
Effort and Schedule Estimation of Software

Development Projects

Kjetil Johan Moløkken-Østvold

Thesis submitted for the degree of PhD.

Department of Informatics
Faculty of Mathematics and Natural Sciences

University of Oslo

August 2004.

© Kjetil Johan Moløkken-Østvold, 2004.

Abstract

This thesis explores different topics related to effort and schedule estimation of software

development projects. The contributions presented here, in the form of observations and

recommendations, should be of interest to a diverse audience involved in various aspects of

software development projects.

For practitioners:

• Use of flexible development methods (e.g. agile, evolutionary and incremental) may

reduce the magnitude of effort overruns.

• Software projects with a public client are likely to have greater effort overruns than

comparable private projects.

• An estimation process that combines knowledge from experts with different

backgrounds may facilitate increased estimation accuracy.

For researchers:

• There are considerable weaknesses in how surveys on software estimation accuracy

are performed, both related to sampling, terminology and measurement.

• Software projects encounter, on average, a 30-40% effort overrun.

• Surveys reveal that expert judgment is by far the preferred estimation approach in

the software industry.

For clients:

• Price should not be the only selection criterion when evaluating proposals from

software providers.

• The clients should encourage use of flexible development methods in order to

establish as close a dialogue as possible with the software providers.

For the political community:

• Procurement of software is still a major challenge in the public sector, and scandals

surface frequently in a wide range of institutions.

• There is often an unbalanced mix of professionals in the public sector, with few

resources available in the form of employees with skills in IT and project

management.

The thesis consists of three sections, which address 1) state of practice in the software

industry, 2) different methods for improving estimation accuracy, and 3) general

methodological aspects in research on software estimation.

 I

Related to international estimation practices and performance, a review of previous

research performed as part of this thesis revealed that a majority of software projects (60-

80%) had encountered effort overruns. The average project had effort overruns of 30-40%.

The frequency (65-80%) and magnitude (20-25%) of schedule overruns was similar. The

dominant approach to estimation was expert judgement. Similarly, a survey of software

projects in Norway undertaken as part of this thesis found a frequency of 76% effort

overruns, with an average magnitude of 41%. The frequency and magnitude of schedule

overruns was 62% and 25% respectively. Expert estimation was by far the preferred

estimation method. It was also observed that the type of client had an impact on the

magnitude of effort overruns. Public projects had an average effort overrun of 67%, as

opposed to the 21% average in private projects. This observed difference appears to be

caused by systematic differences between private and public organizations found at the

political, organizational, and individual levels. In an experiment on expert judgment, the

results indicated that professionals in technical roles (project managers and developers)

were significantly more optimistic, and less realistic, than professionals in non-technical

roles (sales managers and user analysts) when estimating project effort.

Regarding the improvement of estimation practices, two different approaches were

investigated. A controlled experiment showed that the combination of expert estimates

through unstructured group discussion can reduce the existing bias towards estimates that

are overly optimistic. In addition, it appears that the use of flexible development models

(e.g. incremental, iterative, or agile) leads to a lesser magnitude of effort overruns when

compared to the traditional sequential waterfall model.

It was also found that results in some previous studies on estimation accuracy may have

been affected by methodological shortcomings, and that there is little attention directed

towards ethical issues in software engineering research in general.

 II

Acknowledgements

My gratitude extends first and foremost to supervisor Magne Jørgensen, for guidance and

inspiration during the past years, and co-supervisor Tore Dybå for valuable input and

interesting discussions.

In addition, thanks to:

• Dag Sjøberg and Erik Arisholm for their research input.

• Aslak Tveito for his helpfulness and positive attitude.

• Stein Grimstad for his decision to join the estimation team and for providing

critical and insightful comments.

• Pål Sørgaard for all contributions.

• Sinan S. Tanilkan, Hans Gallis, Anette C. Rekdal and Siw E. Hove for their

contributions to the BEST-Pro survey.

• Marek Vokáč, James Dzidek and Gunnar Carelius for stimulating discussions and

contributions to previous, and ongoing, studies.

• Jo Hannay, Vigdis By Kampenes, Bente Anda and Amela Karahasanovic for their

contributions on controlled experiments and research ethics.

• Hans Christian Benestad and Glen Farley for contributions to our studies.

• Tanja Gruscke, Ragnfrid Sjøberg and Håkon Ursin Steen for help on the BEST

project.

• Chris Wright for proofreading.

• Reidar Conradi and all other members of the INCO project for their contributions.

• The Simula Research Laboratory administration for creating an excellent work

atmosphere and a dynamic organization.

• The IfI-library employees for excellent help.

• Anonymous referees and adjudication committees for input on research papers.

• Nestor Alexander Haddaway for motivational contributions.

This research would not have been possible without the participation of the software

industry. Many thanks go to all the professionals who helped with organization and

contributions. This research was funded by the Norwegian Research Council under the

project INCO as part of the IKT2010 program.

 III

Thanks also to Aftenposten, Computerworld, Sintef, Abelia, the Auditor General of

Norway, Steria, Software Innovation and Simula Research Laboratory for their interest in

this research, invitations to seminars and contributions to an ongoing debate.

Finally, thanks to Anette and my family for supporting me throughout these years.

 IV

Contents

Abstract ..I

Acknowledgements ... III

Contents.. V

1. Introduction ... 1

2. Research Method... 4

3. Summary of Research Papers.. 10

4. Main Research Contributions .. 20

References ... 23

A Review of Surveys on Software Effort Estimation ... 27

A Survey on Software Estimation in the Norwegian Industry .. 45

Project Management of Public Software Projects: Avoiding Effort Overruns 71

Expert Estimation of Web-Development Projects: Are Software Professionals in Technical

Roles More Optimistic Than Those in Non-Technical Roles? .. 87

Group Processes in Software Effort Estimation.. 115

The Impact of Development Model on Estimation Accuracy in Software Projects 141

Ethical Concerns when Increasing Realism in Controlled Experiments with Industrial

Participants. .. 165

How Large Are Software Cost Overruns? Critical Comments on the Standish Group’s

CHAOS Reports ... 187

 V

 VI

1. Introduction

“Overruns in time and money are usual. In fact, underruns are highly unusual. On the

surface, those problems arise from the problems of specification and estimation. Loose and

instable specifications certainly prevent timely development. But the programming

estimation problem is difficult, even with good specifications for a new capability or a new

development environment.”

 - Harlan D. Mills, 1976 [1]

Mastering the art of software project estimation is a major challenge for engineers and

managers. In this thesis, software project estimation is defined as the process of predicting

the effort (costs) and schedule (time) required for implementing a software solution, based

on a requirement specification.

It seems that the task of accurately estimating software projects is as challenging today as

it was thirty years ago [1-3]. Several important issues in research on software estimation

remain unsolved. How frequent and large are actual effort and schedule overruns? Are there

reasonable and cost-efficient approaches to improve the situation? What kinds of research

methods are appropriate for investigating software project estimation? These unresolved

issues were the main motivation for the work undertaken as part of this thesis.

Frequently cited surveys on software estimation have reported average effort overruns

ranging from 89% [4] (or 189%, discussed in paper VIII [5] of this thesis) to 18% [6].

However, closer inspection reveals that such surveys often have methodological

shortcomings that may have affected the results. Since effort estimation is an important

research area, and has been the topic of many papers, books and seminars, there is a need

for a repository of unbiased knowledge.

In addition, there appears to be a discrepancy between the focus of the research

community and the practice of professional developers and managers. In order to improve

estimation accuracy, much research has been directed at developing and adapting rigorous

estimation models and frameworks. Formal estimation models have been based on a variety

of measures of development size (such as lines of code [7] and function-points [8]), and a

variety of model development approaches (such as linear regression [9]). However, all

industry surveys show that these models are not frequently used [10-13]. Proponents of such

 1

models have still not managed to provide empirical evidence that their employment leads to

increased estimation accuracy when compared to the more widely used expert judgment

approach [14]. The reason for the lack of use of formal models is probably a combination of

the facts that they do not increase accuracy, are more complicated to use, and are less

flexible than expert judgment.

The research efforts directed towards aiding and improving the expert judgment approach

have focused primarily on work breakdown structures (WBS) [15, 16], checklists [17, 18],

experience databases [19], and group-based estimates [18, 20, 21]. These supporting tools

may lead to improvements in some cases, but there is no conclusive evidence that they solve

the problem of inaccurate estimates.

There are also those who suggest that other aspects of the software project, such as

choice of development model [22-25], are important for reducing effort and schedule

overruns. Such proponents favour the use of more flexible (i.e. incremental, agile or

evolutionary) development models over the traditional sequential models.

Interestingly, the results from other research areas, such as transport infrastructure

projects, reveal the same frequency and magnitude of effort overruns [26] as reported in

software projects. In addition, researchers have observed that overruns are independent of

region and appear to be stable over time. As suggested, both within software engineering

[27, 28] and other research areas [26], it is possible that issues not directly related to the

shortcomings of the estimation process itself may account for most of the overruns. Such

issues include the influence of politics and economics on estimates.

As long as estimates are not deliberately wrong or deemed unimportant, the approaches

described in this thesis can be used as simple and cost-efficient tools for analyzing and

improving software estimates.

Independent of which aspect of the software estimation problem being studied, there is

also a clear limitation that there is neither a coherent research framework nor an established

terminology [29]. Such shortcomings have contributed to the limited validity of several

previous studies.

In order to explore the different topics related to software estimation presented in this

introduction, this thesis investigates three general research questions:

 RQ1: What is the state, in the industry, of the practice and level of performance

 related to software project estimation?

 2

 RQ2: Are there sensible and cost-efficient ways to improve the software process so

 as to improve estimation accuracy?

 RQ3: Are there current methodological or ethical challenges related to how

 research on software estimation is conducted?

These research questions are reflected in the organization of this thesis, which has three

main parts, and a short summary. Sections 1 to 4, inclusive, of the summary provide an

overview of the problem area and the research conducted as part of this thesis. In addition,

the individual papers and research results are described briefly. All papers are included in

full in the main sections after the summary.

 3

2. Research Method

The studies conducted as part of this thesis all involved professional software

practitioners as participants. This increases the external validity of the results. However, it

also poses challenges, such as the importance of having a rigorous research method and an

awareness of ethical issues. This section briefly outlines our research method, while ethical

concerns are discussed in paper VII [30].

2.1. Description of Studies

Three main studies contributed to this thesis: a review of previous international surveys

on effort estimation, a survey of the Norwegian software industry, and a controlled

experiment.

Study 1 (S1): As part of the preparation for our research on software estimation practices

and performance in the Norwegian software industry, we performed a review of previous

surveys. This approach appeared to be the best and most cost-efficient way of acquiring

knowledge about international practices and performance related to software estimation.

A common problem with reviews of previous surveys is that of determining which

studies to include. However, in this review, this was not an issue because the amount of

previous surveys available was limited. All surveys printed in international journals and

conference proceedings were considered. Included in the review were all identified surveys

that focused on one or more of the following topics: 1) choice of estimation approach, 2)

level of estimation accuracy and bias, 3) the perceived importance of estimation accuracy,

and 4) causes of estimation inaccuracy.

The review provided us with: 1) a methodological framework for our own survey, 2) an

overview of state of the practice, and 3) benchmark results for our survey. The results are

presented in paper I [31]. An updated summary of the results was subsequently used in the

introduction of a paper describing our survey of the Norwegian software industry (paper II

[32]).

Study 2 (S2): Between February and November 2003, we conducted an in-depth survey

(BEST-Pro) on software estimation practices and performance in the Norwegian software

industry. The purpose of the survey was to compare results with those reported from other

countries. In addition, we wanted to address topics omitted in previous surveys, such as the

 4

impact of development method and type of client on estimates. Results related to the various

topics are discussed in papers II, III, VI and VIII [32-35].

The rationale for using a survey, instead of, for example, a (multiple) case study, was to

ensure that we included a wide range of companies, in terms of size, experience and product

type.

The main reason for choosing an interview-based survey, rather than mailed

questionnaires, was that we were aware of the shortcomings of surveys based on mailed

questionnaires. In surveys based on personal interviews, there is a higher response rate,

participants are more dedicated and it is possible to resolve any ambiguities that might arise

[36]. The last of these is especially important in our area, since there are no uniform

standards regarding terminology [29]. In return for their participation, the companies could

choose between financial compensation and attending a seminar on estimation hosted by

Simula Research Laboratory. Almost all companies choose the latter option, and we hosted

a seminar with over sixty project managers, senior managers and executives from the

Norwegian software industry.

Study 3 (S3): As part of previous work, we had conducted a controlled two-phase

experiment with participants from a Norwegian web development company. The research

aimed at determining whether the company role of software practitioners influenced their

estimation performance. In addition, we investigated whether increased estimation accuracy

could be achieved by combining expert estimates through unstructured group discussion.

The results from this experiment were so interesting that, as part of this thesis, they were

further analyzed and elaborated on in papers IV and VI [37, 38].

The use of a controlled experiment, as opposed to a more realistic action research

approach, was based on the fact that we wanted to isolate and control two elements

(individual opinion and group discussion) from the noise created by the work environment

in a software project. We aspired to balance realism and control, and feel that this was

achieved to a sufficient extent.

The company received financial compensation for their efforts, with participants being

allowed to count the experiment as normal billable hours. Hence, a smooth and unbiased

recruitment procedure was ensured.

However, the use of participants from only one company entails that generalizations on

the basis of the results of the experiment should be limited to companies with similar

properties, in terms of types of product, maturity and processes.

 5

The other minor studies that contributed to this thesis are described in the respective

papers. In sum, the balance of the studies appears satisfactory, with different methods

employed to explore different aspects of the software estimation problem.

2.2. Terminology and Measures

When conducting research on estimation accuracy, it is problematic that there exist no

agreed upon standards for terminology and measurement in the software engineering

community. This problem is independent of the type of study, and includes such issues as

uncertainty about what an estimate represents, the stage in the development process at

which the estimate is provided, and how to calculate estimation accuracy.

At present, there exists no precise definition of what an estimate is [29]. Neither in the

research community nor among professional practitioners is the term “estimate” used in a

concise manner. In addition, much research on software estimation tends to treat a software

estimate as a single fixed value. During the course of our research, however, we have

noticed that software projects often have several effort estimates. This problem, and how

this poses challenges to estimation models, has also been addressed by Edwards and Moores

[39]. The term effort estimate is frequently used for different purposes, such as:

• Most likely effort – the number of man-hours the estimator(s) believe is the most

likely required workload for completion of the project requirements.

• 50-50 estimate – An estimate that is just as likely to be optimistic as pessimistic.

• Planned effort – A project plan, perhaps optimistic in order to promote efficiency.

• Budgeted effort – The budget allocated (in costs/man-hours), often with a risk

buffer, in order to complete a project.

• Project bid – The bid communicated to a potential client in order to win a

contract.

In our studies, we are most often interested in measuring and improving estimation

capability. Therefore, we compared the outcome (actual effort and schedule), with the most

likely effort and schedule estimates. The most likely estimate is not subject to as much

pressure as other estimates, e.g. the project bid, which often is affected by internal political

pressure and “price-to-win”.

If a project has multiple most likely estimates calculated during the course of the project,

we use the estimate provided at the stage when the decision to start the project was made

 6

(i.e. the planning phase or when an agreement with a client is reached). This research

approach is in accordance with studies on project estimation in other areas of research [26].

 There exists several different ways of calculating estimation accuracy. The most

common is the MRE (Magnitude of Relative Error) measure [40], which is calculated as:

,||
x

yxMRE −
= x = actual and y = estimated. (1)

Even though the MRE is the most widely used measure of estimation accuracy [41], one

must be aware that it has unfortunate properties. The main concern is, perhaps, the fact that

underestimated and overestimated projects are weighted unevenly, with underestimation not

weighted sufficiently [42]. In addition, it does not seem sensible from a practitioner’s point

of view, since estimation performance in the software industry is often based on the

estimated effort [43-46].

Estimation accuracy can also be measured according to the method used by Bergeron and

St-Arnaud [13]. They used a formula recommended by Conte et al. [40]. This is similar to

the measure that is labelled as MER (Magnitude of Error Relative to the estimate) elsewhere

[42], and is calculated as:

,||
y

yxMER −
= x = actual and y = estimate. (2)

While MRE measures estimation error relative to the actual effort, MER measures it

relative to the estimate. It is argued that this measure is more meaningful, since profit or loss

should be calculated on the basis of expected cost by most project managers.

The BRE (Balanced Relative Error) is, as its name indicates, a more balanced measure

[47] than MRE and MER. It is calculated as:

,
),min(

||
yx

yxBRE −
= x = actual and y = estimate. (3)

Assume, for example, that two projects estimate the required effort to be 1000 work-

hours. Project A spends 500 work-hours, while project B spends 2000 work-hours. The

MRE of Project A is 1.00, while the MRE of Project B is only 0.50. Employing the MER,

 7

Project A’s result is 0.50, while Project B’s result is 1.00. The BRE evenly balances

overestimation and underestimation, leading to a result of 1.00 for both projects.

In research on forecasting, a similar measure, termed modified MAPE (Mean Absolute

Percentage Error), has been proposed [48] to balance overestimation and underestimation:

|,
2/)(

|mod
yx

yxifiedMAPE
+
−

= x = actual and y = estimate. (4)

In the example above, the modified MAPE would be 0.67 for both projects. This number

may be difficult to relate to for practitioners than BRE.

Two other common prediction measures are residuals and pred(m). The residuals are

calculated straightforwardly as: residual = actual – estimate (5), while the pred(m) measure

(6) concerns the amount of project estimates that fall within m percent of the actual value.

Typically, m is set to 25.

These are the measures most frequently encountered in research on software estimation

and related areas. However, as all of these have shortcomings, more complex measures,

such as SD, RSD and LSD are also used [42].

It is possible for the choice of accuracy measure to have a huge impact on results, as has

been shown in other studies [42, 46]. The same could well be true of the studies in this

thesis.

In the review of previous surveys (S1), we did not choose evaluation criteria, but

observed the choices of others. The previous surveys relied mainly on the MER and

MRE/BRE measures but without the absolute values for each project, in order to observe the

direction of the effect. It is however, often difficult to discern the evaluation criteria, since

the research method is often not described precisely.

For our own survey (S2), it was important to be able to choose the most appropriate

evaluation criteria, as well as being able to compare with previous studies, and make our

findings accessible for practitioners. More complicated measures such as SD, RSD and LSD

were therefore rejected, even though these are more robust for other purposes, such as

model evaluation [42]. Use of residuals was inappropriate, since we were interested in the

relative project overruns. Pred(m) could have been used to describe our data, but this does

not provide as much information about the magnitude of the overruns. However, we did use

a variant of pred(m) in a report [49] on our survey, in order to provide additional

information. The modified MAPE has not been used by others in the Software Engineering

 8

community. We do not consider such lack of use to be an excuse for not employing it.

Rather, we consider that, for most purposes, analyses of the BRE and the modified MAPE

will provide the same results. However, the use of the modified MAPE will be difficult for

practitioners to relate to.

Therefore, the choice was between MRE, MER and BRE. We decided to use measures

based on BRE, since this places an even emphasis on overestimation and underestimation. It

is robust and sensible, from both theoretical and practical points of view. However, the main

results from statistical analyses would have been similar, whether MRE, BRE, MER or the

modified MAPE had been used, due to the nature of the data.

In addition, whether using BRE, MRE or some of the other measures there are further

factors to address. Are we interested only in the accuracy of the estimates, or in the direction

of the effect, or both? Absolute values, whether BRE, MRE or MER, do not capture

estimation bias, because they are not concerned with the direction of the estimation

inaccuracy.

BREbias measures both the size and the direction of the estimation error, i.e., whether

there is a bias towards optimism or pessimism:

,
),min(

)(
yx

yxBREbias −
= x = actual and y = estimate. (7)

We were most interested in the BREbias, to be able to analyze the direction of the effect.

In addition, for a set of observations, we will probably have differences if we compare

the mean and the median of the observations, e.g. MMRE and MdMRE, as illustrated by

Foss et al. [42]. When aggregating the results, we decided to report both the mean and

median BREbias. As described in the relevant papers, the statistical analyses are either on

the mean or medians based on properties of the samples.

If we had been comparing two similar and competing estimation methods, we would

have been more cautious about using BRE, because it may not always reveal the “best”

method [42]. However, in our survey this was not the objective, and we believe that BRE

and BREbias, presented with both means and medians were appropriate.

In papers on our controlled experiment (S3), we simply compared the estimates in

statistical analyses, since there were no actual values.

 9

3. Summary of Research Papers

This thesis is composed of eight papers (I – VIII), roughly divided into three topics of

interest. A brief description of each paper, and how they are related to each other, is

presented in this section. An overview of the relationship between topics and papers is

presented in Table 1.

 I II III IV V VI VII VIII

T1. International estimation practices x (x) (x) (x)

T1. Norwegian estimation practices x x x
T1. The impact of type of client x
T1. The impact of estimator background x
T2. Combination of estimates x
T2. Impact of development model x
T3. Research ethics in software engineering x
T3. Sampling and measurement (x) (x) x

Table 1: Topics and Papers

The studies described in the previous section contributed to the different papers as shown

in Table 2.

 I II III IV V VI VII VIII

S1. Review of previous surveys x x (x)

S2. BEST-Pro survey x x x (x)

S3. Controlled experiment x x
Other studies x x x

Table 2: Studies and Papers

 10

3.1. Papers on State of the Practice (T1)

Most of the papers in this thesis are concerned with analyzing the state of the practice

related to software estimation in the industry. Topics of interest are how software projects

are estimated, what the level of accuracy is, and possible differences based on estimation

approach, role of the estimator, or type of client. In order to address this matter, we have

performed systematic literature studies, an in-depth survey, and a controlled experiment.

Paper I: A Review of Surveys on Software Effort Estimation

Kjetil Johan Moløkken-Østvold and Magne Jørgensen.

IEEE International Symposium on Empirical Software Engineering (ISESE 2003), 2003.

September 30 - October 1, Rome, Italy. Page 223-230. IEEE Computer Society. ISBN 0-

7695-2002-2.

This paper summarizes estimation knowledge through a review of surveys on software

effort estimation. Main findings were that: (1) Most projects (60-80%) encounter effort

and/or schedule overruns. The overruns, however, seem to be lower than the overruns

reported by some consultancy companies. For example, Standish Group’s ‘Chaos Report’

describes an average cost overrun of 89%, which is much higher than the average overruns

found in other surveys, i.e., 30-40%. (2) The estimation methods in most frequent use are

expert judgment-based. A possible reason for the frequent use of expert judgment is that

there is no evidence that formal estimation models lead to more accurate estimates. (3)

There is a lack of surveys including extensive analyses of the reasons for effort and schedule

overruns.

Paper II: A Survey on Software Estimation in the Norwegian Industry

Kjetil Johan Moløkken-Østvold, Magne Jørgensen, Sinan S. Tanilkan, Hans Gallis, Anette

C. Lien and Siw Elisabeth Hove.

10th International Symposium on Software Metrics. 2004. Chicago, Illinois, USA: IEEE

Computer Society. pp. 208-219.

This paper provides an overview of the estimation methods that software companies

apply to estimate their projects, why those methods are chosen, and how accurate they are.

 11

In order to improve estimation accuracy, such knowledge is essential. We conducted an in-

depth survey, where information was collected through structured interviews with senior

managers from 18 different companies and project managers of 52 different projects. We

analyzed information about estimation approach, effort estimation accuracy and bias,

schedule estimation accuracy and bias, delivered functionality and other estimation related

information. Our results suggest, for example, that average effort overruns are 41%, that the

estimation performance has not changed much the last 10-20 years, that expert estimation is

the dominating estimation method, that estimation accuracy is not much impacted by use of

formal estimation models, and that software managers tend to believe that the estimation

accuracy of their company is better than it actually is.

Paper III: Project Management of Public Software Projects: Avoiding Effort

Overruns

Kjetil Johan Moløkken-Østvold, Magne Jørgensen, Pål Sørgaard and Stein Grimstad.

Submitted to Information and Software Technology.

Effort overruns, abandonment, lawsuits, system breakdowns, and other “scandals” appear

to be the rule, rather than the exception, where public software projects are concerned. This

has been reported in the United States, The United Kingdom, Norway and several other

OECD countries. It is important to note that this is not only the opinion of scandal-seeking

tabloids, but also that of the more serious technical press. In addition, in the past five years,

public officials in several countries have hosted conferences on the topic, and several

reports addressing this problem have been written.

However, is it just the transparency of public projects that make them easily accessible

by the media and the general public? Do public projects really face larger effort overruns

than private projects? Or is this just a myth? In order to address this problem, we conducted

a survey that compared effort overruns, and other factors relevant for software engineering

project managers, of public and private software projects in Norway. We found that there

are, indeed, causes for concern for those involved in public projects. These projects had

effort overruns of a significantly greater magnitude than private projects.

Depending on the type of contract, effort overruns are either paid for by the client,

written off as losses by the contractors, or there is a shared responsibility. In addition,

project managers who face problems may be tempted to cut back on testing or functionality

in order to reduce potential overruns, thus delivering lesser value to the clients. Therefore,

 12

we present an overview of the problem, and offer advice that is relevant for both software

providers and public clients that seek to reduce effort overruns.

Paper IV: Expert Estimation of the Effort of Web-Development Projects: Are

Software Professionals in Technical Roles More Optimistic Than Those in Non-

Technical Roles?

Kjetil Johan Moløkken-Østvold and Magne Jørgensen.

Empirical Software Engineering, 2005, Volume 10, Issue 1, pp 7-29.

Estimating the effort required to complete web-development projects involves input from

people in both technical (e.g., programmers), and non-technical roles (e.g., user interaction

designers). This paper examines how the role and type of competence impact the estimation

strategies and performance. An analysis of actual web-development project data and results

from an experiment suggest that people with technical competence provided less realistic

project effort estimates than those with less technical competence. This means that more

knowledge about how to implement a requirement specification does not always lead to

better estimation performance. We discuss, amongst others, two possible reasons for this

observation: (1) Technical competence induces a bottom-up, construction-based estimation

strategy, while lack of this competence induces a more “outside” view of the project, using a

top-down estimation strategy. An “outside” view may induce more use of the history and

reduce the bias towards over-optimism. (2) The software professionals in technical roles

perceive that they are evaluated as more skilled when providing low effort estimates. A

consequence of our findings is that the choice of estimation strategy, estimation evaluation

criteria and feedback are important to avoid underestimation.

3.2. Papers on Improving Software Estimation Accuracy (T2)

The section on improving software estimation accuracy suggests ways in which

practitioners may enhance their performance. The first paper investigates how combining

estimates from different experts may reduce individual biases, while the second investigates

whether choice of development model affects estimation accuracy.

 13

Paper V: Group Processes in Software Effort Estimation.

Kjetil Johan Moløkken-Østvold and Magne Jørgensen.

Journal of Empirical Software Engineering, 2004, Volume 9, Issue 4, pp 315-334.

The effort required to complete software projects is often estimated, completely or

partially, using the judgment of experts, whose assessment may be biased. In general, such

bias as there is seems to be towards estimates that are overly optimistic. The degree of bias

varies from expert to expert, and seems to depend on both conscious and unconscious

processes. One possible approach to reduce this bias towards over-optimism is to combine

the judgments of several experts. This paper describes an experiment in which experts with

different backgrounds combined their estimates in group discussion. First, twenty software

professionals were asked to provide individual estimates of the effort required for a software

development project. Subsequently, they formed five estimation groups, each consisting of

four experts. Each of these groups agreed on a project effort estimate via the pooling of

knowledge in discussion. We found that the groups submitted less optimistic estimates than

the individuals. Interestingly, the group discussion-based estimates were closer to the effort

expended on the actual project than the average of the individual expert estimates were, i.e.,

the group discussions led to better estimates than a mechanical averaging of the individual

estimates. The groups’ ability to identify a greater number of the activities required by the

project is among the possible explanations for this reduction of bias.

This paper is an expansion of a previous paper [50], which has selected for a special

issue of Empirical Software Engineering as best paper from the co-located EASE/PPIG

2003 conferences.

Paper VI: The Impact of Development Model on Estimation Accuracy in Software

Projects

Kjetil Johan Moløkken-Østvold and Magne Jørgensen.

Submitted to IEEE Transactions on Software Engineering.

Flexible software development models, e.g., evolutionary and incremental, have become

increasingly popular. Advocates of these models claim that among the benefits is improved

estimation accuracy, which is one of the main challenges of software project management.

This paper describes an in-depth survey of software development projects. The results

support the claim that estimation accuracy improves when a flexible development model is

 14

applied. The reason for the improvement is not obvious. We found, for example, no

difference in project size, estimation process, or delivered proportion of planned

functionality between projects applying different types of development model. However, we

did find that the type of client had a strong impact on the estimation accuracy when

applying flexible development models. This suggests that a better client relationship, which

is facilitated by flexible development models, is an important reason for the observed

improvement in estimation accuracy.

3.3. Papers on Methodological Aspects (T3)

These papers explore two different methodological issues related to research on software

estimation (and software engineering in general). One discusses ethical concerns when

using industrial participants, while the other discusses problems related to measurement and

(lack of) random samples.

Paper VII: Ethical Concerns when Increasing Realism in Controlled Experiments with

Industrial Participants.

Kjetil Johan Moløkken-Østvold.

Accepted for HICSS38 (Hawaii International Conference on System Sciences), 2005.

The emerging interest for realistic controlled experiments in computer science has

created a need for focus on related research ethics. Increased realism and scale in

experimental studies pose new challenges which have not been debated to a sufficient

extent. Specifically, there can be conflicts between the ethical principles of scientific value

and informed consent. This paper provides an account of related previous work in computer

science research ethics. To illustrate, two large scale software engineering experiments with

industrial participants are described. Challenges and solutions in these experiments are

discussed in light of current ethical guidelines. Interviews and debriefing sessions with

industrial participants from these, and other, experiments are also provided. These reveal

that there not necessarily will be ethical problems with increased realism, given that the

researchers respect the principles of informed consent, benefice and confidentiality.

 15

Paper VIII: How Large Are Software Cost Overruns? Critical Comments on the

Standish Group’s CHAOS Reports.

Magne Jørgensen and Kjetil Johan Moløkken-Østvold.

Submitted to Information and Software Technology.

The Standish Group (www.standishgroup.com) claims that the results of their CHAOS

research, i.e., their large-scaled surveys conducted in 1994, 1996, 1998, 2000 and 2002, are

the most widely quoted statistics in the IT industry. This may very well be true. Quoted with

particular frequency are the results described in the 1994 CHAOS report, probably because

the 1994 CHAOS report is free and easily can be downloaded from the web. The results of

that report have been used in several recent governmental reports, project reviews, and

research studies. Examples are the PITAC 1999 report and cost estimation studies. An

important result from the 1994 CHAOS research is the reported 189% average cost overrun

of so-called challenged projects, i.e., projects not on time, on cost, and with all specified

functionality. In this paper we argue that the 189% average cost overrun number, as it is

commonly interpreted, is not consistent with results of other cost accuracy surveys and

probably far too high to reflect the average cost overrun in that period. The measures and

the research method of the CHAOS survey are insufficiently described to evaluate the

quality of the results, e.g., there are many possible interpretations of what is meant by ‘cost

overrun’ in the CHAOS reports. We should therefore cease to trust the 189% average cost

overrun as a reference point for performance of software projects until such time as the

Standish Group disclose how they measure cost overrun and how they conduct their

research.

3.4. Identification of the Work the Author

All papers in this thesis, except one, were co-authored with other researchers. It is,

therefore, necessary to highlight the work done by the author of this thesis. All major

studies, presented in subsection 2.1, that form the basis of this thesis were initiated and

managed by the author. The review of previous surveys (S1), and the controlled experiment

(S3) was executed by the author. The BEST-Pro survey (S2) was planned and executed with

the help of others, mainly supervisor Magne Jørgensen, Sinan S. Tanilkan and Hans Gallis,

with the author as project manager. All data analysis, except on some parts of the BEST-Pro

survey, was conducted by the author.

 16

The papers presented here were mainly written by the author, with input from Magne

Jørgensen and other co-authors. The author is a co-author of one paper (VIII [5]).

As part of the PhD work, the author also contributed to the following papers that were

not included in this thesis:

1. Magne Jørgensen, Teigen K. H. and Kjetil Johan Moløkken-Østvold, Better sure

than safe? Overconfidence in judgment based software development effort prediction

intervals, Journal of Systems and Software, vol. 70, no 1-2, p 79-93, 2004.

2. Magne Jørgensen and Kjetil Johan Moløkken-Østvold, Understanding Reasons for

Errors in Software Effort Estimates, IEEE Transactions on Software Engineering,

vol. 30, no 12, 2004.

3. Stein Grimstad, Magne Jørgensen and Kjetil Johan Moløkken-Østvold, Software

Effort Estimation Terminology: The Tower of Babel, Submitted to Information and

Software Technology, 2004.

4. Kjetil Johan Moløkken-Østvold and Magne Jørgensen, Software Effort Estimation:

Unstructured Group Discussion as a Method to Reduce Individual Biases, The 15th

Annual Workshop of the Psychology of Programming Interest Group (PPIG 2003).

8-10 April 2003. Keele University, UK, pp. 285-296. (Selected as best paper for

appearance in a special issue of Empirical Software Engineering.)

5. Kjetil Johan Moløkken-Østvold, Anette C. Lien, Magne Jørgensen, Sinan S.

Tanilkan, Hans Gallis and Siw Elisabeth Hove, Does Use of Development Model

Affect Estimation Accuracy and Bias?, Product Focused Software Process

Improvement: 5th International Conference, PROFES 2004, Kansai Science City,

Japan, April 5-8, 2004. ISBN: 3-540-21421-6. pp. 17-29. (LNCS 3009, Springer

Verlag).

6. Magne Jørgensen and Kjetil Johan Moløkken-Østvold, Eliminating Over-Confidence

in Software Development Effort Estimates, Product Focused Software Process

Improvement: 5th International Conference, PROFES 2004, Kansai Science City,

 17

Japan, April 5-8, 2004. ISBN: 3-540-21421-6. pp 174-184. (LNCS 3009, Springer

Verlag).

7. Magne Jørgensen and Kjetil Johan Moløkken-Østvold, A Preliminary Checklist for

Software Cost Management, IEEE International Conference on Quality Software,

Dallas, USA, p 134-140, November 2003.

8. Magne Jørgensen and Kjetil Johan Moløkken-Østvold, Situational and Task

Characteristics Systematically Associated With Accuracy of Software Development

Effort Estimates, Information Resources Management Association Conference,

Philadelphia, USA, May, 2003, p 824-826.

9. Magne Jørgensen and Kjetil Johan Moløkken-Østvold, Combination of software

development effort prediction intervals: Why, when and how?, Fourteenth IEEE

Conference on Software Engineering and Knowledge Engineering (SEKE'02), July

15-19, 2002, Ischia, Italy, pp. 425-428.

10. Kjetil Johan Moløkken-Østvold, Software Effort Estimation: Planning XP

Guidelines Compared to Research on Traditional Software Development,

Presentation at the Ph.D. Symposium in Fourth International Conference on eXtreme

Programming and Agile Processes in Software Engineering (XP 2003), May 25-29,

2003, Genova, Italy. pp 441-442. Lecture Notes in Computer Science, Springer-

Verlag.

11. Kjetil Johan Moløkken-Østvold, Magne Jørgensen, Sinan S. Tanilkan, Hans Gallis,

Anette C. Lien and Siw Elisabeth Hove, Project Estimation in the Norwegian

Software Industry – A Summary, Simula Report 2004-03. Results from the BEST-

Pro (Better Estimation of Software Tasks and Process Improvement) survey.

Some of the papers have recently been submitted, while others are still in press. An

updated list of publications can be found at:

http://www.simula.no/people_publication.php?people_id=69&internal_people=y.

 18

3.5. Notes

Two of the papers (IV and V) were based on the results of an experiment conducted

while the author was a Masters student. However, the material has been further analyzed

and significantly expanded, and none of the papers were included in the Masters thesis.

There have been minor changes in formatting and updated references in papers included

in this thesis compared to previously published versions, in order to accommodate the

readers.

 19

4. Main Research Contributions

The research conducted as part of this thesis has provided contributions in the form of

observations and suggestions for improvement that should be relevant for researchers,

practitioners, clients and the political community.

For practitioners:

• Use of flexible development methods (e.g. agile, evolutionary and incremental)

may reduce the magnitude of effort overruns. Software projects with a flexible

development model (e.g. incremental and evolutionary) appear to have several

benefits, including increased estimation accuracy, when compared to traditional

sequential models. In order to reduce overruns, software professionals should

explore flexible development models, and assess whether the use of such models

would benefit their organization.

• Software projects with a public client are likely to have a larger magnitude of

effort overruns than do comparable private projects. Our contribution also

includes an in-depth analysis of possible reasons for this observation, and guidelines

on how to improve projects with public clients. When dealing with public clients,

software practitioners are advised to be mindful of possible hazards related to 1)

political, 2) organizational, and 3) individual factors. It is, however, essential to note

that it is the responsibility of the software providers to provide realistic estimates,

independent of the capabilities of the client.

• An estimation process that combines knowledge from experts with different

backgrounds may facilitate increased estimation accuracy. Software Managers

should focus on assessing and improving their estimation process. We found that the

company role of the estimators plays an important part in estimation work. In our

experiment. people in non-technical roles provided less optimistic estimates than

those in technical roles. In order to reduce individual biases, a simple and cost-

efficient method for improving estimation accuracy is to combine, through an

informal group meeting, the opinions of several experts with diverse backgrounds.

For researchers:

• There are considerable weaknesses in how surveys on software estimation

accuracy are performed, related to sampling, terminology and measurement. In

particular, we show that the famous CHAOS report by the Standish Group has

 20

methodological shortcomings that place in question the validity of the results.

Researchers should try, to a greater extent, to establish a common framework for

terminology and measurement, and address problematic issues pertaining to

sampling when reporting research results.

• Software projects on average encounter a 30-40% effort overrun. It seems that

the frequency and magnitude of effort and schedule overruns are similar in different

regions, and our survey of estimation performance found results similar to those of

studies conducted during the past twenty years. Further research should seek to

explore the underlying reasons for these observations.

• Surveys reveal that expert judgment is by far the most preferred estimation

approach in the software industry. It seems that previous and ongoing efforts to

develop generic estimation models, using measures such as lines of code, are futile.

Such models are difficult and time consuming to employ, and cannot capture all the

knowledge needed to address a complicated problem. In addition, there are many

input parameters in such models that it is impossible to know at the start of the

project. More research should be directed at addressing the needs of software

practitioners, e.g. through the development of checklists, experience databases and

procedures for reducing estimation bias. In addition, more attention should be paid

to political and economical aspects of the software development process, because

estimation is not isolated from such factors.

For clients:

• Price should not be the only selection criterion when evaluating proposals from

software providers. Software clients should act more systematically when procuring

software. They should seek to investigate the previous track-record of the providers,

especially related to performance in similar projects. If the clients themselves are not

able to assess the capabilities of the providers accurately, hiring a neutral outside

party for assistance should be considered.

• The clients should encourage the use of flexible development methods in order to

establish a close a dialogue as possible with the software providers. A close

dialogue is facilitated when flexible development methods are used. This can reduce

the chance of deliveries that does not fulfil the clients’ needs, and identify problems

already at an early stage. In addition, flexible development frequently allows for

 21

delivery of the most critical parts of a system at an early stage, which will add value

for the clients.

For the political community:

• Procurement of software ia still a major challenge in the public sector, and

scandals surface frequently in a wide range of institutions. Intriguingly, the

findings from our BEST-Pro survey contributed to a debate in the Norwegian media.

The results made the headlines in Norway’s leading newspaper, Aftenposten. This

led to an interest in public project overruns, which in turn generated a discussion in

the Norwegian Parliament. We were invited to present our results to several

government departments, the Office of the Auditor General of Norway, and several

seminars and interested software companies. The debate continued in Aftenposten,

Computerworld and other media, and this has generated an increased focus on

software estimation research in Norway. However, public awareness alone is not

sufficient for action; such problems have been identified previously, and professional

advice has been repeatedly ignored. On a larger scale, the decision makers should

seek to implement policies that stimulate the improvement of processes internally,

and enable mechanisms to operate that will reduce the focus on price in software

procurement.

• There is often an unbalanced mix of professionals in the public sector, with few

resources available in the form of employees with skills in IT and project

management. Officials should encourage the employment and education of

professionals proficient in software engineering and project management. There

should also be internal career paths and professional development for people in these

positions. During the presentation of the material included in this thesis, we

encountered several public employees who appreciate our findings. They recognize

their own situation, and state that they often are required to be internal project

managers for procurement projects in addition to performing their regular

organizational duties. They often complain that they lack the requisite education and

support, and that their efforts are not recognized in terms of career development.

 22

References

1. Mills, H.D., Software Development. IEEE Transactions on Software Engineering,

1976. 2(4): pp. 265-273.

2. Wolverton, R.W., The Cost of Developing Large-Scale Software. IEEE Transactions

on Software Engineering, 1974. 23(6): pp. 615-636.

3. Walston, C.E. and C.P. Felix, A Method for Programming Measurement and

Estimation. IBM Systems Journal, 1977. 16(1): pp. 54-73.

4. Standish, G., The Chaos Report. 1994, The Standish Group.

5. Jørgensen, M. and K. Moløkken-Østvold, How Large Are Software Cost Overruns?

Critical Comments on the Standish Group’s CHAOS Reports. Submitted to

Information and Software Technology (Can be downloaded at:

http://www.simula.no/publication_one.php?publication_id=711), 2004.

6. Sauer, C. and C. Cuthbertson, The State of IT Project Management in the UK 2002-

2003. 2003, Templeton College, University of Oxford.

7. Boehm, B., et al., Software Estimation with COCOMO II. 2000: Prentice-Hall.

8. Matson, J.E., B.E. Barrett, and J.M. Mellichamp, Software development cost

estimation using function points. IEEE Transactions on Software Engineering, 1994.

20(4): pp. 275-287.

9. Miyazaki, Y., et al., Robust regression for developing software estimation models.

Journal of Systems and Software, 1994. 27(1): pp. 3-16.

10. Heemstra, F.J. and R.J. Kusters. Controlling Software Development Costs: A Field

Study. International Conference on Organisation and Information Systems. 1989.

Bled, Yugoslavia. pp. 652-664.

11. McAulay, K. Information Systems Development and the Changing Role of MIS in

the Organisation. First New Zealand MIS Management Conference. 1987.

Wellington.

12. Wydenbach, G. and J. Paynter, Software Project Estimation: a Survey of Practices

in New Zealand. New Zealand Journal of Computing, 1995. 6(1B): pp. 317-327.

13. Bergeron, F. and J.-Y. St-Arnaud, Estimation of Information Systems Development

Efforts: A Pilot Study. Information & Management, 1992. 22: pp. 239-254.

14. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

 23

15. Woodward, H., Project Management Institute practice standard for work breakdown

structures. 2001, Newton Square: Project Management Institute, Inc.

16. Tausworthe, R.C., The Work Breakdown Structure in Software Project Management.

Journal of Systems and Software, 1980. 1: pp. 181-186.

17. Jørgensen, M. and K. Moløkken-Østvold. A Preliminary Checklist for Software Cost

Management. QSIC 2003. 2003. pp. 134-140.

18. Shepperd, M. and U. Passing. An Experiment on Software Project Size and Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati - Monte Porzio Catone (RM), ITALY:

IEEE. pp. 120-129.

19. Engelkamp, S., S. Hartkopf, and P. Brossler. Project experience database: a report

based on first practical experience. International Conference on Product Focused

Software Process Improvement. 2000. Oulu, Finland. pp. 204-215.

20. Linstone, H.A. and M. Turoff, The Delphi Method: Techniques and Applications.

1975, London: Addison-Wesley.

21. Taff, L.M., J.W. Borcering, and W.R. Hudgins, Estimeetings: Development

estimates and a front end process for a large project. IEEE Transactions on

Software Engineering, 1991. 17(8): pp. 839-849.

22. Gilb, T., Principles of Software Engineering Management. 1988: Addison-Wesley

Publishing Company.

23. Graham, D.R., Incremental Development and Delivery for Large Software Systems,

in Software Engineering for Large Software Systems, B.A. Kitchenham, Editor.

1990, Elsevier.

24. Cockburn, A., In Search of Methodology, Object Magazine. 1994. pp. 52-56.

25. Larman, C. and V.R. Basili, Iterative and Incremental Development: A Brief

History. IEEE Computer, 2003(June): pp. 2-11.

26. Flyvbjerg, B., M.S. Holm, and S. Buhl, Underestimating Costs in Public Works

Projects - Error or Lie? Journal of the American Planning Association, 2002. 68(3):

pp. 279-295.

27. DeMarco, T., Rock and Roll and Cola War, in Why does Software Cost so Much?

1995, Dorset House Publishing: New York.

28. Thomsett, R., Double Dummy Spit and other Estimating Games. American

Programmer, 1996. 9(6): pp. 16-22.

 24

29. Grimstad, S., M. Jørgensen, and K. Moløkken-Østvold, Software Effort Estimation

Terminology: The Tower of Babel. Submitted to Information and Software

Technology, 2005.

30. Moløkken-Østvold, K. Ethical Concerns when Increasing Realism in Controlled

Experiments with Industrial Participants. Accepted for HICSS38 (Hawaii

International Conference on System Sciences). 2005. Big Island, Hawaii.

31. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

32. Moløkken-Østvold, K., et al. A Survey on Effort Estimation in Norwegian Software

Industry. 10th International Symposium on Software Metrics. 2004. Chicago,

Illinois, USA: IEEE Computer Society. pp. 208-219.

33. Moløkken-Østvold, K., et al. Does Use of Development Model Affect Estimation

Accuracy and Bias? Product Focused Software Process Improvement, 5th

International Conference, PROFES 2004. 2004. Kansai Science City, Japan:

Springer (LNCS 3009). pp. 17-29.

34. Moløkken-Østvold, K., et al., Avoiding Cost Overruns in Public Software Projects.

Submitted to Information and Software Technology, 2004.

35. Moløkken-Østvold, K. and M. Jørgensen, The Impact of Development Model on

Estimation Accuracy in Software Projects. Submitted to IEEE Transactions on

Software Engineering., 2004.

36. Cozby, P.C., Methods in behavioral research. 5th ed. 1993, Mountain View:

Mayfield Publishing Company.

37. Moløkken-Østvold, K. and M. Jørgensen, Expert Estimation of the Effort of Web-

Development Projects: Are Software Professionals in Technical Roles More

Optimistic Than Those in Non-Technical Roles? Empirical Software Engineering,

2005. 10(1): pp. 7-29.

38. Moløkken-Østvold, K. and M. Jørgensen, Group Processes in Software Effort

Estimation. Empirical Software Engineering, 2004. 9(4): pp. 315-334.

39. Edwards, J.S. and T.T. Moores, A Conflict Between the Use of Estimating and

Planning Tools in the Management of Information Systems. European Journal of

Information Systems, 1994. 3(2): pp. 139-147.

 25

40. Conte, S.D., H.E. Dunsmore, and V.Y. Shen, Software Engineering Metrics and

Models. 1986, Menlo Park: Benjamin-Cummings.

41. Briand, L.C. and I. Wieczorek, Resource modeling in software engineering, in

Encyclopedia of Software Engineering, J. Marciniak, Editor. 2001, Wiley.

42. Foss, T., et al., A Simulation Study of the Model Evaluation Criterion MMRE. IEEE

Transactions on Software Engineering, 2003. 29(11): pp. 985-995.

43. Jørgensen, M. and D. Sjøberg, An effort prediction interval approach based on the

empirical distribution of previous estimation accuracy. Journal of Information and

Software Technology, 2003. 45(3): pp. 123-136.

44. Stensrud, E., et al. An empirical validation of the relationship between the

magnitude of relative error and project size. Eighth IEEE Symposium on Software

Metrics. 2002: IEEE. pp. 3-12.

45. Stensrud, E., et al., A Further Empirical Investigation of the Relationship Between

MRE and Project Size. Empirical Software Engineering, 2003. 8(2): pp. 139-161.

46. Kitchenham, B., et al., What Accuracy Statistics Really Measure. IEE Proceedings -

Software Engineering, 2001. 148(3): pp. 81-85.

47. Miyazaki, Y., et al., Method to estimate parameter values in software prediction

models. Information and Software Technology, 1991. 33(3): pp. 239-243.

48. Makridakis, S., Accuracy Measures: Theoretical and Practical Concerns.

International Journal of Forecasting, 1993. 9(4): pp. 527-529.

49. Moløkken-Østvold, K., et al., Project Estimation in the Norwegian Software

Industry - A Summary. 2004, Simula Research Laboratory.

50. Moløkken-Østvold, K. and M. Jørgensen. Software Effort Estimation: Unstructured

Group Discussion as a Method to Reduce Individual Biases. The 15th Annual

Workshop of the Psychology of Programming Interest Group (PPIG 2003). 2003.

Keele, UK. pp. 285-296.

 26

Paper I:

A Review of Surveys on Software Effort Estimation

Kjetil Moløkken-Østvold and Magne Jørgensen.

Simula Research Laboratory.

IEEE International Symposium on Empirical Software Engineering (ISESE 2003),

2003. September 30 - October 1, Rome, Italy. Page 223-230,

IEEE Computer Society. ISBN 0-7695-2002-2.

Abstract. This paper summarizes estimation knowledge through a review of surveys on

software effort estimation. Main findings were that: (1) Most projects (60-80%) encounter

effort and/or schedule overruns. The overruns, however, seem to be lower than the overruns

reported by some consultancy companies. For example, Standish Group’s ‘Chaos Report’

describes an average cost overrun of 89%, which is much higher than the average overruns

found in other surveys, i.e., 30-40%. (2) The estimation methods in most frequent use are

expert judgment-based. A possible reason for the frequent use of expert judgment is that

there is no evidence that formal estimation models lead to more accurate estimates. (3)

There is a lack of surveys including extensive analyses of the reasons for effort and schedule

overruns.

Keywords: Effort estimation, surveys, software projects.

 27

1. Introduction

The software industry’s inability to provide accurate estimates of development cost,

effort, and/or time is well known. This inability is described in reports from project

management consultancy companies, case studies on project failures, articles in the

computer press, and estimation surveys. The common belief seems to be that the cost

overruns are very large, and we have experienced that few software professionals and

researchers react with disbelief when being presented with the inaccuracy figures reported

in Standish Group’s Chaos Report [1], i.e., an average cost overrun of 89%. There may be

several reasons for this attitude.

The introduction part of many research papers on software effort estimation includes

references to the estimation studies with the most extreme findings. This may, in part, be

due to the authors’ need to legitimize their own research. Surveys, which report none, or

small, overruns may not be cited as often, since they do not ‘contribute’ to defining effort

estimation as a central problem area in software engineering.

The estimation accuracy results reported may in some cases be biased towards high

inaccuracy, e.g., studies conducted by consultants selling estimation advice, journalists

writing a story on project failures, or software houses who sell estimation tools.

It is difficult to get a balanced view on the software industry’s estimation performance

without unbiased information from a representative set of projects and organizations. The

surveys presented in scientific journals and conferences may be a source for such unbiased

information. This paper summarizes estimation results from surveys on software estimation.

To our knowledge, there has not been conducted any structured review of the estimation

surveys with the aim of summarizing our knowledge of software effort estimation

performance. Besides summarizing results from estimation surveys, the main purposes of

this paper are to challenge some common estimation beliefs that may be inaccurate, to

discuss methodical aspects related to completion of industrial surveys, and, to support future

surveys on software effort estimation.

In the remaining part of this paper, we present several research questions relevant to the

field of software project estimation (Section 2). Then, we present an overview of relevant

surveys (Section 3). The research questions are then discussed in light of the findings of the

surveys (Section 4). Finally, we conclude and outline further research (Section 5).

 28

2. Research questions

The rationale of this review of surveys is to summarize findings on central aspects of

software estimation, to enable a more balanced estimation debate, and to suggest further

research. The central estimation aspects are presented as research questions. We have only

included questions addressed by more than one of the reviewed surveys. Our research

questions (RQs) are:

 RQ1: To what extent do software development projects deviate from the original

 plan, with regard to cost, schedule and functionality?

 RQ2: Which methods are used to estimate software effort, and do these

 systematically differ in accuracy?

 RQ3: How important is accurate effort estimation perceived to be, and to what

 extent is the level of accuracy considered a problem in the software

 industry?

 RQ4: What are the main causes for software projects to deviate from their original

 plan?

Due to the limited number of surveys, the different research designs, and the

methodological limitations of many of the surveys, we do not expect to discover definite

answers to these questions. We do, however, hope to challenge some estimation myths and

to enable a better foundation for further estimation research.

3. Estimation surveys

The surveys reviewed are listed in chronological order based on year of their first

appearance, see overview in table 1.

The surveys are named after the first author of the paper in which the survey first

appeared. The remaining part of this section provides a brief outline of the survey designs

and research foci.

 29

In order to avoid too much influence from one particular organization, case studies with

just one subject is omitted in this review.

Name Year Sample Respondents

Response

Rate Country

Rnd.

sample Int.

1 Jenkins 1984 N/A 72 N/A USA No Yes

2 McAulay 1987 280 120 42.9% New Zealand No No

3 Phan 1988 827 191 23.1% USA No No

4 Heemstra 1989 2659 598 22.5% Netherlands No No

5 Lederer 1991 400 112 28.0% USA No No

6 Bergeron 1992 374 89 23.8% Canada No No

7 Moores 1992 115 54 47.0% UK No No

8 Standish 1994 N/A 365 N/A USA No No

9 Wydenbach 1995 515 213 41.4% New Zealand No No

10 Addison 2002 70 36 51.4% South Africa No No

Table 1. Survey overview.

3.1. Survey 1: Jenkins

Jenkins, Naumann and Wetherbe [2] conducted a large empirical investigation in the

beginning of the 1980s. The study focused on the early stages of system development. It

included development aspects, such as user satisfaction, development time, and cost

overruns. They interviewed managers from 23 large organizations and collected data on 72

projects. The average project cost was $103,000, and the average duration was 10.5 months.

The study included projects that were considered small, medium and large relative to the

organizations standards. A majority of the projects developed new software systems (55%),

but redesign (33%) and enhancement (11%) of existing software systems were also

represented. The survey measured three success factors; user satisfaction, being “on-time”

and being “on-budget”.

3.2. Survey 2: McAulay

McAulay [3] conducted a survey on software metrics in New Zealand. This survey is

unpublished, but some information is presented by Purvis, MacDonell et al. [4]. In order to

 30

investigate information system development projects, questionnaires were sent to 280

organizations. Out of these, 120 were returned.

3.3. Survey 3: Phan

Phan et al. [5, 6] tried to asses to what extent, and for what reasons, software

development projects encountered cost and schedule overruns. Questionnaires were sent out

to 827 professionals, and they received 191 responses. The projects involved were fairly

large, with an average of 102 person months.

3.4. Survey 4: Heemstra

Heemstra and Kusters [7-9] conducted a survey of cost estimation in Dutch organizations.

The goal was to provide an overview of the state oft the art of estimation and controlling

software development costs. They sent out 2659 questionnaires, and got responses from 598

organizations. Estimation methods, original project estimates and actual effort were

analyzed.

3.5. Survey 5: Lederer

Lederer and Prasad [10-13] conducted a survey concerning software development cost

estimates. Through a questionnaire, 112 software managers and other professionals (out of

400 possible) reported their views on a wide variety of cost estimation aspects. The

respondents represented fairly large companies, with an average of 478 employees in the

information systems department.

3.6. Survey 6: Bergeron

Bergeron and St-Arnaud [14] performed a study to identify estimation methods, and to

what extent they were used. They also investigated how choice of method, and underlying

factors and variables, influenced estimation accuracy. In total, 374 Questionnaires were sent

to 152 organizations. The companies each received 1-4 copies of the questionnaire. The 89

responses received came from 67 different organizations. All projects included were larger

than 150 person-days.

 31

3.7. Survey 7: Moores

Moores and Edwards [15] sought to investigate why there was an apparent lack of use of

software cost estimating tools. A total of 115 large UK corporations were approached, and

they received 54 responses.

3.8. Survey 8: The Standish Group ‘Chaos report’

Although not a strictly scientific survey, the Standish Group’s ‘Chaos report’ seems to

have made such a strong impact (perhaps more than any scientific survey) on common

estimation beliefs that it deserves to be included in this review. The first and most cited

version is the ‘Chaos report’ from 1994, but Standish Group has continued data collection

during the nineties. Total sample size of the 1994-report was 365 respondents. All projects

were classified as, success (delivered as planned), challenged (delivered over time, and over

budget and with fewer than specified features) or impaired (cancelled). The sample selection

process of organizations and projects is unknown (we have made several inquiries to the

Standish Group about properties such as the sample involved. The have refused to provide

these details, claiming them to be ‘business secrets’.), along with other important design and

measurement issues. It is possible that the estimation accuracy reported by Standish Group

is misleading. For example, from our inspection of the survey questionnaire available on

their web-site, it seems as projects completed ahead of plans had to be registered as projects

with “less than 20% overrun”. If our assumption is correct, this may have led to too high

average cost estimation overrun values.

3.9. Survey 9: Wydenbach

Wydenbach and Paynter [16] investigated the estimation practices in New Zealand on

basis of a previous survey [7]. They sent questionnaires to what was believed to be a

representative sample of companies (515), and received 213 usable responses.

3.10. Survey 10: Addison

Addison and Vallabh [17] investigated the perceptions of project managers on software

project risks and controls. A “snowball sample” (explained in Section 4.1) was used to

identify 70 managers, of whom 36 returned the questionnaire. Although not a study with a

focus on estimation, it reports on aspects related to budgets and plans.

 32

4. Discussion

As seen in Section 3, the surveys are different in many aspects. This makes it challenging

to compare, combine and present the results. On the other hand, the differences may also

add value and insight to our research questions. This section provides a review of general

properties and methodological aspects of the surveys and addresses the research questions

described in Section 2.

4.1. Survey designs

The surveys addressed companies, projects, software professionals, or a combination of

these. Unfortunately, none of the surveys involved a procedure to ensure random samples.

There was a variety of sample selection methods, such as contacting members of a society,

snowball sampling (encouraging first round survey participants to suggest second round

survey participants, etc.) or deliberately targeting specific categories of companies (e.g.,

large). The lack of procedures to ensure random samples, and the lack of proper analyses of

the population represented by the samples, may be a major problem with all of the surveys,

potentially leading to difficulties when interpreting and transferring results. This, in

combination with a low response rate, may have unwanted influence on the validity of the

results. For those who have provided response rates, the rates ranged from 22,5% [7] to

51,4% [17].

Only one of the surveys (Bergeron) used personal interview as a data collection method

[2]. The other studies mailed questionnaires to potential respondents. This may have

influenced the quality of the data, since mailed questionnaires lessens the involvement and

commitment of the participants [18], and make misinterpretations of answers and questions

more likely. Another problem may be that many of the surveys relied on the managers being

unbiased when, for example, reporting magnitude of and reasons for overruns. It is possible

that managers may be biased towards under-reporting overruns and have a tendency to over-

report customer issues as reasons for overruns.

Although the surveys span four continents, it is essential to observe that the surveys were

conduction in only six, similar, western countries, i.e., we do not know much about the

preferred estimation methods and their performance in other cultures.

There are also several possible, and relevant, research questions that we are unable to

address on basis of the reviewed surveys. One such aspect is possible differences of project

 33

properties based on the type of developing organization. Do, e.g., CMS (Content

Management System)-projects differ from defence projects on choice of estimation

methods? And how does in-house development versus development for customers affect

estimation accuracy? Such topics have been addressed by other studies, e.g., [19]. The

surveys presented in this paper also make such differentiations, to some extent.

The survey by Heemstra and Kusters [7] differentiates between in-house and other types

of development. Some of the other surveys also distribute the organizations into different

sectors [13-15]. However, none of the papers on the surveys report any differences between

type of development projects, related to either choice of method or accuracy. They mainly

report the distribution of industries in order to show that their survey included a diverse

sample. For this reason, it was impossible to investigate possible differences due to project,

application, development method or organization in this review.

An important aspect of project management is how to avoid project abortion and/or

restarts. This may sometimes relate to effort estimation, but may also be caused by market

changes, customer orders, company restructuring or similar reasons. None of the surveys

presented relate the possibility of failure to estimation method, and it is therefore not treated

in this review.

4.2. Survey results

 The discussion in this section is structured around the research questions (RQs) presented

in Section 2.

 RQ1: To what extent do software development projects deviate from the original

 plan, with regard to cost, schedule and functionality?

The results from surveys investigating the frequency or magnitude of overruns are

displayed in table 2.

Although the surveys report different results; the tendency is clear, a majority of the

projects encounter overruns. Phan [6] included a report on overruns on organizational level

that is not directly comparable with the other results in table 2. He found that cost overruns

occurred always in 4%, usually in 37%, sometimes in 42%, rarely in 12%, and, never in 4%

of the 191 organizations surveyed. Similarly, schedule overruns occurred always in 1%,

usually in 31%, sometimes in 50%, rarely in 15%, and, never in 2% of the organizations.

 34

Bergeron and St-Arnaud [14] found that 58% of the projects surveyed had cost overruns of

more than 20%.

Study Jenkins Phan Heemstra Lederer Bergeron Standish

Cost overrun
34%
(median)

33%
(mean)

33%
(mean)

89%
(mean)

Projects completed over
budget 61% 70% 63% 84%

Projects completed under
budget 10% 14%

Schedule overrun 22%
Projects completed after
schedule 65% 80% 84%

Projects completed before
schedule 4%

Table 2: Estimation accuracy results

Heemstra and Kusters [7] found that overruns increased with project size. Very large

projects were defined as projects consuming more than 200 man-months. These projects had

overruns of more than 10% in 55% of the cases. For all projects, overruns of 10% or more

occurred in 28% of the sample. A similar tendency on larger overruns for larger projects

was found by the Standish Group. In Jenkins’ study, however, the occurrence of overruns

was equally likely for small, medium, and large projects.

The degree of delivered functionality is difficult to measure, since it may be subject to

differences in opinions. None of the surveys concerned the degree of delivered functionality

opinions of the actual users, but according to the managers in the Jenkins study, 72% of the

users was satisfied or very satisfied with the functionality [2]. Similarly, 70% of Phans

respondents claimed that user requirements and expectations were usually met. The

Standish Group [1], on the other hand, claimed that only 7.3% of the projects delivered all

the functionality originally specified.

To summarize, it seems as if most projects (60-80%) are completed over budget and/or

schedule. Most results also indicate that the percentage and magnitude of overruns increase

as projects grow in size. The magnitude of overruns may, however, not be as dramatic as

reported by Standish Groups’ Chaos Report. Most surveys, e.g., [2, 6, 14], and other case

studies [20, 21] suggest that a more likely average effort and cost overrun is between 30 and

40%.

 35

 RQ2: Which methods are used to estimate software effort, and do these

 systematically differ in accuracy?

It is difficult to compare the surveys that investigated estimation methods since none of

them operated with the same categories of estimation methods. A further complicating

factor is that the respondents may have interpreted pre-defined categories, e.g., analogy-

based estimation, differently. We have grouped the estimation methods in three main

categories: Expert judgment-based methods, model-based methods and “other”. Model

based estimates include formal estimation models such as COCOMO, Use-Case-based

estimation, FPA-metrics or other algorithm driven methods. In the category of “other” there

are methods that are not “pure” estimation methods, e.g., capacity related and price-to-win-

based methods, and methods than can be used in combination with other models (top-down

and bottom-up). An overview is presented in Table 3. An ‘X’ in the table indicates this

alternative was not an option in the survey. In the McAulay column, we have joined three

different software cost model method alternatives of that study. The original study found

that 11% applied Function Point Analysis, 2% lines of code based models and 0% Halstead

Metrics.

McAulay

(n=114)

Heemstra

(n=369)

Wydenbach

(n=209)

Bergeron

(n=89)

Estimation Methods

Percentage used

(more than one method possible) Importance (1-4)

Expert cons. X 26% 86% 1.8

Intuition and exp. 85% 62% X 3.3 Expert based

Analogy X 61% 65% 2.5

Model based Cost Models 13% 14% 26% 1.3

Price-to-win X 8% 16% 1.2

Capacity related X 21% 11% 1.6

Top-down X X 13% 1.4

Bottom-up X X 51% 2.4

Other

Other 12% 9% 0% 1.5

Table3: Estimation methods results

 36

A problem with Table 3 is the overlapping of categories. For example, one could argue

that “estimation by analogy” and “top-down” in many cases are two aspects of the same

estimation method. How the respondents interpreted the estimation method categories is not

possible to derive from the survey results.

The respondents were not asked about the extent of use of one method in the

organization, only about whether an estimation method was used or not. This means that an

estimation method used to estimate very few projects per organization gets a too high

percentage in Table 3.

It is also essential to note that projects may be estimated by a combination of two or more

different methods, e.g. model and expert-based. Such combination has been advocated in

other studies [22]. To which extent such combination methods were used was not addressed

by any of the surveys. We were therefore unable to draw conclusions on a possible

beneficial effect of combining methods in this review.

‘Price-to-win’ is listed as an estimation method, but we believe that most managers would

not report this as an estimation method even if “price-to-win” had an impact on their

estimates. This may be the case because mangers are not aware of the effect of customer

expectations on effort estimates [23]. They may not feel that that it is an estimation method,

or they believe that they should not be impacted by the “price-to-win”.

Lederer and Prasad [10] applied a different approach. Instead of asking what methods

were used, they asked how estimates were influenced. Respondents rated alternatives on a

five point Likert scale (max=5). The results are displayed in Table 4.

 Response Categories Mean

1 Comparison to similar, past projects based on personal memory 3.77

2 Comparison to similar, past projects based on documented facts 3.41

3 Intuition 3.38

4 A simple arithmetic formula (such as summing task durations) 3.09

5 Guessing 2.76

6 Established standards (such as averages, standard deviations, etc.) 2.33

7 A software package for estimating 1.80

8 A complex statistical formula (such as multiple regression, differential
equations, etc.)

1.49

 Table 4: Estimation responses ranked by importance

 37

Responses 1, 2, 3 and 5 seem to be expert judgment-based, responses 7 and 8 to be

model-based, while responses 4 are 6 are more difficult to interpret, i.e., the expert

judgment-based methods seem to be more important in this survey as well.

The results from all identified surveys point in one direction: Expert estimation is by far

the preferred method for software estimation. This is further backed by a variety of case

studies not included in this review [21, 24-26]. In fact, we have not been able to identify a

single study reporting a dominant use of formal estimation methods.

Cultural similarities between the samples or organizations may, however, limit the

transfer of the results to other cultures. Perhaps surveys conducted in China, India, or

Germany would have yielded a different outcome.

Heemstra and Kusters [7] found that estimation accuracy did not improve when formal

models were used. In fact, projects estimated with Function Point Analysis had larger

overruns than the other projects. Similarly, Bergeron and St-Arnaud [14] found that price-

to-win methods and algorithmic models were associated with less accurate estimates. The

methods associated with the most accurate estimates were based on analogy and expert

opinion. However, this may be coincidental since few respondents used price-to-win and

algorithmic methods.

On a general basis, it is important to be aware of there are several aspects that may affect

choice of estimation methods. It may be the case that especially challenging and/or large

projects more often rely on formal estimation methods, or that the projects applying, e.g.,

algorithmic estimation methods may be different from the other projects. None of the

surveys address this possibility.

The lack of evidence that estimation models are more accurate than expert judgment [27],

may be an important reason for the widespread use of expert estimation. In addition, expert

estimation may have the advantage of being easy to use and flexible.

 RQ 3: How important is accurate effort estimation perceived to be, and to what

 extent is the level of accuracy considered a problem in the software industry?

The only survey that directly addressed RQ 3 was conducted by Lederer and Prasad [11].

On a five point Likert scale, the average importance rating reported by managers was 4.17.

Although that survey found that managers perceived estimation as important; this does not

necessarily imply that projects as a rule are estimated. We found three surveys on the

proportions of software organizations that estimated costs. Heemstra [9] reports that 65%

 38

and McAulay [3] report that 95% of the organizations as a rule estimate projects.

Wydenbach and Paynter [16] report that 88% of the companies estimate at least half of their

projects.

One survey studied the estimation percentage at project level [11]. They found that 87%

of the companies’ large projects were estimated.

Moores and Edwards [15] found that 91% of the responding managers answered ‘yes’ to

the question ‘do you see estimation as a problem?’, while only 9% answered ‘no’. An

interesting finding is that the accepted level of estimation accuracy was typically +/- 20%. A

finding supporting the belief that estimation is perceived as a problem was reported by

Addison and Vallabh [17]. They found that the risk factor viewed as most problematic by

software professionals was ‘unrealistic schedules and budgets’.

Combined, these surveys indicate an awareness of estimation as a problem and an

important activity. There are, however, many other important software development

activities, e.g., contract negotiations with customers. An appropriate approach to reveal how

important the companies regard effort estimation accuracy in practice is to investigate the

organizations actual focus on improving estimation processes and effort spent to achieve

accurate estimates. We have found no such studies.

 RQ4: What are the main causes for software projects to deviate from their original

 plan?

A problem when analyzing reasons for project overruns is that the respondents may be

biased and/or affected by selective memory. Ideally, estimation accuracy reviews should be

conducted by uninvolved reviewers to, for example, avoid the “blame the others”-attitude.

The results on reasons for project overruns presented here should therefore be interpreted

relative to the role and perspectives of the respondents, typically project managers.

In the survey by Phan [6], the participants were asked for the reasons why projects had

cost or schedule overruns. The respondents believed that cost overruns were most often

caused by over-optimistic estimates (51%), closely followed by changes in design or

implementation (50%). The reasons for schedule overruns were optimistic planning (44%),

followed by frequent major (36%) and minor (33%) changes from the original

specifications.

In Lederer and Prasad’s study [11] the respondents rated 24 possible reasons for

inaccurate estimates on a five point Likert scale. The top rated causes were ‘Frequent

 39

requests for changes by users’ (3.89), ‘Users’ lack of understanding of their own

requirements’ (3.60) and ‘Overlooked tasks’ (3.60), i.e., the problems with the users were

the two most important reasons for estimation inaccuracy.

In sum, over-optimistic estimates and user changes or misunderstandings were all

important reasons for project overruns, from the perspective of the managers of the software

provider organization.

Over-optimism does not necessarily describe properly what happens when a cost estimate

is too low. For example, we have experienced that many projects initially have realistic cost

estimates. Then, the management believes that the estimates are unacceptable high and put a

pressure on the estimators to reduce the estimates, i.e., it may not be over-optimism but cost

reduction pressure from customer or management that lead to estimates reported as “over-

optimistic”.

5. Conclusions and further studies

Our search for, and review of, surveys suggest that there are few that are directly related

to software effort estimation. Also, the design of these surveys often make transfer of results

problematic, e.g., non-random samples, low response rates, and frequent use of data

collection techniques (questionnaires) potentially leading to low data quality.

The following observations, derived from the surveys, should therefore be interpreted

carefully:

• Expert estimation is the method in most frequent use. There is no evidence that the

use of formal estimation methods on average leads to more accurate estimates.

• Project overruns are frequent, but most projects do not suffer from major overruns.

The average cost overrun reported by Standish Group’s Chaos Report (89%) is not

supported by other surveys. An average cost overrun of 30-40% seems to be the

most common value reported.

• Managers state that accurate estimation is perceived as a problem.

• The reasons for overruns are complex, and not properly addressed in software

estimation surveys. For example, software managers may have a tendency to over-

report causes that lies outside their responsibility, e.g., customer-related causes.

Forthcoming surveys should seek to investigate more thoroughly on several aspects

related to when, how and why estimation methods are chosen. In this way we can learn how

choice of methods, or combinations of methods, may be influenced by properties such as

 40

project type or size. Only when such information is provided may we be able to compare the

level of accuracy of different methods. Perhaps we may be able to find more about topics

like when and how to combine different methods.

It would also be interesting to know what level of estimation accuracy managers are

satisfied with, and how this varies depending on type of development.

We are currently conducting a large in-depth survey of Norwegian companies and

projects, were we, amongst others, address the research questions treated in this paper and

aim to compare the current situation in Norway with previous estimation surveys. A goal of

that survey is to find out how the different projects actually are estimated. For example, if a

project applies an estimation model, we will find out how the model is used. Do the experts

adjust the output from the model? And when a project applies expert estimation, is this done

with the aid of checklist or experience databases, and is it based on a combination of

different experts’ estimates? The survey also tries to obtain the respondents interpretation of

‘estimate’. Is it interpreted as the most likely effort, the price-to-win, or something else? In

order to obtain knowledge of these, and other central aspects of software estimation,

personal interviews with both top management and the project managers are employed.

Acknowledgements

This research was funded by the Research Council of Norway under the project INCO.

References

1. Standish, G., The Chaos Report. 1994, The Standish Group.

2. Jenkins, A.M., J.D. Naumann, and J.C. Wetherbe, Empirical Investigation of

Systems Development Practices and Results. Information & Management, 1984. 7:

pp. 73-82.

3. McAulay, K. Information Systems Development and the Changing Role of MIS in

the Organisation. First New Zealand MIS Management Conference. 1987.

Wellington.

4. Purvis, M.K., S.G. MacDonell, and J. Westland, Software Metrics in New Zealand:

Recent Trends. New Zealand Journal of Computing, 1994. 5(2): pp. 13-21.

5. Phan, D., D. Vogel, and Nunamaker, The Search for Perfect Project Management,

Computerworld. 1988. pp. 95-100.

 41

6. Phan, D., Information Systems Project Management: an Integrated Resource

Planning Perspective Model, Department of Management and Information Systems.

1990, Arizona: Tucson.

7. Heemstra, F.J. and R.J. Kusters. Controlling Software Development Costs: A Field

Study. International Conference on Organisation and Information Systems. 1989.

Bled, Yugoslavia. pp. 652-664.

8. Heemstra, F.J. and R.J. Kusters, Function point analysis: Evaluation of a software

cost estimation model. European Journal of Information Systems, 1991. 1(4): pp.

223-237.

9. Heemstra, F.J., Software cost estimation. Information and Software Technology,

1992. 34(10): pp. 627-639.

10. Lederer, A.L. and J. Prasad, Nine management guidelines for better cost estimating.

Communications of the ACM, 1992. 35(2): pp. 51-59.

11. Lederer, A.L. and J. Prasad, Information systems software cost estimating: a current

assessment. Journal of Information Technology, 1993(8): pp. 22-33.

12. Lederer, A.L. and J. Prasad, Causes of Inaccurate Software Development Cost

Estimates. Journal of Systems and Software, 1995(31): pp. 125-134.

13. Lederer, A.L. and J. Prasad, The Validation of a Political Model of Information

Systems Development Cost Estimating. Computer-Personnel, 1991. 13(2): pp. 47-57.

14. Bergeron, F. and J.-Y. St-Arnaud, Estimation of Information Systems Development

Efforts: A Pilot Study. Information & Management, 1992. 22: pp. 239-254.

15. Moores, T.T. and J.S. Edwards, Could Large UK Corporations and Computing

Companies Use Software Cost Estimating Tools? - A Survey. European Journal of

Information Systems, 1992. 1(5): pp. 311-319.

16. Wydenbach, G. and J. Paynter, Software Project Estimation: a Survey of Practices

in New Zealand. New Zealand Journal of Computing, 1995. 6(1B): pp. 317-327.

17. Addison, T. and S. Vallabh. Controlling Software Project Risks - an Empirical Study

of Methods used by Experienced Project Managers. SAICSIT 2002. 2002. Port

Elizabeth, South Africa. pp. 128-140.

18. Cozby, P.C., Methods in behavioral research. 5th ed. 1993, Mountain View:

Mayfield Publishing Company.

19. Maxwell, K.D. and P. Forselius, Benchmarking Software Development Productivity.

IEEE Software, 2000. 17: pp. 80-88.

 42

20. Boehm, B., Software Engineering Economics. 1981, Englewood Cliffs, NJ: Prentice-

Hall.

21. Kitchenham, B., et al., An Empirical Study of Maintenance and Development

Estimation Accuracy. Journal of systems and software, 2002. 64: pp. 55-77.

22. Höst, M. and C. Wohlin. An Experimental Study of Individual Subjective Effort

Estimations and Combinations of the Estimates. Proceedings the 20th International

Conference onSoftware Engineering. 1998. Kyoto, Japan. pp. 332-339.

23. Jørgensen, M. and D.I.K. Sjøberg, The impact of customer expectation on software

development effort estimates. International Journal of Project Management, 2004.

22(4): pp. 317-325.

24. Jørgensen, M. An empirical evaluation of the MkII FPA estimation model.

Norwegian Informatics Conference. 1997. Voss, Norway: Tapir, Oslo. pp. 7-18.

25. Hill, J., L.C. Thomas, and D.E. Allen, Experts' estimates of task durations in

software development projects. International Journal of Project Management, 2000.

18(1): pp. 13-21.

26. Hihn, J. and H. Habib-Agahi. Cost estimation of software intensive projects: A

survey of current practices. International Conference on Software Engineering.

1991. pp. 276-287.

27. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

 43

 44

Paper II:

A Survey on Software Estimation in the Norwegian

Industry

Kjetil Moløkken-Østvold1, 2, Magne Jørgensen1, Sinan S. Tanilkan2,

Hans Gallis1, 2, Anette C. Lien1, and Siw E. Hove1.
1 Simula Research Laboratory, 2 Department of Informatics, UiO.

10th International Symposium on Software Metrics. 2004. Chicago, Illinois, USA:

IEEE Computer Society. pp. 208-219

Abstract. This paper provides an overview of the estimation methods that software

companies apply to estimate their projects, why those methods are chosen, and how

accurate they are. In order to improve estimation accuracy, such knowledge is essential. We

conducted an in-depth survey, where information was collected through structured

interviews with senior managers from 18 different companies and project managers of 52

different projects. We analyzed information about estimation approach, effort estimation

accuracy and bias, schedule estimation accuracy and bias, delivered functionality and other

estimation related information. Our results suggest, for example, that average effort

overruns are 41%, that the estimation performance has not changed much the last 10-20

years, that expert estimation is the dominating estimation method, that estimation accuracy

is not much impacted by use of formal estimation models, and that software managers tend

to believe that the estimation accuracy of their company is better than it actually is.

 45

1. Introduction

Over the past two decades, several research surveys have focused on software project

effort and schedule estimation [1-10]. This is important, since an unbiased insight is

essential in order to help the industry to make more accurate estimates. Essential data to

obtain is, e.g., how estimates are made, what factors motivate the choice of estimation

methods and the current level of estimation accuracy.

This paper attempts to provide an assessment of the current situation related to software

effort estimation in Norway. Most of the previous surveys were conducted in the eighties

and early nineties. Types of hardware, programming languages, business relations,

development processes, clients and software companies have changed a lot since then.

Further, the surveys were conducted in larger countries than Norway, such as the United

States and the United Kingdom.

Section 2 provides an account of the previous research that motivated our research

questions, which are presented in Section 3. Section 4 describes the methods used to collect

and analyze the data presented in Section 5. Section 6 provides a discussion, which is

summarized in Section 7.

2. Previous Surveys

The surveys conducted over the past 20 years have had varying areas of interest; some of

them were conducted at company level, others at project level. As presented in a recent

review [11], those areas that have attracted most attention are how companies estimate

projects, how important effort estimation is perceived and what their current level of

accuracy is. In this paper, we include only previous research that has been subject to peer

review, or in which the research method is, at least partially, described. For that reason, the

frequently quoted CHAOS Report published by the Standish Group is excluded. We discuss

the validity problems of that report in [12].

2.1. Frequency and magnitude of effort and schedule overruns

The topic of estimation accuracy has been surveyed by Jenkins [3], Phan [8], Bergeron

and St-Arnaud [1], Heemstra and Kusters [13], Lederer and Prasad [14, 15] and Sauer and

 46

Cuthbertson [10]. These studies have addressed either the frequency of overruns, or the

average estimation accuracy, or both.

A summary of some of the results from these surveys is displayed in Table 1. A blank

space in the table indicates that this information was not reported in the survey.

Study (first author) Jenkins [3] Phan [8] Heemstra [2] Lederer [14] Bergeron [1] Sauer [10]

Year of study’s first
publication

1984 1988 1989 1991 1992 2003

Cost overrun 34%
(md)

33%
(mean)

 33% (mean) 18%
(mean)

Project used more
than estimated effort

61% 70% 63% 59%

Project used less than
estimated effort

10% 14% 15%

Schedule overrun 22%
(mean)

 23%
(mean)

Project completed
after schedule

65% 80% 35%

Project completed
before schedule

4% 3%

Table 1: Previous surveys on estimation accuracy

These surveys indicate that most projects (60-80%) are completed over estimated effort

and/or schedule. The magnitude of effort overruns reported in most of the surveys [1, 3, 8]

is between 30 and 40%. This has also been supported by several case studies, e.g. [16, 17].

Sauer and Cuthbert found a lesser magnitude of overruns [10], but this may have been

affected by the self-selecting sample in that survey. Bergeron and St-Arnaud [1] found that

58% of the projects surveyed had cost overruns of more than 20%. Phan [8] reports on

overruns at an organizational level that is not directly comparable with the other surveys. He

found that cost overruns occurred always in 4%, usually in 37%, sometimes in 42%, rarely

in 12%, and, never in 4% of the 191 organizations surveyed. Similarly, schedule overruns

occurred always in 1%, usually in 31%, sometimes in 50%, rarely in 15%, and, never in 2%

of the organizations.

2.2. Choice of estimation method

In our review [11], we found five different surveys that addressed the choice of

estimation method [1, 2, 5, 18, 19]. Due to the different metrics used, and the different

 47

categorizations, it is difficult to compare the surveys. A further complicating factor is that

the respondents may have interpreted pre-defined categories differently. We have grouped

the estimation methods into three main categories: expert judgment-based methods, model-

based methods and “other”. Model-based methods include formal estimation models such as

COCOMO, Use-Case-based estimation, FPA-metrics or other algorithm driven methods. In

the category of “other” there are methods that are not “pure” estimation methods, e.g.,

capacity-related and price-to-win-based methods, and methods than can be used in

combination with other models (top-down and bottom-up). An overview is presented in

Table 2. A blank space in the table indicates that this alternative was not an option in the

survey.

It is essential to note that the projects surveyed may have been estimated by a

combination of two or more different methods, e.g. model and expert-based. The extent to

which such combination methods were used was not reported in any of the surveys. We

were therefore unable to draw conclusions about the possible beneficial effect of combining

methods in the review.

Study (first author)

McAulay

[5]

Heemstra

[2]

Wydenbach

[19] Bergeron [1]

Year of study’s first publication 1987 1989 1995 1992

Estimation Methods

Percentage used

(more than one method possible)

Importance

(1-4, 4=most

important)

Expert consultation 26% 86% 1.8

Intuition and experience 85% 62% 3.3 Expert based

Analogy 61% 65% 2.5

Model based Software Cost Models 13% 14% 26% 1.3

Price-to-win 8% 16% 1.2

Capacity related 21% 11% 1.6

Top-down 13% 1.4

Bottom-up 51% 2.4

Other

Other 12% 9% 0% 1.5

Table 2: Choice of estimation method

‘Price-to-win’ is listed as an estimation method, but we believe that most managers would

not report this as an estimation method even if “price-to-win” had an impact on their

 48

estimates. This may be the case because managers are not aware of the effect of client

expectations on effort estimates [20]. They may feel that it is not an estimation method, or

may believe that they should not be affected by the “price-to-win”.

Lederer and Prasad [18] applied a different approach from the surveys displayed in table

2. Instead of asking what methods were used, they asked how estimates were influenced.

Respondents rated alternatives on a five-point Likert scale (min=1, max=5). They had eight

different categories, and the alternative “Comparison to similar, past projects based on

personal memory” scored highest (average 3,77), while the alternative “A complex

statistical formula (such as multiple regression, differential equations, etc.)” scored lowest

(average 1.49).

2.3. How important is estimation accuracy perceived?

The only survey that directly addressed the importance of estimation accuracy was

conducted by Lederer and Prasad [15]. On a five-point Likert scale (min=1, max=5), the

average importance rating reported by managers was 4.17. Although that survey found that

managers perceived estimation as important; this does not entail that projects are estimated

as a matter of course.

Related to this finding are surveys on the proportions of software organizations that

estimate costs. Heemstra [2] reports that 65% and McAulay [5] report that 95% of the

organizations estimate projects as a rule. Wydenbach and Paynter [19] report that 88% of

the companies estimate at least half of their projects. The survey by Lederer and Prasad

studied the estimation percentage at project level [15]. They found that 87% of the

companies’ large projects were estimated.

Moores and Edwards [6] found that 91% of the responding managers answered ‘yes’ to

the question ‘do you see estimation as a problem?’, while only 9% answered ‘no’. An

interesting finding is that the managers reported that the accepted level of estimation

accuracy was typically +/- 20%.

A finding that supports the belief that estimation is perceived as a problem was reported

by Addison and Vallabh [21]. They found that the risk factor viewed as most problematic by

software professionals was ‘unrealistic schedules and efforts’.

In combination, these surveys indicate awareness that estimation is both a problem and an

important activity. There are, however, many other important software development

activities, e.g., contract negotiations with clients. An appropriate approach to reveal how

 49

important the companies regard effort estimation accuracy in practice is to investigate the

organizations’ actual focus on improving estimation processes and the effort expended on

achieving accurate estimates. We have found no such studies.

3. Research Questions

In our survey, we wanted to investigate the same questions as in previous surveys, with

some additions. While other surveys have focused on either company or project level, we

wanted to focus on both, in order to compare responses.

Our topics of interest are divided into several research questions.

 RQ1: What is the frequency and magnitude of effort estimation overruns?

 RQ2: What is the frequency and magnitude of schedule estimation overruns?

 RQ3: Does project size affect effort estimation accuracy or bias?

Choice of estimation method has been related to the study of effort estimation accuracy.

There have been research results “in favor” of different estimation methods (e.g., expert-

based vs. model-based), but according to a recent review, such evidence is inconclusive

[22]. In our survey, we also wanted to investigate the potential benefits of combining

different estimation approaches. Such combination has been advocated in other studies [1,

23].

 RQ4: To what extent are different estimation methods (expert-based, model-based

 or combinations) used in the industry?

 RQ5: Does choice of estimation method affect effort estimation accuracy or bias?

Many of the previous surveys, e.g. [13, 18] have been aimed at in-house development in

large corporations that deal in insurance, banking, manufacturing etc. In our survey, we

wanted to address the situation in consultancy companies that develop tailored solutions for

clients, as well as in-house development in other software and/or telecommunications

companies.

 50

 RQ6: Are there differences in estimation accuracy or bias between companies that

 develop projects internally and those that develop for clients?

An important aspect of effort estimation is how senior managers perceive the situation. If

they are unaware of any problems, or if they believe that the problem is within an acceptable

range, such as +/- 20% [6], it is unlikely that measures will be taken. We also wanted to

investigate the possible reasons for selecting a particular method, as well as investigating

how important effort estimation is perceived.

 RQ7: How do senior managers perceive the company’s level of estimation skill?

 RQ8: On what basis is an estimation method selected?

 RQ9: How important does the companies perceive estimation as being, in

 comparison with other aspects of development?

4. Method

The survey was conducted in Norway from February to November 2003.

4.1. The participating companies

In order to ensure a representative sample, stratified random sampling [24] from the

population of Norwegian software development companies was used. The companies were

categorized into different strata based on revenue and number of employees. This was based

on different Norwegian sources, e.g. [25]. This is a reasonable approach, since we were

going to investigate a limited number of companies and wanted to ensure that we had

companies that represented different types of organization, such as software houses

developing products for the mass market, contractors who develop for clients and the

internal development departments of large companies. We also wanted companies of

different sizes, both small (<10 employees), medium (between 25 and 100 employees) and

large (>100 employees).

 51

Each organization was contacted by phone and the study presented to them. If they

agreed to participate, they were given time to prepare before they were visited by our

researchers.

The unit of investigation was either the entire company or a specific department (the

latter in the case of very large organizations with more than 1000 employees). We will,

however use the term company for our unit of research in this paper. The companies that

participated had between 10 and 750 employees, with an average of 141. Five of the

companies developed projects to be used in-house, while two developed products for sale to

the mass market. Out of the eleven companies who developed solutions for clients, nine had

mainly private clients, while two had mainly public clients.

It is essential to note that the market situation in Norway at the time of the survey (2003)

was very competitive, and many companies sustained losses. Senior managers, however,

said that they coped with the situation by lowering their hourly rates (for those developing

for clients) instead of underestimating projects.

About half of the companies’ development was new projects (57.1%), while the rest was

maintenance/re-engineering (38.5%) or combination projects (4.4%). The percentage of

employees who owned shares or stock options in their own company ranged from zero to

100 percent, with an average of 43.5 %. For those companies that used contracts, either with

clients or internally, most relied on fixed price (52.5%), while 22.5% were paid per hour and

25% were based a combination of these alternatives.

For the specific projects, the mean effort was 3124.5 man-hours, while the median was

1175 man-hours.

4.2. Data collection and analysis

In all companies we interviewed one or two senior manager(s) at company or, in the case

of large corporations, department level. These managers were asked general questions about

such matters as staff size, type of assignments, project resolution, estimation method and

assessment of estimation accuracy.

We also interviewed the project managers (one or two for each project) of 52 different

projects. These projects were selected by the companies themselves. To avoid selection bias,

the companies were asked to submit their most recently completed projects. The only

criteria were that they had to contain a workload of at least 100 man-hours. This was done

in order to ensure that no small change requests and other one-developer projects were

 52

submitted. This is in line with previous surveys, in which “trivial tasks routinely handled

without effort estimation” were also filtered out [18].

We collected data via personal interviews, which yields data of high quality and ensures

that ambiguities are resolved [24]. This was especially important in our survey, since there

may be variations in the use of, and interpretations of, terms related to estimation methods.

It also allows the respondents to add valuable information that it is not possible to include

when completing a predefined questionnaire. Another point in favor of this approach is that

our personal involvement indicates a seriousness of intent to the participants, and this may

increase the likelihood of obtaining serious contributions from them. The main limitation of

the approach is that it is time-consuming and hence prevented us from investigating as many

companies and projects as would be possible by using mailed questionnaires. Out of the

previous surveys, presented in Section 2 and the recent review [11], only one used personal

interview as an approach [3].

Each interview lasted between 30 and 70 minutes. All researchers signed a

confidentiality agreement at each company. The respondents were informed that their

responses were anonymous, and that no feedback about the respondents’ answers was to be

reported to outsiders or to company managers.

All interviews were taped. Following data collection, results from the questionnaires and

tapes were entered into databases and processed by independent personnel who had no stake

in the research. This is especially important, because it ensures that there are no biases

regarding how possibly ambiguous data, such as the estimation approaches, are classified.

In cases where the participants reported that they followed a company-defined estimation

approach, we asked them to provide thorough descriptions. After all of the interviews had

been conducted, the independent analyst listened to the tapes and categorized the

customized methods according to the predefined categories presented in previous sections

(model/expert/combination).

In order to assess estimation accuracy, both related to effort and schedule, the Balanced

Relative Error (BRE) [26, 27] was used. It is calculated as:

,
),min(

||
yx

yxBRE −
= x = actual and y = estimated. (1)

 The BRE is different from the more common MRE (Magnitude of Relative Error)

measure [28]. MRE is calculated as:

 53

,||
x

yxMRE −
= x = actual and y = estimated value. (2)

Even though MRE is the most widely used measure of estimation accuracy [29], one

must be aware that it has unfortunate properties [26, 30]. The main concern for our case is

the fact that underestimated and overestimated projects are weighted unevenly. The BRE, as

its name indicates, is a more balanced measure.

However, it is important to note that the difference between using MRE and BRE does

not have a large impact on statistical tests based on medians, which are mainly used in this

paper.

Estimation bias is calculated using a similar equation. The only difference is that the

absolute value is not used in order to reveal an eventual direction of inaccuracy.

,
),min(

)(
yx

yxBREbias −
= x = actual and y = estimated value. (3)

 In previous surveys in which estimation accuracy has been calculated, other measures

have been used. Bergeron and St-Arnaud [1], used a formula recommended by Conte et

al.[28], which is calculated as:

,||
y

yxAccuracy −
= x = actual and y = estimated value. (4)

They argue that this measure is more meaningful, since profit or loss should be

calculated on the basis of expected cost by most project managers.

The wording in the paper reporting Phan’s survey, e.g., “Software projects, on average,

overrun planned costs by 33%” [31], implies a use of that accuracy measure. It is also

possible that it is used in the survey conducted by Jenkins, which describe vague terms, such

as “under-run and over-run”, with no indications of how these were calculated [3].

4.3. What is an estimate?

Even though all previous surveys on software estimation have differences in method, and

study different aspects of the process, they tend, with some exceptions [1], to treat a

 54

software estimate as a single fixed value. During the course of our research, however, we

have noticed that software projects often have several estimates [32]. This aspect, and how

this poses challenges to estimation models, has also been addressed by Edwards and Moores

[33].

First of all, the estimate often changes over the course of a project, depending on the

stage at which the estimate is made. For example, a project can have an early estimate,

based on vague requirements, a planning estimate based on a detailed requirement

specification, and one (or more) re-estimates during the course of development. These

estimates, all for the total effort of the project, may or may not be entirely different in

magnitude.

Second, a very important factor is who the estimate is for, or communicated to. A single

project may have two estimates at the planning stage: one that is used internally in the

project team, e.g., by project managers, and another that is used for clients, whether they are

internal or external.

The problem becomes even clearer when we find papers that describe bidding strategies,

such as “price to win” as an estimation method! This was been done in several textbooks

and research papers.

For this reason, it is obvious that one project can operate with, two, three or even more

different estimates during development. This may often be unproblematic for developers

and project managers who differentiate between these measures, but pose a significant

challenge to scientific researchers.

When conducting research on the accuracy of estimates of software projects, it is

necessary to differentiate between different types of estimates. What estimate(s) to use

depends on the focus of research. If the goal is to investigate the estimation accuracy of

professionals in a company, as it is in this paper, it is meaningful to use the most likely

estimates at the planning stage, instead of, for example, early estimates communicated to

clients. The latter may be affected by factors that have nothing to do with estimation skill,

such as market competition.

In our survey, we collected data on all available estimates for each project. Some had

only one, while others had as many as six different estimates. Nonetheless, this is not

problematic when taken into account at the time of data analysis.

 55

5. Results

The results are structured according to the research questions presented in Section 3. We

include both responses from senior managers at company level and the responses from the

project managers, based on specific projects. The responses from the senior managers are

often at a general level, and reflect attitudes, beliefs and prioritizations. The data from

specific projects, on the other hand, are based on recorded data submitted by the project

managers. An overview of the project data is displayed in Appendix I.

The required data was available in 44 out of the 52 projects we analyzed. The other

projects were discarded because they involved fewer than 100 man-hours (1), or most

estimation and development work had been done by outside consultants (2), or the project

managers had not kept accurate track of estimated and/or actual effort (5).

Of the 44 projects whose inclusion in the analysis was meaningful, two (5%) was aborted

without being completed, and five (11%) were completed on time, on estimated effort and

with required functionality. The rest (84%) were challenged with respect to effort overruns,

schedule overruns, functionality, or a combination of these (see Appendix I).

5.1. What is the frequency and magnitude of effort estimation overruns?

(RQ1)

Out of the 42 projects that were completed, 32 (76%) had effort overruns. Two projects

(5%) ended up on target, while eight (19%) used less effort than indicated.

The estimation bias (BREbias) ranged from -0.88 (estimated effort 88% higher than

actual effort) to 1.91 (actual effort almost three times the estimated effort). The distribution

of project effort estimation bias is shown in Figure 1.

 56

Figure 1: Distribution of effort estimation BREbias

-1.00 0 1.00 2.00

0

10

20

30

BREbias

Pe
rc

en
t

The average effort BREbias was 0.41, while the median effort BREbias was 0.21. This

corresponds to a mean cost overrun of 41%, while the median cost overrun was 21%.

5.2. What is the frequency and magnitude of schedule estimation

overruns? (RQ2)

Regarding schedule, 26 projects (62%) had overruns, while 15 (36%) were completed on

schedule, and one (2%) before schedule. Mean schedule overrun was 25% (BREbias 0.25),

while the median overrun was 9% (BREbias 0.09).

5.3. Does project size affect effort estimation accuracy or bias? (RQ3)

To see whether project size could affect effort estimation accuracy, we divided the 42

projects into halves, based on actual effort. Mean BREbias for the 21 largest and the 21

smallest projects were 0.52 and 0.30, respectively. An Anderson-Darling test reveals that

the samples are not normally distributed, but since the samples sizes are equal (both 21) and

the variance is similar [34], a statistical t-test was used to examine the difference in mean

accuracy values between large and small projects. The results for accuracy (BRE) and bias

(BREbias) are displayed in Table 3.

 57

 Large Small p-value

BRE 0.52 0.46 0.34

BREbias 0.52 0.30 0.11

Table 3: Effort estimation accuracy and bias by project size.

As indicated in the table, the large projects may be more prone to under-estimation

(higher BREbias).

5.4. To what extent are different estimation methods used in the industry?

(RQ4)

When asked about the kinds of estimation approaches that were used in the projects, 13

of the companies answered that they relied 100% on expert estimation. Three of the

companies used a combination of expert judgment and estimation model 100% of the time,

while two companies sometimes used expert estimation and sometimes a combination of

expert and model. Out of the five companies that used a combination of model and expert,

four of the companies used use-case based estimation models [35-37].

Of the 44 projects we analyzed (including two that were aborted), 37 (84%) of the

managers reported that they relied entirely on expert estimation, while seven of the

managers reported that they used a combination (16%) of expert and model estimation. Out

of these seven, six stated that they relied on a use case-based estimation method tailored to

their company’s types of projects and historical data. The last project used a combination of

expert judgment and a company-defined estimation model.

5.5. Does choice of estimation method affect estimation accuracy or bias?

(RQ5)

An Anderson-Darling test of the samples when divided by estimation method excludes

normality. Since the sample sizes are unequal and the variances are unequal a non-

parametric Kruskal-Wallis test on effort estimation medians is used [34]. The analysis on

differences in median effort estimation accuracy (BRE) and bias (BREbias) grouped by

choice of estimation method is displayed in Table 4.

 58

 Expert Combination p-value

BRE 0.30 0.35 0.84

BREbias 0.22 0.17 0.45

 Table 4: Effort estimation accuracy and bias by estimation method.

Based on our data, we find no indication that the use of estimation models in

combination with experts leads to more accurate or unbiased estimates compared with

expert estimates alone.

5.6. Are there differences in estimation accuracy or bias between

companies that develop projects internally and those that develop for

clients? (RQ6)

Out of the 42 projects that were completed, 11 were developed in-house (internal), while

31 were developed on contract for a client (external).

The samples do not follow a normal distribution, and there are differences in sample size

and variance, as in the last subsection. The results of a Kruskal-Wallis test on differences in

median accuracy values of internal and external development are displayed in Table 5.

 Internal External p-value

BRE 0.07 0.42 0.10

BREbias 0.05 0.35 0.07

Table 5: Effort estimation accuracy and bias by client.

This indicates that projects that are developed internally may be more accurate and less

biased related to effort estimation than externally developed projects.

5.7. How do senior managers perceive the company’s level of estimation

skill? (RQ7)

In order to get an understanding of the managers’ view of their companies’ estimation

accuracy, we asked them to provide us with their own assessment of the company’s mean

effort estimation accuracy. Responses ranged from 10% overestimation to 50%

underestimation, with an average for all companies of 15.9% underestimation.

 59

The managers were also asked about the outcome of their projects. They were asked to

categorized projects conducted during the past year into three different categories:

(i) “success” – delivered on schedule and on effort, with the required functionality,

(ii) “challenged” – failure to meet either schedule, effort or functionality

requirements

(iii) “aborted” – projects that were either stopped or underwent major revision.

The average response was 45% for “success”, 49% for “challenged” and 6 % for

“aborted”. Note that these calculations are not adjusted for company size or number of

projects.

There was consequently a difference between the estimation accuracy observed in our

study and the beliefs of the managers. This difference is analyzed and discussed in Section

6.

5.8. On what basis is an estimation method selected? (RQ8)

In order to identify a possible rationale for the use of a particular estimation approach,

the managers were asked to rate several possible reasons for choosing an estimation method.

Each reason had to be given a rating from one to five, where five was the maximum. A

summary of the average ratings is given in Table 6.

Reason for choosing method Rating (1-5)

Estimator has had success with method 4.2

Consultant advice 2.7

Thorough testing 2.7

Structured analysis 2.1

Lectures at universities/colleges/courses 1.8

Review of other companies experiences 1.7

Market popularity 1.2

Table 6: Reasons for choice of estimation methods

Out of all possible reasons, only one scored above average (3) on the ratings. This was

that the estimator had had previous success with the method. A total of thirteen companies

gave this reason the highest possible rating (5). The managers were also given the

opportunity to describe important, non-predefined reasons for selecting an estimation

method. Among the reasons provided were “using function point methods has been shown

 60

to be inefficient” and “the method used is good for persuading senior management to

approve a project”!

5.9. How important does the organization perceive estimation as being, in

comparison with other aspects of development? (RQ9)

When asked about how important effort estimation was viewed in comparison with other

development aspects, the managers provided free text responses. Of the eighteen companies,

fourteen answered that estimation was very important, extremely important or most

important.

6. Discussion

The surveys available for comparison with our data are mainly between ten and twenty

years old. Despite this, and other differences, our results are similar to those of the previous

surveys. This suggests that the estimation methods and performance of software companies

has not changed much since the 1980s. A summary of our results is displayed in Table 7.

Cost overrun 41% (mean), 21% (md)

Project used more than estimated effort 76%

Project used less than estimated effort 19%

Schedule overrun 25% (mean), 9% (md)

Project completed after schedule 62%

Project completed before schedule 2%

Table 7: Summary of Results

The frequency and magnitude of effort and schedule overruns in our survey (RQ1 and

RQ2) were similar to those reported in previous surveys (see Section 2). We also observed

that there may be a tendency that larger projects are more prone to underestimation than

smaller projects (RQ3).

Our observations are similar to the results of the other surveys with respect to choice of

estimation method (RQ4). In our 44 projects, 16% relied on an estimation model in

combination with expert estimation, while 84% relied entirely on expert estimation. If we

take into consideration that cost models are often complicated to use, and have not proved to

be superior to expert-based methods [22], this lack of use of formal estimation models is not

 61

surprising. Those of our companies who used models relied on use-case based models in

combination with expert judgment, i.e., none of the projects relied on estimation models as

the only estimation method. We were unable to provide conclusive results as to whether use

of a combination of expert and model estimation was beneficial (RQ5), but this may have

been due to the small sample of combination projects.

It seems as if there are differences between those who develop in-house, and those who

develop for clients, regarding effort estimation accuracy and bias (RQ6). A possible reason

for this observation is that in-house developers have closer proximity to the customer and

more stable system properties, such as requirements, platform and implementation language.

The managers believed that there were almost as many “successful” (45%) as

“challenged” (49%) projects, and only 6% aborted projects (RQ7). What we observed, on

the other hand, was that only 11% were completed on schedule, on effort and with full

functionality, while as much as 84% were “challenged”. A potential reason for this is that a

project that overruns its effort or schedule estimate by a few hours or days will not be

interpreted as challenged by managers. If we define projects with a 10% overrun as

“successful”, the percentage of successful projects rises to 25%, while the percentage of

challenged projects falls to 70%. If the success range is increased to include 25% overruns,

the percentage of successful projects is 43%, while the percentage of challenged projects is

52%. Moores and Edwards [6] have previously described that most managers are

comfortable with a level of accuracy around +/- 20%. The managers also believed that the

magnitude of effort overruns was less (15.9%) than what we observed (mean 41% and

median 21%).

Regarding choice of estimation method, the senior managers were quite aware of how the

projects were estimated. However, it did not seem that they were concerned with analyzing

the performance of their methods (RQ8). When asked about reasons for choosing a method,

the only alternative with an above average rating was “the estimator has had success with

the method”. On the other hand, the managers were very clear when responding on the

importance of effort estimation in comparison to other topics (RQ9), since 14 out of 18

companies rated the topic to be very important, extremely important or most important.

A possible connection between the three last observations may be that even if the

managers perceive the topic of estimation to be important (RQ9), a lack of structured

analysis of the situation (RQ8) may mislead them into believing that their estimates are

more accurate than they actually are (RQ7).

 62

6.1. Threats to validity

The most obvious threat to internal validity is the sample size, which is small when

applying statistical inference-based analysis methods. The small sample size is a results of

our labor-intensive data collection method based on interviews and the belief that it was

more important to get high quality, in-depth information about a few projects instead of

lower quality information about more projects, applying a questionnaire-based study

method. Personal interviews helped to clarify numerous ambiguities, and to discard projects

that did not retain accurate information on important aspects, such as estimated effort.

 Most projects claimed to have met requirements related to functionality, but it is

important to note that this was based on the managers own responses, since we did not have

access to the end-users.

When evaluating the generalizability of the results one must consider that this is a survey

of Norwegian companies. Norwegian companies are on average smaller (both in number of

employees and revenue) and complete smaller projects than companies in countries such as

the United States, the United Kingdom and Canada. There may also be business cultural

issues that reduce the generalizability of the results.

Our results are, however, similar to those reported by the previous surveys presented in

Section 2. This is an indication that the sample is probably not biased in any particular

direction.

An important factor in general when measuring estimation skill in companies is that we

can only analyze projects that were approved by managers or that won contracts. Such

projects may be selected because they have optimistic estimates. At the same time,

realistically estimated projects may be turned down because they seemed too expensive.

This may be a “winners curse” that affects estimation accuracy in completed projects [38]

which is reflected in surveys such as this.

7. Summary

The observations in our survey were similar to those reported by other researchers. It

seems that choice of estimation method and level of estimation accuracy and bias are stable,

being independent of year, technology and location. A possible reason for this observation is

that alternative estimation approaches have failed to provide evidence that their use increase

estimation accuracy.

 63

It also appears that the focus on analysis of estimation accuracy is low in the Norwegian

software industry. This may lead to an assessment of estimation skill that is misleading,

which in turn may hamper improvement and education.

Further research will be to monitor the development in Norway over time, to see how

different process improvement efforts or technological changes may affect estimation

performance. We would also like to expand the survey, with replications in other countries.

Acknowledgements

This research was funded by the Research Council of Norway under the project INCO.

Thanks to Chris Wright for valuable comments.

References

1. Bergeron, F. and J.-Y. St-Arnaud, Estimation of Information Systems Development

Efforts: A Pilot Study. Information & Management, 1992. 22: pp. 239-254.

2. Heemstra, F.J., Software cost estimation. Information and Software Technology,

1992. 34(10): pp. 627-639.

3. Jenkins, A.M., J.D. Naumann, and J.C. Wetherbe, Empirical Investigation of

Systems Development Practices and Results. Information & Management, 1984. 7:

pp. 73-82.

4. Lederer, A.L., et al., Information System Cost Estimating: A Management

Perspective. MIS Quarterly, 1990. 14(2): pp. 159-178.

5. McAulay, K. Information Systems Development and the Changing Role of MIS in

the Organisation. First New Zealand MIS Management Conference. 1987.

Wellington.

6. Moores, T.T. and J.S. Edwards, Could Large UK Corporations and Computing

Companies Use Software Cost Estimating Tools? - A Survey. European Journal of

Information Systems, 1992. 1(5): pp. 311-319.

7. Paynter, J. Project estimation using screenflow engineering. International

Conference on Software Engineering: Education and Practice. 1996. Dunedin, New

Zealand. pp. 150-159.

 64

8. Phan, D., Information Systems Project Management: an Integrated Resource

Planning Perspective Model, Department of Management and Information Systems.

1990, Arizona: Tucson.

9. Purvis, M.K., S.G. MacDonell, and J. Westland, Software Metrics in New Zealand:

Recent Trends. New Zealand Journal of Computing, 1994. 5(2): pp. 13-21.

10. Sauer, C. and C. Cuthbertson, The State of IT Project Management in the UK 2002-

2003. 2003, Templeton College, University of Oxford.

11. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

12. Jørgensen, M. and K. Moløkken-Østvold, How Large Are Software Cost Overruns?

Critical Comments on the Standish Group’s CHAOS Reports. Submitted to

Information and Software Technology (Can be dowloaded at:

http://www.simula.no/publication_one.php?publication_id=711), 2004.

13. Heemstra, F.J. and R.J. Kusters. Controlling Software Development Costs: A Field

Study. International Conference on Organisation and Information Systems. 1989.

Bled, Yugoslavia. pp. 652-664.

14. Lederer, A.L. and J. Prasad, Causes of Inaccurate Software Development Cost

Estimates. Journal of Systems and Software, 1995(31): pp. 125-134.

15. Lederer, A.L. and J. Prasad, Information systems software cost estimating: a current

assessment. Journal of Information Technology, 1993(8): pp. 22-33.

16. Boehm, B., Software Engineering Economics. 1981, Englewood Cliffs, NJ: Prentice-

Hall.

17. Kitchenham, B., et al., An empirical study of maintenance and development

estimation accuracy. Journal of Systems and Software, 2002. 64(1): pp. 57-77.

18. Lederer, A.L. and J. Prasad, Nine management guidelines for better cost estimating.

Communications of the ACM, 1992. 35(2): pp. 51-59.

19. Wydenbach, G. and J. Paynter, Software Project Estimation: a Survey of Practices

in New Zealand. New Zealand Journal of Computing, 1995. 6(1B): pp. 317-327.

20. Jørgensen, M. and D.I.K. Sjøberg, The impact of customer expectation on software

development effort estimates. International Journal of Project Management, 2004.

22(4): pp. 317-325.

 65

21. Addison, T. and S. Vallabh. Controlling Software Project Risks - an Empirical Study

of Methods used by Experienced Project Managers. SAICSIT 2002. 2002. Port

Elizabeth, South Africa. pp. 128-140.

22. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

23. Höst, M. and C. Wohlin. An Experimental Study of Individual Subjective Effort

Estimations and Combinations of the Estimates. Proceedings the 20th International

Conference onSoftware Engineering. 1998. Kyoto, Japan. pp. 332-339.

24. Cozby, P.C., Methods in behavioral research. 5th ed. 1993, Mountain View:

Mayfield Publishing Company.

25. HegnarOnline, Kapital DATAs 1500 største. 2000.

26. Jørgensen, M. and D. Sjøberg, An effort prediction interval approach based on the

empirical distribution of previous estimation accuracy. Journal of Information and

Software Technology, 2003. 45(3): pp. 123-136.

27. Miyazaki, Y., et al., Method to estimate parameter values in software prediction

models. Information and Software Technology, 1991. 33(3): pp. 239-243.

28. Conte, S.D., H.E. Dunsmore, and V.Y. Shen, Software Engineering Metrics and

Models. 1986, Menlo Park: Benjamin-Cummings.

29. Briand, L.C. and I. Wieczorek, Resource modeling in software engineering, in

Encyclopedia of Software Engineering, J. Marciniak, Editor. 2001, Wiley.

30. Stensrud, E., et al. An empirical validation of the relationship between the

magnitude of relative error and project size. Eighth IEEE Symposium on Software

Metrics. 2002: IEEE. pp. 3-12.

31. Phan, D., D. Vogel, and Nunamaker, The Search for Perfect Project Management,

Computerworld. 1988. pp. 95-100.

32. Jørgensen, M., How much does a vacation cost? or What is a software cost

estimate? ACM Software Engineering Notes, 2003. 28(6): pp. 30.

33. Edwards, J.S. and T.T. Moores, A Conflict Between the Use of Estimating and

Planning Tools in the Management of Information Systems. European Journal of

Information Systems, 1994. 3(2): pp. 139-147.

34. Cohen, J., Statistical power analysis for the behavioral sciences. 1969, New York:

Academic Press, Inc.

35. Anda, B., E. Angelvik, and K. Ribu. Improving Estimation Practices by Applying

Use Case Models. 4th International Conference on Product Focused Software

 66

Process Improvement, December 9 - 11. 2002. Rovaniemi, Finland.: Springer-

Verlag,. pp. 383-397.

36. Anda, B., et al. Estimating Software Development Effort Based on Use Cases -

Experiences from Industry. 4th International Conference on the Unified Modeling

Language (UML2001), October 1-5, 2001. 2001. Toronto, Canada.: Springer-

Verlag. pp. pp. 487-502.

37. Anda, B. Comparing Effort Estimates Based on Use Case Points with Expert

Estimates. Empirical Assessment in Software Engineering (EASE 2002). April 8-10,

2002. 2002. Keele, UK.

38. Gilley, O.W., G.V. Karels, and e. al., Uncertainty, experience and the 'winners

curse' in OCS lease bidding. Management science, 1986. 32(6): pp. 673-682.

 67

Appendix I: Survey data

Nr Client Method
Estimate
(hrs) Actual BREbias

Estimate
(days) Actual BREbias Funct.

1 External Expert 330.0 319.0 -0.03 235 235 0.00 100%

2 Internal Expert 560.0 1000.0 0.79 84 140 0.67 110%

3 Internal Expert 300.0 600.0 1.00 156 156 0.00 100%

4 Internal Expert 700.0 1400.0 1.00 182 224 0.23 100%

5 External Expert 4227.0 5170.0 0.22 98 98 0.00 110%

6 External Expert 1077.0 1150.0 0.07 42 49 0.17 110%

7 External Expert 4000.0 9000.0 1.25 293 335 0.14 110%

8 Internal Expert 1500.0 1512.0 0.01 70 70 0.00 100%

9 Internal Expert 1125.0 1000.0 -0.13 106 106 0.00 100%

10 Internal Expert 1249.0 1242.0 -0.01 153 214 0.40 98%

11 Internal Expert 1410.0 955.0 -0.48 74 64 -0.16 98%

12 External Comb. 12000.0 14000.0 0.17 619 640 0.03 95%

13 External Expert 1249.0 1242.0 -0.01 92 106 0.15 100%

14 External Expert 487.5 562.5 0.15 103 106 0.03 110%

15 External Expert 640.0 1085.0 0.70 54 84 0.56 90%

16 Internal Expert 3937.5 4012.5 0.02 138 152 0.10 95%

17 Internal Expert 750.0 1200.0 0.60 117 457 2.91 100%

18 External Expert 533.5 466.5 -0.14 97 104 0.07 100%

19 External Expert 570.0 907.0 0.59 109 116 0.06 112%

20 External Expert 292.0 342.0 0.17 113 113 0.00 105%

21 External Expert 914.0 1903.0 1.08 196 217 0.11 120%

22 External Expert 400.0 432.0 0.08 42 56 0.33 110%

23 External Expert 705.0 1000.0 0.42 60 70 0.17 105%

24 External Expert 2265.0 2732.0 0.21 210 245 0.17 120%

25 External Expert 1932.0 5631.0 1.91 220 281 0.28 120%

26 External Expert 2340.0 3454.0 0.48 140 245 0.75 150%

27 Internal Expert 650.0 696.0 0.07 49 49 0.00 100%

28 Internal Expert 27241.0 28645.0 0.05 296 336 0.14 90%

29 Internal Expert 7520.0 8063.0 0.07 395 395 0.00 99%

30 Internal Expert 6728.0 n/a n/a 151 n/a n/a n/a

31 Internal Expert 5450.0 8910.0 0.63 212 304 0.43 110%

32 Internal Expert 90.0 180.0 1.00 21 56 1.67 100%

33 Internal Expert 2720.0 n/a n/a 152 n/a n/a n/a

34 External Comb 145.0 195.5 0.35 79 84 0.06 100%.

 68

35 External Comb 190.0 101.0 -0.88 60 85 0.42 100%

36 External Expert 593.5 593.5 0.00 152 152 0.00 100%

37 External Comb 506.0 506.0 0.00 70 70 0.00 100%

38 External Comb 3784.0 3746.0 -0.01 266 266 0.00 100%

39 External Expert 1030.0 1335.0 0.30 122 122 0.00 115%

40 External Expert 2170.0 3831.0 0.77 54 54 0.00 100%

41 External Comb 3086.0 7844.0 1.54 183 183 0.00 100%

42 External Comb 1982.0 3140.0 0.58 153 153 0.00 145%

43 External Expert 133.5 261.0 0.96 273 334 0.22 100%

44 External Expert 340.0 866.5 1.55 72 91 0.26 125%

 69

 70

Paper III:

Project Management of Public Software Projects:

Avoiding Effort Overruns

Kjetil Moløkken-Østvold1, Magne Jørgensen1, Pål Sørgaard2 and Stein Grimstad1.
1 Simula Research Laboratory, 2 Telenor R&D.

Submitted to Information and Software Technology.

 71

1. Introduction

Effort overruns, abandonment, lawsuits, system breakdowns, and other “scandals” appear

to be the rule, rather than the exception, where public software projects are concerned. This

has been reported in the United States [1], The United Kingdom [2], Norway [3] and several

other OECD countries [4]. It is important to note that this is not only the opinion of scandal-

seeking tabloids, but also that of the more serious technical press. In addition, in the past

five years, public officials in several countries have hosted conferences on the topic, and

several reports addressing this problem have been written.

However, is it just the transparency of public projects that make them easily accessible

by the media and the general public? Do public projects really face larger effort overruns

than private projects? Or is this just a myth? In order to address this problem, we conducted

a survey that compared effort overruns, and other factors relevant for software engineering

project managers, of public and private software projects in Norway. We found that there

are, indeed, causes for concern for those involved in public projects. These projects had

effort overruns of a significantly greater magnitude than private projects.

Depending on the type of contract, effort overruns are either paid for by the client,

written off as losses by the contractors, or there is a shared responsibility. In addition,

project managers who face problems may be tempted to cut back on testing or functionality

in order to reduce potential overruns, thus delivering lesser value to the clients. Therefore,

we present an overview of the problem, and offer advice that is relevant for both software

providers and public clients that seek to reduce effort overruns.

2. State of Practice

Effort overruns appear to be frequent in software development projects, whether public

or private. In fact, a recent review of all surveys on software estimation found that 60-70%

of all projects face effort overruns. The average magnitude of effort overruns is reported to

be 30-40% [5]. Independent of when or where the survey was conducted, studies on

software estimation found the frequency and magnitude of effort overruns to be the same.

Similar findings are reported from other research areas, such as projects for transport

infrastructure. A recent comprehensive study on that topic, by Bent Flyvbjerg and his

colleagues, found that 86% of the projects faced effort overruns, and that the average

 72

magnitude of these overruns was 28% [6]. They also observed that the choice of estimation

method did not affect estimation accuracy. In addition, the estimates were systematically

biased towards underestimation, and the situation did not improve over time. Their data did

not fit common explanations for effort overruns, such as lack of experience, poor estimation

techniques and human optimism. Therefore, they renounced such explanations. Instead, they

claim that stakeholders deliberately lie in order to get a project approved. Such lies are

claimed to have economic and political motives. The projects they investigated in the

transport sector were all public projects; it is therefore possible that their explanations of

overruns apply to public software projects as well.

Public software projects can be anything from large government defence initiatives to

stand-alone web-portal projects for a small institution. Many studies have been conducted

on why public software projects, independent of type, encounter problems so often.

However, many of these studies have been initiated as a response to a particular high-profile

failure. Often, they do not compare public “failures” systematically with projects in the

private sector, or with successful public projects. In Texas, USA, the State Auditor’s Office

reported that “among the 21 largest IT projects it was monitoring as of October 2002, the

average project was $388,000 over budget and 21 months behind schedule” [1]. However,

these projects were not systematically compared to similar projects in the private sector in

Texas, or public projects in other parts of the USA. The situation is similar in Norway. Only

in particular cases does the Office of the Auditor General analyze projects, and then only

particular problematic projects.

Research surveys over the past twenty years that have addressed software estimation [5]

have paid little attention as to whether the projects were conducted in the public or private

sector when analyzing patterns of overruns. Only one survey investigated possible

differences between public and private projects. It found that private and public projects

were equally likely to “fail” (experiencing effort or schedule overruns, or not delivering a

Terminology

Effort estimate: The most likely number of work-hours believed to be necessary

to complete a project, as assessed by the managers and

developers responsible for delivery.

 73

complete set of specified functionality) [7]. However, this survey does not report on any

possible difference in the magnitude of effort overruns, i.e., a project with a 1% effort

overrun is counted just as much a failure as is a project with a 150% effort overrun. In

addition, there was a self-selecting, non-random, sample in that survey and this may have

affected the results.

3. A Survey on Effort Overruns in Public and Private

Software Projects

Between February and November 2003, we conducted a survey on estimation practices

in the Norwegian software industry [8]. A total of 18 software companies participated. We

used stratified random sampling, in order to ensure that small (less than 25 employees),

medium (between 25 and 100 employees) and large companies (more than 100 employees)

were represented. The companies submitted from one to four of their projects (based on

available resources) for scrutiny. The criteria were that the projects should be over 100

hours (to exclude trivial tasks), be ended (either completed or abandoned), be the most

recent cases (in order to ensure a non-biased sample), and that we had access to the

managers of the projects. This resulted in a repository of 52 projects. We conducted in-

depth interviews with senior managers of all companies, and the project managers. All

interviews were performed semi-structured, face-to-face, and lasted between 30 and 70

minutes. Due to different interpretations of estimation-related concepts in the professional

community, it was essential to have personal interviews in order to resolve ambiguities.

We excluded eight projects because they lacked information, or because most of the

estimation and implementation work had been conducted by external sub-contractors. Two

of the projects were abandoned before completion. This left 42 projects for the analysis.

In this analysis, we focused on the most likely effort estimate, as deemed required to

complete a project based on the requirements of the client. This is the estimate used

internally (i.e. not price-to-win) by those responsible for delivery at the stage when the

decision to start the project was made. This estimate was then compared to the actual effort.

This is in accordance with international practices on effort estimation studies [6]. Both

estimates and actual efforts were measured in man-hours. There are several ways to analyze

estimation performance in use in the software engineering research community. Our

accuracy measure is calculated as:

 74

,
),min(

)(
yx

yxaccuracy −
= x = actual and y = estimated value. (1)

This measure puts an even emphasis on over- and underestimation. An accuracy of 0%

indicates that the project was on target. An accuracy of -100% indicates that the project used

half the estimated effort; while an accuracy of 100% means that it used twice the planned

effort. All positive values indicate overruns, and vice versa.

The main findings were that 76 % of the projects had effort overruns, and that the mean

effort overrun was 41%. These findings are in line with those reported by other surveys and

case studies on software estimation over the past twenty years [5], and studies on effort

overruns in other areas [6]. This makes us confident that we did not have a particularly

biased sample. Out of the 42 completed projects, 24 were undertaken for private clients,

while 18 had a public client. Since most companies had both private and public clients, it is

meaningful to compare the projects by analyzing estimation accuracy and related aspects

based on the type of client. An overview of accuracy based on the different types of client is

displayed in Figures 1 and 2.

Figure 1: Estimation Accuracy of Private Projects

1501251007550250-25-50

50

40

30

20

10

0

Private

P
er

ce
nt

 75

Figure 2: Estimation Accuracy of Public Projects

-50 -25 0 25 50 75 100 125 150

0

10

20

30

40

50

Public

P
er

ce
nt

It seems as though projects undertaken for public clients encountered more problems

than those performed for private clients with respect to being completed according to the

estimated effort. Eighty-three percent of the public projects encountered effort overruns,

compared to 71% of the private projects. More interesting is that the average effort overrun

was 67% for projects that had a public client, while it was 21% for projects with a private

client. When performing a statistical analysis (one sided t-test) on the magnitude of effort

overruns, the resulting p-value is 0.005, so it is a very unlikely that the observation is

coincidental. The corresponding median effort overrun is 53% for public projects, and only

7% for private projects.

We were not able to identify any differences between the samples related to important

project properties that could explain the observed difference. Public projects had an average

workload of 3068 man-hours, while private projects had an average workload of 3167 man-

hours. Nor was there any difference in factors related to estimation approach, such as choice

of estimation method, use of Work Breakdown Structures, checklists, combination of

estimates or experience databases. There was a slight difference in delivered functionality.

The mean amount of delivered functionality, as stated by the project managers, was 110%

for public projects, and 103% for private projects (median values were 100% for both).

 76

However, this small difference does probably not account for the large observed differences

in effort overruns. Also important is the fact that the delivered functionality is a subjective

measure, based on the managers’ responses. Hence, reports of delivered functionality could

be influenced by a desire to rationalize the effort overruns, e.g., managers who had

encountered large effort overruns might try to justify this by claiming to have delivered

more functionality than that which was originally specified.

In all interviews, the project managers were also asked to provide free-text responses to

explain the project outcomes, related to estimates, actual effort and delivered functionality.

We found that the descriptions that were most often associated with public projects, but not

with private projects, were the following:

1. Lack of, or poor, requirement specification.

2. Complicated procurement procedures.

3. The client had allocated inadequate resources to decision making.

4. Immature clients.

Again, it is essential to notice that these responses are from the project managers of the

contractors. The opinions of the internal project managers and other parties at the client may

be the opposite.

4. Reasons for Effort Overruns in Public Software

Projects

We found that not only were public software projects prone to effort overruns, but also

that they had significantly larger effort overruns than private software projects. There was

no evidence of what Flyvbjerg [6] characterizes as technical differences, i.e. differences in

estimation approach or choice of development model, that could explain our findings. We

therefore suggest there are other systematic differences between the types of client that may

explain our results. In order to explore such differences, and offer advice to software

engineering project managers and clients, we use information from research reports on

public projects, feedback from professionals, and our previous experiences, in addition to

results from our survey.

Most of the relevant experiences exist in the form of reports commissioned by

government bodies. They often focus on public software failures in a wide sense, and effort

overrun is only one, albeit important, measure of failure. One of the most thorough

 77

investigations of public software projects was conducted by the British Parliamentary Office

of Science and Technology [2]. They compared the investigations of several groups,

including one from the industrial perspective [9] and one from the public client perspective

[10]. On an international level, a report was compiled by OECD [4] after an expert meeting

on public projects. Among the eleven contributions to that report, there is a section from

Norway prepared by the Directorate of Public Management [3]. It is also interesting to

compare different countries directly, such as has been done with Norway and Finland [11].

We also include our experiences from industry and from work at the Directorate of

Public Management. Another important source for explaining the observed differences is

the feedback we have received over the past six months while presenting our work in

different contexts. This includes meetings with the Office of the Auditor General in

Norway, the EFFIN–seminar (The EFFIN project goal is to develop user-centred methods and

tools for use in the context of the public sector when introducing new technology), a presentation

for the international management of one of Europe’s premier consultancy companies, and

senior managers and project managers participating in a seminar on software project

management hosted by Simula Research Laboratory.

When we compare the information from all our sources, the main differences between

public and private projects appear to be on three levels: political, organizational and

individual. For some of the reasons provided, we only have access to opinions or reports

that perceive this to be a problem in public projects. It is possible that such factors may be a

problem in private companies as well, but this has not, to our knowledge, been

systematically investigated.

4.1. Political level

The political nature of the decision processes in public administration may prove

dysfunctional in a software engineering context.

• Political deadlines of projects and efforts. Politicians and their loyal government

officials have a clear focus on measures that can be presented to the electorate as

achievements of the current government. This focus may lead to unhealthy time

estimates and to reduced emphasis on long-term measures that cannot be attributed to

a specific government. It makes it less likely that endeavours such as process

improvement programmes will be initiated. This political agenda may explain, at

 78

least partially, the lack of effort and interest in learning from previous failures and

previous advice as to what should be done to improve the situation [11].

• Idiosyncrasies of the budget process. In the Norwegian government, the annual

budget process generally involves a flat reduction in running funds and a so-called

“profile allocation” used to strengthen purposes of high political priority. As a result,

it may be difficult to obtain funding for a modest software project, while there may

be possibilities within the profile allocation provided that the goals of the project are

sufficiently politically attractive. Such mechanisms are also found in other countries,

and may act as an incentive to increase the size and level of ambition of the projects,

which is counterproductive, since large projects are more likely to encounter

problems [2, 4]. Moreover, the high focus on the budget process leads to a

comparatively weaker emphasis on implementation and follow-up activities. As a

result, there is less focus on the projects once started, and the incentives to learn from

their achievements are weak. Therefore, issues regarding implementation and realism

of expectations and estimates may receive little attention when projects are approved

[12].

• Political games. We have experienced that the willingness to see and admit that there

are major problems with public software projects is limited. To admit the existence of

a problem may amount to an acknowledgement of responsibility. W learned that

several middle-level officials that attended our briefings had been encouraged not to

even meet with us, as senior officials believed that to meet would be tantamount to an

acknowledgment of blame. Several officials were also surprised by our findings, and

some even met them with denial.

4.2. Organizational level

The public sector has a set of structural and organizational characteristics that differ from

private business that may have negative effects on the probability of success of software

projects.

• Regulations on procurement. In countries subject to European Union law, public

projects over a certain value are subject to extensive procurement procedures. The

goals of these regulations are to stimulate competition and avoid “under the table”

deals. However, the result is that many public clients feel pressured to choose the

lowest offer whether constrained by legislation or not [2]. When overruns appear, or

 79

other goals are not met, they feel they can justify their choice by stating that they “did

everything by the book” and based their choice on price. Choosing the cheapest

solution is especially dangerous when one does not have the competence to assess the

capabilities of the competing contractors. In a recent study on software project

bidding, we observed that the contractors with the least experience delivered the

lowest bids [13]. Probably, this is caused by a combination of naïve optimism, and

quoting a “price to win” in order to gain entry to the market. The United Kingdom is

increasingly trying to use value for money as a criterion for evaluation, instead of the

lowest price. The Office of Government Commerce points out that “value for money”

is rarely synonymous with the “lowest price” [2]. This shows that the use of common

sense, within the possibilities of current legislation, is not discouraged. Quite

commonly, there will be opportunities for skilled clients to choose the best overall

solution for their purpose, and not blindly choose a supplier based on one or two

criteria alone.

• Regulations on development processes. Until recently, many government bodies in

the United States were required to follow sequential (waterfall) based development

models, even though flexible (e.g. incremental) development models were

recommended by many independent sources [14]. A somewhat similar situation has

been the case in Norway, were most standard IT contracts provided by the

Directorate of Public Management have been based on the waterfall model [3]. Many

public clients have believed that it was too difficult to use incremental development

and to split a project into several smaller deliveries, which is highly recommended by

independent reports [2, 4]. In our survey however, there was no difference in the use

of development models with respect to the type of client, i.e., the type of

development model cannot explain the observed difference in estimation accuracy by

appeal to the type of client. However, further analysis, as presented in Table 1,

suggests that public projects do not receive full benefits from incremental

development. Reasons for this lack of benefit, as reported by the project managers in

our survey, may be that although flexible models may be used in public projects,

there are problems related to lack of user feedback and problems with delayed

decision-making that reduce the benefits.

 80

 Flexible Sequential Total

Private -2% (n=11) 40% (n=13) 21% (n=24)

Public 58% (n=8) 74% (n=10) 67% (n=18)

Total 24% (n=19) 55% (n=23) 41% (n=42))

Table 1: Mean effort overruns based on client and development model type

• Difference in business culture of the private contractor and the public client. Most

development work in public projects is done by outside contractors. Often, there will

be a clash of culture between a private contractor and a public client [3, 9, 15]. In

extreme cases, a public client will view the private contractor as an adversary [2].

On the other hand, the private contractors may also have little knowledge about the

political factors involved in public projects, and are often too optimistic in their

efforts to win contracts. Such optimism may materialize in project bids that are

based on a best-case scenario, even though problems are likely to arise. It is the

responsibility of the contractors to provide realistic estimates.

• One-of-a-kind systems and preference for new technology. We have observed a

tendency to opt for new and advanced, instead of old and proven, technologies in

public projects. This may be stimulated by political conditions, which favour high

levels of ambition. A way to project resolve and competence is often to choose the

newest and often experimental technologies, instead of selecting more conservative

and well-tested options [3, 9, 15]. It may also be a result of the trivial fact that

government, almost by definition, has a series of one-of-a-kind systems, and

therefore may tend to use less off-the-shelf software than private companies. This

opens up the potential for more (too much?) creativity with respect to functionality

and technical solutions, which leads to projects with higher risk.

4.3. Individual level

The public sector has a reputation for not being able to attract professionals who are

skilled in technology and project management. We do not claim that professionals in the

public sector are incompetent or negligent; it is, rather, a fact that there seems to be a poor

mix of competences that is not so apparent in private enterprises. There are simply more

 81

computing specialists, engineers and IS-professionals in a private company than in

comparable public agencies.

• Lack of project managers. A good project outcome also depends on a good internal

project manager. A common limitation in the public sector is that there is a lack of

good, business-oriented, project managers [2, 9] since there is no career path for

internal project managers in public institutions. In addition, the lack of a management

model could be responsible for the lack of requisite skills that is most prominent at

the management level [3]. Such shortcomings may result in overly ambitious

projects, where the underlying risks are not properly identified and managed [3, 15].

• Lack of IT skills in organizations. The OECD report stated that a recurrent problem is

the lack of IT skills in the public sector [15]. Using government statistics, Guri Verne

from the Norwegian Directorate of Public Management found that only 0.07% of

over 100,000 government employees hold a Masters degree in computing1. We do not

have similar figures from other countries, but reports point to this factor being a

common problem in the public sector. In addition, in Norway, the Directorate of

Public Management has documented that top-level management does not posses a

adequate level of IT competence [3]. In Britain, the number of IT practitioners in

government fell from 12,000 to below 3,000 in just five years [2]. The lack of IT

skills contributes to the problem of poor requirement specifications in public projects

[2, 3], which makes estimation work difficult.

5. Conclusions

Our empirical findings indicate that the average effort overrun in public sector software

projects is significantly higher than in similar projects in the private sector. We recognize

that some claim that this is due to underreporting of failures in private sector, but we have

no indications that this is the case in our material, which was randomly provided by the

contractors. Under any circumstances, the rate and size of the overruns is an indicator of

severe problems in public sector software projects.

Based on our material, previous experience and on the feedback we have received on our

quantitative material, we offer a set of possible explanations for our findings. We believe

1 There are probably quite a few computing specialists that are registered as unspecified MSc. Real figures

are therefore not that dramatic, but failure to recognize computing as an important specialization is also an

important part of the problem.

 82

these explanations provide a convincing interpretation of the nature of the project estimation

(and project management) problems we have documented.

The challenge for public sector, and their providers, is to get to the grips with these

problems, and to do so in a convincing way. To do so, we would propose the following

series of actions:

• A change of attitude, involving a realization that the public sector is, increasingly, a

software-based sector, and hence needs to address software issues more seriously.

• Increased awareness of the need for software competence when specifying, choosing

and developing solutions. If such competence is not available, outside help should be

hired.

• Implementation of mechanisms to learn from experiences from previous projects

(post-mortem evaluations).

• Reduction of project size and risk, e.g. through use of incremental development

models.

• Increased use of evaluation of bids according to value-for-money, as opposed to price

being the only criterion.

• Initiation of software process improvement activities.

Since we have observed that similar advice has been previously ignored, and that the

willingness to realize the seriousness of these problems is limited, we believe that it will be

very demanding to take these actions. We believe, however, that this is needed in order to

meet the ever-increasing ambitions of electronic government.

References

1. Strayhorn, C.K., Limited Government, Unlimited Opportunity - Recommendations of

the Texas Comptroller. 2003, Texas Comptroller of Public Accounts.

2. Pearce, S., Government IT Projects. 2003, The Parliamentary Office of Science and

Technology.

3. Sørgaard, P. and M. Vestre, Country Report from Norway, OECD-PUMA expert

meeting on management of large IT projects. 2003, Statskonsult: Oslo.

4. Kristensen, J., Management of Large Public IT Projects: Case Studies. 2001, OECD.

5. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

 83

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

6. Flyvbjerg, B., M.S. Holm, and S. Buhl, Underestimating Costs in Public Works

Projects - Error or Lie? Journal of the American Planning Association, 2002. 68(3):

pp. 279-295.

7. Sauer, C. and C. Cuthbertson, The State of IT Project Management in the UK 2002-

2003. 2003, Templeton College, University of Oxford.

8. Moløkken-Østvold, K., et al. A Survey on Effort Estimation in Norwegian Software

Industry. 10th International Symposium on Software Metrics. 2004. Chicago,

Illinois, USA: IEEE Computer Society. pp. 208-219.

9. West-Knights, L., Getting IT Right for Government - A Review of Public Sector IT

Projects. 2000, Intellect.

10. Steward, A. and I. McCartney, Successful IT - Modernising Government in Action.

2000, Central IT Unit: London.

11. Sørgaard, P., IT Co-Ordination and Public Management Reform - A Comparison

Between Finland and Norway. 2000, Ministry of Finance, Public Management

Department, Helsinki, Finland.

12. Sørgaard, P. Co-ordination of E-government. IFIP WG 8.6. 2003. Boston, USA:

Kluwer. pp. 53-77.

13. Jørgensen, M. and G. Carelius, An Empirical Study of Software Project Bidding.

Accepted for IEEE Transactions on Software Engineering (preliminary version can

be downloaded from:

http://www.simula.no/publication_one.php?publication_id=709). 2004.

14. Larman, C. and V.R. Basili, Iterative and Incremental Development: A Brief

History. IEEE Computer, 2003(June): pp. 2-11.

15. Kristensen, J. and B. Bühler, The Hidden Threat to E-Government - Avoiding Large

Government IT Failures. 2001, OECD.

Kjetil Moløkken-Østvold is a PhD student at the University of Oslo and the software

engineering research group at Simula Research Laboratory in Norway. His main research

interests are software effort estimation, group processes and software process improvement.

He received his MSc degree in computer science from the University of Oslo, Norway, in

2002. He joined Simula Research Laboratory in October 2002. Contact him at

kjetilmo@simula.no.

 84

Magne Jørgensen is a professor in software engineering at University of Oslo and

member of the software engineering research group of Simula Research Laboratory in Oslo,

Norway. His research interests include software effort estimation, uncertainty assessments

in software projects, expert judgment processes, and, learning from experience. He received

the Diplom Ingeneur degree in Wirtschaftswissenschaften from the University of Karlsruhe,

Germany, in 1988 and the Dr. Scient degree in informatics from the University of Oslo,

Norway in 1994. He has 10 years industry experience as consultant and manager. Contact

him at magnej@simula.no.

Pål Sørgaard is a research manager within Telenor R&D in Norway. His research

interests include telecommunications policy, public sector IT and systems development. He

received his MSc in computing science in 1985 and his PhD in 1989, both from Aarhus

University in Denmark. He has previously worked as a researcher at the Norwegian

Computing Center and as an associate professor at the University of Oslo. From 1997 to

2001 he served as Assistant Director General in the Directorate of Public Management,

where he was responsible for the IT department. He can be contacted at

pal.sorgaard@telenor.com.

Stein Grimstad is a PhD student at the University of Oslo and the software engineering

research group at Simula Research Laboratory in Norway.

 85

 86

Paper IV:

Expert Estimation of Web-Development Projects: Are

Software Professionals in Technical Roles More

Optimistic Than Those in Non-Technical Roles?

Kjetil Moløkken-Østvold and Magne Jørgensen.

Simula Research Laboratory.

Empirical Software Engineering, 2005, Volume 10, Issue 1, pp 7-29.

Editor: Michael S. Deutsch

Abstract: Estimating the effort required to complete web-development projects involves

input from people in both technical (e.g., programming) and non-technical (e.g., user

interaction design) roles. This paper examines how the employees’ role and type of

competence may affect their estimation strategy and performance. An analysis of actual

web-development project data and results from an experiment suggest that people with

technical competence provided less realistic project effort estimates than those with less

technical competence. This means that more knowledge about how to implement a

requirement specification does not always lead to better estimation performance. We

discuss, amongst others, two possible reasons for this observation: (1) Technical

competence induces a bottom-up, construction-based estimation strategy, while lack of this

competence induces a more “outside” view of the project, using a top-down estimation

strategy. An “outside” view may encourage greater use of the history of previous projects

and reduce the bias towards over-optimism. (2) Software professionals in technical roles

perceive that they are evaluated as more skilled when providing low effort estimates. A

consequence of our findings is that the choice of estimation strategy, estimation evaluation

criteria and feedback are important aspects to consider when seeking to improve estimation

accuracy.

Keywords: Effort estimation, web development, bidding process, individual differences.

 87

1. Introduction

This paper examines the relationship between the accuracy of expert effort estimates of

web-development projects and the estimators’ type of competence. In spite of a high

number of published estimation models, see [1] for an overview, software development

effort estimates frequently rely on expert judgement [2-4], i.e., an estimation process where

one or more competent people estimate project effort with little or no help from formal

estimation models. One reason for the frequent use of expert estimation is that we lack

substantial empirical evidence in favour of formal estimation models. We found [3] fourteen

studies comparing the estimation accuracy of expert estimates with that of model estimates

for software development and maintenance work. Of those studies, five were in favour of

expert estimation [5-9], five found no difference [10-14], and four were in favour of model-

based estimation [15-18]. Another argument in favour of expert estimates is that experts are

more flexible regarding the type and format of the estimation information than formal

estimation models.

Expert estimates may be based on a variety of estimation strategies, and conducted by

people with different types of competence. The present knowledge on how an expert’s

strategy and competence affect estimation accuracy is, however, limited. The only software

study related to this topic, as far as we know, suggests that neither maintenance skills,

measured as frequency of unexpected problems, nor length of experience are good

indicators of accurate estimates of one’s own maintenance work [18]. Similar lack of

correspondence between expertise in completing the task and estimation accuracy is

reported in other studies on human judgment [19].

This paper focuses on effort estimates used as input to a bidding process. Such estimates

may easily be affected by a price-to-win strategy [20] and experts may, therefore, provide

effort estimates that are much too low, due to the so-called “anchoring-effect” [21, 22].

If a company is selected as a contractor based on a bid that is too low, they may later try

to skip functionality or expand the project by means of change requests to make the project

profitable. This is, however, a dangerous strategy. The customer expects the specified

functional solution for a price at least in the neighbourhood of what was initially agreed

upon, and may select another company for the next project. Clearly, realism in the estimates

used as a basis for bidding is important for a company’s long-term financial success.

 88

Most of the previous research on software effort estimation has focused on traditional

software projects, and there has not been much focus on web-development projects [23].

Although the challenges in the web-development industry are, to a large extent, similar to

those in the traditional software development industry, there may be additional important

estimation issues related to the increased focus on graphic and user interaction design in

web-development projects. Another important difference from traditional software

development companies, which often have few, but large projects, is that many web-

development companies provide a very high number of project bids on relatively small

projects [24]. For example, the web-development company described in Section 2 of this

paper had less than 100 employees, but nevertheless provided about 500 project bids per

year. A high amount of project bids on small projects means that it may be difficult to

conduct high quality estimation work on each bid. There may, for example, be insufficient

estimation resources available to use many employees for several days on each estimate.

The selection of competent personnel to conduct fast and sufficiently accurate expert

estimates is, therefore, essential.

Web-development company employees have varied backgrounds and roles. There is,

however, little literature describing the different roles in web development [23], and we

have been unsuccessful in discovering any earlier research about how employees in roles

typical for web-development projects differ in their estimation process and performance,

which is the topic of this paper.

The remainder of this paper contains a description of the web-development company and

software professionals we used as our case organization and experiment participants

(Section 2), the hypothesis and motivation (Section 3), the design of the experiment (Section

4), the results from the experiment (Section 5), a discussion of the results (Section 6), and a

conclusion and description of further work (Section 7).

2. The Web-development Company and its Employees

The company that participated in our study is the Norwegian branch of a large

international web-development company. At the time of the study, the branch had about 70

employees. For their last completed budget year (2000), the branch studied had a turnover

of 119 million NOK (16.5 million USD). The role of the company is that of a contractor

[23], producing web-solutions for its customers. The projects were mainly web portals, e-

commerce solutions or content management systems.

 89

The organization can be viewed as quite immature, since it only had existed in its current

form for about two years at the time of the study. It had been incorporated in an

international organization after a gradual merging of five different national companies. They

were not concerned with either CMM or ISO certification, and were therefore not rated

according to these standards.

They had switched between several practices for web engineering during the past few

years. The one in use at the time of the study was a company defined work process. It was

based on waterfall development, and contained six phases: strategy and concept,

specification, development, test, implementation and evaluation. Through a corporate

initiative, they were beginning to implement a tailored version of Rational Unified Process

(RUP) internationally and at the local branch. This was only in the initial phase at the time

of the study.

The employee responsible for a project was usually also responsible for the estimation of

that particular project. All estimation was expert based, and no algorithmic models,

databases or checklists were in use. However, some of these experts used a predefined

estimation process with a project work breakdown structure [25]. Depending on the type

and size of the project, the expert responsible could ask other experts (mainly technicians or

designers) for input about their areas of expertise. Table shows estimation accuracy

information based on a survey of all projects (n=275) conducted by the company in the

period January to October 2001.

Overestimated Projects Projects on Target Underestimated Projects

7 % 36 % 57%

Table 1: Company Project Estimation Performance

Most projects (57%) were underestimated, and there was a total of 15% write-off (hours

underestimated that were non-billable) for all projects. These 275 projects had a total of 94

748 billable and 111 430 actual work hours. This is not uncommon for software

development, as observed in several other surveys [4].

From the interviews conducted at the company, we found that a typical reason for a

project being “on target” was that it was paid per work-hour, overestimated, and the

“remaining effort” was used to improve the solution. For small projects, with a customer-

focus on quality of delivery, this may be a reasonable project approach. Other projects that

 90

were originally underestimated may also have been completed “on target” due to

simplifications of the original estimated delivery. For this reason, one should not interpret

the project review presented here purely as a measure of estimation skill. A previous paper

[22] contains a more comprehensive discussion on this topic.

Most members of the company are assigned to one of the following four company roles:

• Engagement Manager (EM) – A person in this role is responsible for the customer

contact, and usually handles contract negotiations. Typically, EMs have a business,

or other non-technical, background and education.

• Project Manager (PM) – The leader of the project. Handles planning, resource

allocation and day-to-day supervision of the project. A PM typically has a technical

background.

• User Interaction Designer (Design) – A person in this role is responsible for Human

Computer Interaction (HCI), graphical design, etc. User Interaction Designers have a

large variety of backgrounds, most of them non-technical.

• Technology Developer (Tech) – This role is similar to that of the traditional software

developer. Typically, Technology Developers have a technical education and

background.

These roles are similar to those described by McDonald and Welland [23]. The only

exception is that the company we describe does not have designated domain experts. From

what we observed, that role in each project was typically covered by the customers.

The organization divides the project work into four tracks, depending on role: EM-track,

PM-track, Design-track and Tech-track. The distribution of workload on the different tracks

is similar to that described by McDonald and Welland [23], with an average proportion of

the total project effort of 10% on the EM-track, 20% on the PM-track, 35% on the Design-

track, and 35% on the Tech-track. When analyzing the company, we found a clear control

hierarchy based on the different roles (see Figure 1).

 91

Figure 1: Role Hierarchy

EM

Tech

PM

Design

Company management

EMs and PMs have the most contact with customers.

3. Hypothesis

When reviewing data from completed projects more thoroughly, we observed a tendency

for projects with heavy Tech-track involvement to be more often underestimated than those

with medium or low Tech-track involvement.

A common scenario, when the estimator responsible for a project required assistance,

was that people with a technical background estimated the Tech-track work and people with

a non-technical background estimated the Design-track work. Consequently, if people with

a non-technical background were less prone to underestimate their work, we should find a

lower amount of non-billable work (write-off) on projects with a high proportion of non-

technical work. To test this relationship, we randomly selected seven projects with a high

degree (>40%) of Design-track work. These projects included much less Tech-track work

than most of the other web-development projects in the company, with an average

distribution of 21%, 54%, 23% and 2% for the different tracks (Tech, Design, PM and EM).

The average track distributions of all projects were, as described earlier, 35%, 35%, 20%

and 10%. The average write-off of the seven ‘high Design-track involvement’ projects was

only 6%, i.e., a write-off much lower than the average 15%. This finding motivates the

hypothesis that software professionals with a technical background are more optimistic than

 92

those in non-technical roles. Observational studies of this type, however, can only indicate a

relation, since there are other possible explanations for the finding, e.g.:

• There is a greater probability that unforeseen problems will arise in Tech-track work,

and hence it is more difficult to estimate. Such problems can be difficult to anticipate

in an early stage of the project [20], i.e., the stage when the bidding estimates are

completed.

• When a project is behind schedule, it is easier to cut down on non-technical than

technical activities, i.e., the actual use of effort for Tech-track work is less

controllable by the developers. Earlier interviews with the employees of the

company [22] indicated a very high “flexibility” in user interaction and graphic

design activities.

There is, for these reasons, a need for more controlled studies to supplement the

observational findings. In particular, there is a need for controlled studies on the level of

optimism where comparable tasks are estimated. Motivated by the observations described

above, we hypothesized the following relationship between role and estimation

performance:

 H1: Experts in technical roles provide more optimistic effort estimates than

 experts in non-technical roles.

An experiment that was designed to test this hypothesis is reported in the following

sections.

4. Experiment Design

To test our hypothesis, we randomly selected 20 (five from each company role) software

professionals employed by the company described in Section 2. Through payment we were

able to select experienced software professionals in all roles. Based on their background and

current roles, we categorized the participants in the EM and Design roles as “Non-technical”

(NT) and the participants in the PM and Tech roles as “Technical” (T). All T-group

members had a technical background, while the NT-group members had various other non-

technical backgrounds (design, economics etc.). All personnel in the technical roles had

education as engineers, master of engineering or equivalent. Their previous and current

roles, both in the company studied and in earlier places of employment, had either been as

 93

technicians, software developers and/or project manager. Personnel in non-technical roles

were educated as graphic designers, or held a Master of Arts, an MBA or another,

equivalent, qualification. All participants had at least three years of college or university

education, and an average of over six years’ work experience in the IT-industry.

All participants were instructed to estimate the effort required to complete a web-

development project based on the same requirement specification, employing their preferred

estimation strategy. The project to be estimated was a project conducted by the company,

selected by their Chief Project Manager. It was described as representative, and meaningful

to estimate in about one hour. The actual project had received little publicity, and none of

the participants in the study knew about it. The requirement specification given to the

participants did not include the actual customer or project name. The complete requirement

specification, as presented to the participants, is enclosed as Appendix I.

The project was in its start-up phase when it was selected. The actual effort of the project

later turned out to be 2 365 work-hours. The project lasted approximately six months, and

was completed several months after the study was conducted. It did not include

development of unusually complex software, although it had a rather high proportion of

technical activities (56% on Tech-track work vs. an average of 35%), see Table 2.

Track Proportion of Effort

EM 4 %

PM 17 %

Design 23 %

Tech 56 %

Table 2: Actual Project Distribution of Effort per Track

As estimation input, each participant was given the requirement specification as

delivered by the actual customer. The requirement specification was two pages long, which

was not atypical for specifications received by the company as a basis for project bids. The

participants estimated the most likely effort (ML) measured in work-hours. The participants

used 50-60 minutes on the estimation task.

After this individual estimation, there was a group discussion, the purpose of which was

to come to an agreement on a common estimate for the project effort. These discussions

were videotaped. In addition to the testing of the hypothesis H1, we wanted to investigate

whether discussion in unstructured groups could be a reasonable method for combining the

 94

judgment of several experts. The results indicate that it may be beneficial to combine

estimates from experts with different backgrounds in order to reduce individual biases. This

part is described in a separate paper [26].

Two questionnaires were completed by each participant, including information about the

individuals’ backgrounds and their estimation processes. We apply the information from the

questionnaires and videotape in our discussion of the experiment results in Section 6. An

overview of the steps in the experiment is presented in Table 3

Step Activity Description

1 Selection of

company

The described company was selected on the basis that it was evaluated as being

representative of the web-development community.

2 Selection of task The task was selected in cooperation with the chief project manager to ensure

that the project was representative and meaningful to estimate in about one hour.

3 Selection of

subjects

In cooperation with the chief project manager, subjects that had no knowledge

of the project, and that could be clearly defined as being either technical or non-

technical employees were selected.

4 Individual

estimation

The subjects estimated the assignment individually

5 Questionnaire #1 The subjects answered a background questionnaire

6 Group estimation The subjects formed groups and re-estimated the assignment.

7 Questionnaire #2 The subjects answered a questionnaire related to the assignment and their

personal view on the effort required.

8 Debriefing The subjects were debriefed on the background and purpose of the experiment.

Table 3: Experiment Steps

Although we did our best to achieve a high level of realism in the experiment, the study

had limitations that should be considered when interpreting the results:

• The experimental setting did not enable the participants to contact the customer.

However, this situation is similar to the first bidding round of a normal estimation

process. If the customer is satisfied with the first bid, further contact is initiated, and

more thorough estimation work is conducted.

• The estimators could not discuss estimation issues with colleagues in the study. This

restriction on realism was a part of the design of our study on individual estimates,

but means that the participants may have made better individual estimations in a

more realistic setting.

 95

• The experiment did not allow the participants to use as much time to complete the

estimate as they might have wanted. On the other hand, as described earlier, the

general situation with many bids and small projects implied that participants in all

roles were used to provide effort estimates within a short time in real estimation

tasks. None of the participants complained about problems with delivering their

estimates within the time available.

• The participants knew that this was an experiment and may, therefore, have had a

lower motivation for providing accurate estimates. The experiment addressed this

threat to validity in three ways. (1) Participants were informed that only serious

participation would enable participation in further studies. (2) As a way of

motivating serious participation, participants were paid according to the time spent,

which was reported as billable hours. (3) Following their individual estimates, the

participants met in groups to discuss their estimates. This means that the participants

knew that their estimates would be evaluated by other members of their

organization.

• It was not common for people in the Design and Tech roles to estimate the total

project effort. However, the participants in these roles had participated in several

projects and knew approximately how large a part of the total effort their work on

different types of projects would be, and could use this knowledge to derive the total

effort estimate.

However, since we were studying an eventual difference between technical and non-

technical groups, it was most essential to keep the experimental conditions equal for both

groups. This was done in the experiment, as all participants received the same treatment. We

must, however, be aware of the possibility that the groups might have been affected

differently by the experimental conditions. It could affect the results if, e.g., the limited time

available were to cause more stress in, and hence lower the performance of, one of the

groups. However, we do not believe that this was the case, because participants from both

groups regularly worked together on the same assignments, with the same clients and

deadlines.

The main argument supporting the internal validity of the experiment is the similarity

between the participants’ estimates of most likely effort and the actual project’s estimate.

The project plan describes a planned effort of 1 240 work-hours. The mean estimate of the

participants in the experiment was 1 087 work-hours, i.e., only a little less than the

 96

originally planned effort. The experimental situation does not seem to bias the results in any

significant way.

The external validity of the experiment is more difficult to assess. Only one company and

only one project were used. However, our experiences with other companies lead us to

believe that the company we studied is similar to many other web-development companies,

both in size and (lack of formal) estimation process. Our observations of the company also

indicate that they are similar to other small companies who employ an ad-hoc estimation

approach, as described by Moses and Clifford [27].

The time available limited us to use one project in the experiment, but the chief project

manager assured us prior to the experiment that it was representative, and we conducted

interviews with the employees who participated in the actual project after the project was

completed. These interviews revealed no extreme properties of the project, only that their

initial estimates had been far too optimistic.

Even if the limitations of the experiment were to have had an unwanted impact on the

estimates, this would only be problematic if the impact was much larger on some groups of

the participants, e.g., the people from Tech-track. We have no reason to believe that this was

the case.

5. Experiment Results

The individual estimates, divided into the NT and T groups are shown in Table 4. All

estimates are in work-hours.

 The actual effort of the project was 2 365 work-hours, and most participants gave an

estimate that was much lower than the actual effort. However, the actual effort of a new

project based on the same specification may have required less (or more!) effort than the

completed project. The actual effort of the completed project cannot, for this reason, be

taken as more than an indication of estimation accuracy in this experiment. Nevertheless,

based on the actual effort and the original estimate, we believe that ML-estimates of less

than 1 000 work-hours point to strong over-optimism. As can be seen in Table 4, nine out of

ten participants in the T group had ML-estimates less than 1 000 work-hours, compared

with only two out of ten in the NT group.

 97

Non-technical (NT) roles Technical (T) roles

Role ML Role ML

EM 1 200 PM 960

EM 1 550 PM 1 820

EM 1 850 PM 300

EM 547 PM 914

EM 2 286 PM 984

Design 1 500 Tech 960

Design 1 140 Tech 585

Design 1 260 Tech 220

Design 620 Tech 660

Design 1 500 Tech 900

Mean 1 345 Mean 830

Median 1 380 Median 907

Table 4: The Most Likely (ML) Effort Estimates

5.1. Test of Hypothesis 1

The results displayed in Table 4 indicate that the ML-estimates were systematically

higher for the NT group than for the T group. We tested the strength of this difference by

applying a statistical t-test. To use the t-test properly, the underlying distributions should be

approximately normal. An Anderson-Darlington normality test [28] did not exclude

normality (p > 0.1 for all relevant distributions), and a visual inspection of the distributions

suggested that they were close to normal. There were moderate departures from the normal

distribution, but this has generally negligible effects on the validity of both Type I and Type

II error calculations [29]. The only exceptions are when there are substantially unequal

variances and substantially unequal sample sizes, which was not the case here.

The results from the t-test (one-sided, assuming different variance) are shown in Table 5.

We provide the actual p-values, as suggested by Wonnacott and Wonnacott [30], instead of

pre-defining a significance level for rejection. To measure the size of the difference in mean

values, we included Cohen’s size of effect measure (d) [29]. The size of effect (d) was

calculated as: d = (mean value NT group– mean value T group) / pooled standard deviation

amongst groups NT and T.

 98

 NT Group

(mean work-
hours)

T Group
(mean work-
hours)

Difference in
Mean

Pooled
Standard
Deviation

t-test
(p-value)

Size of
Effect (d)

ML 1 345 830 515 486 0.02 1.1

Table 5: Differences between mean Most Likely (ML) estimates for the NT and T Groups.

The results in Table 5 show that the p-value was low (0.02). As indicated by the size of

effect (d), the difference was considered “large”, i.e., d was larger than 0.8 [29]. The

robustness of the results is illustrated by a non-parametric statistical Kruskal-Wallis [31] test

on the median estimates results, which gave a p-value less than 0.03. The analysis,

therefore, supports Hypothesis 1.

6. Discussion

The observation that people in technical roles showed a higher degree of optimism in

effort estimates does not necessarily imply that the roles or backgrounds were the direct

causes of the difference. The effects may be due to a third variable. Perhaps difference in,

for example, estimation strategy, has a direct effect on the estimates. This section discusses

potential reasons for our observations. We investigate both personal differences due to

length of experience and gender, and estimation differences such as perceived estimation

skill, formal estimation training and estimation strategy. Interesting aspects related to the

organizational structure, namely estimation goals and (lack of) feedback are also treated.

6.1. Different Length of Experience

A potential explanation of the observed difference is that the NT-group participants were

more experienced. However, as shown in Table 6 there were no large differences between

the groups in the measured types of experience.

Group Total Experience

IT-Industry
Experience in Current

Role
Experience in Providing Effort

Estimates
NT 5.1 2.0 1.2
T 7.5 3.8 1.7

Table 6: Subjects’ Average Experience

 99

Even if there were differences in length of experience, they could probably not explain

the difference in estimation optimism, as shown by the following analysis. We divided the

participants into two equally sized experience-groups, where each member of the “Long

Experience”-group had greater experience than had all members of the “Short Experience”-

group. A Kruskal-Wallis analysis of the difference in median estimates (ML) of the two

groups yielded p=1.0 when the groups were divided according to total IT-industry

experience, p=0.41 when divided according to experience in current role, and p=0.55 when

divided according to estimation experience. This lack of relation between length of

experience and estimation performance is similar to the results reported by Jørgensen and

Sjøberg [18]. Interestingly, all three analyses exhibited the same trend with respect to the

effect of experience: Shorter experience led to higher, i.e., more realistic, estimates. More

studies are needed to investigate this relationship.

6.2. Gender Differences

Results reported by Henry [32] suggest that the level of optimism may depend on gender,

i.e., that female estimators provide higher estimates. There were only three female

participants in our study (all of them worked in the Design-track), and it is, therefore,

unlikely that gender explains all of the variance. Nevertheless, it is interesting to observe

that the three female participants had the highest estimates (ML) of those in the Design-

track; their median estimate (1 500 work-hours) was much higher than that of the male

participants (960 work-hours). The impact of gender on optimism of effort estimates is an

interesting topic for further studies.

6.3. Differences in Perceived Estimation Skill

We asked the participants about their opinions on the company’s and their own

estimation skills. The possible answers ranged from 1 (very poor) to 5 (very good) in

questions 1 and 2, and from 1 (low importance) to 5 (high importance) in question 3. Table

7 shows that there was almost no difference in the NT and T-group participants’ opinions

regarding effort estimates. Interestingly, both the T and NT-group participants viewed their

own estimation skill as inferior (!) to that of the company (2.6 vs. 3.0 for the T group and

2.6 vs. 3.1 for the NT group).

 100

Subjective Opinion on... NT

(mean
values)

T
(mean

values)
1. The company’s estimation skill (1-5): 3.1 3.0
2. Own estimation skill (1-5): 2.6 2.6
3. The importance of accurate effort estimates to the company (1-5): 4.4 4.6

Table 7: Subjective Opinions on Estimation Skill and Importance

The questionnaires were completed after the project was estimated. The participants may

therefore have been influenced by the somewhat difficult estimation task of the experiment,

and rated their skill lower than they would normally do. Still, this would affect both NT and

T-groups to a similar extent. In addition, when we are measuring estimation precision, it is

preferable that the estimation task influences the questionnaire answers, and not the other

way around.

6.4. Differences in Formal Estimation Training

There were no differences regarding the training in estimation received at universities, or

earlier or current employer. In the T group five out of ten, and in the NT group four out of

ten, reported that they had received some estimation training.

6.5. Differences in Choice of Estimation Strategy

Based on an informal analysis of the estimation material completed by the participants,

and of the videotape of the group discussion, it was possible to derive a classification of the

estimation strategies applied. One should be cautious when interpreting these results,

because we only had access to the participants’ mental processes through the discussion,

not, for example, through a think-aloud protocol. Dividing the strategies into the broad

categories, top-down and bottom-up [33], we categorized the distribution of estimation

strategies as shown in Table 8.

 101

 NT Group

(# participants)
T Group

(# participants)
Bottom-up 2 8
Top-down 6 1
Uncertain 1 1

Mixed 1 0

Table 8: Distribution of Estimation Strategy

In top-down estimation, a project is reviewed as a whole, and the project’s effort

estimates are derived, for example, through a recall of the effort used on similar projects,

i.e., the effort estimate is based on an “outside view” of the project. The project estimate can

then be broken down into phases, activities, or tracks. As described in [20], major

advantages of this method are its efficiency, and the fact that it can be combined easily with

more formal analogy based estimation strategies [2].

In bottom-up estimation the project is divided into components or activities, where each

component or activity is estimated individually. The total effort is then calculated as the sum

of all the component and activity effort values that are identified. The advantage of this

method is that each activity is estimated and is available for future project plans [33]. The

risks are that activities can be easily forgotten, and that the risk budget covering unexpected

tasks is not sufficiently large [20, 33]. One reason that technicians prefer bottom-up

estimation may be that they are familiar with the method, since they will often be required

to estimate each activity at later project stages.

The estimation material and the video-analysis of the subjects in the group-discussions

indicate that a major reason for the optimistic estimates was forgotten activities. It was

explicitly reported in the questionnaires by four T participants and one NT participant that

missing activities were among the reasons for their estimates being lower than those of the

other participants. Informal interviews with the Chief Project Manager of the company and

other company staff also indicated that the main source of over-optimism was forgotten

activities.

We conducted a Kruskal-Wallis test on the median values of those participants who

followed a clear bottom-up or top-down strategy, to search for an eventual impact of the

choice of strategy on the estimates. Table 9 shows that the p-value does not approach a

significant level, but that the median value of the top-down based estimates are higher than

those based on a bottom-up strategy.

 102

Strategy Estimate
Bottom-up (N= 10) 937
Top-down (N=7) 1 260
p-value 0.44

Table 9: Median Estimates Grouped by Strategy

We should not exclude the possibility that the effect of the estimation strategy is

important, based on the statistical test alone, because:

• The power of the analysis described in Table 9 is low, due to large variance and few

observations.

• The group discussions, the questionnaire answers, results from similar studies [34],

and the direction of the measured difference in estimates, all point in the same

direction, i.e., all available evidence suggests that the choice of estimation strategy

may have an impact on the level of optimism in estimates.

The difference between the NT- and T-group participants’ estimates was, however, much

larger than the difference between the bottom-up and top-down strategy participants

estimates, i.e., it is unlikely that choice of strategy can account for all of the difference

between the NT and T groups.

6.6. Difference in Estimation Goals

The way in which a company measures its employees’ competence can affect estimation

performance. Estimation accuracy is only one out of many possible estimation goals. Other

goals for the estimators may be, for example, to signalize personal competence, or to have

sufficient time available to deliver a good project result.

As reported in earlier interviews [22], software professionals in the Design-track were

not evaluated for “speed of delivery”. More important evaluation factors were design quality

and usability, which are more difficult to measure [35]. For designers, their estimation goals

may be to receive as much time as possible within the projects limits, to achieve the best

possible result. To achieve this goal, they prefer to provide the project managers with less

optimistic estimates at an early stage.

The software professionals from the Tech-track, on the other hand, are expected to

deliver functional programs, and “speed of delivery” is an important evaluation measure of

their competence. One way to signal competence is, therefore, to provide low estimates.

 103

This is the basic concept of Tesser’s Self-evaluation maintenance theory [36]. If a person

feels threatened, e.g., by other technicians potentially delivering low estimates on similar

tasks, they will adjust their behavior, e.g., deliver very optimistic estimates, in order to

preserve their self-esteem.

For software professionals in the PM and EM roles, the estimation goals may be more

complex. A possible explanation for the optimism of PMs is that most of them were

programmers, who had been promoted to PMs, i.e., they may still tend to think very much

as programmers. In addition, a PM’s estimates may be strongly influenced by the

expectations from the management, e.g., a PM with low estimates may achieve an

immediate positive feedback from the management. On the other hand, PMs may also desire

high estimates on their project, as this increases the probability that the project is completed

on time. The degree to which these two evaluation considerations affect estimates may

depend on how much weight the PMs put on short-term (immediate positive evaluation

from low estimates) versus long-term competence evaluation benefit (positive evaluation

when the project is completed successfully due to realistic effort estimates).

The videotaped group discussion showed that almost all the EMs were concerned about

how much the customer was willing to pay for the project. This should have led to a bias

towards very low effort estimates, i.e., the opposite of what we observed. On the other hand,

EMs are also responsible for the pay-off of the projects. Similarly to the PMs, the EMs may

estimate with a trade-off in mind between short-term positive evaluation (get the contract)

and long-term positive evaluation (make the company profitable).

6.7. Differences in Feedback

Lack of feedback prevents learning from experience when estimating effort. As described

by Jørgensen and Sjøberg [22] the estimation feedback to the employees of the company is

very limited. The feedback on total project effort may be better than that on individual tasks,

i.e., it may be in favour of EMs and PMs. This may have caused the EMs to perform better

than the designers and the PMs to perform better than the technicians in the experiment.

However, these systematic role-dependent differences cannot explain the difference in

optimism between the participants in the T and NT roles.

In the questionnaire on the participants’ background, four of the ten T-group participants

reported that they usually underestimated effort; four believed that they usually were on

target, while two reported that they typically overestimated the effort. The corresponding

 104

numbers for the NT-group participants were seven (underestimation), three (on target) and

zero (overestimation). This indicates that the NT-group participants were more aware of

their biases.

An important consequence of lack of feedback may be that goals other than estimation

accuracy become more important. For example, when software developers know that they

will not get any feedback on, or evaluation of, an effort estimate, greater weight may be

placed on the short-term goal of “appearing skilled”.

7. Conclusions and Further Work

The experimental results suggest that software professionals in technical roles and with a

technical background were more optimistic in their estimates than those in non-technical

roles and with a non-technical background. The reasons for this difference are more difficult

to pinpoint, but there are probably several contributing factors. As discussed earlier,

explanations such as length of experience, perceived estimation skill and formal estimation

training seem to have no significant impact. Differences between gender and estimation

strategy were difficult to investigate because of the small number of participants, but these

variables may have an impact. Although it is impossible to measure and test statistically,

evidence from other research and study of the company might indicate that estimation goal

and (lack) of feedback could cause individual differences between the groups. In our

opinion, the three most likely explanations for the observed difference are:

• Estimation strategy. Software professionals with technical competence typically use

a bottom-up estimation strategy, while people in non-technical roles must base their

estimates on “outside” properties of the project, and employ a top-down strategy.

Our study indicates that this bottom-up strategy leads to estimation optimism,

mainly because of forgotten activities. The indication is, however, not strong and we

intend to conduct further studies where the difference in estimation strategy is the

main topic. Observations that the recall of very similar, previously completed,

projects is a pre-requisite for accurate top-down based effort estimation has already

been made [37].

• Estimation goals. The evaluation of competence depends on the software

professionals’ role in the organization. It seems that programmers are perceived as

more competent by others (and themselves) when they provide low estimates. The

evaluation criteria of the non-technical and PM roles may be more context-

 105

dependent and complex and we need more studies to examine whether, and how,

different estimation contexts stimulate optimism, realism and pessimism in expert

estimates.

• Lack of Feedback. Lack of estimation feedback seems to be typical for software

development companies, and implies that other, conflicting goals become more

important than estimation accuracy. In particular, we believe that the desire to

appear skilled gains stronger weight when there is no feedback. Probably, a

combination of these factors influences the estimates. It would, for this reason, be

interesting to study the estimation behaviour of software professionals in situations

where there is more feedback on estimates.

To summarize, there are reasons to believe that the company roles of software

professionals affects estimation strategy and goals, which in turn affects software estimation

optimism. We believe that company role, in combination with poor project feedback,

explains most of the observed difference between software professionals with technical and

non-technical backgrounds in our study.

It seems as if the choice of estimation strategy, estimation evaluation criteria, and

feedback all seem to affect estimation accuracy. We encourage managers and experts to

consider these elements in their estimation process to avoid underestimation. For example,

if the estimators are not evaluated on estimation accuracy and apply a bottom-up estimation

strategy, there may be a high risk of the estimates being too low.

Acknowledgements

Thanks to Simula Research Laboratory for funding the experiment, Dag Sjøberg for

valuable comments, and to all participants and organizers at the company that participated

in the study. Kjetil Moløkken-Østvold was funded by the Research Council of Norway

under the project INCO.

References

1. Walkerden, F. and R. Jeffery, Software cost estimation: A review of models, process,

and practice. Advances in computers, 1997. 44: pp. 59-125.

2. Hughes, R.T., Expert judgment as an estimating method. Information and Software

Technology, 1996(38): pp. 67-75.

 106

3. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

4. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

5. Kusters, R.J., M.J.I.M. Genuchten, and F.J. Heemstra, Are software cost-estimation

models accurate? Information and Software Technology, 1990. 32(3): pp. 187-190.

6. Vicinanza, S.S., T. Mukhopadhyay, and M.J. Prietula, Software effort estimation: An

exploratory study of expert performance. Information systems research, 1991. 2(4):

pp. 243-262.

7. Mukhopadhyay, T., S.S. Vicinanza, and M.J. Prietula, Examining the feasibility of a

case-based reasoning model for software effort estimation. MIS Quarterly,

1992(June): pp. 155-171.

8. Pengelly, A., Performance of effort estimating techniques in current development

environments. Software Engineering Journal, 1995(September): pp. 162-170.

9. Kitchenham, B., et al., An Empirical Study of Maintenance and Development

Estimation Accuracy. Journal of systems and software, 2002. 64: pp. 57-77.

10. Heemstra, F.J. and R.J. Kusters, Function point analysis: Evaluation of a software

cost estimation model. European Journal of Information Systems, 1991. 1(4): pp.

223-237.

11. Lederer, A.L. and J. Prasad, Software management and cost estimation error.

Journal of Systems and Software, 2000. 50: pp. 33-42.

12. Ohlsson, N., C. Wohlin, and B. Regnell, A project effort estimation study.

Information and Software Technology, 1998. 40: pp. 831-839.

13. Walkerden, F. and R. Jeffery, An empirical study of analogy-based software effort

estimation. Journal of Empirical Software Engineering, 1999. 4: pp. 135-158.

14. Bowden, P., M. Hargreaves, and C.S. Langensiepen, Estimation support by lexical

analysis of requirement documents. Journal of Systems and Software, 2000. 51: pp.

87-98.

15. Atkinson, K. and M. Shepperd. Using function points to find cost analogies.

European Software Cost Modelling Meeting. 1994. Ivrea, Italy.

16. Jørgensen, M. An empirical evaluation of the MkII FPA estimation model.

Norwegian Informatics Conference. 1997. Voss, Norway: Tapir, Oslo. pp. 7-18.

 107

17. Myrtveit, I. and E. Stensrud, A controlled experiment to assess the benefits of

estimating with analogy and regression models. IEEE Transactions on Software

Engineering, 1999. 25: pp. 510-525.

18. Jørgensen, M. and D.I.K. Sjøberg, Impact of experience on maintenance skills.

Journal of Software Maintenance and Evolution: Research and practice, 2002. 14:

pp. 1-24.

19. Lichtenstein, S. and B. Fischhoff, Do those who know more also know more about

how much they know? Organizational Behaviour and Human Performance, 1977. 20:

pp. 159-183.

20. Boehm, B., Software engineering economics. IEEE Transactions on Software

Engineering, 1984. 10(1): pp. 4-21.

21. Whyte, G. and J.K. Sebenius, The effect of multiple anchors on anchoring in

individual and group judgment. Organizational behaviour and human decision

making, 1997. 69(1): pp. 75-85.

22. Jørgensen, M. and D.I.K. Sjøberg, Impact of software effort estimation on software

work. Journal of Information and Software Technology, 2001. 43: pp. 939-948.

23. McDonald, A. and R. Welland. Web Engineering in Practice. Proceedings of the

Fourth WWW10 Workshop on Web Engineering. 2001. pp. 21-30.

24. Wiegers, K.E., Software process improvement in web time. IEEE Software, 1999.

16(4): pp. 78-86.

25. Reifer, D.J., Web development: estimating quick-to-market software. IEEE Software,

2000. 17(6): pp. 57-64.

26. Moløkken, K. and M. Jørgensen. Software Effort Estimation: Unstructured Group

Discussion as a Method to Reduce Individual Biases. The 15th Annual Workshop of

the Psychology of Programming Interest Group (PPIG 2003). 2003b. Keele, UK.

pp. 285-296.

27. Moses, J. and J. Clifford. Learning how to improve effort estimation in small

software development companies. 24th Annual International Computer Software and

Applications Conference. 2000. Taipei, Taiwan: IEEE Comput. Soc, Los Alamitos,

CA, USA. pp. 522 - 527.

28. Christensen, R., Analysis of variance, design and regression. Applied statistical

methods. 1998: Chapman & Hall/Crc.

29. Cohen, J., Statistical power analysis for the behavioral sciences. 1969, New York:

Academic Press, Inc.

 108

30. Wonnacott, T.H. and R.J. Wonnacott, Introductory statistics. 5th ed. 1990: John

Wiley & Sons.

31. Siegel, S. and N.J. Castellan, Non-parametric Statistics for the Behavioral Sciences.

2nd Edition ed. 1988: McGraw Hill College Div.

32. Henry, R., The effects of choice and incentives on the overestimation of future

performance. Organizational Behavior and Human Decision Processes, 1994. 57: pp.

210-225.

33. Kitchenham, B., Software Metrics: Measurement for Software Process

Improvement. 1996, Oxford: NCC Blackwell.

34. Buehler, R., D. Griffin, and M. Ross, Exploring the "Planning fallacy": Why people

underestimate their task completion times. Journal of Personality and Social

Psychology, 1994. 67(3): pp. 366-381.

35. Rosenfeld, L. and P. Morville, Information architecture for the world wide web. 1st.

ed. 1998, Sabastopol: O'Reilly and Associates, Inc.

36. Aronson, E., T.D. Wilson, and R.M. Akert, Social Psychology. 3rd. ed. 1999:

Addison-Wesley Educational Publishers Inc.

37. Jørgensen, M., Top-Down and Bottom-Up Expert Estimation of Software

Development Effort. Journal of Information and Software Technology, 2004. 46(1):

pp. 3-16.

 109

Appendix I:

User Requirements

This is the requirement specification for the project, as delivered by the customer.

The customer

The customer is the producer of an established technical encyclopaedia that numbers 800

editions with 10 000 illustrations and 1 600 tables. They have 20 000 subscribers. The

publication frequency is low, with two shipments each year, each containing several

magazines.

The magazines exist both on paper and CD-ROM. The CD-ROM contains some extra

features, and there are plans to add other sources of information.

There is also a simple intranet version of the CD-ROM that is used internally and by a

handful of existing customers.

All documents are created in MS-word, and approved and converted to HTML by a central

unit. They have no need for a very complicated CMS-system.

Status

The starting point for a web version is the existing CD-ROM and intranet based system. The

primary goal is to build on the functionality of these systems, but also to offer the

encyclopaedia commercially over the Internet, both to companies and individuals. It is

natural to use this opportunity to look at the possibilities for a new medium, as well as

revising existing production and administration routines.

All documents that will be used exist on the CD-ROM in HTML versions, and can be

copied directly to the website. No changes are needed. Design is of less importance.

All the users of the site are expected to be technical competent people, with experience and

knowledge of the CD-ROM and/or paper versions.

 110

Desired functionality

This is the required functionality.

1. Basis functionality (searching for and displaying information)

Display documents in HTML-format (document including local table of contents (TOC) in

magazine)

Navigation through an expanding TOC

Navigation through an index

Free search (Expansion of the existing version)

2. Downloading of documents and pictures

The system must allow the downloading of documents in other formats.

PDF versions of documents for better prints where such exist

Figures in high-resolution bitmap (TIFF)

Figures in vector format (DWG)

Displaying of video-clips

The system must handle the fact that not all documents and figures exist in all formats.

3. Extranet functionality

Only paying subscribers shall have access to the service. For companies this can be

implemented by access-limitation on a net-level (IP). Company customers can then skip

logon procedures with usernames and passwords. An alternative method is to use personal

subscriptions. The system must be able to handle different types of subscriptions that grant

different degrees of access to the system.

4. Trade solution

Possibility of subscribing via the web

Possibility of buying a single magazine for downloading or delivery by mail

Possibility of paying online by credit card or other forms of payment

5. Demo-/sales-version

The system shall have an open part, granting access to some functionality, such as

navigation and search, and limited content. This functionality should be combined with a

function that allows the purchase of single magazines for downloading.

 111

6. Reply service

This contains an overview of the FAQ. The answers should have links to magazine editions

with extensive information. The user is checked, and receives the option to log in, buy a

single magazine, or buy a subscription.

7. User adjustment and information

Possibility of having personal settings for each user

Possibility for users to register own comments to the magazine

Possibility for the editors to publish comments to the magazines

Possibility for users to give feedback directly from a magazine, reporting errors etc.

Discussion forum tied to magazines

8. Administration of users

The administration system stores information on all customers, both subscribers and buyers

of single issues. The administration system must monitor the use of the system. One must be

able to extract different types of statistics, as well as blocking users who abuse the system or

fail to pay their subscription.

9. Integration with existing administrative systems

Subscriber- and logistics system, Agresso.

Customer and support, Superoffice

Degree of integration must be based on cost/value aspects.

10. Adjustment of the production system

The production system is based on a personally developed database, containing a parser that

translates documents from MS Word format to HTML. The system must be adapted to a

new medium and a new system. Other possible changes to consider:

Parsing of word documents to XML instead of HTML, which will add to the system’s

flexibility.

Expansion of the database to support the administration of manuscripts.

Adapt the base for the production of additional documents used in the printed issue (TOC,

index list, overview of new, changed and expired magazines etc.)

 112

11. Interface with other systems

By implementing the magazine in a web setting, integration with other systems should be

considered. An interface (API) for communication with other systems (Using SOAP, XML

etc.) should be defined. It must be possible to link to documents by URL.

12. Choice of technology

The goal is to use already known technology. This is to handle development and changes

with internal resources.

OS: Windows 2000

Web server: Internet Information Server w/ASP

Database: Microsoft SQL Server

Languages: Visual Basic, NET technology

13. Hosting

The system is to be installed on the client’s servers.

 113

Figure 1: Front page Example

Figure 2: Sub page Example

 114

Paper V:

Group Processes in Software Effort Estimation

Kjetil Moløkken-Østvold and Magne Jørgensen.

Simula Research Laboratory.

Journal of Empirical Software Engineering, 2004, Volume 9, Issue 4, pp 315-334.

Guest Editors: Dr. Marian Petre, Prof. David Budgen and Dr. Jean Scholtz

Abstract: The effort required to complete software projects is often estimated,

completely or partially, using the judgement of experts, whose assessment may be biased. In

general, such bias as there is seems to be towards estimates that are overly optimistic. The

degree of bias varies from expert to expert, and seems to depend on both conscious and

unconscious processes. One possible approach to reduce this bias towards over-optimism is

to combine the judgments of several experts. This paper describes an experiment in which

experts with different backgrounds combined their estimates in group discussion. First,

twenty software professionals were asked to provide individual estimates of the effort

required for a software development project. Subsequently, they formed five estimation

groups, each consisting of four experts. Each of these groups agreed on a project effort

estimate via the pooling of knowledge in discussion. We found that the groups submitted less

optimistic estimates than the individuals. Interestingly, the group discussion-based estimates

were closer to the effort expended on the actual project than the average of the individual

expert estimates were, i.e., the group discussions led to better estimates than a mechanical

averaging of the individual estimates. The groups’ ability to identify a greater number of the

activities required by the project is among the possible explanations for this reduction of

bias.

Keywords: Software development, effort estimation, expert judgment, group processes,

expert bias.

 115

1. Introduction

“When you lie about the future, that’s called optimism, and it is considered a virtue.

Technically speaking you can’t “lie” about the future because no one knows what will

happen. When you apply this unique brand of optimism (not lying!) at work, that’s called

forecasting.”

- Scott Adams [1]

Improving the quality of effort estimation is one of the great challenges for software

project management. Across a wide range of software projects, from web applications to

time-critical financial or medical systems, poor effort estimation is observed, and the

problem seems to increase with project size [2]. To account for this, several formal methods

and processes to support estimators, such as COCOMO II [3], ANGEL [4] and WEBMO [5]

have been proposed. This paper, however, focuses on the estimation of effort by experts.

This seems to be the most common estimating method [6], and is employed over a wide

range of software projects. One of the main problems with expert estimation, however, is

that it is no better than its participants, and hence is subject to their individual biases [7, 8]

and political pressure brought to bear by the company [8]. A possible method of reducing

the risk of unwanted influence on the estimates is to use group discussion as an estimation

method. This is not a new idea, but it seems to have been neglected in the empirical research

on software engineering. In other fields, however, there is continuous ongoing research on

how to best combine the opinions of several experts [9].

We believe that new companies in particular, which have limited historical data upon

which to draw for experience, may benefit from using groups to improve their effort

estimation process. This paper describes a controlled experiment on the performance of

estimation groups in a web-development company that uses no formal estimation process or

project experience database. A typical web-development project has several characteristics

that distinguish it from traditional software development projects [5]. These characteristics

include project size, development approach, processes employed and people involved. Some

of the differences are due solely to the nature of the technology involved, but others may be

related to company size and maturity. Most web-development companies are small

compared with traditional software development companies, and smaller companies may

 116

face additional estimation challenges, such as access to domain experts and process

management [10].

In our experiment, twenty individual experts submitted project estimates that ranged

from 220 to 2286 hours, with an average of 1088 hours. Estimates from five groups of four

experts each ranged from 1100 to 2251 hours. The actual effort expended on the project

was 2365 hours, indicating that some, but not all, of the bias towards optimism was

eliminated by group discussion. In essence, the results reported in this paper will apply to

similar companies and estimation contexts, but the basic idea of using unstructured group

discussion to reduce individual bias may also be transferable to more traditional

development projects and other estimation contexts. The company studied, our experiences

from this and other companies, and the extent to which the study has external validity, will

be discussed in later sections.

The remainder of this paper is structured as follows: (2) Background for Expert and

Group Estimation, (3) Hypotheses, (4) Research Method, (5) Results, (6) Discussion and (7)

Conclusion and Further Research.

2. Background for Expert and Group Estimation

Expert judgment is a commonly employed method for estimating the effort required to

complete software projects. As reported in a review of studies on expert estimation by

Jørgensen [6], several independent surveys [11-16] rate it to be the preferred method among

professional software developers. Although expert estimation is commonly used, it is

probably not because of its precision that the method is favoured. In fact, expert estimation

seems to be just as imprecise as the use of formal estimation models [6]. However, expert

estimates can be especially useful (and often the only option) for companies that lack

documented experience from earlier projects [17] or have limited estimation resources [10].

This is often the case for young and/or unstable organizations. Both these characteristics

apply to most web-development companies, including the one we studied and report on in

this paper.

A search on the terms “software effort” or “size estimation” in the leading software

engineering journals, IEEE Transactions on Software Engineering, Journal of Systems and

Software, Journal of Information and Software Technology and Journal of Empirical

Software Engineering, yielded slightly more than 100 relevant papers. Of these, only 16 had

expert estimation as a topic, and only one of them had group estimation as a topic. In that

 117

paper, Taff and his colleagues present a structured model for expert estimating in groups,

called Estimeetings [18], but do not compare these estimates with individual or other group

based estimates, only with actual effort expended. In other words, papers in the leading

journals for software engineering did not contain a single study on individual versus group-

based software effort estimation.

Group expert estimates may be categorized according to two different characteristics,

though other categorizations are possible.

The first characteristic concerns the involvement of the estimators, and offers two

possible approaches: (i) There are designated estimation groups [19], whose only objective

is to estimate the project, and do not participate in the development process. (ii) Employees

who are likely to develop the project are responsible for the estimates. Both approaches

have advantages and disadvantages. A separate estimation group may be much less prone to

personal or political biases, and more likely to improve their estimation skill over time [19].

On the other hand, to have such a designated team would require a large organization, and

good internal communication. Expert estimators, who are likely to implement the solution

themselves, will probably get to know the project better than anyone else, and may have a

higher motivation for a thorough project analysis [8]. For smaller organizations, this

approach may be the only possibility due to financial and resource allocation restrictions. A

recent study by Jørgensen [20] found that estimation accuracy improved when the estimator

participated in project development. This is supported in previous research [21]. However,

one of the main problems associated with not using independent estimators is that personnel

with high stakes in the project, e.g. project managers, may provide unrealistic estimates in

order to get their project approved.

The second characteristic is a structured versus an unstructured approach. An elaborate

method of reducing problems in groups related to company politics is to employ the Delphi

technique [22], which is often recommended in management papers [23]. The Delphi

technique does not involve face-to-face discussion, but anonymous expert interaction

through several iterations, supervised by a moderator until an agreed-on majority position is

attained. A modification of this technique, which includes more estimation group

interaction, was developed by Barry Boehm and his colleagues, and labelled the Wideband

Delphi technique [24]. This technique is a hybrid of unstructured groups and the traditional

Delphi method. As in the Delphi technique, there is a moderator (labelled coordinator), that

supervises the process and collects estimates. In this approach, however, the experts meet

for group discussions both prior to, and during the estimation iterations. This approach has

 118

been suggested as an effort estimation method in books and articles on software metrics

[25], software process improvement [26], project management [27] and effort estimation

[8]. The Estimeetings process [18] involves a series of group meetings, where at some stage,

parts of the requirement specification is handed down to several individual estimators with

in-depth knowledge of the problems. It is a complicated process that require several weeks.

It was specifically designed for one large project, and we have not found any evidence that

it has been used anywhere else.

To the best of our knowledge none of the Estimeetings, the Delphi or the Wideband

Delphi techniques has been subject to extensive empirical research in a software

engineering context during the last 25 years. We are aware of only one study that describes

a company which employed the Delphi approach [28]. By contrast, we know from

experience that many software organizations apply unstructured group discussions in their

work leading to software development effort estimates.

3. Hypotheses

Some of the scepticism towards group-based effort estimation may be attributed to

misinterpretation of the research from other research areas, e.g., as presented in some

introductory textbooks in psychology. Many of these are quite extensive in their coverage of

the possible dangers of group processes [29-31]. Such books may be misleading, if the

described results are not understood properly.

The terms group polarization and choice shift refer to two similar, and often confused,

concepts in group psychology. These related concepts concern, among other things, how an

initially optimistic or risky decision can be rendered even more optimistic or risky by group

discussion. Zuber, Crott et al [32] define choice shift as the difference between the

arithmetic average of the individual decisions and the group decision. Group polarization is

defined as the difference between individual pre- and post- group discussion responses.

Studies conducted on group decision making have found choice shift and group polarization

effects in decisions made in a range of different areas, from burglary to management [32-

36]. Some of this knowledge may have been oversimplified during the transfer from

psychology to other professions, such as project management. The literature in these other

professions often states the dangers of group interaction, but not why or in which situations

these dangers apply. This may have resulted in an incomplete picture, in which valuable

group work aspects such as motivation [37] and information sharing [23] have been omitted.

 119

We find evidence of this omission in software management textbooks, where both

separate estimating groups [19] and methods such as the Wideband Delphi technique [24,

25] are described as countering choice shift and group polarization, with no further

explanations of the phenomena. For example, Boehm [24] states that “…group members

may be overly influenced by figures of authority or political considerations.”

Fortunately, there are research communities that have investigated the different

properties of group decision making. According to Kernaghan and Cooke [38], the

engineering management community has gradually accepted that the output of groups is

likely to be superior to its average member. The forecasting community also constantly

addresses best practices for combining expert judgements [9]. Textbooks specialized in

group psychology [39, 40] also present a balanced view on when and how group processes

can be beneficial, depending on the task and individuals involved.

A review of the literature on the Delphi technique in forecasting [37] suggests that it, on

average, outperforms unstructured groups in which group members discuss and interact

freely. However, the review has also shown that there are tasks for which unstructured

groups are better suited. In some situations, it is possible that extra information and group

motivation exist in an unstructured group, and this can facilitate the process and enable it to

surpass a Delphi group in performance [37]. Perhaps typical software estimation processes

represent such situations. In an estimation process, there may be several experts who

contribute different project experiences and knowledge. Such experiences can more easily

be shared in a face-to-face group than through a moderator, as in the Delphi technique.

Earlier reviews of the literature and experiments have concluded that it seems to be less

important which combination method, from a set of “meaningful” methods, is used [41]. It

may, for example, not matter much whether simple averaging, unstructured groups, the

Delphi technique or other combination methods are used. Other factors, such as cost and

political issues, should determine which combination method to employ [41].

Several software engineering textbooks [24, 42] and papers [7, 8, 23] point out that

forgotten tasks are among the major obstacles to successful estimation by experts, especially

when employing a bottom-up estimation approach, i.e., the decomposition of a project into

activities and the estimation of each activity individually. A group approach to estimation

will help to remove this obstacle, because several estimators will identify at least as many

activities as the best single estimator alone. This will be especially true if estimates from

experts with different company roles and experiences are combined in group discussion.

 120

In sum, previous findings lead us to believe that unstructured groups can be used to

reduce individual estimation optimism. The latter belief is evaluated through experimental

testing of the following hypotheses:

 H1: Group effort estimates are, on average, less optimistic than the average of the

 experts’ individual effort estimates.

 H2: Individual effort estimates are, on average, less optimistic after group

 discussion with other experts than before group discussion.

4. Research Method

The research presented in this paper attempts to follow the guidelines suggested by

Kitchenham, Pfleeger et al. [43], which includes specifying as much information about the

organization, the participants and the experiment as possible, in addition to the complete

experimental results. The rationale for including so much information is to ensure that the

study is easy to replicate, and that the results are appropriately interpreted and transferred.

4.1. The Company Studied

The company studied is a web-development company, and operates as an independent

contractor that develops a wide range of complete solutions for its customers. At the time of

the study the company had about 70 employees. The employees (excluding administration

and support staff) were allocated to the following four business roles: Engagement

Manager/Sales and Client Responsibility (EM), Project Manager (PM), User

Analyst/Designer (User) and Technical Programmer (Tech). These roles are similar to those

described by McDonald and Welland [44]. Average participant experience in the IT-

business was 6.3 years, in their current role 2.7 years and with effort estimation 1.5 years.

Half of the participants were educated to at least Master’s level, while the rest had

Bachelor’s or comparable degrees.

The organization had no formal estimation procedure, their projects had short

development cycles and the development processes involved were ad-hoc. These are all

typical characteristics of web-development companies [5, 44]. The company based its

estimates on expert judgment. A project estimate was most often provided by the person(s)

 121

responsible for the project. This is, to the best of our knowledge, a common situation in

web-development companies, and small companies in general [10].

4.2. The Estimation Task

Twenty participants were selected at random from the company; five from each of the

four company roles (EM, PM, User and Tech). Each participant was required to estimate the

most likely effort needed to complete a project, based on a requirement specification

including some screenshots from a CD-ROM. The specification, i.e., the document

describing the software to be developed, was taken from a project currently under

development by the company. The complete requirement specification, as presented to the

participants, is enclosed as Appendix I.

The project and the customers were anonymous, and none of the participants had any

knowledge about them. The project was the development of a “publication solution” for a

technical magazine. It was medium to large, compared to the average size of projects

developed by the company. The estimation instructions stated that the participants in the

experiment should behave as realistically as possible. The participants were also informed

that a project crew had not been selected, and that they should base their estimates on

average company productivity. These measures were undertaken in order to reduce any

political biases [19, 45], e.g., that the estimates would be influenced by a belief about what

would be the right price to win the contract. What we wanted to investigate was the group

discussion effect on the most likely estimate. During the sessions, the experimenter was

present to answer questions and take notes.

The experiment had the following steps:

• The participants developed their individual estimates of the effort needed to produce

the software during a 45-60 minutes estimation session.

• After the individual session, the participants formed groups, with one Engagement

Manager (EM), Project Manager (PM), User Analyst (User) and Technical

Programmer (Tech) in each group.

• Each group was given about 60 minutes to agree on an estimate for the same project

as in the individual estimation session. These sessions were also videotaped to

ensure thorough analysis of the group discussions.

 122

• After the group decision, each participant was asked: “After an individual

assignment and following teamwork, what is now your personal opinion about the

estimation assignment”.

During the experiment each participant completed two questionnaires, in which he

provided background information about his experience, education, estimation training and

skill level, and gave his comments on the experiment.

5. Results

The original individual estimates, the group estimates, and the individual opinions after

group discussion are displayed in Table 1. There were no participant dropouts or incomplete

responses. All statistical calculations were done with the package MINITAB2 13.3 for

Windows.

Group A Group B Group C Group D Group E

 Business role Before After Before After Before After Before After Before After

EM 1200 1000 1550 1500 1850 1500 547 1000 2286 2800

PM 960 1200 1820 1500 300 1550 914 1400 984 2200

User 1500 1200 1140 1500 1260 1500 620 1000 1500 2000

Tech 960 1000 585 1400 220 220 660 1000 900 2000

Average 1155 1100 1273.8 1475 907.5 1192.5 685.3 1100 1417.5 2250

Group 1100 1500 1550 1339 2251

Actual effort 2365

Table 1: Individual Pre-group (Before), Group and Individual Post-group (After) Estimates.

The group estimate was less optimistic than the average expert opinion in four out of five

groups. An analysis was performed with a paired t-test [46], as suggested in similar research

on choice shift [47]. Since the hypothesis suggests a direction of effect (groups are less

optimistic than average individual experts), the paired t-test was one-sided. The result is

displayed in Table 2.

2 http://www.minitab.com

 123

Group
average

Individual
average Difference Pooled StDev p-value

Size of effect
(d)

ML 1548 1088 460 368 0.024 1.25

Table 2: Average values for shift between individual and group estimates.

We provide the actual p-values, as suggested by Wonnacott and Wonnacott [46], instead

of pre-defining a significance level for rejection. To measure the size of the difference in

average values, we included Cohen’s size of effect measure (d) [48], where d = (average

value group – average value individuals) / pooled standard deviation amongst groups and

individuals. The analysis of possible choice shift on the estimates gave a discernible result

(p=0.024), and a large effect (d=1.25).

Group polarization is, as described earlier, the difference between individual responses

made before the group session and the responses made after the group session [32]. Both

median and average individual estimates were less optimistic in the post-group answers than

in the initial responses. The median values increased by 478 hours, from 972 to 1450. The

average individual estimates increased by 336 hours, from 1088 to 1424. A one sided,

paired t-test on the before and after values yielded a discernible result (p=0.003), and a

medium (d=0.62) effect size (Table 3).

Average individual
estimates after group
discussion

Average individual estimates
before group discussion Difference

Pooled
StDev

p-
value

Size of
effect (d)

ML 1424 1088 336 544 0.003 0,62

Table 3: Average Values, p-values and Effect Size (d) for a Change in Individual Optimism.

6. Discussion

The actual effort expended on the project was 2365 work-hours, that is, most participants

gave an estimate that was much too low compared with the actual effort expended.

However, the actual effort of a new project based on the same specification may have used

less (or more!) effort than the completed project, i.e., there are many possible effort usage

outcomes of a project based on the same specification. The actual effort expended to

complete the project cannot, for this reason, be taken as more than an indication of

estimation inaccuracy in this experiment. Nevertheless, based on the actual effort and the

 124

original company estimate (1240 hours), we believe that estimates of less than 1000 work-

hours point to strong over-optimism. As can be seen in Table, 11 out of 20 of the original

individual effort estimates indicated a workload of less than 1000 hours. The variation

among the individual estimates shows that in reality, opinions regarding the same project

may differ by a magnitude of up to ten!

There seems to be a tendency for both the group decisions and the individual post group

discussion decisions to be less optimistic than the original estimates. None of the group

decisions, and only 1 out of 20 individual post-group estimates, was less than 1000 hours.

The experiment conducted has several properties that need to be viewed in light of

previous research on group processes, applications for researchers and practitioners, and

experimental validity.

6.1. Group Processes

When discussing the use of groups in the context of software effort estimation, it is

essential to understand what kind of task effort estimation is. Effort estimation is a complex

task in which certain properties, such as “quality”, are difficult to measure. In his book on

group processes, Rupert Brown [39] differentiates between “group productivity” and “group

decision making”. In his view, group productivity concerns tasks where there exists a

measurable performance, while group decision-making concerns tasks where it is

impossible to measure performance.

Regarding group decision making, we have already described some of the previous

research on choice shift and group polarization. The literature on group processes [29-31,

39, 40] and software management [19, 24, 25], frequently warns about the possibility that

group pressure (e.g. an unspoken “competition” to appear as the most risky or efficient

programmer) and political preferences (e.g. a management that demands optimistic

estimates), could influence group decisions unreasonably. Observation of post-group

opinions that significantly differed from the group responses might indicate that the

participants merely complied, for example, with authority. In our experiment, however, the

individual post group estimates were much closer to the group decisions than they were to

the original individual estimates. This, together with responses in the submitted

questionnaires, indicates that the participants may have been mostly influenced by the

arguments and extra information presented in the group discussion.

 125

The nature of the task involved in our experiment differs significantly from those in most

previous studies on group decision making, which typically ask groups of randomly selected

people to decide on choice dilemmas, or professionals in an occupation to determine risk

associated with different tasks. Those studies suggest that initially risky or optimistic

decisions become more extreme after group discussion. Our study, however, yields the

opposite result. Possible explanations from a group decision making perspective, is the

diverse background of our participants, their shared commitment, and how the group

politics were handled.

Our groups were able to identify more activities than did our individuals alone. It was

explicitly reported in the questionnaire, by five of the participants in our experiment, that

having forgotten activities was the main reason for their estimates being lower than the

group estimates. The groups sometimes even identified necessary activities that none of the

individuals had reported. In the experiment, none of the participants in each group had the

same company role. This may improve the quality of the group [23], as long as they share

terminology and an understanding of the problem [22]. This applies to the participants in

our experiment, since they frequently work on the same projects in the same company.

Experts with different backgrounds consider the same project from different angles, and are

probably able to identify more activities than experts with similar backgrounds. It is

possible that groups of experts with similar backgrounds would show less reduction of

optimism in their estimates [49].

During the video-analysis, we observed how all the groups behaved in a way which

allowed the opinions of all participants to be heard and that differing views were discussed

openly. They regarded the assignment from a professional point of view, and there was no

apparent peer pressure to be either “risky” or “conservative”. All groups resolved the task

by a consensus estimate, and there were no incidents of a majority decision, e.g. through a

vote. As seen in table 1, most participants retained the group estimates when they ware

asked to re-estimate the tasks individually after group discussion. This can indicate that their

personal opinion had had been acknowledged by the group.

In accordance with Brown’s productivity aspects, might it not also be possible to

measure some kind of productivity in the estimation process? Thus far, we have, in the

main, considered the process of estimating effort as a whole. Given the complexity of

estimating the effort required to complete software development projects, an analysis of the

different parts of the estimation process might yield a better understanding of how far

productivity can be measured. Such analysis is, of course, a challenging endeavour and one

 126

upon which it would be foolhardy to embark in the present paper, but from a cursory

examination it should be clear that some parts of the estimation process are measurable. For

example, it would seem to be possible to measure the successful identification of the tasks

that need to be performed to complete a software project.

The task of identifying project activities is related to the classic brainstorming process. A

brainstorming process often involve several individuals seated together in order to generate

input to a specific domain, e.g. a name for a new washing detergent. Brown [39] reports

studies that have found brainstorming procedures to be ineffective, due to both social and

coordination problems. On the other hand, if the participants first prepared themselves,

productivity increased significantly. Therefore, it is essential to consider not only what

projects or part of projects to estimate in groups, but also how this group process is

implemented. In our experiment, the individuals prepared themselves during the individual

estimation. They first identified tasks they believed were necessary before the group

discussion, during the individual estimation session. Since each group consisted of

personnel with different roles, they also emphasized different activates. Later, in the group

session, they were able to combine their activities, as well as identifying entirely new ones,

in order to construct a complete project break-down. This break-down was then used as a

basis for the group estimate.

In a more general sense, group productivity can exceed the sum of the individual

performances if some kind of group motivation exists [39]. In our experiment, and in actual

development projects, the participants should be motivated to perform well together with

their colleagues.

6.2. Implications for Researchers and Practitioners

It is difficult to discuss our findings in the light of actual estimation practices employed

by software professionals. To our knowledge, no surveys have been conducted that analyze

the extent to which groups of experts are used in effort estimation. A recent review of all

known surveys on software effort estimation [50] found that expert judgement is by far the

most common method used to estimate software projects. By comparison, formal models,

such as COCOMO or FPA-based, are not used to any great extent. The surveys analyzed in

the review, however, failed to elicit how expert estimates were made. None of them asked,

for example, whether groups of experts were used at any stage of the process.

 127

From all the surveys, experiments and case studies on software estimation that we

reviewed, we found only one that identifies a formal group processes actually used in the

industry [28]. In a case study of 145 projects at an outsourcing company, it was found that 3

out of 145 projects were estimated by using the Delphi procedure. By comparison, 104

projects were estimated by the project manager alone, and were defined as expert opinion.

We found no independent reports of actual use of the Wideband Delphi or Estimeetings

procedures discussed earlier.

Even though there are few descriptions in the literature of group-based estimates (formal

or informal) this does not necessarily mean that no companies conduct estimates in groups.

From our experience as field researchers, and through review of other studies, we have

found that the terms “expert judgment”, “expert decision” or “expert estimate” include a

wide range of estimation procedures. These expert-based procedures may include varying

degrees of group interaction, from none (e.g. a project manager estimates the whole project)

to full group interaction (e.g. as in our study). In between these alternatives, there exist other

methods to include several experts, e.g. a manager can ask subordinates to each estimate

parts of projects, and the manager then adds the estimates for a project total.

In our study, the group-based estimates were less optimistic than the average estimate of

individual experts. This may, however, not be the case for other companies or projects.

Therefore, it is necessary that the individual companies themselves analyze their projects

and decide which projects, and which stages in the estimation process, are suited for group

collaboration. As discussed earlier, a typical stage at which the views of several experts may

be beneficial is when the requirements are mapped onto different project activities.

The group process is probably more valuable than mechanical combination of estimates

because then the experts discuss not only their estimates, but also the assumptions they

made when calculating them [51]. Still, it is not unlikely that similar results would have

been found had the unstructured group discussions been replaced with more structured

group processes, e.g., the Wideband Delphi technique. The combination of several experts’

opinions seems to be beneficial in most cases. The way in which expert opinions should be

combined should be decided relative to estimation context factors, such as type of process

and project [41]. Projects with high political stakes may not be suited for unstructured group

estimation at all, and more formal procedures may be appropriate. Structured approaches,

such as the Wideband Delphi technique, have qualities different from unstructured

approaches [37], and may, for example, be better suited when the level of personal

disagreement is high, or political prestige is involved.

 128

Companies may also develop their own Work Breakdown Structures (WBS) and/or

estimation checklists to achieve some of the benefits that we found accrue from group

discussion, e.g., individual estimators have a lower risk of forgetting activities when using

an extensive WBS or high quality checklists. The use of a group collaboration estimation

method can then be reserved for especially challenging projects, for example, projects

involving new technology and business areas.

6.3. Experimental Validity

The main threat to validity of the study may be that the experimental setting distorts the

realism of the estimation process. The following analysis, however, suggests that at least the

outcome of the estimation process was realistic. The average project estimate provided by

the experiment participants (1088 hours) did not deviate substantially from the actual effort

estimate made by the company (1240 hours). We must, however, be aware of the large

individual deviation, with estimates from 220 to 2286 hours.

There are also validity threats related to the lack of customer contact and limited time

available present in our study. For effort estimates applied as input to a bidding process,

however, this was a common situation in the company, which developed more than 500

estimates in the year 2001.

The main problem regarding transfer of results to other organizations may be that the

participants in the study were from the same company. The participants were so chosen for

practical reasons, but our experiences with other companies lead us to believe that the

company we studied is similar to many other web-development companies, both in size and

(lack of formal) estimation process. Our observations of the company also indicate that they

are similar to other small companies who employ an ad-hoc estimation approach, as

described by Moses and Clifford [10].

It may be a threat to validity that only one project was used. The project chosen may, for

example, have been especially difficult to estimate, and the optimism reduction may not

have been of the same magnitude in other “easier” projects.

The impact from the threats to validity means that our findings may be applicable mainly

to small companies with lack of formal estimating processes, when estimating more than

average “difficult” projects with limited information and strong time restrictions, i.e.,

estimation situations typical for web-development companies when providing a project bid.

 129

7. Conclusions and Further Research

The findings in our study are that group estimates and individual estimates after group

discussion were less optimistic and more realistic than the individual estimates before group

discussion. The main sources of this increase in realism seem to be identification of

additional activities and an awareness that activities previously identified may be more

complicated than was initially thought.

The unstructured group effort estimation approach presented here may be a simple and

inexpensive approach for companies to improve the precision of their estimates.

Our contribution to the software industry is not to invent a new procedure, since group-

based estimation procedures are probably employed by a wide range of companies all over

the world. We seek, instead, to counterbalance the view on group processes presented in

many papers and textbooks on software engineering. As mentioned earlier, group-based

estimates are often described as dangerous, and often, these descriptions are not

accompanied by any deeper explanations as to when and how such dangers applies.

Two topics for further research are comparison of the unstructured approach studied in

this paper with more structured group processes, such as the Delphi [22] or the Wideband

Delphi [24] techniques, and comparison of unstructured estimating approaches with WBS

and checklist-supported estimates.

Acknowledgements

We wish to thank Simula Research Laboratory for funding the experiment, Dag Sjøberg

for valuable comments, and all the participants and organizers at the company participating

in the study. Kjetil Moløkken-Østvold was funded by the Research Council of Norway

under the project INCO.

 References

1. Adams, S., Dilbert and the way of the weasel. First ed. 2002: HarperCollins

Publishers Inc.

2. Gray, A., S. MacDonnell, and M. Shepperd. Factors systematically associated with

errors in subjective estimates of software development effort: the stability of expert

 130

judgment. Sixth International Software Metrics Symposium. 1999: IEEE Comput.

Soc, Los Alamitos, CA, USA. pp. 216-227.

3. Boehm, B., et al., Software cost estimation with Cocomo II. 2000, New Jersey:

Prentice-Hall.

4. Shepperd, M., C. Shofield, and B. Kitchenham. Effort estimation using analogy.

International Conference on Software Engineering. 1996. Berlin, Germany: IEEE

Comput. Soc. Press, Los Alamitos, CA, USA. pp. 170-178.

5. Reifer, D.J., Web development: estimating quick-to-market software. IEEE Software,

2000. 17(6): pp. 57-64.

6. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

7. Boehm, B.W., Software engineering economics. IEEE Transactions on Software

Engineering, 1984. 10(1): pp. 4-21.

8. Hughes, R.T., Expert judgement as an estimating method. Information and Software

Technology, 1996. 38(2): pp. 67-75.

9. Armstrong, J.S., Principles of forecasting. 2001, Boston: Kluwer Academic

Publishers.

10. Moses, J. and J. Clifford. Learning how to improve effort estimation in small

software development companies. 24th Annual International Computer Software and

Applications Conference. 2000. Taipei, Taiwan: IEEE Comput. Soc, Los Alamitos,

CA, USA. pp. 522 - 527.

11. Heemstra, F.J. and R.J. Kusters, Function point analysis: Evaluation of a software

cost estimation model. European Journal of Information Systems, 1991. 1(4): pp.

223-237.

12. Paynter, J. Project estimation using screenflow engineering. International

Conference on Software Engineering: Education and Practice. 1996. Dunedin, New

Zealand: IEEE Comput. Soc. Press, Los Alamitos, CA, USA. pp. 150-159.

13. Hill, J., L.C. Thomas, and D.E. Allen, Experts' estimates of task durations in

software development projects. International Journal of Project Management, 2000.

18(1): pp. 13-21.

14. Jørgensen, M. An empirical evaluation of the MkII FPA estimation model.

Norwegian Informatics Conference. 1997. Voss, Norway: Tapir, Oslo. pp. 7-18.

 131

15. Hihn, J. and H. Habib-Agahi. Cost estimation of software intensive projects: A

survey of current practices. International Conference on Software Engineering.

1991: IEEE Comput. Soc. Press, Los Alamitos, CA, USA. pp. 276-287.

16. Kitchenham, B., et al., An Empirical Study of Maintenance and Development

Estimation Accuracy. Journal of systems and software, 2002. 64: pp. 55-77.

17. Höst, M. and C. Wohlin. An experimental study of individual subjective effort

estimations and combinations of the estimates. International Conference on

Software Engineering. 1998. Kyoto, Japan: IEEE Comput. Soc, Los Alamitos, CA,

USA. pp. 332-339.

18. Taff, L.M., J.W. Borcering, and W.R. Hudgins, Estimeetings: Development

estimates and a front end process for a large project. IEEE Transactions on

Software Engineering, 1991. 17(8): pp. 839-849.

19. DeMarco, T., Controlling software projects. 1982, New York: Yourdon Press.

20. Jørgensen, M. An Attempt to Model Software Development Effort Estimation

Accuracy and Bias. Proceedings of Conference on Empirical Assessment in Software

Engineering - 2003 (EASE 2003). 2003. Keele, UK. pp. 117-128.

21. Lederer, A.L. and J. Prasad, Information systems software cost estimating: a current

assessment. Journal of Information Technology, 1993. 8(1): pp. 22-33.

22. Helmer, O., Social Technology. 1966, New York: Basic Books.

23. Fairley, D., Making Accurate Estimates. IEEE Software, 2002. 19(6): pp. 61-63.

24. Boehm, B.W., Software engineering economics. 1981, New Jersey: Prentice-Hall.

25. Fenton, N.E., Software Metrics. 1995, London: Thompson Computer Press.

26. Humphrey, W.S., Managing the Software Process. 1990: Addison-Wesley

Publishing Company, Inc.

27. Wiegers, K.E., Stop Promising Miracles. Software Development Magazine,

2000(February).

28. Kitchenham, B., et al., An Empirical Study of Maintenance and Development

Estimation Accuracy. Journal of systems and software, 2002a. 64: pp. 55-77.

29. Aronson, E., T.D. Wilson, and R.M. Akert, Social Psychology. 3rd. ed. 1999:

Addison-Wesley Educational Publishers Inc.

30. Atkinson, R.L., et al., Hilgard's Introduction to Psychology. 12th ed. 1996, Orlando:

Harcourt Brace College Publishers.

31. Hewstone, M., W. Stroebe, and G.M. Stephenson, Introduction to social psychology.

2nd ed. 1996, Oxford: Blackwell Publishers Ltd.

 132

32. Zuber, J.A., H.W. Crott, and J. Werner, Choice shift and group polarization: An

analysis of the status of arguments and social decision schemes. Journal of

Personality and Social Psychology, 1992. 62(1): pp. 50-61.

33. Bem, D.J., M.A. Wallach, and N. Kogan, Group decision making under risk of

aversive consequences. Journal of Personality and Social Psychology, 1965. 1(5):

pp. 453-460.

34. Stoner, J.A.F., A comparison of individual and group decisions involving risks.

1961.

35. Wallach, M.A., N. Kogan, and D.J. Bem, Diffusion of responsibility and level of risk

taking in groups. Journal of abnormal and social psychology, 1964. 68(3): pp. 263-

274.

36. Cromwell, P.F., et al., Group effects on decision making by burglars. Psychological

reports, 1991. 69: pp. 579-588.

37. Rowe, G. and G. Wright, Expert opinions in forecasting: The role of the Delphi

process, in Principles of forecasting: A handbook for researchers and practitioners,

J.S. Armstrong, Editor. 2001, Kluwer Academic Publishers: Boston. pp. 125-144.

38. Kernaghan, J.A. and R.A. Cooke, Teamwork in planning innovative projects:

Improving group performance by rational and interpersonal interventions in group

process. IEEE Transactions on Engineering Management, 1990. 37(2): pp. 109-116.

39. Brown, R., Group Processes. 1988, Cambridge: Blackwell Publishers.

40. Forsyth, D.R., Group Dynamics. 1999: Wadsworth Publishing Company.

41. Fischer, G.W., When oracles fail--a comparison of four procedures for aggregating

subjective probability forecasts. Organizational Behaviour and Human Performance,

1981. 28(1): pp. 96-110.

42. Kitchenham, B., Software Metrics: Measurement for Software Process

Improvement. 1996, Oxford: NCC Blackwell.

43. Kitchenham, B., et al., Preliminary Guidelines for Empirical Research in Software

Engineering. IEEE Transactions on Software Engineering, 2002. 28(8): pp. 721-734.

44. McDonald, A. and R. Welland. Web Engineering in Practice. Proceedings of the

Fourth WWW10 Workshop on Web Engineering. 2001. pp. 21-30.

45. Thomsett, R., Double Dummy Spit and other estimating games. American

Programmer, 1996. 9(6): pp. 16-22.

46. Wonnacott, T.H. and R.J. Wonnacott, Introductory statistics. 5th ed. ed. 1990: John

Wiley & Sons, Inc.

 133

47. Liden, R.C., et al., Management of poor performance: A comparison of manager,

group member, and group disciplinary decisions. Journal of Applied Psychology,

1999. 84(6): pp. 835-850.

48. Cohen, J., Statistical power analysis for the behavioral sciences. 1969, New York:

Academic Press, Inc.

49. Jørgensen, M. and K. Moløkken-Østvold. Combination of Software Development

Effort Prediction Intervals: Why, When and How? Fourteenth IEEE Conference on

Software Engineering and Knowledge Engineering (SEKE'02). 2002. Ischia, Italy.

pp. 425-428.

50. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

51. Winkler, R.L., Combining forecasts: A philosophical basis and some current issues.

International Journal of Forecasting, 1989. 5(4): pp. 605-609.

 134

Appendix I:

User Requirements

This is the requirement specification for the project, as delivered by the customer.

The customer

The customer is the producer of an established technical encyclopaedia that numbers 800

editions with 10000 illustrations and 1600 tables. They have 20000 subscribers. The

publication frequency is low, with two shipments each year, each containing several

magazines.

The magazines exist both on paper and CD-ROM. The CD-ROM contains some extra

features, and there are plans to add other sources of information.

There is also a simple intranet version of the CD-ROM that is used internally and by a

handful of existing customers.

All documents are created in MS-word, and approved and converted to HTML by a central

unit. They have no need for a very complicated CMS-system.

Status

The starting point for a web version is the existing CD-ROM and intranet based system. The

primary goal is to build on the functionality of these systems, but also to offer the

encyclopaedia commercially over the Internet, both to companies and individuals. It is

natural to use this opportunity to look at the possibilities for a new medium, as well as

revising existing production and administration routines.

All documents that will be used exist on the CD-ROM in HTML versions, and can be

copied directly to the website. No changes are needed. Design is of less importance.

All the users of the site are expected to be technical competent people, with experience and

knowledge of the CD-ROM and/or paper versions.

 135

Desired functionality
This is the required functionality.

1. Basis functionality (searching for and displaying information)

Display documents in HTML-format (document including local table of contents (TOC) in

magazine)

Navigation through an expanding TOC

Navigation through an index

Free search (Expansion of the existing version)

2. Downloading of documents and pictures

The system must allow the downloading of documents in other formats.

PDF versions of documents for better prints where such exist

Figures in high-resolution bitmap (TIFF)

Figures in vector format (DWG)

Displaying of video-clips

The system must handle the fact that not all documents and figures exist in all formats.

3. Extranet functionality

Only paying subscribers shall have access to the service. For companies this can be

implemented by access-limitation on a net-level (IP). Company customers can then skip

logon procedures with usernames and passwords. An alternative method is to use personal

subscriptions. The system must be able to handle different types of subscriptions that grant

different degrees of access to the system.

4. Trade solution

Possibility of subscribing via the web

Possibility of buying a single magazine for downloading or delivery by mail

Possibility of paying online by credit card or other forms of payment

5. Demo-/sales-version

The system shall have an open part, granting access to some functionality, such as

navigation and search, and limited content. This functionality should be combined with a

function that allows the purchase of single magazines for downloading.

 136

6. Reply service

This contains an overview of the FAQ. The answers should have links to magazine editions

with extensive information. The user is checked, and receives the option to log in, buy a

single magazine, or buy a subscription.

7. User adjustment and information

Possibility of having personal settings for each user

Possibility for users to register own comments to the magazine

Possibility for the editors to publish comments to the magazines

Possibility for users to give feedback directly from a magazine, reporting errors etc.

Discussion forum tied to magazines

8. Administration of users

The administration system stores information on all customers, both subscribers and buyers

of single issues. The administration system must monitor the use of the system. One must be

able to extract different types of statistics, as well as blocking users who abuse the system or

fail to pay their subscription.

9. Integration with existing administrative systems

Subscriber- and logistics system, Agresso

Customer and support, Superoffice

Degree of integration must be based on cost/value aspects.

10. Adjustment of the production system

The production system is based on a personally developed database, containing a parser that

translates documents from MS Word format to HTML. The system must be adapted to a

new medium and a new system. Other possible changes to consider:

Parsing of word documents to XML instead of HTML, which will add to the system’s

flexibility.

Expansion of the database to support the administration of manuscripts.

Adapt the base for the production of additional documents used in the printed issue (TOC,

index list, overview of new, changed and expired magazines etc.)

 137

11. Interface with other systems

By implementing the magazine in a web setting, integration with other systems should be

considered. An interface (API) for communication with other systems (Using SOAP, XML

etc.) should be defined. It must be possible to link to documents by URL.

12. Choice of technology

The goal is to use already known technology. This is to handle development and changes

with internal resources.

OS: Windows 2000

Web server: Internet Information Server w/ASP

Database: Microsoft SQL Server

Languages: Visual Basic, NET technology

13. Hosting

The system is to be installed on the client’s servers.

 138

Figure 1: Front page Example

Figure 2: Sub page Example

 139

 140

Paper VI:

The Impact of Development Model on Estimation

Accuracy in Software Projects

Kjetil Moløkken-Østvold and Magne Jørgensen.

Simula Research Laboratory.

Submitted to IEEE Transactions on Software Engineering.

bstract. Flexible software development models, e.g., evolutionary and incremental,

ha

eywords: Cost estimation, management, project control and modelling, software

de

A

ve become increasingly popular. Advocates of these models claim that among the benefits

is improved estimation accuracy, which is one of the main challenges of software project

management. This paper describes an in-depth survey of software development projects.

The results support the claim that estimation accuracy improves when a flexible

development model is applied. The reason for the improvement is not obvious. We found, for

example, no difference in project size, estimation process, or delivered proportion of

planned functionality between projects applying different types of development model.

However, we did find that the type of client had a strong impact on the estimation accuracy

when applying flexible development models. This suggests that a better client relationship,

which is facilitated by flexible development models, is an important reason for the observed

improvement in estimation accuracy.

K

velopment models.

 141

1. Introduction

Software projects are infamous for exceeding their originally estimates [1]. A recent

review of surveys on estimation performance reports that 60-80% of all software projects

encounter effort overruns [2]. The average effort overrun appears to be 30-40%. Similar

findings are reported for schedule overruns.

A large amount of research initiatives directed at improving estimation accuracy have

focused on the development of formal estimation models. Formal estimation models have

been based on a variety of measures of development size, such as lines of code [3] and

function-points [4], and a variety of model development approaches, such as linear

regression [5]. There is, however, no conclusive evidence to show that the employment of

formal estimation models results in improved estimation accuracy [2, 6]. Consequently,

expert estimation remains the preferred approach for most software professionals [2, 6].

Another line of research has focused on improving the expert estimation process by

introducing a variety of supporting tools and processes, including work breakdown

structures (WBS) [7, 8], checklists [9, 10], experience databases [11] and group-based

estimates [10, 12-16]. These supporting tools may lead to improvements in some cases, but

there is no evidence to suggest that they solve the problem of inaccurate estimates.

These observations are similar to results obtained in other areas of research. For example,

in the transportation infrastructure sector, it has been reported that 86% of projects face cost

overruns, and that the average magnitude of the overruns is 28%. These overruns appear to

be of the same magnitude, independent of location and the era of the projects. Further,

which estimation approach is used does not appear to affect estimation accuracy [17]. A

consequence of these findings is that researchers have begun to explore factors other than

the estimation process when trying to explain overruns.

Interestingly, in software engineering research, much less attention has been paid to ways

in which improved project management may, through more appropriate development

models, affect estimation accuracy. The use of incremental and evolutionary development

models, for example, is said to facilitate more accurate estimates, when compared to

sequential development [18-21].

The use of terms to describe development models may be confusing. It is, for example,

frequently not easy to separate iterative, evolutionary, agile, and incremental development

models. In this paper we apply the term ‘sequential’ to denote development models similar

 142

to the waterfall model and the term ‘flexible’ to denote all types of non-sequential

development models, e.g., iterative and incremental development models. The term

‘flexible’ to describe the broad class of non-sequential development models has previously

been used by, for example, Iansiti and MacCormack [22] to reduce problems of

classification and definition.

Advocates of flexible development models offer different explanations as to why such

models should improve estimation accuracy. The estimation process associated with the

incremental development model is, for example, claimed to lead to better managed projects

[3, 19, 23, 24]. This is explained as an effect that results from the experiences of the first

increment(s) [19]. If a software project in which an incremental development model is

applied suffers from overruns, later increments can be eliminated or reduced, and the most

useful parts of the system will still be produced within the original budget. There may,

however, be management and control problems in connection with incremental development

[19], and hence the overall impact of the use of the incremental development model is not

obvious.

Improved project estimation has also been attributed to evolutionary development. Tom

Gilb, for example, claims that “Evolutionary delivery, and the feedback it produces, often

leads to management acceptance of revised estimates for time and money at early stages of

the project” [25].

As stated in a comprehensive review of the history of iterative and incremental

development, flexible development models have been in existence for some time [26]. In

fact, they were first formulated as early as the 1930s. Still, such models were not adopted by

practitioners, textbook authors and government bodies until recently [26]. The claimed

benefits related to estimation accuracy have not been empirically investigated.

In order to assess the claims stated by proponents of flexible development models, we

therefore investigated the use of development models in a survey on effort estimation in

Norwegian software projects. The results are presented in this paper. Previous surveys on

software estimation [2] have not addressed this topic. For some of the surveys, this is

because they were conducted before the use of flexible development models became

widespread [26].

The remainder of this paper is organized as follows. Section 2 examines earlier empirical

studies on the relation between development model and estimation accuracy. Section 3

states our research questions. Section 4 provides a brief description of differences between

the most common development models. Section 5 describes our research method. Section 6

 143

reports the results of our survey. A discussion of the results is provided in Section 7. Section

8 concludes.

A preliminary version of this paper was presented at PROFES 2004 [27]. This version is

substantially expanded, in terms of both the number of analyzed projects and depth of

analysis.

2. Previous Studies

We were unable to find surveys or experiments that examined the impact of particular

development models on effort estimation accuracy. The only studies examining this impact

were case studies with results that are difficult to generalize. A selection of the case studies

is briefly described in this section.

IBM Federal Systems report experiences with 45 deliveries during a four-year period

applying evolutionary development models [28]. It is described that all 45 deliveries were

on time and did not exceed the allocated budget, i.e., exceptionally good estimation

accuracy results.

Using the evolutionary spiral development model for a PC-based ground control system

developed at the Marshall Space Flight Centre, NASA also achieved good estimation

accuracy results [29]. The researchers found that the evolutionary spiral development model

forced risks to be identified, planned for, and resolved, while still providing the flexibility to

meet volatile constraints. Before entering the first iteration of the spiral, the number of

iterations that would be needed for completion of the project was not known. Hence, the

team planned only the first iteration and did not engage in detailed, long-term spiral

planning. Once the first iteration was complete and the second begun, an effort estimate was

made for the additional iterations needed to address the current release requirements. The

team gained knowledge and experience as the project moved through the spiral iterations,

thereby increasing the quality and accuracy of planning and risk assessment.

Royce [30] describes experiences when using an incremental development model for

large software systems for North American Aerospace Defence Command/Air Force Space

Command. He reports that use of the incremental model increases the probability that a

project will be completed according to schedule and budget.

Less positive estimation experiences related to the use of an evolutionary development

model have also been reported [31]. Here, a high number of user-initiated changes caused

one of the projects to experience large effort overruns, i.e., the use of twice as much effort

 144

as estimated. The release was delayed by three months. However, the end users and the

developers strongly believe that the delay, which was due to a large number of change

requests from the user, was necessary for the company to deliver a product that met the real

needs of the client. The project managers, however, regarded the delay as a disaster, and

were very confused. They believed that they lost control of the project, because the

requirements changed continuously while the formal documentation did not undergo the

appropriate revisions. Therefore, the evolutionary model was abandoned and replaced by a

formal waterfall model.

3. Research Questions

The study reported in this paper tries to contribute to more evidence-based discussion

about the expected benefits of selecting a particular development model. This is done

through a study of differences in effort and schedule estimation accuracy and bias (defined

in Section 5.3). The research questions of the study were as follows:

RQ 1.1: Are there differences in effort estimation accuracy that depend on the use of

 flexible or sequential development models?

RQ 1.2: Are there differences in effort estimation bias that depend on the use of

 flexible or sequential development models?

RQ 2.1: Are there differences in schedule estimation accuracy that depend on the use

 of flexible or sequential development models?

RQ 2.2: Are there differences in schedule estimation bias that depend on the use of

 flexible or sequential development models?

4. Software Development Models

It is outside the scope of this paper to provide a complete description of all development

models used in the software industry. This is especially true, given that the different models

are combined in different ways, and often are tailored for specific purposes, projects or

 145

companies. There exist several variants of the different sequential and flexible development

models. An example of this is how Royce’s description of what would become the waterfall

model was (mis)interpreted and used in a fashion stricter than that which he originally

suggested [26].

We will, for the support of the classification process described in Section 5, provide a

brief description of the main properties of the most commonly employed development

models used by the software companies observed in our study. The main development

models observed were the following:

• Waterfall models

• Incremental models

• Evolutionary models

• Agile models

The traditional waterfall model is a sequential model [32]. It separates system

development into distinct phases that are supposed to be completed in sequence, i.e., one

phase should not be started before the preceding phase is completed. The phases are,

typically, analysis, design, programming, testing and integration. Waterfall-based

development models are widely used. Possible reasons for this are that a sequential

development model is: 1) Easy to explain and recall, 2) Gives the impression of an orderly,

accountable and measurable process, 3) Has been the standard development procedure in

many communities, and 4) Has, until recently, been implemented by government

regulations [26]. Opponents of such models, however, state that they only work well when

technology, product features and competitive conditions are predictable or evolve slowly

[22]. Such preconditions are, however, rarely present in software projects.

Incremental development is based on a division of the systems into parts (increments).

The increments of the system are developed in sequence or in parallel [19]. Analysis,

design, programming and testing are performed for each increment. Each of the increments

provides a subset of the product’s functionality. To minimize risks, the most critical part of

the system may be delivered first.

The introduction of evolutionary project management in software engineering has been

attributed to Tom Gilb [33]. In evolutionary development, the system is developed

cyclically, with system deliveries in versions [25]. This is in contrast to the “big bang”

delivery provided in the traditional waterfall development model. The delivered versions are

adjusted according to client response and delivered again for a new assessment. Tom Gilb

 146

states that “You have the opportunity of receiving some feedback from the real world before

throwing in all resources intended for a system, and you can correct possible design

errors…”[26]. Many software companies combine incremental and evolutionary

development models.

Abrahamson, Salo et al. [34] define an agile development model as having the following

properties: incremental (small software releases with rapid cycles), cooperative (client and

developers working constantly together with close communication), straightforward (the

model itself is easy to learn and to modify, and is well-documented), and adaptive (last

minute changes can be made). Light and agile development addresses only the functions

most needed by the client (the functions that deliver most business value to the client).

These functions are then delivered as quickly as possible, and feedback collected, which

will then be used to prompt further development.

As indicated in the description of the development models, a project may use more than

one development model, e.g. a project may use a combination of incremental and

evolutionary development. In addition, it may not be easy to decide whether a project

follows an agile or evolutionary development model. These factors motivate our decision to

separate the development models into two categories only: Sequential and Flexible.

Sequential development models include waterfall-based development models, while flexible

development models include all development models based on increments and evolution.

5. Survey Method

The survey was conducted between February and November 2003. In addition to

studying the possible effects of the development model, the intent was to compare

estimation practices and performance in the Norwegian software industry with findings

from other countries.

5.1. The Participating Companies

In order to ensure a representative sample, stratified random sampling [35] from the

population of Norwegian software development companies was used. This is a reasonable

approach, since we were going to investigate a limited number of companies. It was

necessary to ensure that we had companies that represented different types of organization,

such as software houses developing products for the mass market, contractors who develop

for clients and the internal development departments of large companies. We also wanted

 147

companies of different sizes, both small (<25 employees), medium (between 25 and 100

employees) and large (>100 employees). The classification was based on different

Norwegian sources, e.g. business magazines [36].

Each company was contacted by phone and the study was presented to them. If they

agreed to participate, they were given time to prepare before they were visited by our

researchers. The unit of investigation was either the entire company, or a specific

department in cases where the company had more than 1000 employees. We will, however,

use the term company for our unit of research in this paper. The eighteen companies

(departments) that participated had between 10 and 750 employees, with an average of 141.

Five of the companies developed projects to be used in-house, while two developed

products for sale to the mass market. Out of the eleven companies that developed solutions

for clients, nine had mainly private clients, while two had mainly public clients.

Each company submitted from one to four of their projects for scrutiny. The criteria that

the projects needed to meet in order to be included in the study were that they should be

over 100 hours (to exclude trivial tasks), be finished (either completed or abandoned), be the

most recent cases (to avoid biased selection), and that we had access to the managers of the

projects. This resulted in a repository of 52 projects.

5.2. Data Collection and Analysis

We collected data via personal semi-structured interviews, based on a predefined set of

questions and interview instructions. Each interview lasted between 30 and 70 minutes, and

all of them were taped. This approach yields data of high quality and ensures that

ambiguities are resolved [35]. This was especially important in our survey, since there may

be variations in the use and interpretation of terms related to development models and

estimation approaches. It also allowed the respondents to add valuable information that did

not fit into a predefined questionnaire. Another point in favour of this approach is that face-

to-face interviews may increase the likelihood of serious contributions from the companies.

The main limitation of the approach is that it is time-consuming, and hence prevents us from

investigating as many companies and projects as would be possible by using questionnaires

sent by post.

The interviews at company level were mainly concerned with background information on

such general matters as number of employees, business segment, types of client, general

aspects of development models, estimation approaches and process improvement efforts. At

 148

project level, we collected detailed information about each project. This information

included the type of project, type of client, estimation approach, development process and

persons involved. Most important, however, was the collection of estimate(s) and actual(s)

for effort and schedule. This was always based on recorded data from the participants, so

that these results were not affected by hindsight bias.

The managers had the opportunity of defining their development model as being

sequential (waterfall) or flexible (evolutionary, incremental and agile). They could also

specify the extent to which component-based development and prototyping was used, and

the extent to which combination models, e.g. evolutionary and incremental development,

were used, and how the estimation had been conducted. In cases where the participants

reported that they followed a company-defined development model or estimation approach,

we asked them to provide descriptions of the process.

The terminology used in the context of software estimation is often ambiguous [13].

Different respondents may, for example, interpret estimated most likely effort differently.

We were aware of such problems of interpretation and tried to ensure common

interpretations of important terminology used in the interviews.

The written interview notes and tapes were registered into databases and the development

models and estimation processes were classified by two independent researchers who had

no stake in the research. This is especially important, because it ensures that there are no

biases regarding how the development models or estimation approaches are classified.

There was no indication that the researchers had disagreed on the classifications for any of

the projects, thus indicating a high level of inter-rater reliability.

5.3. Measuring estimation accuracy

 In order to assess estimation accuracy, both related to effort and schedule, the Balanced

Relative Error (BRE) [37, 38] was used. It is calculated as:

,
),min(

||
yx

yxBRE −
= x = actual, y = estimated. (1)

A more common measure of estimation accuracy is the MRE (Magnitude of Relative

Error) measure [39]. MRE is calculated as:

 149

,||
x

yxMRE −
= x = actual, y = estimated. (2)

However, the MRE has unfortunate properties [37, 40, 41]. The main concern for our

case is the fact that underestimated and overestimated projects are weighted unevenly.

Assume, for example, that for two projects, A and B, the estimated effort is 1000 work-

hours. Project A spends 500 work-hours, while project B spends 2000 work-hours. The

MRE of Project A is 100%, while the MRE of Project B is only 50%. The BRE, as its name

indicates, is a more balanced measure leading to a BRE of 100% for both projects.

BREbias measures both the size and direction of the estimation error, i.e., whether there

is a bias towards an effort over- or under-run:

,
),min(

)(
yx

yxBREbias −
= x = actual, y = estimated. (3)

In order to investigate whether the development model influenced the completeness of

delivered functionality, we interviewed the project managers about the delivered

functionality on the finished products. They were asked about the extent to which the

delivered functionality met the original specification on which the estimates were based.

Since we did not have access to the opinions of the users of the products, there is a potential

problem regarding the objectivity of the answers. In addition, there may be a hindsight bias.

However, we have no reason to believe that such factors would affect one of the survey

groups differently from the other.

5.4. The problem of multiple estimates

Previous surveys on software estimation have tended to treat a software estimate as a

single fixed value. During the course of our research, however, we noticed that software

projects often have several effort estimates. This problem, and how it poses challenges to

estimation models, has also been addressed by Edwards and Moores [42].

Part of the problem is that the effort estimate often changes over the course of a project,

depending on the stage at which the estimate is made. For example, a project might have an

early estimate, based on vague requirements, a planning estimate based on a detailed

requirement specification, and one (or more) re-estimates during the course of development.

 150

Another factor contributing to the problem is the different receivers of the effort estimate. A

project may, for example, have two estimates at the planning stage: one that is used

internally in the project team and another communicated to the client.

Projects can consequently operate with one, two or even more different effort estimates.

In our survey we found that a project could have as many as six different effort estimates.

This poses a significant challenge to estimation surveys. In this paper, the goal is to

investigate the estimation ability of professionals in software projects in relation to the

development model used. For this reason, we found it meaningful to compare the most likely

estimates at the planning stage, i.e. the estimate used internally by the developers at the

stage where the decision to start implementation was made. This is in accordance with

research on estimation accuracy in other areas [17].

5.5. Measuring Estimation Accuracy in Flexible Development Projects

There are a number of hazards related to comparing the estimation accuracy of sequential

and flexible projects. In some guidelines for flexible models, it is stated that one should set a

deadline for effort and schedule, and then simply produce whatever output is possible within

those boundaries, with the most important functionality first. Obviously, with this approach,

one will end up on target each time. It would be meaningless to do a comparison if we were

just comparing the flexibility of flexible development models to the accuracy of sequential

development models. However, in real life projects, especially when one develops for a

client, stakeholders often expect some kind of predefined and agreed-upon functionality to

be delivered. In all projects in this survey, regardless of development model, there existed

schedule and effort estimates for the project total, along with the functionality expected

when the decision to start the project was made.

Another problem that is related to the estimation accuracy of projects with a flexible

development model is that many of them encourage estimation revisions throughout the

project. An estimate given closer to the end of a project will probably be more accurate than

one provided in the beginning. As discussed in the last subsection, this does not raise any

problems for this survey, since we based the estimation accuracy calculations on the most

likely estimates at the planning stage. This was done for both flexible and sequential

projects.

 151

6. Results

Out of the 52 project interviews, we excluded eight projects; either because they lacked

information, or because most of the estimation and implementation work had been

conducted by external sub-contractors. Two of the projects were abandoned before

completion. This left 42 projects for the analysis. A complete record of the most relevant

data is presented in Appendix II. Nineteen projects were classified as using a flexible model.

The other 23 projects followed a sequential development model. Effort is measured in work-

hours, and schedule in calendar days. For the projects, the mean actual effort was 3124.5

man-hours, while the median was 1175 man-hours. The average schedule was 177 calendar

days, while the median was 131 calendar days. A short summary of the estimation results of

projects with different development models is presented in Table 1.

 Mean Median Standard deviation

 Flexible Sequential Flexible Sequential Flexible Sequential

Effort Estimate (hours) 2659 2373 1125 914 6035 2936

 Actual (hours) 3296 2983 1242 1150 6463 3679

 Accuracy (BRE) 0.36 0.59 0.14 0.60 0.54 0.44

 Bias (BREbias) 0.24 0.55 0.01 0.60 0.61 0.50

Schedule Estimate (days) 145 152 122 117 72 132

 Actual (days) 164 187 122 140 83 19

 Accuracy (BRE) 0.14 0.35 0.06 0.14 0.20 0.66

 Bias (BREbias) 0.14 0.34 0.06 0.11 0.20 0.67

Functionality Delivered (%) 106 106 100 100 13 12

Table 1: Estimation Results by Development Model

An Anderson-Darling test [43] on normality and a visual inspection revealed that none of

the samples were normally distributed. We therefore applied the more robust non-

parametric statistical Kruskal-Wallis [44] test of difference in median BRE and BREbias.

The median effort BRE was 0.14 for the flexible group, and 0.60 for the sequential

group. The Kruskal-Wallis test on difference in median values resulted in a p-value of

0.017. To measure the magnitude of the observed accuracy difference in effort BRE, we

included Cohen’s size of effect measure (d) [45]. The size of effect (d) was calculated as: d

= (mean value sequential group– mean value flexible group) / pooled standard deviation

amongst the groups. The result was d=0.5, which is considered a medium effect [45].

 152

Figure 1: Effort Estimation Bias of Sequential Projects.

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0

10

20

30

40

50

Sequential

P
er

ce
nt

Figure 2: Effort Estimation Bias of Flexible Projects.

1.501.251.000.750.500.250.00-0.25-0.50

50

40

30

20

10

0

Flexible

P
er

ce
nt

A graphical representation of the BREbias data is shown in Figures 1 and 2.

 153

The median effort BREbias was 0.01 for the flexible group, and 0.60 for the sequential

group. A Kruskal-Wallis test, performed on the median effort BREbias, resulted in a p-value

of 0.07. As in the previous section, Cohen’s size of effect measure was used. The result was

d=0.6, which is considered a medium effect, since d is between 0.5 and 0.8 [45].

The overall mean effort BREbias was 0.41. A negative BREbias means that the estimate

was too high, zero BREbias means that the estimate was on target, and a positive BREbias

means that the estimate was too low.

The sequential projects are represented by the broad line, while the flexible projects are

represented by the thin line. The overall mean effort BREbias of 0.41 is represented by the

dotted line. A negative BREbias means that the estimate was too high, zero BREbias means

that the estimate was on target, and a positive BREbias means that the estimate was too low.

The Kruskal-Wallis test on the median BRE of schedule estimation accuracy (flexible

median BRE = 0.06 and sequential median BRE = 0.14) resulted in a p-value of 0.21.

Cohen’s d=0.4.

Since only one project finished ahead of schedule, the results for schedule BREbias are

virtually identical (flexible median BRE = 0.06 and sequential median BRE = 0.11) to those

for schedule BRE. The p-value from a Kruskal-Wallis test is 0.35. Cohen’s d=0.4.

7. Discussion

Our results suggest that the choice of development model may affect effort estimation

accuracy and bias. The results from the survey indicate that projects that are developed with

a flexible development model may be less prone to effort overruns than projects that apply a

sequential development model. The lack of significant difference in schedule estimation

accuracy and bias is, we believe, a result of the low number of observations, i.e., low power

of the study. We therefore need more observations to test the difference in schedule

estimation accuracy.

The underlying reasons for the observed difference in estimation accuracy and bias are

not obvious. The following sub-sections investigate possible explanations. We mainly

address the explanations often mentioned as the advantages of flexible development, such as

better estimation processes [20] and flexibility in delivered functionality [25]. In addition,

we address alternative explanations, such as greater client involvement and smaller projects.

 154

7.1. Better Estimation Process

The estimation process applied seems to be independent of the development model used.

All the projects involved expert judgment-based, bottom-up estimation processes, and there

were no differences among the groups related to the use of supporting estimation tools, such

as checklists, experience databases and predefined work breakdown structures. Neither was

there any difference in the amount of time spent on estimating the projects.

Proponents of flexible development models have specified several estimation revisions as

the main reason for reduced overruns when these models are applied [20]. Surprisingly, we

observed that the number of revisions of the estimates did not seem to increase for flexible

projects. It is therefore unlikely that the observed difference in effort estimation accuracy

and bias between the groups was caused by a systematic difference in estimation process.

7.2. More Flexibility in Delivered Functionality

We found no difference related to delivered functionality that depended on the

development model used. The mean proportion of delivered functionality for both groups

was 106% of estimated functionality. The managers were also asked to provide free-text

responses to eventual overruns. None of the managers stated that the development of

unnecessary functionality contributed to the overruns. This implies that, at least from the

managers’ point of view, differences in overruns between sequential and flexible projects

are not due to differences in the amount of delivered functionality.

7.3. Smaller Projects

Project size may sometimes affect the effort overruns in software projects [46, 47], in

that large projects seems to have larger effort overruns. If large projects more frequently

follow a sequential development process this may explain the difference in estimation

accuracy. In our survey, the 21 largest projects (measured in man-hours) had a BREbias of

0.52, while the 21 smallest projects had a BREbias of 0.30.

However, an analysis of the data suggests that this cannot explain the difference, since

the choice of development model did not seem to be affected by the size of the project.

Mean actual project effort was 3296 hours for projects that followed a flexible development

model, as opposed to 2983 hours for the projects that followed a sequential development

model.

 155

7.4. More Client Involvement

An interesting observation in our study was that projects with public (government)

clients had, on average, effort overruns three times larger than had projects with private

clients, i.e., BREbias of 0.67 vs 0.21. However, there was no difference in the use of

development models related to the type of client, i.e., differences in the type of client cannot

explain the observed difference in estimation accuracy based on development model. A

further analysis of the type of client data suggests that the client relationship, nevertheless,

may explain the improved estimates from the use of flexible development models. Table 2

displays the mean effort estimation bias (BREbias) dependent on type of model and client.

 Flexible Sequential Total

Private -0.02 (n=11) 0.40 (n=13) 0.21 (n=24)

Public 0.58 (n=8) 0.74 (n=10) 0.67 (n=18)

Total 0.24 (n=19) 0.55 (n=23) 0.41 (n=42))

Table 2: Mean BREbias based on client and development model type

Table 2 suggests that the benefit from flexible development models is much larger when

the there is a private client. The private client projects differ by a magnitude of 0.42 based

on choice of development model, while the public client projects differ by a magnitude of

only 0.16.

It is believed, based on international and Norwegian studies, that public projects more

frequently have confusing or contradictory goals (or, indeed, lack goals altogether), a

diffusion of managerial responsibility, limited user involvement and are constrained by

legislation [47, 48]. These problems may explain why public projects do not appear to

receive the full benefits of flexible development models.

Consequently, it seems to be the improved client relations and communication, in cases

where the client has the necessary maturity and skill that facilitates the improvements in

estimation accuracy that are derived from the use of flexible development models.

 156

7.5. Threats to Validity

We believe the most important threats to validity are the following:

• Small sample size

• Projects studied are not necessarily representative for other projects in other

countries and in other situations

• Some of the data are subjective and subject to different interpretations, e.g., the

proportion of delivered functionality

• No uniform terminology for description of development models

The small sample size was the result of a trade-off between quality of data and number of

observations. We decided to focus on quality of data. The projects we studied may not be

representative for other types of project. However, the accuracy results we report are similar

to those reported by other surveys on effort estimation presented in a recent review [2]. The

problems of subjective data and a lack of common interpretations of terminology are

difficult to solve. We have tried to solve them through good interview processes and

independent assessors.

8. Conclusion

We found that the use of a flexible development model, (e.g., evolutionary or

incremental), improved the effort estimation accuracy and reduced the effort estimation

bias. The reason for this improvement is not obvious and many of the common

explanations, e.g., more flexible deliveries, different estimation processes and smaller

projects, may not be valid.

It appears as if Harlan D. Mills was correct, when we as far back as 1976, he stated that

“The evolution of large systems in small stages, with user feedback and participation in

goal refinements at each step is a way of going from grandiose to grand software system

development”. The most likely explanations supported by our observations are related to the

relationship and communication with the client, i.e., to issues such as end-user involvement,

client feedback loops, negotiations between developers and clients, and the decision

processes in the client’s organization. It may be that a flexible development model is better

at facilitating a positive dialogue between client and developers than a sequential

development model is, and that this is the most important difference.

 157

We have started further work on understanding the findings reported in this paper. This

work focuses on client-provider aspects of software projects, e.g., how involvement at an

early stage and frequent communication between clients and developers, in combination

with flexible development models, may lead to better control of software projects.

Acknowledgements

This research was funded by the Research Council of Norway under the project INCO.

We thank Sinan Sigurd. Tanilkan, Hans Gallis, Anette Lien and Siw E. Hove for execution

of the study, and Dag Sjøberg, Tom Gilb, Stein Grimstad and Erik Arisholm for valuable

comments.

References

1. Yourdon, E., Death March. 1997, New Jersey: Prentice-Hall, Inc.

2. Moløkken-Østvold, K. and M. Jørgensen. A Review of Surveys on Software Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati, Monte Porzio Catone (RM), ITALY:

IEEE. pp. 220-230.

3. Boehm, B., et al., Software Estimation with COCOMO II. 2000: Prentice-Hall.

4. Matson, J.E., B.E. Barrett, and J.M. Mellichamp, Software development cost

estimation using function points. IEEE Transactions on Software Engineering, 1994.

20(4): pp. 275-287.

5. Miyazaki, Y., et al., Robust regression for developing software estimation models.

Journal of Systems and Software, 1994. 27(1): pp. 3-16.

6. Jørgensen, M., A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 2004. 70(1-2): pp. 37-60.

7. Woodward, H., Project Management Institute practice standard for work breakdown

structures. 2001, Newton Square: Project Management Institute, Inc.

8. Tausworthe, R.C., The Work Breakdown Structure in Software Project Management.

Journal of Systems and Software, 1980. 1: pp. 181-186.

9. Jørgensen, M. and K. Moløkken-Østvold. A Preliminary Checklist for Software Cost

Management. QSIC 2003. 2003. pp. 134-140.

 158

10. Shepperd, M. and U. Passing. An Experiment on Software Project Size and Effort

Estimation. 2003 ACM-IEEE International Symposium on Empirical Software

Engineering (ISESE 2003). 2003. Frascati - Monte Porzio Catone (RM), ITALY:

IEEE. pp. 120-129.

11. Engelkamp, S., S. Hartkopf, and P. Brossler. Project experience database: a report

based on first practical experience. International Conference on Product Focused

Software Process Improvement. 2000. Oulu, Finland. pp. 204-215.

12. Linstone, H.A. and M. Turoff, The Delphi Method: Techniques and Applications.

1975, London: Addison-Wesley.

13. Grimstad, S., M. Jørgensen, and K. Moløkken-Østvold, Software Effort Estimation

Terminology: The Tower of Babel. Submitted to Information and Software

Technology, 2005.

14. Moløkken-Østvold, K. and M. Jørgensen. Software Effort Estimation: Unstructured

Group Discussion as a Method to Reduce Individual Biases. The 15th Annual

Workshop of the Psychology of Programming Interest Group (PPIG 2003). 2003.

Keele, UK. pp. 285-296.

15. Moløkken-Østvold, K. and M. Jørgensen, Group Processes in Software Effort

Estimation. Empirical Software Engineering, 2004. 9(4): pp. 315-334.

16. Taff, L.M., J.W. Borcering, and W.R. Hudgins, Estimeetings: Development

estimates and a front end process for a large project. IEEE Transactions on

Software Engineering, 1991. 17(8): pp. 839-849.

17. Flyvbjerg, B., M.S. Holm, and S. Buhl, Underestimating Costs in Public Works

Projects - Error or Lie? Journal of the American Planning Association, 2002. 68(3):

pp. 279-295.

18. May, E.L. and B.A. Zimmer, The Evolutionary Development Model for Software.

Hewlett-Packard Journal, 1996. 47(4): pp. 39-45.

19. Graham, D.R., Incremental Development and Delivery for Large Software Systems,

in Software Engineering for Large Software Systems, B.A. Kitchenham, Editor.

1990, Elsevier.

20. Gilb, T., Estimating Software Attributes: Some Unconventional Points of View.

ACM Sigsoft Software Engineering Notes, 1986. 11(1): pp. 49-59.

21. Mills, H.D., Software Development. IEEE Transactions on Software Engineering,

1976. 2(4): pp. 265-273.

 159

22. Iansiti, M. and A. MacCormack, Developing Products on Internet Time. Harvard

Business Review, 1997(Sept.): pp. 107-117.

23. Cockburn, A., In Search of Methodology, Object Magazine. 1994. pp. 52-56.

24. Cockburn, A., Surviving Object-Oriented Projects. 1998: Addison-Wesley.

25. Gilb, T., Principles of Software Engineering Management. 1988: Addison-Wesley

Publishing Company.

26. Larman, C. and V.R. Basili, Iterative and Incremental Development: A Brief

History. IEEE Computer, 2003(June): pp. 2-11.

27. Moløkken-Østvold, K., et al. Does Use of Development Model Affect Estimation

Accuracy and Bias? Product Focused Software Process Improvement, 5th

International Conference, PROFES 2004. 2004. Kansai Science City, Japan:

Springer (LNCS 3009). pp. 17-29.

28. Mills, H.D., The Management of Software Engineering, Part 1: Principles of

Software Engineering. IBM Systems Journal, 1980. 19(4): pp. 414-420.

29. Hendrix, T.D. and M.P. Schnenider, NASA's TReK Project: A Case Study in Using

the Spiral Model of Software Development. Communications of the ACM, 2002.

45(4).

30. Royce, W. TRW's Ada Process Model for Incremental Development of Large

Software Systems. 12th International Conference on Software Engineering

(ICSE'12). 1990. Los Alamitos, CA: IEEE. pp. 2-11.

31. Lien, A.C. and E. Arisholm. Evolutionary Development of Web-applications -

Lessons learned. European Software Process Improvement Conference

(EuroSPI'2001). 2001. Limerick Institute of Technology, Ireland.

32. Royce, W. Managing the development of large software systems: Concepts and

techniques. Proceedings of IEEE WESTCON. 1970. Los Angeles. pp. 1-9.

33. Gilb, T., Software Metrics. 1976: Little, Brand and Co.

34. Abrahamson, P., et al., Agile software development methods. Review and analysis.

2002, VTT Publication. pp. 107.

35. Cozby, P.C., Methods in behavioral research. 5th ed. 1993, Mountain View:

Mayfield Publishing Company.

36. HegnarOnline, Kapital DATAs 1500 største. 2000.

37. Jørgensen, M. and D. Sjøberg, An effort prediction interval approach based on the

empirical distribution of previous estimation accuracy. Journal of Information and

Software Technology, 2003. 45(3): pp. 123-136.

 160

38. Miyazaki, Y., et al., Method to estimate parameter values in software prediction

models. Information and Software Technology, 1991. 33(3): pp. 239-243.

39. Conte, S.D., H.E. Dunsmore, and V.Y. Shen, Software Engineering Metrics and

Models. 1986, Menlo Park: Benjamin-Cummings.

40. Stensrud, E., et al. An empirical validation of the relationship between the

magnitude of relative error and project size. Eighth IEEE Symposium on Software

Metrics. 2002: IEEE. pp. 3-12.

41. Foss, T., et al., A simulation study of the model evaluation criterion MMRE. IEEE

Transactions on Software Engineering, 2003. 29(11): pp. 985-995.

42. Edwards, J.S. and T.T. Moores, A Conflict Between the Use of Estimating and

Planning Tools in the Management of Information Systems. European Journal of

Information Systems, 1994. 3(2): pp. 139-147.

43. Christensen, R., Analysis of variance, design and regression. Applied statistical

methods. 1998: Chapman & Hall/Crc.

44. Siegel, S. and N.J. Castellan, Non-parametric Statistics for the Behavioral Sciences.

2nd Edition ed. 1988: McGraw Hill College Div.

45. Cohen, J., Statistical power analysis for the behavioral sciences. 1969, New York:

Academic Press, Inc.

46. Jørgensen, M. and K. Moløkken-Østvold, Understanding Reasons for Errors in

Software Effort Estimates. Accepted for IEEE Transactions on Software

Engineering., 2004.

47. Blaalid, J., Country Report from Norway, OECD-PUMA expert meeting on

management of large IT projects. 2003, Statskonsult: Oslo.

48. West-Knights, L., Getting IT Right for Government - A Review of Public Sector IT

Projects. 2000, Intellect.

 161

Appendix I: Survey data

Nr Model
Estimate
(hrs) Actual BREbias Estimate (days) Actual BREbias Func.

1 Flex. 330.0 319.0 -0.03 235 235 0.00 100%

2 Seq. 560.0 1000.0 0.79 84 140 0.67 110%

3 Seq. 300.0 600.0 1.00 156 156 0.00 100%

4 Seq. 700.0 1400.0 1.00 182 224 0.23 100%

5 Seq. 4227.0 5170.0 0.22 98 98 0.00 110%

6 Seq. 1077.0 1150.0 0.07 42 49 0.17 110%

7 Seq. 4000.0 9000.0 1.25 293 335 0.14 110%

8 Flex. 1500.0 1512.0 0.01 70 70 0.00 100%

9 Flex. 1125.0 1000.0 -0.13 106 106 0.00 100%

10 Flex. 1249.0 1242.0 -0.01 153 214 0.40 98%

11 Seq. 1410.0 955.0 -0.48 74 64 -0.16 98%

12 Seq. 12000.0 14000.0 0.17 619 640 0.03 95%

13 Flex. 1249.0 1242.0 -0.01 92 106 0.15 100%

14 Seq. 487.5 562.5 0.15 103 106 0.03 110%

15 Seq. 640.0 1085.0 0.70 54 84 0.56 90%

16 Seq. 3937.5 4012.5 0.02 138 152 0.10 95%

17 Seq. 750.0 1200.0 0.60 117 457 2.91 100%

18 Flex. 533.5 466.5 -0.14 97 104 0.07 100%

19 Flex. 570.0 907.0 0.59 109 116 0.06 112%

20 Flex. 292.0 342.0 0.17 113 113 0.00 105%

21 Seq. 914.0 1903.0 1.08 196 217 0.11 120%

22 Seq. 400.0 432.0 0.08 42 56 0.33 110%

23 Flex. 705.0 1000.0 0.42 60 70 0.17 105%

24 Flex. 2265.0 2732.0 0.21 210 245 0.17 120%

25 Flex. 1932.0 5631.0 1.91 220 281 0.28 120%

26 Flex. 2340.0 3454.0 0.48 140 245 0.75 150%

27 Seq. 650.0 696.0 0.07 49 49 0.00 100%

28 Flex. 27241.0 28645.0 0.05 296 336 0.14 90%

29 Seq. 7520.0 8063.0 0.07 395 395 0.00 99%

30 Aborted 6728.0 n/a n/a 151 n/a n/a n/a

31 Seq. 5450.0 8910.0 0.63 212 304 0.43 110%

32 Seq. 90.0 180.0 1.00 21 56 1.67 100%

33 Aborted 2720.0 n/a n/a 152 n/a n/a n/a

34 Seq. 145.0 195.5 0.35 79 84 0.06 100%.

 162

35 Flex. 190.0 101.0 -0.88 60 85 0.42 100%

36 Flex. 593.5 593.5 0.00 152 152 0.00 100%

37 Flex. 506.0 506.0 0.00 70 70 0.00 100%

38 Flex. 3784.0 3746.0 -0.01 266 266 0.00 100%

39 Flex. 1030.0 1335.0 0.30 122 122 0.00 115%

40 Seq. 2170.0 3831.0 0.77 54 54 0.00 100%

41 Flex. 3086.0 7844.0 1.54 183 183 0.00 100%

42 Seq. 1982.0 3140.0 0.58 153 153 0.00 145%

43 Seq. 133.5 261.0 0.96 273 334 0.22 100%

44 Seq. 340.0 866.5 1.55 72 91 0.26 125%

 163

 164

Paper VII:

Ethical Concerns when Increasing Realism in

Controlled Experiments with Industrial Participants.

Kjetil Moløkken-Østvold.

Simula Research Laboratory.

Accepted for HICSS38 (Hawaii International Conference on System Sciences), 2005.

Abstract. The emerging interest in realistic controlled experiments in computer science

ha

s created a need to examine related research ethics. Increased realism and scale in

experimental studies pose new challenges that have not been debated to a sufficient extent.

Specifically, there can be conflicts between the ethical principles of scientific value and

informed consent. This paper provides an account of related previous work in computer

science research ethics. To illustrate, two large-scale software engineering experiments

with industrial participants are described. Challenges and solutions in these experiments

are discussed in the light of current ethical guidelines. Interviews and debriefing sessions

with industrial participants from these, and other, experiments are also provided. These

reveal that there will not necessarily be ethical problems with increased realism, provided

that the researchers respect the principles of informed consent, benefice and confidentiality.

 165

1. Introduction

In research areas such as medicine, law and psychology, the ethical aspects of scientific

experiments are constantly scrutinized, debated and reported in research papers. It is also

common to have independent review boards to assess the ethical aspects of an experiment

before a grant, an approval or equivalent is given [1].

By contrast, in computer science, research ethics is seldom debated in general and almost

never in published papers. In a recent survey on software engineering research from 1993 to

2002 [2], 110 research papers describing controlled experiments were noted. Only one of

these directly discussed ethical aspects!

However, there have at least been some recent efforts to discuss research ethics in

software engineering. The reason for this development is perhaps a combination of the fact

that research areas in computer science are maturing, as well as an increase in focus on

empirical studies. An example of this attention is the special issue of Empirical Software

Engineering, published in 2001, which was entirely devoted to research ethics [3].

In the IS community, there has also been recent effort to address this problem, both

related to ethics for professionals [4] and practitioners [5].

Although debated ethical controversies in computer science generally are of a lesser

magnitude than in, e.g., psychology, there are several topics that disquiet researchers

focusing on ethical aspects. A survey conducted among all 94 computer science departments

at universities in the UK found that only 36% of the 44 respondents (department heads) felt

that ethical considerations were important [6]. The survey also reports that only 26% of the

departments felt that their universities are monitoring the ethical aspect of the research

reasonably (24%) or very (2%) effectively. It has also been stated in a review [7] that

guidelines and regulations applying to research areas in computer science have not applied

to entities such as organizations serving as research subjects.

A common criticism of studies in software engineering is that most of them are case

studies [8]. Since there are many ongoing efforts to make use of more realistic experiments,

there has emerged a concomitant need for a debate on how this may cause ethical concerns.

There is a huge difference between passive observation, and actual manipulation of

participants, processes and projects. This paper seeks to explore the challenges that

researchers face when trying to increase the realism of controlled experiments in the

industry, especially when actual projects and professionals are used as research entities. To

 166

illustrate, we mainly use examples from software engineering research, since this area is

currently experiencing a surge in more realistic experimentation. However, we feel that the

factors discussed here are relevant for all researchers who seek to increase the realism of

industrial experiments in computer science.

This paper summarizes a recent survey on controlled experiments in software

engineering and provides an account of how the researchers treat ethical issues. We also

describe the ethical challenges faced in two recent experiments (DES and BESTweb)

conducted at Simula Research Laboratory. The participants’ responses to ethical issues are

also presented. We also assess how the process of debriefing may affect the sentiments of

research subjects.

In section 2, previous related research is presented, while section 3 presents two general

research questions. Section 4 presents the results from a survey on controlled experiments.

Section 5 presents two actual studies to use as a basis for the discussion in section 6. Section

7 presents a general discussion, while section 8 summarizes.

2. Previous Research

Much of the previous research in this area has been aimed at adopting and adapting

guidelines from medicine, psychology, law etc., for use in computer science. There has been

a focus on the participants as individuals, and how to treat them, whether they are students

or professionals. Some papers in the IS [5] and SE communities [9-11] (the special issue of

Empirical Software Engineering [3]) have this focus, which is very important. There have

also been contributions that discuss certain elements of the experimental process that one

may face, such as the logging of user actions [12].

However, when one tries to increase realism in an experiment, the ultimate goal may

sometimes be to have a setting similar to that which is found in the industry. This includes

having realistic projects. Therefore, it is necessary to consider the participants as part of

their company, and also to address the challenges of having a company as a research entity.

Efforts to address ethical issues at a company level have, until now, focused on factors other

than using employees or project teams as participants in a controlled experiment.

On a more general level, it has been stated that existing codes in research ethics are

relevant, but not directly applicable to studies on empirical software engineering [7]. Such

guidelines are often related to authorship, relations to students, and fraud, but not to the use

 167

of professionals or companies as participants. Also, strict guidelines are said to impose too

large a bureaucratic burden [5].

In order to discuss the ethical considerations described in the following sections, this

paper will use the review of principles related to empirical software engineering as

described by Singer and Vinson [7]. These four high-level principles are: informed consent,

scientific value, benefice and confidentiality.

Informed consent is perhaps the primary ethical principle related to research on empirical

software engineering [7]. Informed consent is made up of several elements, and there is an

ongoing debate as to the extent to which they are necessary. The elements are as follows:

• Disclosure – How the participants are informed about research purpose, procedure,

risks, benefits and a statement offering to answer the participants’ questions.

• Comprehension - This requires the researchers to present the research in a way the

subjects can understand.

• Competence – This element refers to the subject’s ability to make rational decisions.

• Voluntariness – This indicates that informed consent must be obtained without

pressure on the participant.

• Termination – The participants must be able to terminate their involvement at any

time.

Scientific value is composed of the elements:

• Importance of research topic – This is related to potential risks and benefits to

subjects and society.

• Validity of results – Unless the results of the study are valid, they do not represent

reality, and are therefore unethical.

Benefice relates to a favourable balance between benefits and harm. The greater the

possible benefits, the greater the risk allowed.

Confidentiality normally has two elements:

• Anonymity – The data can not be used to identify the participants.

• Confidentiality – This limits who will have access to the data, and how they will be

described.

In addition to the general ethical principles presented by Singer and Vinson [7], it is also

important to follow local standards. We investigated how the principles presented by Singer

and Vinson [7] match up to research guidelines for social sciences, law and humanities in

 168

Norway [13]. These local guidelines [13] also contain aspects that are omitted by Singer and

Vinson, and therefore also acts as a supplement for researchers in Norway.

3. Research questions and method

This paper addresses two main issues. The first is the amount of attention that ethical

issues have received in software engineering research. On the surface, it can seem as if the

software engineering community has devoted little attention to research ethics. This leads us

to the research question:

 RQ1: How do research papers in experimental software engineering report and

 discuss ethical aspects?

In order to investigate this topic, we have conducted a thorough survey of papers in

experimental software engineering [2]. How these papers treat research ethics is analyzed

and reported in section 4.

The second issue is how an increase in experimental realism may pose new ethical

challenges. The goal of more realistic experiments, through use of “real” companies and

professionals, is ultimately a means to achieve the higher end (and ethical principle) of

scientific value. However, such goals may not necessarily be in line with other ethical

principles. From other areas, such as psychology, we know that informed consent is a

principle that is frequently overlooked in the search for scientific value [1]. The most

famous, and debated, example is Stanley Milgrams studies on conformity [14]. Informed

consent in Psychological research includes that participants must enter a study voluntarily

and be permitted to withdraw from it at any time without penalty if they so desire. No matter

how “innocent” computer science studies may look, when compared to psychological

experiments, we still face special challenges. As reported in the previous section,

researchers in software engineering who have investigated ethical aspects, also regard

informed consent as perhaps the most important ethical principle [7]. This leads us to:

 RQ2: To what extent does increased realism in controlled experiments with

 industrial participants create conflicts between the ethical principles of

 “informed consent” and “scientific value”?

 169

In order to explore this, we report in section 5 from the two latest experiments performed

by Simula Research Laboratory. We believe that these are examples of experiments that try

to achieve a high degree of realism in order to possess scientific value. These experiments

are scrutinized with respect to ethical issues, with a focus on informed consent. This is

presented in section 6. In order to augment the self-assessment, we provide responses from

post-experiment interviews and debriefing sessions with the participants.

4. Survey Results

As part of a large scale survey to analyze properties of controlled experiments in

software engineering, researchers at Simula Research Laboratory investigated 5453

different research papers [2].

 The survey characterised the controlled software engineering experiments published in a

sample of nine journals and three conference proceedings in the decade from 1993 to 2002:

ACM Transactions on Software Engineering Methodology (TOSEM), Empirical Software

Engineering (EMSE), IEEE Computer, IEEE Software, IEEE Transactions on Software

Engineering (TSE), Information and Software Technology (IST), Journal of Systems and

Software (JSS), Software Maintenance and Evolution (SME), Software: Practice and

Experience (SP&E), and the proceedings of International Conference on Software

Engineering (ICSE), IEEE International Symposium on Empirical Software Engineering

(ISESE), and IEEE International Symposium on Software Metrics (METRICS).

Out of the 5453 research papers, 119 different controlled experiments were identified,

described in 110 different papers. This is an interesting result in itself, but the lack of

controlled experiments in software engineering lies beyond the scope of this paper, and is

discussed elsewhere [2].

The subset of papers (n=110) identified as describing experiments in software

engineering was then analyzed with respects to the research question (RQ1) presented in

section 3. Only one out of 110 papers addresses ethical issues directly [15]. That paper

relegates its comments on the topic to a footnote, and provides an account of debriefing and

post experiment interviews with the subjects of the experiment. None of the papers discuss

important ethical topics such as “informed consent and “scientific value”. However, 17 of

the papers describe debriefing procedures, mainly through post-experiment questionnaires.

Several of the experiments are interesting from an ethical point of view, but it is futile to

 170

further analyze or rank them, since few details about ethical and other important

experimental aspects are described in the papers.

The fact that ethical issues are not discussed does not necessarily mean that they were not

regarded as part of the experimental process. It may just be the case that there is no tradition

for reporting such aspects in software engineering research papers. In order to obtain more

information, we can use related information, such as recruitment of subjects. This is

frequently reported, and can provide us with an indication of ethical aspects. Such

information can also provide us with valuable inputs when analyzing the experiments

conducted by Simula Research Laboratory.

Most of the subjects reported in the papers were students, which is understandable out of

practical and economic reasons. Nonetheless, a troubling observation was that for one third

of them, participation was mandatory! Such mandatory participation has also been criticized

in the IS community [5]

Equally concerning is the fact that participation directly affected their grades in nine

cases. This figure might actually be higher than has been stated, since a description of the

reward was only present for about 35% of the experiments. A complete overview is

presented in table 1.

Reward N %

Unknown 78 65.5

Part of job 15 12.6

Grade 10 8.4

Extra credits 9 7.6

Paid 3 2.5

Unpaid 3 2.5

Other rewards 1 0.8

Total 119 100.0

Table 1: Incentives for Participants.

Out of the analyzed experiments, there were no reports of using paid professionals. In

experiments with professionals, participation was either part of an ordinary project or

training programme. It is therefore difficult to compare these experiments with the ones

described in this paper.

 171

5. Description of Studies

This paper uses as examples two controlled experiments conducted by Simula Research

Laboratory that used industry professionals as subjects. One is a bidding and development

study that was recently conducted with participants from 35 different companies, and the

other is an implementation study with professional programmers. The reasons for selecting

these experiments for analysis in this paper are twofold. The main reason is that these

experiments aim for an increased degree of realism, when compared to previous

experiments. In addition, information (e.g. selection procedures, incentives, confidentiality

and debriefing interviews) about these experiments is described much more thoroughly than

in most other experiments. A brief overview of the characteristics of the two experiments, as

compared to most other experiments in software engineering [2], is presented in Table 2.

Experiment Regular SE experiment DES BESTweb

Participants Students Practitioners Practitioners

Incentives Varies Paid Paid

Realistic tasks Sometimes Yes Yes

Full project No Yes No

Real work environment Seldom Yes Yes

Product to be used after
completion

No Yes Yes

Table 2: Experiment properties

It should be noted that the author of this paper is responsible for the BESTweb, but has no

stakes in the DES study.

5.1. Team Bidding and Development Study (DES)

This study was conducted in 2003. We were planning on getting a web-based system

developed by a professional contractor to register and systemize data from experiments we

conduct. We also wanted to perform some studies as part of the project, mainly divided

between the bidding phase and the development phase.

In the bidding phase, our purpose was to investigate whether, and how, the evolution of

requirement specifications in the (fixed-price) bidding process would affect the bids of

software contractors. The underlying hypothesis was that if a contractor first receives a

 172

limited requirement specification, they establish a bid that acts as an anchor. If they later on

receive a larger extended specification, this anchor will affect the magnitude of the final bid.

During this phase, 35 different software companies were approached and invited to deliver a

bid. We invited a range of small, medium and large companies, randomly selected from the

Norwegian industry. None of the companies had previous relations to the client (Simula

Research Laboratory) that could affect the bids. The software companies were randomly

divided into two groups, with 17 companies in group A and 18 companies in group B.

Those in group A received a small initial specification, and were invited to provide a non-

binding bid and solution sketch on this basis. Each company was paid 5000 NOK

(approximately 600 Euro) for this work. The companies in Group B did not participate in

this initial bidding round.

Based on responses from the companies and internal needs, Simula then developed a

larger and more complete requirement specification. This requirement specification

included many features that were more complicated than the original specification, and

would require more development effort from the companies.

In the next bidding round, the final requirements were sent to all companies, grouping

both Groups A and B. This was our first contact with software companies in Group B. All

companies then had to deliver fixed-price bids based on this specification. Again, each

company was paid 5000 NOK (approximately 600 Euro) for this work. The companies

received instructions similar to those issued in the first bidding round, with the exception

that this was based on final requirements. The bidding companies were given the

information that we would select at least one of them as provider, and perhaps more than

one.

After the bidding rounds were completed, four providers were selected to develop the

solution. This was the development phase of the study, in which different teams

implemented the same system based on the same final requirement specification. The

selection was based on relevant business criteria, based on our needs.

Those who did not win one of the contracts were contacted by Simula Research

Laboratory and debriefed. The only element of control in the development phase was that

we selected two companies that had specified the use of UML and two companies that had

not. This was done in order to use the applications in further studies.

The four companies who won the contracts used development teams located at their own

organizations to develop their projects. In the development phase of DES, the projects

required the companies to follow a number of firm guidelines. These were government

 173

standards (Statens Standard), which often are used in projects procured by public

institutions. Once a week, the teams were interviewed by a researcher from Simula Research

Laboratory who had no stake in the project. These teams were debriefed after project

completion.

5.2. Individual Development Study (BESTweb)

The BESTweb study was conducted to investigate how the estimation performance of

professional programmers is affected by the time available in the estimation phase of a

project. The programmers had to estimate the required workload of several tasks, measured

in hours. They were subsequently asked to perform the programming tasks. The purpose

was to investigate whether more time spent on effort estimation will lead to less optimistic

(and probably more realistic) effort estimates.

This study was also based on an actual project, required by our software engineering

department. The experiment was based on the extension of an already existing system for

organizing literature references called BESTweb. It is of smaller magnitude than DES, but

nonetheless larger than similar studies, which have, in the main, used small student tasks.

The BESTweb study has more comparable previous experiments than the DES study, which

may allow us to evaluate our procedures with those of other researchers. There are,

however, certain aspects that differentiate this study from most similar controlled

experiments. Principally, BESTweb used paid professionals as subjects, which is very

unusual [2]. The study was recently concluded, and is currently under analysis.

The experiment recruited ten professional programmers from different software companies.

They were hired on an hourly basis. The participants were encouraged to behave as in a

normal assignment. They could take breaks when they felt like it, and they could use any

tools available. The participants were required to make several extensions to the system,

divided into different tasks. The tasks required about one work-week to complete. The goal

was to make the tasks as realistic as possible. This is an actual system, which is in use at

Simula, and the extensions implemented were based on real requirements as requested by

the researchers who use the system.

Even though we tried to make the experiment as close to a real software project as possible,

there were some factors that we controlled in the experiment. The participants were given a

limited amount of time to estimate the tasks before they started programming. This amount

of time was varied between the tasks and participants, and how this factor influences

 174

estimation performance is the main research interest of the experiment. The experiment also

required the tasks to be developed sequentially, and a new task could not be started before

the existing task was solved according to predefined requirements. All participants received

the same tasks in the same order.

Prior to the start of the study, the participants were informed that they would be working on

an actual project, but that we would like to use the study as an opportunity to study software

estimation. They were informed that we wanted to elicit how experts estimate. They were,

however, encouraged to perform as in a real project, since the project was a realistic

assignment, and we were bona fide clients.

They were also informed that a logging tool was installed. The purpose of the logging

tool was to monitor how participants interact with the programming environment. This data

may be used by researchers who wish to extend the study. They were also informed that no

personal data was stored, and that no information would be sent from us to the employers of

the participants or other parties. All researchers signed a confidentiality agreement. After

the end of the assignment, they were debriefed and interviewed with respect to ethical

issues.

6. Ethical Considerations and Debriefing Results

This paper will not go through every element of the stated guidelines or principles [7, 13]

and see how our, or other researchers, experiments adhere to these. Instead, we will focus on

how ethical principles may be affected when experimental realism is increased.

This section presents how the ethical notions of informed consent, benefice and

confidentiality may be affected when one tries to attain scientific value. We also provide

examples of how we have managed to achieve results of scientific value while satisfying the

demands of informed consent, benefice and confidentiality in our most recent experiments.

The main emphasis will be on the different elements of informed consent (disclosure,

comprehension, competence, voluntariness and termination). Our experiences with

debriefing sessions are also discussed.

6.1. Informed Consent: Disclosure

Disclosure is always problematic in controlled experiments [1]. Often, it is essential that

the participants do not know or try to guess the hypothesis. When dealing with software

companies as research entities, there are often two levels of disclosure: one to the

 175

employers, and one to the participants. The amount of disclosure required to be given to the

participants is different for each experiment, and must be balanced by the researchers.

In the bidding phase of the DES study, we informed the companies and participants that

it was an experiment, but that this was just one small part of an otherwise normal project.

They were told that at least one provider would be selected to implement the solution, and

that the selection would be based on business evaluations. This was also the case. In the

development phase of the study, they were also encouraged to work as if on a normal

project. They were informed that the selection of application(s) to be implemented would be

based on normal business evaluations. The only aspects that differed from a normal project

were that it was four similar projects, and that the teams were interviewed each week

(further elaborated upon in subsection 6.6).

In the BESTweb study, the participants were informed about the purpose of the

experiment, including most development aspects. The only thing that remained hidden was

how and why we controlled the amount of time they received in the estimation phase.

The developers in BESTweb were monitored closely. The developers used workstations

provided by Simula Research Laboratory. These workstations were fitted with advanced

logging tools [12], which allowed a high degree of monitoring of the participants in order to

perform a detailed analysis of their development method. The professionals are probably

used to having their code scrutinized, but not at this granularity. However, the participants

were informed about the monitoring, and they had the opportunity to decline, or turn the

tool off.

6.2. Informed Consent: Voluntariness and Termination

As described in the review in section 4, the use of paid software professionals in

controlled experiments is very rare. Often, when using software professionals, it is sensible

to recruit them through their employers. This may make it difficult for the subjects to

abstain from participation or to withdraw from the experiment if they feel uncomfortable.

The element of voluntariness and the opportunity for participants to terminate the

experiment at any time are two key elements of informed consent [7]. Since hired

consultants normally are required to generate billable hours for their companies, the

threshold for declining may be increased compared to experiments that recruit participants

as individuals, e.g. through advertisement.

 176

In order to secure voluntariness and the ability to terminate for our participants, we

always encourage a close dialogue. All our researchers have signed confidentiality

agreements (elaborated in subsection 6.3). These agreements state that no sensitive

information from experiments or other studies will be handed to third parties, such as

employers.

In the second phase of the DES study, there was a possibility that we would encounter

individuals who would like to withdraw from the experiment. However, as participants in a

team, they might have felt pressure from peers or management to stay on the project, even

though it might have been uncomfortable for them. To cope with this eventuality, there

were weekly anonymous interviews with all participants. These were conducted by a

researcher from Simula Research Laboratory who had no stake in the project. None of the

participants indicated any desire to leave the project.

Since only individuals were used in the BESTweb study, possible problems related to

voluntariness and terminations were of a lesser magnitude than in the DES study. The

participants were informed that they could withdraw at any time, for any reason. If they

chose to do so, we would only inform their employers that the participant did not have the

right profile for the study, and pay compensation for the effort spent.

6.3. Informed Consent: Comprehension and Competence

Comprehension and competence are often linked. When one recruits software

professionals for an assignment, one must first assess the level of complexity of that

assignment. Normally, this can be done by independent experts. Recruitment through

companies can then be based on the skill levels required for that task. These requirements

must be explained in a plain manner. This is also the case for all other tasks performed and

instructions issued during the experiment.

In the DES experiment, we sent requirement specifications to the companies, which then

had the responsibility of selecting competent people. The requirements were presented in a

clear and readily comprehensible manner.

For the BESTweb study, we sent a list of the technologies involved to the companies,

and a description of the level of complexity. It was then their responsibility to select

participants. In order to make sure that the participants had the right kind of knowledge, a

pre-experiment interview was conducted by one of our researchers.

 177

6.4. Benefice

It is important to ensure that any possible harm done to the companies does not outweigh

the benefits. Since benefits are often difficult to measure, one should strive for situations

that will not generate any harmful effects.

For the bidding phase of the DES study, it would be pertinent to make comparisons with

other actual software projects. Unfortunately, due to the high grade of realism in the study,

there are no meaningful research comparisons to make. While in our study only four out of

the 35 companies that delivered bids got the assignment, the common industry practice is

that only one company wins the contract. In addition, those who delivered bids received

5000/10000 NOK as a participation fee. This is not the case in the industry when you fail to

win a contract.

In the BESTweb study, it was a possibility that the control elements of the experiment might

render the performance of the developers sub-optimal. The developers were required to

complete the tasks in a given sequence, and were not allowed to plan ahead. This could

require a larger effort measured in man-hours to complete the project. The developers might

have been hampered by these restrictions, resulting in a failure to perform at an optimum

level. Nonetheless, they were paid by the hour, so a longer development cycle only meant

more billable hours. Most important, the tasks were not linked, which indicates that the

order of development should not affect performance.

6.5. Confidentiality

Protecting the identity of participants is crucial in all kinds of studies. It is also important to

ensure that no sensitive information is leaked to other parties.

As mentioned earlier, all researchers at Simula Research Laboratory have signed

confidentiality agreements. More specific agreements can also be provided to companies

and participants on request, as was done in a recent survey [16].

Both in DES and BESTweb, all information provided to Simula about sensitive issues

was kept confidential. An example is the fine granularity logs from the logging tool in

BESTweb. Those data were collected from the computer automatically, and analyzed by a

researcher who had no means of backtracking and linking the data to any specific

participant.

 178

6.6. Debriefing Experiences

Debriefing was prominent both in DES and BESTweb. In the first phase of the DES

study, after selecting four providers out of the 35, we debriefed all companies. Each

company was contacted via phone by a representative of Simula. There were no indications

that the companies regretted participation in the study. Nonetheless, a few of the companies

were disappointed because they were not selected as a provider. This is, however, not

uncommon in a bidding situation such as this.

In the second phase of the study, debriefing and follow-up of the participants was more

thorough. During the whole development period, each project team was interviewed once a

week. All project members had a personal interview session with an independent researcher

from Simula, who was not a stakeholder in any of the study phases. Each semi-structured

interview lasted between 15 and 75 minutes, and a total of 98 interview sessions were

conducted. The interviewer did not receive any indication of problems related to informed

consent or other ethical issues. No persons or teams wanted to pull out of the experiment,

and for all practical purposes, the study was treated as a regular project. None of the

participants raised ethical objections, and none of them felt pressured to participate by their

management. No participants felt, at any stage, that they were being misled or lied to. They

were satisfied with the information about the study received from Simula. In fact, two of the

participants were a little “disappointed” by the relatively low amount of research and

manipulation. They had actually been looking forward to a project that departed from the

norm.

The participants in the BESTweb study were also debriefed after all development

assignments were performed. During the debriefing session, any criticism could be stated

anonymously to a neutral researcher. These data are currently under analysis, but no

problems related to ethics have been uncovered so far.

7. Discussion

As previously described by other authors [3], and seen in our survey presented in section

4, there has not been much focus on research ethics in the software engineering literature.

Whether this is due to lack of awareness or just poor reporting, we do not know. It is most

likely a combination. Previous papers [6] have revealed a low degree of attention to research

ethics, and a recent survey has found much of the reporting related to controlled

 179

experiments in software engineering to be inadequate [2]. The reporting problem is a

general issue that relates not only to ethical issues, but to all aspects of experiments [2]. In

short, it may well be that the answer to our first research question is that reporting and

discussion of ethical concerns in the software engineering literature is virtually nonexistent.

Lack of reporting also makes it difficult for us to answer our second research question.

This is principally due to the lack of similar cases with which to compare our own. Research

studies normally recruit participants as individuals, e.g. through advertising or by using

students. This also applies to many studies in computer science. However, when one seeks

to increase realism in such studies, it is necessary to recruit real companies, project teams or

professionals. Often, the only sensible way to achieve this is by recruitment through the

companies themselves. Since participation (and payment) is then often linked to the

company, withdrawal may not be so easy to handle, both for participants and researchers.

The DES study has several properties that make it interesting as a starting point for

discussion. Mainly, it has tried to increase, to a significant degree, the level of realism in

software engineering research. Previously, the greatest difference regarding experiments in

empirical software engineering was that between using students and professionals in

controlled experiments. These experiments were typically small tasks, lasting from a few

hours to a number of days. The DES experiment has done has increased the level realism by

departing from small arbitrary tasks, performed by individuals, and instead studying large

scale realistic industry projects, developed by professional companies. DES is a study in

which different companies “compete” against each other in an experimental setting, but with

a realistic project, and such very realistic incentives as contracts, money and prestige.

In the BESTweb study, we used individual software professionals in a controlled

experiment. Use of professionals in experiments has been debated to some extent, but not in

our setting, where several professional developers from different companies develop the

same project.

From the examples, it seems as though informed consent is the most prominent ethical

concern, in studies at both individual and company levels. However, with an open procedure

between the researchers and the participants, it is possible to keep issues raised by informed

consent at an acceptable level. Such procedures include statements, confidentiality

agreements, explanations (including debriefing), descriptions and the possibility to refuse

participation [7, 10]. The main problematic issue related to informed consent in studies

similar to the ones presented is, perhaps, that of voluntariness; not particularly between the

researchers and the participants, but between the participants and their employers. If the

 180

participants are paid professionals, it may be that the companies pressure them to participate

in order to get billable hours from research institutions. This may be difficult for the

researchers to discover, and such possibilities should be monitored closely.

Even though both benefice and informed consent were, taken individually, only partially

problematic in the DES study, it is the combination of those elements that may be alarming.

Many small problems may add up in a large study, and every part needs to be analyzed. It is

difficult to approach this area, since research on companies has scarcely been debated, and

even the more general guidelines [13] give vague statements: “Researchers should respect

the legitimate grounds private businesses, professional and industrial bodies and the like

may have for not wanting information about themselves, their members or their plans

published”.

Another possible problem is the pride of the developers, and the effort put into the

product. Even though the benefice of the participants is preserved, since they get paid, they

may also have other motives for development. If a participant’s product is not chosen for

further use, it is therefore important for the researchers to give a full account of the reasons

behind such choices.

The presence of logging tools may also be unfamiliar to developers, and could cause both

stress and reduced performance. However, a recent study [12] showed that as long as there

is informed consent regarding the logging tools, the participants do not find them

problematic. The study had 13 participants in programming tasks, similar to those in our

BESTweb studies. The participants were surveyed about their feeling towards the

experiment afterwards. On a seven-point Likert scale (1 – fully agree, 7 – fully disagree) the

participants were asked if they worked differently because they knew that everything was

being logged. The responses did not indicate that the participants felt that they had been

affected, with a mean response of 6.1. The participants also expressed similar positive

attitudes towards others parts of the experiment [12]. Since a normal software project can

often be chaotic and stressful [17] it is extremely important that this stress is not augmented

by the researchers.

There is little empirical data on the research ethics in computer science with which to

compare our described debriefing sessions. There is, however, much information on

debriefing from other research areas. One of the most discussed experiments in psychology,

both because of its results and ethical controversy, is Stanley Milgrams experiment on

obedience [14]. The experiment tricked participants into believing that they were

administering potentially lethal electric shocks to what they thought was a learner in an

 181

experiment on memory. In reality, the whole experiment was a cleverly devised illusion,

and no shocks were delivered. However, Milgram showed that ordinary people were

capable of delivering lethal shocks to other human beings if encouraged by an experimenter.

The experiment was criticized for both its lack of informed consent and its possible harmful

effects on the participants. Differing opinions regarding the experiment are described in a

host of sources, e.g. textbooks in psychology and behavioural research [1, 18]. Milgram

was very thorough in his debriefing efforts and surveyed his participants systematically.

Despite the possible severe consequences of the experiment, a full 84% of the subjects were

glad they participated, and 74% said they had benefited from participation. Only 1%

regretted participation. The subjects were also interviewed by a psychiatrist one year after

participation, and no ill effects were found.

No suffering appears to have been endured by the participants in our DES study. Even

though we did not deem it necessary to contact a psychiatrist, the participants in both phases

were debriefed and the teams in the second phase were interviewed regularly. No ethical

concerns were voiced by the participants. It is possible that the participants lied to the

interviewer about sensitive issues, such as withdrawal or pressure from management.

However, our previous experiences with interviews from other studies, such as a recent

survey [16], indicate that interview subjects are often quite frank about criticizing their

management or company. Such a situation, when the interviewer has signed a

confidentiality agreement, offers a rare opportunity for the interview subjects to vent

possible anger and frustration in front of a neutral third person.

There are vast differences between Milgrams’ studies on obedience, and seemingly

harmless software engineering experiments. However, it is important to note that for the

professionals who act as subjects, any misconduct on the part of researchers could be

damaging for their professional careers. Thus, it is essential that care is taken to ensure that

problems due to ethical issues do not arise.

It seems, in summary, as though the participants in the DES study were satisfied with the

type and amount of information received. It did not appear as though the increased realism

breached any aspects of informed consent. Our experiences from the BESTweb study are

currently too limited to draw any conclusions.

It might be that the principle of scientific value will, in more realistic experiments,

challenge the principle of informed consent. However, such problems can be kept to a

minimum with an open dialogue and the extensive use of debriefing sessions.

 182

8. Summary

It is not meaningful, or possible, to draw conclusions in this kind of paper. However, we

feel confident that there is currently a lack of emphasis on ethical issues when increasing

realism in controlled experiments. We have tried to illustrate this with examples from our

own studies. It is important to note that this paper only describes possible problematic areas

of two non-randomly selected studies, which were carried out at the author’s institution.

However, the purpose of this paper is mainly to bring to attention issues that researchers

face when trying to increase realism. Another purpose was to revitalize the debate on an

important, but neglected, topic in our field. It is obvious that increased realism in

experimental studies calls for extended and specialized ethical guidelines. It is therefore

important for the research community to increase the focus on ethical aspects. This applies

both to the planning, conducting and, especially, the reporting of experiments. There is

almost no mention of ethical issues in many of the contemporary papers on empirical

software engineering, and no common de facto guidelines are used.

Even though our experience comes principally from software engineering studies, we

believe that the aspects discussed in relation to increased realism in controlled experiments

are applicable to all researchers in the IT/IS area. It is hoped that such initiatives as initiated

in the special issue of Empirical Software Engineering [3] will continue, and there may,

perhaps, be an increased focus on research ethics in papers in conferences and journals, so

that it may be possible to establish guidelines such as those used in other disciplines.

Acknowledgements

This research was funded by the Research Council of Norway under the project INCO.

Thanks to all members of the SE group at Simula Research Laboratory and Chris Wright for

valuable comments.

References

1. Cozby, P.C., Methods in behavioral research. 5th ed. 1993, Mountain View:

Mayfield Publishing Company.

2. Sjøberg, D.I.K., et al., A Survey of Controlled Experiments in Software Engineering.

Submitted to IEEE Transactions on Software Engineering., 2004.

 183

3. Singer, J. and N. Vinson, eds. Empirical Software Engineering. ed. V.C. Basili and

W. Harrison. Vol. 6. 2001, Kluwer Academical Publishers.

4. Davison, R., Professional Ethics in Information Systems: A Personal Perspective.

Communications of the AIS, 2000. 4.

5. Davison, R., et al., Research Ethics in Information Systems: Would a Code of

Practice Help? Communications of the AIS, 2001. 7.

6. Hall, T. and V. Flynn, Ethical Issues in Software Engineering Research: A Survey of

Current Practice. Empirical Software Engineering, 2001. 6(4): pp. 305-317.

7. Singer, J. and N. Vinson, Ethical Issues in Empirical Studies of Software

Engineering. IEEE Transactions on Software Engineering, 2002. 28(12): pp. 1171-

1180.

8. Sjøberg, D.I.K., et al., Challenges and Recomendations when Increasing the Realism

of Controlled Software Engineering Experiments, in ESERNET Method Book. 2002,

LNCS.

9. Storey, M.-A.D., B. Phillips, and M. Maczewski, Is it Ethical to Evaluate Web-based

Learning Tools using Students? Empirical Software Engineering, 2001. 6(4): pp.

343-348.

10. Sieber, J., Protecting Research Subjects, Employees and Researchers: Implications

for Software Engineering. Empirical Software Engineering, 2001. 6(4): pp. 329-341.

11. Davis, M., When is a Volunteer Not a Volunteer? Empirical Software Engineering,

2001. 6(4): pp. 349-352.

12. Karahasanovic, A. Is it Ethical to Log Users' Actions in Software Engineering

Experiments? Informing Science and Information Technology Education Joint

Conference. 2003. Pori, Finland. pp. 1211-1214.

13. Kalleberg, R., Guidelines for research ethics in the social sciences, law and the

humanities. 2001, The National Committee for Research Ethics in the Social

Sciences and the Humanities.

14. Milgram, S., Behavioral Study of Obedience. Journal of Abnormal and Social

Psychology, 1963. 67: pp. 371-378.

15. Jørgensen, M. and D.I.K. Sjøberg, Impact of effort estimates on software project

work. Information and Software Technology, 2001. 43: pp. 939-948.

16. Moløkken-Østvold, K., et al. A Survey on Effort Estimation in Norwegian Software

Industry. 10th International Symposium on Software Metrics. 2004. Chicago,

Illinois, USA: IEEE Computer Society. pp. 208-219.

 184

17. Yourdon, E., Death March. 1997, New Jersey: Prentice-Hall, Inc.

18. Atkinson, R.L., et al., Hilgard's Introduction to Psychology. 12th ed. 1996, Orlando:

Harcourt Brace College Publishers.

 185

 186

Paper VIII:

How Large Are Software Cost Overruns?

Critical Comments on the Standish Group’s CHAOS

Reports

Magne Jørgensen and Kjetil Moløkken-Østvold.

Simula Research Laboratory.

Submitted to Information and Software Technology.

 187

1. Introduction

The Standish Group (www.standishgroup.com) claims that the results of their CHAOS

research, i.e., their large-scaled surveys conducted in 1994, 1996, 1998, 2000 and 2002, are

the most widely quoted statistics in the IT industry. This may very well be true. Quoted with

particular frequency are the results described in the 1994 CHAOS report [1], probably

because a summary of the 1994 CHAOS report is free and is the only one that can be

downloaded from the web. The results of that report have been used in several recent

governmental reports, project reviews, and research studies. Examples are the PITAC 1999

report [2] and the cost estimation study described in [3]. An important result from the 1994

CHAOS research is the reported 189% average cost overrun of so-called challenged

projects, i.e., projects not on time, not on cost, and not with all specified functionality. In

this paper we argue that the 189% average cost overrun number, as it is commonly

interpreted, is not consistent with results of other cost accuracy surveys and probably far too

high to reflect the average cost overrun in that period.

2. The Importance of the Correctness of 189%

Average Cost Overrun Result

Among the users of the cost overrun numbers in the 1994 CHAOS report are scientific

researchers, software process improvement groups, and government advisors. The main use

seems to be to argue for more research, better estimation processes and improved project

management methods. These are all laudable goals, well supported by a ‘software cost

estimation crisis’ implied by a 189% average cost overrun. Unfortunately, there are several

examples of situations where the 189% result may have hindered progress. The following

three real-world examples illustrate this.

Example 1: A project had a 146% cost overrun, i.e., the actual cost was about 2.5 times

the estimated cost. A report on the project’s performance stated that the cost overrun was

not that bad, because it was better than the industry average of 189%. There are several

examples of this type of use.

 188

Example 2: A consultancy company claimed to be in the elite class of software

development companies, based on a comparison of its own numbers with the 189% cost

overrun number.

Example 3: A recent UK study of software projects [4] report an average cost overrun of

18%. Here an adjusted version of the 189% cost overrun number from the 1994 CHAOS

report is used to support an argument for an enormous improvement in estimation

performance. Readers of that report may get the impression that the improvement of cost

estimation processes does not require a great deal of systematic work and focus.

3. What Does 189% Average Cost Overrun Mean?

Before we compare the CHAOS Report results with those of other studies it is important

to clarify the meaning of ‘189% average cost overrun’. This turned out to be more difficult

than expected. In fact, we were unable to find an explicit definition of the cost overrun

measure applied in the CHAOS reports. Only informal, inconsistent descriptions were

presented. The following quotations provide typical examples of how the CHAOS reports

describe the 189% average cost overrun:

• “… 52.7% of projects will overrun their initial cost estimates by 189%”, page 41 in

[5].

o Comment: 52.7% is identical to the percentage of so-called challenged

projects. Even the definition of challenged projects is not easy to interpret. It

is defined in [1] as “The project is completed and operational but over-

budget, over the time estimate, and offers fewer features and functions than

originally specified.” The problem here is the use of “and” instead of “or”,

combined with the following definition of successful projects: “The project is

completed on-time and on-budget, with all features and functions as initially

specified.” Consider a project that is on-time, and on-budget, but not with all

specified functionality. Is this project to be categorized as challenged or

successful? Our guess is that it would be categorized as challenged, but this

is not consistent with the provided definition of challenged projects.

 189

• “The average cost overruns for combined challenged and cancelled projects is

189%.”, page 42 in [5].

o Comment: Here, the cancelled projects are included, i.e., there are two

inconsistent descriptions of cost overrun in the same document. The method

by which the cost overrun of a cancelled project might be included is not

given.

• “… 52.7% of projects will cost 189% of their original estimates”, page 14 in [6].

o Comment: As we interpret it, if the cost is 189% of an estimate there is an

89% cost overrun, i.e., this is not the same as the first description.

To see whether we were the only ones confused by these descriptions we conducted a

simple survey of the actual use of the 1994 CHAOS report cost overrun number. We

examined 50 randomly sampled web-documents applying the search term: ((Standish

Group) AND (189% OR 89%)) using the search engine www.yahoo.com. We found the

following:

• 50% of the documents described the result as “189% cost overrun”, 40% as “189%

of original estimate”, and 10% as “89% cost overrun”. “189% of original estimate”

and “89% cost overrun” seem to reflect the same understanding of the result, i.e., we

found two different interpretations of cost overrun that were used with almost the

same frequency.

• 70% of the documents related the result to “53% of the projects” (without explicitly

pointing out that this 53% referred to challenged projects only), 16% to “all

projects”, 8% to “challenged and cancelled projects”, and 6% explicitly pointed out

that the average cost overrun is based on “challenged projects” only.

Generally, in recent reports and press releases the Standish Group seams to apply the

interpretation “189% average cost overrun of challenged projects”, see for example the

press release March 2003 [7]. This means that many, perhaps the majority, of the users

interpret the results differently from the Standish Group.

4. A Comparison with Other Cost Estimation

Accuracy Studies

All surveys of cost estimation accuracy in the relevant period and countries that we were

able to find suggest average cost overrun in the range of about 30% (see Table 1), i.e.,

 190

values far from 189% cost overrun. The surveys in Table 1 have all been subject to

scientific review of research method and results, as opposed to the Standish Group CHAOS

reports. For a more detailed description of these and other cost estimation surveys, see [8].

Study Jenkins [9] Phan [10] Bergeron [11]

Year 1984 1988 1992

Respondents 23 software
organizations

191 software
projects

89 software
projects

Country of
Respondents

USA USA Canada

Average Cost
Overrun

34% 33% 33%

Table 1: Cost Overrun Surveys

These values are not directly comparable with those in the CHAOS reports. The studies

in Table 1 include successful as well as challenged projects, as opposed to the CHAOS

report where the successful projects are excluded from the cost overrun calculation.

However, the proportion of successful projects in the 1994 CHAOS report was only 16%

and cannot explain the huge difference in the results. The question is therefore: Are there

other differences between the three studies in Table 1 and the CHAOS 1994 survey that can

explain the huge difference in average cost overruns? Are there, for example, reasons to

believe that the cost accuracy performance was so much worse in 1994 than in the period

1984-1992, or that the three studies in Table 1 are bias towards too low cost overruns? We

can find no such reasons explaining the difference in results.

Interestingly, the Standish Group’s CHAOS surveys for the years 1996, 1998, 2000, and

2002 report strongly decreasing numbers, i.e., 142%, 69%, 45%, and 43% average cost

overruns. Adjusted for differences in how cost overrun is measured, we find that the

numbers for 2000 and 2002 corresponds well with the average cost overrun of about 30% in

the studies in Table 1, i.e., it seems as if it is mainly the early (1994, 1996 and 1998)

CHAOS report cost overrun numbers that are unusual. The strong decrease in average cost

overrun, as measured by the Standish Group, is a reason to doubt the research method in

itself. For example, do we believe that the average cost overrun improved from 142% to

69% in only two years?

 191

5. Why Are the Cost Overruns in the 1994 CHAOS

Report So High?

To investigate reasons for the high 1994 cost overrun number, we asked the Standish

Group how they selected the projects to be included in their CHAOS studies and how we

should interpret ‘cost overrun’. The response to our research method question was that

providing this type of information would be like giving away their business for free, and we

got no response on how to interpret ‘cost accuracy’. This unwillingness to reveal research

method and measurement definitions would have been an unacceptable response in an

academic context, but is, as far as we have experienced, not uncommon in commercial

companies conducting research studies.

This lack of research method and measurement definition information leaves us with no

choice but to speculate about potential reasons. We have identified the following potential

reasons explaining the ‘189% cost overrun’ reported in the 1994 CHAOS research report:

• Incorrect interpretation of own results: Re-calculations of the average cost overrun

based on the Standish Groups 1994 distribution of cost overrun per overrun category

results in a cost overrun close to 89%, i.e., there may be an inconsistency between

the two presentations (average cost overrun and cost overrun distribution) of the

overrun data. When the Standish Group present the 1994-study as 189% instead of

89% cost overrun, it may have been misled by its own confusing description of the

results. However, even a reduction from 189% to 89% does not lead to results on the

level of the comparable studies.

• No category for cost under-run: In most studies on software cost estimation

accuracy there is a proportion of projects with cost under-runs. For example, in the

recent UK study on project performance [4] as many as 15% of the projects were

completed ahead of budget. Even challenged projects may have cost under-runs,

since they may be challenged only regarding time or functionality. We find no

reference to, or description of, treatments of cost under-run in the Standish Group’s

reports. It is therefore possible that cost under-runs are not included as cost under-

runs, but perhaps as 0% cost overrun.

• Unusual definition of cost overrun: The Standish Group may have used an unusual

definition of cost overrun, e.g., the definition may include cost on cancelled projects

as indicated in one of the three informal descriptions of cost overrun. A possible cost

 192

overrun definition that includes cancelled projects (possibly consistent with an 89%

cost overrun) is for example: Cost overrun = TIM / (TIM – WM), where TIM = Total

investment on software projects, and WM = Wasted money on cancelled projects and

on cost overruns. Then, cost overrun is interpreted as how much more a company

should expect to pay more than initially estimated when considering the possibility

of both cost overruns and cancellation of projects. An example: If a company

initially estimates an expenditure of $1.000.000 on IT-application development, the

expected cost is $1.890.000 (189% of $1.000.000) to complete these projects. The

strength of this measure is that it includes money spent on cancelled projects, which

arguably is connected to cost overruns. The weakness is that no-one else uses this

cost overrun measure, the measure is difficult to interpret, and it conflicts with our

intuitive understanding of project cost overrun. In any case, this discussion

demonstrates the necessity for a clear definition of “cost overrun” in the Standish

Group’s research reports.

• Non-random sampling of projects. Unusual results are sometimes caused by non-

random samples. A thorough reading of the version 3.0 of the CHAOS report [6]

provides some support for this explanation. On page 13 the selection process of the

1994-study is described as follows: “We then called and mailed a number of

confidential surveys to a random sample of top IT executives, asking them to share

failure stories [!!!]. During September and October of that year, we collected the

majority of the 365 surveys we needed to publish the CHAOS research.” The

decreasing average cost overrun numbers of more recent CHAOS research may

therefore be a consequence of an increasingly more representative (and less failure-

story related) selection of projects.

6. What Should We Learn From This?

This paper does not prove that the 189% average cost accuracy reported in the 1994

CHAOS report is biased and unrepresentative for the situation in 1994. Such a proof would

require the availability of information that the Standish Group will not release. It is possible

that the results are valid, and merely very difficult to interpret, given the lack of

measurement definitions and research study description. Bearing in mind the above

cautionary note as to what we are able to establish, we have attempted to provide reasons to

doubt the 189% average cost overrun value as it is interpreted by most of its users. In

 193

particular we believe that the unusually high average cost accuracy number and the lack of

research method description are valid reasons for doubting that number. As software cost

estimation researchers, we (the authors of this paper) and many others have uncritically

applied the 1994 CHAOS Report cost overrun numbers to several studies, e.g., in [3, 12].

We therefore believe that there are lessons to be learned:

Lesson 1: When something does not correspond with own experience and other studies,

doubt it. A 189% average cost overrun, as reported by the CHAOS research, is an extremely

high number in relation to numbers reported in other studies. Consequently, we should

require a detailed description of research method applied, or independent studies that

replicate the result before believing it.

Lesson 2: The number of observations, which is higher in the CHAOS report than in the

comparable studies, is not always a good indicator of the validity of the results. We should

be just as concerned about the selection process as with the number of observations. If the

selection process is not properly described, we should doubt the results regardless of the

number of observations. Bias is not removed with an increased number of observations.

Lesson 3: Studies that do not precisely define their measures, as is the case with the

CHAOS research, should be interpreted carefully. The confusion about the interpretation of

the 189% average cost overrun illustrates this. For example, many documents referring to

the CHAOS report did not notice that the average cost accuracy only referred to challenged

(and maybe cancelled) projects, not to all projects.

7. Summary

The Standish Group reported in 1994 that the average cost overrun of software projects

was as high as 189%. This cost overrun number is still of great importance. It is, for

example, used as input in recent governmental reports, as benchmark for the estimation

performance of recent projects, and to support the claim that there has been an immense

improvement in cost estimation performance the last 10 years. We found several reasons to

believe that an average cost overrun of 189% is much too high to reflect the situation in

1994. The number is not consistent with cost overrun results of other surveys in that period,

and, there may be serious problems with how the Standish Group conducted their research.

 194

Unfortunately, the Standish Group provides an incomplete description of how they

conducted their studies, e.g., how they selected the projects to be included in the study, and

does not include a description of the measure ‘cost overrun’. This makes it difficult to

evaluate the validity of their 1994 study. Even worse, the lack of precise definition of ‘cost

overrun’ seems to have created much confusion. Many, perhaps the majority, of the users

interpret the cost overrun results differently from the Standish Group. Our main conclusion

is that we should doubt the validity of the 189% average cost overrun reported by the

Standish Group in 1994 until such time as the Standish Group disclose how they measure

cost overrun and how they conduct their research. Currently, the validity and

comprehensibility of that number is highly questionable and may create the impression (a)

that the IT-industry has improved strongly since 1994 and (b) that even very inaccurate

projects are “better than average”.

References

1. The CHAOS Report. www.standishgroup.com/sample_research, 1994.

2. The PITAC REport. www.hpcc.gov/pitac/report, 1999.

3. Jørgensen, M. and D.I.K. Sjøberg, The impact of customer expectation on software

development effort estimates. International Journal of Project Management, 2004.

22(4): pp. 317-325.

4. The state of IT project management in the UK 2002-2003.

www.computerweeklyms.com/pmsurveyresults/surveyresults.pdf, 2003.

5. Johnson, J., CHAOS: The dollar drain of IT project failures. Application

Development Trends, 1995(January): pp. 41-47.

6. Chaos Chronicles Version 3.0. 2003, The Standish Group: West Yarmouth, MA.

7. Press release, The Standish Group.

http://www.standishgroup.com/press/article.php?id=2, March 2003.

8. Moløkken, K. and M. Jørgensen. A Review of Surveys on Software Effort Estimation.

IEEE International Symposium on Empirical Software Engineering (ISESE 2003).

2003. Rome, Italy. pp. 223-230.

9. Jenkins, A.M., J.D. Naumann, and J.C. Wetherbe, Empirical investigation of systems

development practices and results. Information and Management, 1984. 7(2): pp.

73-82.

 195

10. Phan, D., D. Vogel, and J. Nunamaker, The search for perfect project management,

Computerworld. 1988. pp. 95-100.

11. Bergeron, F. and J.Y. St-Arnaud, Estimation of information systems development

efforts: A pilot study. Information & Management, 1992. 22: pp. 239-254.

12. Jørgensen, M. and D.I.K. Sjøberg, Impact of experience on maintenance skills.

Journal of Software Maintenance and Evolution: Research and practice, 2002. 14(2):

pp. 123-146.

Biographies:

Magne Jørgensen is a professor at University of Oslo and Simula Research Laboratory.

His research interests include software cost estimation, uncertainty assessments in software

projects, expert judgment processes, and, learning from experience. He received the Dr.

Scient. degree in informatics from the University of Oslo, Norway in 1994. He has 10 years

industry experience as consultant and software project manager. His publications on

software cost estimation and related topics are listed at:

http://www.simula.no/people_one.php?people_id=36. magne.jorgensen@simula.no.

Kjetil Moløkken-Østvold is a Ph.D. student at University of Oslo. His research interests

include software cost estimation, expert estimation in groups and surveys of software

estimation performance. He received the Cand. Scient. degree from University of Oslo in

2002. kjetilmo@simula.no.

 196

	Acknowledgements
	Introduction
	Research Method
	Description of Studies
	Terminology and Measures

	Summary of Research Papers
	Papers on State of the Practice (T1)
	Papers on Improving Software Estimation Accuracy (T2)
	Papers on Methodological Aspects (T3)
	Identification of the Work the Author
	Notes

	Main Research Contributions
	Introduction
	Survey 1: Jenkins
	Survey 2: McAulay
	Survey 3: Phan
	Survey 4: Heemstra
	Survey 5: Lederer
	Survey 6: Bergeron
	Survey 7: Moores
	Survey 8: The Standish Group ‘Chaos report’
	Survey 9: Wydenbach
	Survey 10: Addison
	Survey designs
	Survey results

	Acknowledgements
	Introduction
	Frequency and magnitude of effort and schedule overruns
	Choice of estimation method
	How important is estimation accuracy perceived?
	The participating companies
	Data collection and analysis
	What is an estimate?
	What is the frequency and magnitude of effort estimation ove
	What is the frequency and magnitude of schedule estimation o
	Does project size affect effort estimation accuracy or bias?
	To what extent are different estimation methods used in the
	Does choice of estimation method affect estimation accuracy
	Are there differences in estimation accuracy or bias between
	How do senior managers perceive the company’s level of estim
	On what basis is an estimation method selected? (RQ8)
	How important does the organization perceive estimation as b
	Threats to validity

	Acknowledgements
	Appendix I: Survey data
	Introduction
	Political level
	Organizational level
	Individual level

	Introduction
	Test of Hypothesis 1
	Different Length of Experience
	Gender Differences
	Differences in Perceived Estimation Skill
	Differences in Formal Estimation Training
	Differences in Choice of Estimation Strategy
	Difference in Estimation Goals
	Differences in Feedback

	Introduction
	The Company Studied
	The Estimation Task
	Group Processes
	Implications for Researchers and Practitioners
	Experimental Validity

	Introduction
	The Participating Companies
	Data Collection and Analysis
	Measuring estimation accuracy
	The problem of multiple estimates
	Measuring Estimation Accuracy in Flexible Development Projec
	Better Estimation Process
	More Flexibility in Delivered Functionality
	Smaller Projects
	More Client Involvement
	Threats to Validity

	Acknowledgements
	Introduction
	Team Bidding and Development Study (DES)
	Individual Development Study (BESTweb)
	Informed Consent: Disclosure
	Informed Consent: Voluntariness and Termination
	Informed Consent: Comprehension and Competence
	Benefice
	Confidentiality
	Debriefing Experiences

	Acknowledgements
	Introduction
	References
	Biographies:

