273.

Briand, L.C., Daly, JJW. and Wust, J. (1999c). A Unified Framework for
Coupling Measurement in Object-Oriented Systems. /[EEE Transactions
on Software Engineering, 25 (1), 91-121.

Briand, L.C., Devanbu, P. and Melo, W.L. (1997b). An Investigation into
Coupling Measures for C++. In: 19th International Conference on
Software Engineering (ICSE'97), Boston, USA, pp. 412-421.

Briand, L.C., El Emam, K. and Morasca, S. (1995). Theoretical and Empirical
Validation of Software Product Measures. ISERN Technical Report 95-03,

Briand, L.C., Emam, K.E. and Morasca, S. (1996a). On the Application of
Measurement Theory in Software Engineering. Empirical Software
Engineering, 1 (1), 61-68.

Briand, L.C., Morasca, S. and Basili, V.R. (1996b). Property-based Software
Engineering Measurement. /EEE Transactions on Software Engineering,
22 (1), 68-85.

Briand, L.C., Morasca, S. and Basili, V.R. (1998c). Defining and Validating
Measures for Object-Based High-Level Design. IEEE Transactions on
Software Engineering, 25 (5), 722-743.

Briand, L.C. and Wust, J. (1999). The Impact of Design Properties on
Development Cost in Object-Oriented Systems. ISERN Technical Report
TR-99-16.

Briand, L.C. and Wust, J. (2000). Integrating Scenario-based and
Measurement-based Software Product Quality. ISERN Technical Report
00-04.

Briand, L.C., Wust, J., Ikonomovski, S.V. and Lounis, H. (1999d).
Investigating Quality Factors In Object-Oriented Designs: an Industrial
Case Study. In: 21st International Conference of Software Engineering
(ICSE'99), Los Angeles, CA., pp. 345-354.

Briand, L.C., Wust, J. and Lounis, H. (1999¢). Using Coupling Measurement
for Impact Analysis in Object-Oriented Systems. In: International
Conference on Software Maintenance (ICSM'99), IEEE Comput. Society,
pp. 475-482.

168

Brito e Abreu, F. and Melo, W. (1996). Evaluating the Impact of Object-
Oriented Design on Software Quality. In: Proceedings of the Third
International Software Metrics Symposium (METRICS'96), Berlin, pp.
90-99.

Brownsword, L. and McUmber, R. (1991). Applying the Iterative
Development Process to Large 2167A Ada Projects. In: TRI-Ada'91, New
York, USA, ACM, pp. 378-386.

Bruckhaus, T., Madhavji, N., Janssen, 1. and Henshaw, J. (1996). The Impact
of Tools on Software Productivity. IEEE Software, 13 (5), 29-38.

Cartwright, M. and Shepperd, M. (2000). An Empirical Investigation of an
Object-Oriented Software System. [EEE Transactions on Software
Systems, 26 (8), 786—796.

Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F. and Saint-Denis, G.
(2000). Design Properties and Object-Oriented Software Changeability. In:
Fourth Euromicro Working Conference on Software Maintenance and
Reengineering, pp. 45-54.

Chidamber, S.R., Darcy, D.P. and Kemerer, C.F. (1998). Managerial Use of
Metrics for Object-Oriented Software: An Exploratory Analysis. /[EEE
Transactions on Software Engineering, 24 (8), 629—637.

Chidamber, S.R. and Kemerer, C.F. (1994). A Metrics Suite for Object-
Oriented Design. /[EEE Transactions on Software Engineering, 20 (6),
476-493.

Chong Hok Yuen, C.K.S. (1987). A Statistical Rationale for Evolution
Dynamics Concepts. In: Proc. Conf. Software Maintenance, Austin, Texas,
IEEE, pp. 156-164.

Christensen, R. (1996). Analysis of Variance, Design and Regression. Applied
Statistical Methods. Chapman & Hall.

Churcher, N.I. and Shepperd, M.J. (1995). Towards a Conceptual Framework
for Object-Oriented Software Metrics. Software Engineering Notes, 20 (2),
69-76.

Coad, P. and Yourdon, E. (1991a). Object-Oriented Analysis. Prentice-Hall.

Coad, P. and Yourdon, E. (1991b). Object-Oriented Design. Prentice-Hall.

Cockburn, A. (1998). The Coffee Machine Design Problem: Part 1 & 2.
C/C++ User's Journal, 1998 (May/June).

Collofello, J.S. and Buck, J.J. (1987). Software Quality Assurance for
Maintenance. IEEE Software, 1987 (September), 46—51.

Cotton, T. (1996). Evolutionary Fusion: A Customer-Oriented Incremental
Life-Cycle for Fusion. Hewlett-Packard Journal, 47 (4), 25-38.

Courtney, R.E. and Gustafson, D.A. (1993). Shutgun correlations in software
measure. Software Engineering Journal, 1993 (January), 5-13.

Cunningham, J.B. (1997). Case study principles for different types of cases.
Quality and Quantity, 31, 401-423.

Daly, J., Brooks, A., Miller, J., Roper, M. and Wood, M. (1996). Evaluating

169

Inheritance Depth on the Maintainability of Object-Oriented Software.
Empirical Software Engineering, 1 (2), 109-132.

Draper, N.R. and Smith, H. (1981). Applied Regression Analysis. John Wiley
& Sons, Inc.

Ehn, P. (1993). “Ch.4: Chandinavian Design: On Participation and Skill”. In:
Participatory Design: Principles and Practice. Schuler, D.N., Aki
(editors), Lawrence Erlbaum, pp. 41-77.

Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S. and Mockus, A. (1999).
Does Code Decay? Assessing the evidence from Change Management
Data.. Submitted to IEEE Transactions on Software Engineering.

Emam, K.L., Quintin, S. and Madhavji, N.Z. (1996). User Participation in the
Requirements Engineering Process: An Empirical Study. Requirements
Engineering, 1996 (1), 4-26.

Fagan, M.R. (1976). Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15 (3), 182-211.

Fenton, N. (1992). When a software measure is not a measure. Software
Engineering Journal, 1992 (September), 357-362.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis.
IEEE Transactions on Software Engineering, 20 (3), 199-206.

Fenton, N., Pfleeger, S.L. and Glass, R.L. (1994). Science and Substance: A
Challenge to Software Engineers. IEEE Software, 1994 (July), 86-95.

Fioravanti, F. and Nesi, P. (2000). A method and tool for assessing object-
oriented projects and metrics management. Journal of Systems and
Software, 53 (2), 111-136.

Fioravanti, F., Nesi, P. and Stortoni, F. (1999). Metrics for controlling effort
during adaptive maintenance of object oriented systems. In: Proceedings
IEEE International Conference on Software Maintenance 1999 (ICSM'99),
Los Alamitos, CA, USA, IEEE Comput. Soc, pp. 483—492.

Floyd, C. (1984). “A Systematic Look at Prototyping”. In: Approaches to
Prototyping. (editors), Springer-Verlag, pp. 105-122.

Garvin, D. (1984). What does 'Product Quality’ Really Mean. Sloan
Management Review.

Gilb, T. (1988). Principles of Software Engineering Management. Addison-
Wesley.

Gilgun, J.F. (1992). Definitions, Methodologies, and Methods in Qualitative
Famility Research. Qualitative Methods in Famility Research, Thousand
Oaks, Sage.

Glass, R.L. (1994). The Software Research Crisis. IEEE Software, 11 (6), 42—
47.

Harrison, R., Counsell, S. and Nithi, R. (2000). Experimental assessment of
the effect of inheritance on the maintainability of object-oriented systems.
Journal of Systems and Software., 52 (2-3), 173—-179.

Harrison, R., Counsell, S.J. and Nithi, R.V. (1998a). An Investigation into the

170

Applicability and Validity of Object-Oriented Design Metrics. Empirical
Software Engineering, 3 (3), 255-273.

Harrison, R., Counsell, S.J. and Reuben, V.N. (1998b). An Evaluation of the
MOQOD Set of Object-Oriented Software Metrics. /[EEE Transactions on
Software Engineering, 24 (6), 491-496.

Henry, S., Humphrey, M. and Lewis, J. (1990). Evaluation of the
maintainability of object-oriented software. In: IEEE Region 10
Conference on Computer and Communication Systems (TENCON'90),
New York, NY, USA, pp. 404—409.

Holm, S. (1979). A Simple Sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 1979 (6), 65-70.

Houdek, F., Ernst, D. and Schwinn, T. (1999). Comparing Structured and
Object-Oriented Methods for Embedded Systems: A Controlled
Experiment. In: ICSE'99 Workshop on Empirical Studies of Software
Development and Evolution (ESSDE), Los Angeles, USA, pp. 75-79.

Hufnagel, E.M. and Conca, C. (1994). User response data: The potential for
errors and biases. Information Systems Research, 5 (1), 48-73.

ISO9126 (1992). Information Technology: software product evaluation:
quality characteristics and guidelines for their use. International
Organization for Standardization.

Jacobson, 1., Booch, G. and Rumbaugh, J. (1999). The Unified Software
Development Process. Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992). Object-
Oriented Software Engineering. Addison-Wesley.

Jarvinen, P. (1999). On Research Methods. ISBN 951-97113-6-8.

Jones, C. (1994). Gaps in the Object-Oriented Paradigm. IEEE Computer, 27
(6), 90-91.

Jorgensen, M. (1994). Empirical Studies of Software Maintenance. PhD
Thesis, University of Oslo.

Jorgensen, M. (1995). Experience With the Accuracy of Software
Maintenance Task Effort Prediction Models. /EEE Transactions on
Software Engineering, 21 (8), 674-681.

Jorgensen, M. (1999). Software Quality Measurement. Advances in
Engineering Software, 30 (12), 907-912.

Jargensen, M., Bygdas, S.S. and Lunde, T. (1995). Efficiency Evaluation of
CASE Tools — Methods and Results. TF R 38/95, Telenor FoU.

Kazman, R., Abowd, G., Bass, L. and Clements, P. (1996). Scenario-Based
Analysis of Software Architecture. IEEE Software, 13 (6), 47-56.

Kemerer, C.F. and Slaughter, S. (1999). An Empirical Approach to Studying
Software Evolution. /IEEE Transactions on Software Engineering, 25 (4),
493-509.

Kerlinger, F.N. (1988). Foundation of behavioral research. New York, Holt
Rinehart and Winston Inc.

171

Khoshgoftaar, T.M. and Allen, E.B. (1998). Classification of Fault-Prone
Software Modules: Prior Probabilities, Costs and Model Evaluation.
Empirical Software Engineering, 3 (3), 275-298.

Kitchenham, B. (1996a). Software Metrics. Measurement for Software
Process Improvement. Blackwell Publishers Inc.

Kitchenham, B. and Pickard, L. (1987). Towards a constructive quality model.
Part II: Statistical techniques for modelling software quality in the ESPRIT
REQUEST project. Software Engineering Journal, 2 (4), 114—126.

Kitchenham, B., Pickard, L. and Pfleeger, S.L. (1995a). Case Studies for
Method and Tool Evaluation. /EEE Software, 12 (4), 52-62.

Kitchenham, B.A. (1996b). Evaluating Software Engineering Methods and
Tools . Part 1: The Evaluation Context and Evaluation Methods. ACM
Software Engineering Notes, 21 (1), 11-15.

Kitchenham, B.A., Fenton, N. and Pfleeger, S.L. (1995b). Towards a
Framework for Software Measurement Validation. /[EEE Transactions on
Software Engineering, 21 (12), 929-944.

Kraemer, K.L. (1993). The information systems research challenge: Survey
research methods. Boston, Harvard Busines School.

Kruchten, P. and Royce, W. (1996). A Rational Development Process.
CrossTalk, 9 (7), 11-16.

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y. and Chen, C. (1994).
Change Impact Identification in Object-Oriented Software Maintenance.
In: International Conference on Software Maintenance, IEEE, pp. 202—
211.

Lee, A.S. (1989). A scientific methodology for MIS case studies. MIS
quarterly, 13 (1), 33-50.

Lehman, M.M. and Belady, L.A. (1985). Program Evolution: Processes of
Software Change. Academic Press.

Li, W. and Henry, S. (1993). Object-Oriented Metrics that Predict
Maintainability. Journal of Systems and Software, 23 (2), 111-122.

Lichter, H., Schneider-Hufschmidt, M. and Zullighoven, H. (1994).
Prototyping in Industrial Software Projects - Bridging the Gap beween
Theory and Practice. IEEE Transactions on Software Engineering, 20 (11),
825-832.

Lientz, B.P., Swanson, E.B. and Tompkins (1978). Characteristics of
Application Software Maintenance. Communications of the ACM, 21 (6),
466-471.

Linger, R.C. (1993). Cleanroom Software Engineering for Zero-Defect
Software. In: 15th International Conference on Software Engineering
(ICSE'93), IEEE, pp. 2—-13.

May, E.L. and Zimmer, B.A. (1996). The Evolutionary Development Model
for Software. Hewlett-Packard Journal, 47 (4), 39-45.

Munson, J.B. (1981). Software Maintainability: a practical concern for life-

172

cycle costs. IEEE Computer, 14 (11), 103—109.

Nesi, P. and Querci, T. (1998). Effort estimation and prediction of object-
oriented systems. Journal of Systems and Software, 42 (1), 89—102.

Parnas, D.L. (1979). Designing Software for Ease of Extension and
Contraction. IEEE Transactions on Software Engineering, 5 (2), 128—138.

Parnas, D.L. (1994). Software Aging. In: Proceedings of the 16th
International Conference on Software Engineering (ICSE94), Sorrento,
Italy, pp. 279-287.

Patton, B. (1983). Prototyping — a nomenclature problem. ACM SIGSOFT
Software Engineering Notes, 8 (2), 14—16.

Peercy, D.E. (1981). A Software Maintainability Evaluation Methodology.
IEEE Transactions on Software Engineering, SE-7 (4), 343-351.

Pfleeger, S.L. (1995). Experimental Design and Analysis in Software
Engineering. Part 2: How to Set Up an Experiment. ACM Software
Engineering Notes, 20 (1), 22-26.

Pfleeger, S.L. (1998). Software Engineering: Theory and Practice. Prentice
Hall.

Pickard, L., Kitchenham, B. and Jones, P. (1998). Combining Software
Engineering Results in Software Engineering. In: Proc. of the EASE'98
conference, Keele, UK.

Popper, K. (1968). The logic of scientific discovery. New York, Harper
Torchbooks.

Pressmann, R.S. (1997). Software Engineering. A Practitioner's Approach.
McGraw-Hill.

Reenskaug, T., Wold, P. and Lehne, O.A. (1995). The OOram Software
Engineering Method. Manning/Prentice-Hall.

Royce, W. (1970). Managing the development of large software systems:
Concepts and techniques. In: Proceedings of IEEE WESTCON, Los
Angeles, pp. 1-9.

Royce, W. (1990). TRW's Ada Process Model for Incremental Development
of Large Software Systems. In: 12th International Conference on Software
Engineering (ICSE'12), Los Alamitos, CA, IEEE, pp. 2—-11.

Seaman, C.B. (1999). Qualitative Methods in Emprical Studies of Software
Engineering. I[EEE Transactions on Software Engineering, 25 (4), 557-
572.

Sharble, R.C. and Cohen, S.S. (1993). The Object-Oriented Brewery: A
Comparison of Two Object-Oriented Development Methods. Software
Engineering Notes, 18 (2), 60-73.

Sjeberg, D.LK., Welland, R. and Atkinson, M.P. (1997a). Software
Constraints for Large Application Systems. The Computer Journal, 40
(10), 598-616.

Sjeberg, D.LLK., Welland, R., Atkinson, M.P., Jergensen, M., Martinussen,
J.P. and Maus, A. (1996). Evaluating Software Maintenance Technology.

173

In: Norwegian Conference in Informatics, Alta, Norway, 18-20
November, TAPIR, pp. 49-61.

Sjeberg, D.LLK., Welland, R., Atkinson, M.P., Philbrow, P. and Waite, C.
(1997b). Exploiting Persistence in Build Management. Sofiware — Practice
and Experience, 27 (4), 447—-480.

Sommerville, 1. (1996). Software Process Models. ACM Computing Surveys,
28 (1), 269-271.

Sommerville, I. (2001). Software Engineering. Pearson Education Limited.

Serumgard, L.S. (1997). Verification of Process Conformance in Empirical
Studies of Software Development. PhD Thesis, Norwegian University of
Science and Technology (NTNU).

Tryggeseth, E. (1997). Support for Understanding in Software Maintenance.
PhD Thesis, Norwegian University of Science and Technology (NTNU).
von Mayrhauser, A., Vans, A.M. and Howe, A.E. (1997). Program
Understanding Behaviour during Enhancement of Large-scale Software.
Journal of Software Maintenance: Research and Practice, 9 (5), 299-327.

Walsham, G. (1995). Interpretive case studies in IS research: nature and
method. European Journal of Information Systems, 4 (2), 74-81.

Weyuker, E.J. (1988). Evaluating Software Complexity Measures. [EEE
Transactions on Software Engineering, 14 (9), 1357-1365.

Whyte, W.F. (1991). Participatory Action Research. Newbury Park, CA.,
Sage publications.

Yin, R.K. (1994). Case Study Research, Design and Methods, 2nd edition.
Thousand Oaks, CA., Sage Publications.

Zamperoni, A., Gerritsen, B. and Bril, B. (1995). Evolutionary Software
Development: An experience Report on Technical and Strategic
Requirements. Technical Report TR-95-25, Leiden University, The
Netherlands.

Zelkowitz, M.V. and Wallace, D.R. (1998). Experimental Models for
Validating Technology. Computer, 31 (5), 23-31.

Zuse, H. (1991). Software Complexity: Measures and Methods. de Gruyter.

174

