
 
 
 
 

Thesaurus-Based Methodologies and 
Tools for Maintaining Persistent 

Application Systems 
 
 
 
 
 
 

Dag I. K. Sjøberg 
 
 
 
 
 
 
 
 

A thesis submitted to the Faculty of Science, 
University of Glasgow 

for the degree of Doctor of Philosophy 
July 1993 

 
 
 
 
 

© Dag I. K. Sjøberg, 1993 



Abstract 
 

The research presented in this thesis establishes thesauri as a viable foundation for 
models, methodologies and tools for change management.  Most of the research has been 
undertaken in a persistent programming environment.  Persistent language technology 
has enabled the construction of sophisticated and well-integrated change management 
tools; tools and applications reside in the same store.  At the same time, the research has 
enhanced persistent programming environments with models, methodologies and tools 
that are crucial to the exploitation of persistent programming in construction and 
maintenance of long-lived, data-intensive application systems. 

Application programming deals with a very high rate of change to data definitions, 
dependent programs and dependent user interfaces.  This leads to severe problems in 
propagating changes correctly.  It is common to find that necessary changes consequent 
on some other change have not been made, so that the system is inconsistent and will 
eventually fail to operate correctly.  This thesis documents the problems by reporting an 
industrial experiment that quantified and helped solve such problems.  The major 
component of the experiment was the HMS thesaurus tool which automatically generates 
and updates name and identifier information in all the software written in all the 
languages of the application system.   

It is demonstrated that a similar thesaurus tool in a persistent programming 
environment can serve as a basis for models and methodologies for building and 
maintaining large and long-lived application systems.  An example is SPASM which is a 
set of constraints that should be adhered to in order to prevent deteriorating structure and 
improve maintainability.   

The EnvMake tool automatically verifies programs according to the SPASM 
constraints.  It also supports other steps of the introduced construction and maintenance 
methodology.  In large-scale application development, build management such as 
installation, recompilation, relinking and re-execution is time consuming and error-prone 
without appropriate tool support.  EnvMake automatically tracks down dependencies and 
initiates the appropriate actions. 

i 



Acknowledgements 
 

First of all I am indebted to my supervisor Malcolm Atkinson for his continuous 
guidance, encouragement, enthusiasm and inexhaustible source of ideas.  The support, 
whatever the issue, is very much appreciated.  I am also grateful to my second supervisor 
Ray Welland for his advice and support.  Malcolm and Ray carefully reviewed this thesis 
and made up a superb supervisory team providing, among other things, many stimulating 
discussions. 

Numerous discussions with Paul Philbrow, Phil Trinder, João Lopes, Richard 
Cooper and other colleagues at Glasgow have helped the understanding of the issues of 
this research.  I gratefully acknowledge the patient proof-reading help provided by Anne 
Philbrow.  I particularly thank Mark Dunlop for his generous and artistic help, at a 
moment of crisis, with Figure 1.1. 

The St Andrews persistent programming team, led by Ron Morrison, made many 
useful comments and influenced the work in several ways.  Quintin Cutts and Graham 
Kirby provided excellent software for me to reuse.  Quintin’s assistance at the early 
stages of this research was invaluable. 

Thanks also to many people in academia and industry in the UK and Norway who 
have contributed to the research presented in this thesis.  In particular, the generosity of 
Tim King of PSL, in permitting three visits to PSL and 18 months access to project data, 
is very much acknowledged. 

The extensive financial support by the Research Council of Norway, Division NAVF 
in terms of a postgraduate scholarship made this research possible.  Some of the work has 
been conducted in the context of FIDE1 (ESPRIT Basic Research Action 3070) and 
FIDE2 (ESPRIT Basic Research Action 6309) research projects. 

 

ii 



Table of Contents 
 

Chapter 1: Introduction 1 
1.1 The Problem of Change .................................................................................3 
1.2 Software Maintenance ...................................................................................4 
1.3 Thesauri as Foundation for Change Management Tools ...............................5 
1.4 A Thesaurus Tool in an Industrial Environment............................................6 

1.4.1 Schema Evolution Measurements ....................................................6 
1.5 Thesaurus-Based Tools in Persistent Environments......................................7 

1.5.1 A Persistent Thesaurus Tool.............................................................9 
1.5.2 Models and Methodologies ..............................................................10 
1.5.3 EnvMake – Another Thesaurus-Based Supporting Tool..................10 

1.6 Thesis Statement ............................................................................................11 
1.7 Thesis Structure .............................................................................................11 

Chapter 2: The HMS Thesaurus Tool – An Industrial Experiment 13 
2.1 Introduction....................................................................................................13 

2.1.1 The HMS System .............................................................................14 
2.2 The Thesaurus Tool .......................................................................................15 

2.2.1 The Meta-Data Relations..................................................................16 
2.2.1.1 The Thesaurus Relation .....................................................16 
2.2.1.2 The Query_Dictionary Relation ........................................19 
2.2.1.3 The Versions_Thesaurus Relation.....................................20 

2.2.2 The Thesaurus Interface ...................................................................20 
2.2.2.1 Name Usage Information...................................................21 
2.2.2.2 Schema Evolution – Impact Analysis................................22 
2.2.2.3 Consistency Checks...........................................................24 
2.2.2.4 Change History ..................................................................24 

2.2.3 Implementation.................................................................................25 
2.2.4 Evaluation.........................................................................................28 

2.2.4.1 Detecting Inconsistencies ..................................................28 
2.2.4.2 Software Reuse ..................................................................28 
2.2.4.3 Performance.......................................................................29 
2.2.4.4 Learning and Understanding .............................................29 
2.2.4.5 Alternatives to the Tool .....................................................30 
2.2.4.6 Granularity of Container Types.........................................31 
2.2.4.7 Recording Change .............................................................31 
2.2.4.8 The Tool in an Organisational Context .............................32 

2.3 Quantifying Evolution ...................................................................................33 

iii 



2.3.1 Evolution of the HMS Schema.........................................................34 
2.3.2 Consequences of the Schema Evolution...........................................36 
2.3.3 Problems of Measuring Evolution....................................................40 
2.3.4 Schema Evolution in Different Application Domains......................42 

2.4 Summary ........................................................................................................43 

Chapter 3: Software Evolution and Supporting Tools – A Survey 45 
3.1 Introduction....................................................................................................45 

3.1.1 The Software Development and Maintenance Process ....................45 
3.1.1.1 Data Modelling ..................................................................48 
3.1.1.2 Formal Specifications ........................................................48 
3.1.1.3 Automatic Documentation.................................................48 
3.1.1.4 Reverse Engineering..........................................................48 

3.1.2 Change Management – An Aspect of Project Management.............49 
3.1.2.1 Software Process Modelling..............................................49 

3.1.3 Software Change Management – Focus of this Thesis.....................50 
3.2 Schema and Type Evolution ..........................................................................51 

3.2.1 Consequences on other Parts of Schema ..........................................52 
3.2.2 Consequences on Extensional Data..................................................53 

3.2.2.1 Conversion.........................................................................53 
3.2.2.2 Filtering .............................................................................53 

3.2.3 Consequences on Application Programs ..........................................54 
3.2.4 Approaches .......................................................................................54 

3.3 Software Configuration and Build Management ...........................................55 
3.3.1 Source Code Control – SCCS/RCS..................................................55 
3.3.2 Build Management ...........................................................................55 

3.3.2.1 Make ..................................................................................55 
3.3.2.2 Smart Recompilation .........................................................56 

3.3.3 Other Configuration Management Tools..........................................56 
3.4 Tools Based on Static Program Analysis.......................................................57 

3.4.1 Compiler Supporters.........................................................................57 
3.4.2 Data Flow Analysis ..........................................................................57 
3.4.3 Cross-Referencers.............................................................................58 

3.5 Meta-Databases..............................................................................................58 
3.5.1 History of Development ...................................................................58 
3.5.2 Standards ..........................................................................................59 
3.5.3 Features of Meta-Data Systems........................................................61 
3.5.4 Commercially Available Products....................................................62 

3.5.4.1 System Catalogues.............................................................62 
3.5.4.2 Data Dictionaries ...............................................................62 
3.5.4.3 Repositories .......................................................................62 

3.6 Support Environments ...................................................................................63 
3.6.1 Language Independent Support Environments.................................63 

iv 



3.6.2 Language Specific Support Environments .......................................64 
3.6.2.1 APSE .................................................................................64 
3.6.2.2 Other Closed Environments...............................................64 

3.7 Summary ........................................................................................................65 

Chapter 4: Enabling Technology 66 
4.1 Persistent Programming .................................................................................66 
4.2 Napier88.........................................................................................................68 

4.2.1 Types ................................................................................................68 
4.2.1.1 Type Databases..................................................................69 

4.2.2 Higher-Order Procedures..................................................................69 
4.2.3 Environments....................................................................................70 

4.2.3.1 Type Checking and Binding ..............................................71 
4.2.3.2 Separate Compilation ........................................................72 
4.2.3.3 Some Napier88 Programs’ Impact on the Persistent 

Store...................................................................................73 
4.3 The Napier88 Programming Environment.....................................................76 

4.3.1 The Maps Library .............................................................................77 
4.4 Napier88 Language Processing Technology .................................................77 
4.5 Summary ........................................................................................................78 

Chapter 5: TSIT – A Thesaurus-Based Software Information Tool 79 
5.1 Introduction....................................................................................................79 
5.2 The Napier88 Thesaurus ................................................................................80 
5.3 Querying the Thesaurus .................................................................................84 
5.4 Registration and Update.................................................................................85 
5.5 Implementation ..............................................................................................87 
5.6 TSIT versus other Tools.................................................................................88 
5.7 Measuring Name and Identifier Usage – A TSIT Experiment ......................90 

5.7.1 Scale of Analysis ..............................................................................92 
5.7.2 Name Frequencies ............................................................................93 
5.7.3 Kind ..................................................................................................95 
5.7.4 Name Usage and Context .................................................................96 
5.7.5 Constancy .........................................................................................98 
5.7.6 Name Length ....................................................................................100 
5.7.7 Use of Type Definitions ...................................................................101 

5.7.7.1 Use of Structure Fields and Variant Tags..........................104 
5.7.8 Use of Procedures.............................................................................105 

5.7.8.1 Consequences of Change to Procedures............................106 
5.7.8.2 Context of Procedures .......................................................107 
5.7.8.3 Polymorphic and Specialised Procedures..........................108 

5.7.9 Measurements Related to Environments ..........................................110 

v 



5.7.9.1 Changes to Environments..................................................111 
5.8 Summary ........................................................................................................113 

Chapter 6: Models and Methodologies 115 
6.1 Introduction....................................................................................................115 

6.1.1 Motivation ........................................................................................116 
6.1.2 Requirements for Models and Methodologies..................................117 

6.2 A Structured Persistent Application System Model – SPASM .....................118 
6.2.1 A Persistent Location Binding Methodology ...................................119 
6.2.2 Program Categories ..........................................................................120 
6.2.3 Binding Categories ...........................................................................121 

6.3 The SPASM Constraints ................................................................................122 
6.3.1 Program Categories ..........................................................................125 
6.3.2 Type Definitions ...............................................................................125 
6.3.3 Declaration and Use..........................................................................127 
6.3.4 Stub Constraints................................................................................129 
6.3.5 Drop-Clauses ....................................................................................131 
6.3.6 Order of Insert-Programs and Type-Programs .................................131 
6.3.7 Structuring and Naming Conventions ..............................................133 
6.3.8 Persistent Store .................................................................................135 

6.4 Actions to Conform to the SPASM Constraints ............................................136 
6.5 Future Development of a Maintenance Methodology ...................................138 

6.5.1 Modifying Procedure Types .............................................................139 
6.5.2 Modifying Directories and Environments ........................................142 
6.5.3 Modifying Types – Schema Evolution.............................................143 

6.6 Summary ........................................................................................................145 

Chapter 7: EnvMake – A Persistent Programming Tool 147 
7.1 Introduction....................................................................................................147 
7.2 Information about Application Structure .......................................................148 
7.3 Supporting the SPASM Model ......................................................................151 

7.3.1 Checking the SPASM Constraints....................................................152 
7.3.2 Flexibility of EnvMake.....................................................................154 
7.3.3 User Experiences ..............................................................................154 

7.4 Build Management.........................................................................................155 
7.4.1 Showing Status Information .............................................................156 
7.4.2 Compilation ......................................................................................158 
7.4.3 Execution..........................................................................................160 
7.4.4 Installation ........................................................................................160 

7.5 Implementation ..............................................................................................161 
7.5.1 Problems with Ensuring Up-To-Date Information...........................161 
7.5.2 Problems of Naming and Identity.....................................................162 

vi 



7.5.2.1 Returned Environments .....................................................163 
7.5.2.2 Environments in other Data Structures..............................164 
7.5.2.3 Aliases to Environments....................................................165 

7.6 Future Development of EnvMake..................................................................165 
7.7 Summary ........................................................................................................167 

Chapter 8: Conclusions and Future Work 169 
8.1 Summary – Utilisation of Thesauri................................................................169 

8.1.1 Quantifying Evolution ......................................................................170 
8.1.2 Thesauri in a Strongly Typed Persistent Environment.....................171 
8.1.3 Models and Methodologies ..............................................................173 
8.1.4 EnvMake...........................................................................................174 

8.1.4.1 Structure and Dependency Visualisation...........................174 
8.1.4.2 Supporting Steps of the Construction and Maintenance 

Methodology......................................................................174 
8.1.4.3 Checking the SPASM Constraints.....................................175 
8.1.4.4 Build Management ............................................................175 

8.2 Future Work – Further Utilisation of Thesauri ..............................................176 
8.2.1 Schema Evolution.............................................................................178 
8.2.2 Persistent Software Configuration Management..............................179 
8.2.3 Extensibility of SPASM ...................................................................180 
8.2.4 Automatic Generation of Use-Clauses .............................................180 
8.2.5 Referencing Environments ...............................................................181 
8.2.6 Hyper-Programming.........................................................................182 
8.2.7 Further Measurements ......................................................................184 

8.3 Finally ............................................................................................................185 

Appendix A: HMS Execution Log 187 

Appendix B: TSIT Measurements 189 

Bibliography 194 

Index 209 

vii 



List of Figures 
 

Figure 1.1: Building and maintaining application systems...........................................8 
Figure 2.1: The main components of the HMS system.................................................15 
Figure 2.2: The Thesaurus relation ...............................................................................17 
Figure 2.3: Definitions and uses of names distributed by name_type ..........................19 
Figure 2.4: The Query_Dictionary relation...................................................................20 
Figure 2.5: The Versions_Thesaurus relation ...............................................................20 
Figure 2.6: The thesaurus interface...............................................................................21 
Figure 2.7: The thesaurus scripts and programs............................................................27 
Figure 2.8: Change history of the relations...................................................................35 
Figure 2.9: Change history of the fields........................................................................35 
Figure 2.10: Direct and indirect use of relations and fields ............................................36 
Figure 2.11: Consequences of the December 1991 HMS schema modification.............38 
Figure 2.12: Extension of the system structure...............................................................42 
Figure 3.1: The software development and maintenance process.................................46 
Figure 3.2: Concepts in software construction and maintenance..................................47 
Figure 3.3: The IRDS levels and pairs ..........................................................................60 
Figure 4.1: The three mappings of a traditional database system.................................67 
Figure 4.2: The only mapping of a persistent system ...................................................67 
Figure 4.3:  Operations on environments.......................................................................70 
Figure 4.4: Part of the store after running Prog1.N and Prog2.N .................................73 
Figure 4.5: Part of the store after running Prog3.N.......................................................74 
Figure 4.6: Part of the store after running Prog4.N.......................................................75 
Figure 4.7: Part of the store after running Prog4.N and Prog2.N .................................75 
Figure 4.8: Part of the store after running Prog6.N.......................................................76 
Figure 5.1: Definition of thesaurus entry ......................................................................82 
Figure 5.2: The program writePerson.N .......................................................................83 
Figure 5.3: Thesaurus definition ...................................................................................88 
Figure 5.4: Name frequency..........................................................................................94 
Figure 5.5: Name usage – total .....................................................................................96 
Figure 5.6: Name usage – by application......................................................................97 
Figure 5.7: Proportion of constants in the applications.................................................99 
Figure 5.8: A vector program........................................................................................100 
Figure 5.9: Distribution of name length........................................................................101 
Figure 5.10: Distribution of use of type definitions........................................................102 
Figure 5.11: Distribution of use of procedures ...............................................................106 

viii 



Figure 6.1: Relationship between SPASM and the methodology.................................116 
Figure 6.2: Binding categories ......................................................................................122 
Figure 6.3: ER diagram of programs, bindings and type definitions ............................124 
Figure 6.4: A partial order in the set of programs.........................................................132 
Figure 6.5: Linear sequence after topological sorting...................................................132 
Figure 6.6: Environment structure in persistent store ...................................................134 
Figure 6.7: Strategy 1....................................................................................................140 
Figure 6.8: Strategy 2....................................................................................................141 
Figure 6.9: Strategy 3....................................................................................................142 
Figure 7.1: The EnvMake menu....................................................................................149 
Figure 7.2: Type dependencies .....................................................................................159 
Figure 7.3: Environment as result type .........................................................................163 
Figure 8.1: Thesaurus-based tools.................................................................................172 
Figure 8.2: More thesaurus-based tools ........................................................................177 
Figure 8.3: Methodologies and tools as input to a new language .................................186 

ix 



List of Tables 
 

Table 2.1: NAME_TYPE distributed by CONTAINER_TYPE and 
DEFINITION_USE .....................................................................................18 

Table 2.2: Excerpt from the Versions_Thesaurus relation............................................24 
Table 2.3: Added and deleted relations and fields in the HMS schema .......................34 
Table 2.4: Direct use of relations and fields in the query dictionary ............................37 
Table 2.5: Indirect use of fields in Display Language and Hippo code........................37 
Table 2.6: Consequences of the December 1991 HMS schema modification..............39 
Table 3.1: Categories of support environments ............................................................63 
Table 5.1: The corresponding thesaurus entries for the program writePerson.N..........83 
Table 5.2: The HMS thesaurus tool versus TSIT..........................................................89 
Table 5.3: Lines of code................................................................................................93 
Table 5.4: Name occurrences........................................................................................93 
Table 5.5: Name use within programs ..........................................................................94 
Table 5.6: Number of times a name is declared within a program (percentages).........95 
Table 5.7: Distribution of kind......................................................................................96 
Table 5.8: Name usage by application ..........................................................................97 
Table 5.9: Distribution of context .................................................................................98 
Table 5.10: Constancy distributed by usage ...................................................................99 
Table 5.11: Corresponding thesaurus entries ..................................................................100 
Table 5.12: Name length of type and value identifiers ...................................................101 
Table 5.13: Statistics on the use of type definitions........................................................102 
Table 5.14: Use of structure fields ..................................................................................104 
Table 5.15: Use of variant tags .......................................................................................104 
Table 5.16: Kind of structure fields ................................................................................105 
Table 5.17: Kind of variant tags......................................................................................105 
Table 5.18: Use of procedures ........................................................................................107 
Table 5.19: Context of procedures ..................................................................................107 
Table 5.20: Use frequency and number of types instantiated .........................................109 
Table 5.21: Specialised procedures.................................................................................109 
Table 5.22: Usage and context of specialised procedures...............................................110 
Table 5.23: Number of name occurrences related to operations on environments.........111 
Table 5.24: Programs modifying environments..............................................................111 
Table 5.25: Environments modified by a program .........................................................112 
Table 5.26: Programs modifying an environment...........................................................113 
Table 6.1: The SPASM constraints...............................................................................123 

x 



Table 6.2: Unused type definitions ...............................................................................127 
Table 6.3: Relationship between type identifiers and type names ................................127 
Table 6.4: Unused value identifiers ..............................................................................129 
Table 6.5: Update of procedure variables .....................................................................130 
Table 6.6: File naming conventions ..............................................................................134 
Table 6.7: Actions to reconform to constraints that have been violated (continues)....136 
Table 6.7: Actions to reconform to constraints that have been violated (continued) ...137 
Table 6.8: Impact of adding, renaming or deleting a type definition............................144 
Table 7.1: Parameters of the envMake command.........................................................148 
Table 7.2: Insert-update dependency table....................................................................148 
Table 7.3: Use-stored dependency table .......................................................................149 
Table 7.4: Excerpt from a program-environment matrix ..............................................150 
Table 7.5: Insert-update dependency table....................................................................153 
Table 7.6: Compilation and execution plan ..................................................................157 
Table 7.7: Log of compilations and executions ............................................................157 
Table 7.8: Declaration of environments........................................................................164 
Table 8.1: Platform improvements................................................................................186 
Table B.1: Frequencies of Kind by Application ............................................................189 
Table B.2: Frequencies of Context by Application .......................................................190 
Table B.3: Use of type definitions in value instantiations.............................................191 
Table B.4: Environments accessed per program ...........................................................192 
Table B.5: Programs per environment...........................................................................193 

xi 



 

Chapter 1 

Introduction 
 

The research presented in this thesis establishes thesauri as a viable foundation for 
models, methodologies and tools for change management.  Most of the research has been 
undertaken in a persistent programming environment.  Persistent language technology 
has enabled the construction of sophisticated and well-integrated change management 
tools; tools and applications reside in the same store.  At the same time, the research has 
enhanced persistent programming environments with models, methodologies and tools 
that are crucial to the exploitation of persistent programming in construction and 
maintenance of long-lived, data-intensive application systems. 

The dominant activity of the large-scale software industry is the production of 
changes to application systems.  Figures describing the maintenance proportion of the 
total lifetime expenditure on a software system vary between 50% and 90% [Zelkowitz 
1978, Lehman 1981, Putnam 1982, Parikh and Zvegintsov 1983, Chikofsky and Cross 
1990].  It has been reported that the maintenance proportion was 35-40% in 1970, 40-
60% in 1980 and estimated to be 70-80% in 1990 [Pfleeger 1987].  As application 
systems live longer and grow in size and complexity, it is likely that this trend will 
continue.  The maintenance activities have been divided into the following categories 
[Swanson 1976]: 

i) Corrective maintenance (detecting and correcting errors - routine debugging) 

ii) Adaptive maintenance (accommodation of changes to the environment - including 
hardware and system software) 

iii) Perfective maintenance (user requested enhancements, improved documentation, 
enhanced performance) 

It has been reported that the respective categories count for 17%, 18% and 60% of the 
total maintenance activities (4% in other categories) [Lientz et al. 1978].  Within the third 
category, two thirds were user requested enhancements.  This shows that the majority of 

1 



CHAPTER 1:  INTRODUCTION  

changes are not due to errors or other causes that one might believe could be prevented 
by better requirements analysis, design and implementation techniques.  

One area of system evolution that has been of particular interest recently is changes 
to database schemata (schema evolution) [Banerjee et al. 1987, Skarra and Zdonik 1987, 
Lerner and Habermann 1990].  Such changes may have serious impact on other parts of 
the schema, on extensional data (database objects), on application programs and on user-
interfaces.  Versioning, build management (compilation, linking and execution) and 
software configuration management are other major areas relevant to system evolution. 

One might argue that the software changes could be reduced by more use of 
prototyping techniques.  Prototyping may enable end-users to express their needs and 
requirements more accurately in areas such as screen design and certain aspects of system 
behaviour.  However, since new requirements, changing environments, bug-fixing, etc. 
are encountered after the system has become operational, it is the operational system 
itself which has to be changed.  The challenge is thus to build large, long-lived, data-
intensive application systems that can be incrementally modified in compliance with 
changing user needs.  So, reducing the extent of perfective change is not necessarily 
desirable.  It is usual for people carrying out tasks to recognise improved methods and 
opportunities.  Application systems are therefore most likely to support people well if 
they facilitate change, and allocating resources to at least perfective change should be 
regarded as valuable. 

The approaches to improving the quality, including maintainability, of software 
application systems may be divided into the following categories: 

i) new and improved programming languages (Ada, object-oriented programming 
languages, persistent programming languages, etc.); 

ii) programming guidelines or design principles (e.g. structured programming [Dahl et 
al. 1972, Jackson 1975] or modularisation [Parnas 1972] where a high degree of 
cohesion1 and a low degree of coupling2 among software components should be 
pursued [Constantine and Yourdon 1979]); and 

iii) comprehensive programming methodologies and supporting tools. 
The research presented in this thesis focuses on the last approach.  The research 
establishes thesauri as a viable foundation for programming methodologies and 
supporting tools that are tailored to manage the problem of change.  

                                                 
1 Cohesion is a measure of the degree to which parts of a program module are closely functionally 

related. 
2 Coupling is a measure of the strength of interconnections between modules of a program. 

2 



CHAPTER 1:  INTRODUCTION  

1.1 The Problem of Change  
In spite of the proportion of maintenance costs presented above, there is a common 
misconception that change is something unusual which could be dealt with in an ad hoc 
way.  The assumption of stability prevails in current teaching and practice concerning 
programming, data modelling, database schema construction, etc. 

Based on long experience and quantitative studies of several systems, mostly 
operating systems, Lehman has proposed five “laws” concerning software evolution 
[Lehman and Belady 1985].  The first two follow: 

i) A program must continuously undergo change in order to reflect change in its 
environment.  If not, the program will become less and less useful. 

ii) As a large program is continuously changed, its complexity increases, which reflects 
deteriorating structure, unless work is done to maintain or reduce it. 

As shown in [Lientz et al. 1978], most changes are due to enhancements in functionality, 
rather than to bad design, bugs, etc.  People do not know in advance or are not able to 
accurately express all the desired functionality of a large application system.  Only 
experience from using the system in an operational environment will enable the needs 
and requirements to be properly formulated.  The requirements assessment will 
continuously change during maintenance, and new requirements may be as demanding as 
those that directed the initial construction. 

Many factors may influence change in user requirements: change in market, 
workforce, skills, economy, legislation, etc.  However, this thesis will not discuss the 
causes of change any further, nor will it discuss maintenance problems such as 
programmer-user communication, programmer effectiveness, etc. [Lientz and Swanson 
1981] or other change problems related to project management [Ferraby 1991].  

The problem of change is closely related to scale.  A whole class of problems only 
show up when a system becomes long-lived (typically involving persistent data) and 
grows in size, complexity and diversity (variability).  Persistent application system or 
PAS will be used throughout this thesis as a succinct phrase denoting large-scale, long-
lived and data-intensive application systems that satisfy a complete area of information-
processing requirements, for example, a management information system, a health 
management system or a CAD/CAM system.  DeRemer and Kron distinguish 
“programming-in-the-large” from “programming-in-the-small” and claim that different 
languages should be used for the two activities.  They propose a “module interconnection 
language” as one necessity for supporting “programming-in-the-large” [DeRemer and 
Kron 1976].  Further ideas for “programming-in-the-large” (or “mega-programming”) are 
outlined in [Wiederhold et al. 1992].  Not only languages, but methodologies and tools 
are also the subject of new and changed requirements in order to cope with increase in 
scale.  For example, they must support incremental design, construction and 
commissioning.  

3 



CHAPTER 1:  INTRODUCTION  

1.2 Software Maintenance 
The term software maintenance denotes all changes to the software of an application 
system after its first installation in its operational environment.  Since software systems 
do not physically wear out or break,1 software maintenance differs from general 
maintenance in that the former is not concerned with rectification to an earlier state.  
Software does not change on its own.  It is only changed by people (or possibly by other 
software such as tools) to adapt to changed requirements, to improve performance or to 
correct errors. 

It is deceptively easy to change software (simple editing), and software is therefore 
changed much more frequently than tangible products.  However, it is not easy to make 
consistent changes; it is easy to cause a mutation but very hard to generate a viable one, 
particularly if multiple copies have been shipped, etc.  A change in one place may have 
unintended effects elsewhere; even minor local changes can have global impact.  
Included in the consequences are new errors (the ripple effect).  One study found that 
more than 50% of all errors were due to previous changes [Collofello and Buck 1987]. 

A challenge is to ensure that all consequential changes are dealt with correctly by 
propagation throughout the system and that no unnecessary changes occur, perturbing 
working practices and operational software.  Long-lived application systems should 
therefore be designed with change in mind.  Moreover, since “the only constancy is 
change itself”, also the organisation should be planned for change [Brooks 1975].  It may 
be difficult to persuade software builders and managers to plan for change since it 
requires some extra effort during initial construction which may hinder meeting short-
term budget and time goals.  The short-term thinking discourages designing for 
maintenance even though it is an investment that will more than pay off in the long run.2  
Lehman formulates it this way [Lehman 1980]: 

It will, in fact, be suggested that the need for continuing change is intrinsic to the nature of 
computer usage.  Thus the question raised by the high cost of maintenance is not exclusively 
how to control and reduce the cost by avoiding errors or by detecting them earlier in the 
development and usage cycle.  The unit cost of change must initially be made as low as 
possible, and its growth, as the system ages, minimised.  Programs must be made more 
alterable, and the alterability maintained throughout their life-time. 

During maintenance work, a significant part of the time is spent on understanding the 
existing system.  The quality of the software documentation is therefore crucial.  
However, most documentation is notoriously poor and virtually always obsolete.  The 
only reliable, up-to-date program information may be the source code itself or 
information that is automatically generated from the source code.  The next section 
therefore introduces the idea of a recording tool that automatically generates and 
maintains the information that may be required for change and consequential change 
propagation. 

                                                 
1 A physical copy on any medium may deteriorate. 
2 This is also a problem regarding software reuse [Krueger 1992], for example. 

4 



CHAPTER 1:  INTRODUCTION  

1.3 Thesauri as Foundation for Change Management Tools 
Thesauri containing information about names and their usage in all the software of the 
actual application system (possibly including database schemata) will be proposed as a 
platform for methodologies and tools that help to solve the problems described in the 
previous sections.  The term thesaurus generally denotes “a ‘treasury’ or ‘storehouse’ of 
knowledge, as a dictionary, encyclopædia, or the like” [Oxford 1961].  In the context of 
this thesis, the “knowledge” is information about names and identifiers such as where 
they are defined and used, what kinds they are, in which contexts they occur, etc.  The 
term is not used in the more popular meaning denoting a dictionary of synonyms.  
Alternative terms include the commonly used data dictionary and repository, but they 
have been avoided due to confusing terminology in the area and to emphasise the 
distinction between the thesaurus tools to be introduced and most commercially available 
data dictionary (repository) tools.1  The thesauri dealt with in this thesis contain name 
and identifier information in all the software written in all the languages of a PAS.  This 
includes source code information about programs in a file system and meta-data 
information about extensional data in a database or persistent store.  This is in contrast to 
most commercially available tools which focus either on the source code only (source 
code analysers) or on database-specific information like database schemata (data 
dictionaries).  A few data dictionary tools also include source code information, but 
relationships between names and identifiers in the software written in the various 
languages are not recorded automatically. 

Names are the focus of attention in this thesis since they are central to system 
builders’ thinking and thus influence the way software is organised.  Meaningful names 
are important for problem solving, understanding of semantic structure and retention – 
particularly in large and complex application systems [Barnard et al. 1982, Weiser and 
Shneiderman 1987].  The meanings attached to names are relatively stable when dealing 
with concepts at an abstract level (even though the detailed semantics and interpretation 
may vary between people and between contexts).  This contrasts with all changes in 
physical software implementations.  Therefore, there is potential for tools that help 
manage the evolution while preserving the use of names.  

It should be emphasised that from a language processing point of view, names are 
uninteresting; names are not kept by the system.  Even names denoting types are 
irrelevant to language processors.  However, names are added in order to make types and 
other parts of software meaningful to humans.  Appropriate tools in the programming 
environment should support people in the naming process. 

Names of identifiers used in an application system may refer to real-world objects or 
classes of objects modelled by the system (e.g. person), to objects specific to the 
implementation (e.g. index) or simply to nothing but the associated location in a memory 
(e.g. a counting variable i).  A focus on names may encourage people to be more 
conscious of what the names are supposed to refer to (though the semantic relation 
                                                 
1 Yet another term, concordance, also denotes a collection of name information but generally has a 

more narrow interpretation than thesaurus: “an alphabetical arrangement of the principal words 
contained in a book, with citations of the passages in which they occur” [Oxford 1961].  

5 



CHAPTER 1:  INTRODUCTION  

between names and what they refer to is a classical, largely unresolved problem [Nelson 
1992]).  Choosing names carefully would also prevent name ambiguity. 

The vision of this research is that automatically generated and updated thesauri, in 
addition to serving as a software information repository for application systems builders, 
can serve as a viable foundation for change management or maintenance tools.  The 
following sections describe the work that has been undertaken in order to test and realise 
that vision.  Two thesaurus tools have been built.  The HMS thesaurus tool was 
developed for a health management system (HMS) in an industrial (C, C++, X-windows 
and relational database) environment [Sjøberg 1991].  Another thesaurus tool was 
thereafter built in the context of the strongly typed, persistent programming language 
Napier88.  

1.4 A Thesaurus Tool in an Industrial Environment 
The HMS thesaurus tool was developed in an industrial environment in order to identify 
and help solve real-world problems of maintenance.  All the software is analysed by the 
thesaurus tool.  This includes programs written in a screen definition language, a 
procedural language for defining actions, a query dictionary language and a schema 
definition language.  The tool stores information about name occurrences, like type and 
container, and records dependencies between occurrences in all the software (including 
between software written in different languages).  An interface provides, among other 
things, some consistency checking and impact analysis which localises the effects of 
change within the system.  The impact analysis of schema changes has proved 
particularly useful since software written in all the languages is affected by such changes; 
doing the same analysis manually is a very hard task. 

1.4.1 Schema Evolution Measurements 
Some measurements of system evolution have been reported in the literature [Lientz et al. 
1978, Lehman and Belady 1985], but in order to turn computing science into an exact 
science,1 more measurements should be provided.  Regarding change management, 
measurements are a useful supplement to anecdotal information when, for example, 
performing the following tasks: 

i) identifying form and extent of various kinds of change; 

ii) designing change management methodologies and tools; and 

iii) testing the usefulness of such methodologies and tools. 
In order to acquire a deeper understanding of the nature of system evolution, 
measurements of change in the HMS system were collected over a period of 18 months, 
both during initial construction and after the system became operational.  The thesaurus 
tool was enhanced to monitor the evolution, which was studied in general but changes to 
the schemata were emphasised.  The extent of schema evolution (e.g. 140% increase in 

                                                 
1 One can of course question to what extent it is possible to make a science of artificial (i.e., human-

made) systems exact [Lehman 1976]. 

6 



CHAPTER 1:  INTRODUCTION  

number of relations) and its consequences confirms the need for supporting tools 
[Sjøberg 1993].  The method for, and the results of, these change measurements are one 
step further in the direction of quantifying change.  The cost and effort in conveying in-
depth analyses of real-life, industrial projects may be one reason for the lack of 
references to other schema evolution studies in the literature. 

1.5 Thesaurus-Based Tools in Persistent Environments 
The basic problems of change are the same whether the environment is an industrial 
relational database context with conventional programming languages or an experimental 
object-oriented database context with more modern programming languages, etc.  The 
experiences with the HMS thesaurus tool therefore served as a general basis for further 
research in change management.  The built-in provision for longevity should enable 
persistent programming technology to be a suitable platform for such research. 

The major motivation for persistent programming language research is the belief that 
such languages will facilitate the construction and maintenance of PASs [Atkinson et al. 
1982, Atkinson et al. 1983a].  Persistence was invented more than a decade ago, and 
persistent languages such as Napier88 [Morrison et al. 1989a] have proved robust and 
well engineered [Sjøberg et al. 1993].  However, to fully benefit from the potential 
advantages of persistence in the construction and maintenance of large PASs, suitable 
programming methodologies and supporting tools have to be developed.  An ultimate 
goal would be to integrate all needed tools in a persistent software engineering 
environment.  

7 



CHAPTER 1:  INTRODUCTION  

 
 

 

Figure 1.1:  Building and maintaining application systems 

8 



CHAPTER 1:  INTRODUCTION  

There were two reasons for choosing Napier88 as the experimentation language.  First, 
the features of the language indicated it as suitable for research in change management.  
Second, the methodologies and tools to be developed would enhance the programming 
environment of Napier88 itself.  Napier88 was (and still is) in its infancy as an 
implementation language for large-scale applications.  For example, guidelines and tools 
are still needed to organise the interaction between programs and bindings in the 
persistent store.   

The model for constructing and maintaining persistent application systems pursued 
in this thesis may be illustrated by Figure 1.1.  Powerful tools generate application system 
increments from a repository of data models, constraints, programs and thesauri.  The 
tools to be described in this research include cross-referencers, impact analysers, 
constraint checking tools, build management tools, etc.  Similar tools have been built in 
other programming environments, but the research includes several aspects specific to 
persistent programming and is also original in other respects (e.g. automatic, incremental 
collection of information).   

1.5.1 A Persistent Thesaurus Tool 
The thesaurus tool built in and for Napier88 collects fine-grained information about 
names in the source programs and names denoting bindings in the persistent store.  
Compared with the HMS case, it is in one sense simpler to extract the thesaurus 
information for Napier88 since only one language needs to be analysed.  On the other 
hand, the kind of information stored in the thesaurus for Napier88 is more complex in 
order to capture the additional information that Napier88 provides, as it is a sophisticated 
language with a rich, strong type system including environments, polymorphic 
procedures, abstract data types, etc. 

A textual interface to the thesaurus was built by the author; a comprehension query 
language (enabling recursive queries) and a window-based interface to the thesaurus were 
built by others [Sjøberg et al. 1993].  Integrating these interface components was easy 
due to the persistent technology. 

Eight Napier88 applications were measured in a study conducted with the intention 
of identifying how persistent programmers use the constructs of Napier88 and how they 
organise their software.  The results may be useful for optimisation of language 
implementation and for design of methodologies and tools.  Measurements of source 
programs have been collected for other languages such as FORTRAN [Knuth 1972], 
PL/1 [Elshoff 1976], APL [Saal and Weiss 1977] and Ada [Agresti and Evanco 1992], 
but the measurements to be presented are the first in the context of a persistent 
programming language. 

1.5.2 Models and Methodologies 
The term methodology may be interpreted as “the processes, techniques, or approaches 
employed in the solution of a problem or in doing something: a particular procedure or 

9 



CHAPTER 1:  INTRODUCTION  

set of procedures” [Webster 1961].1  Within the scope of this thesis the “problem” or the 
“something” being done is construction and maintenance of PASs.  The terms 
construction methodology and maintenance methodology will thus respectively be used to 
denote a model for the initial construction of PASs and a model for the maintenance of 
such systems.  The methodologies should constrain software builders’ software with the 
purpose of developing intelligible, correct and efficient application systems that remain 
relatively easy to change. 

Some components of an overall methodology for persistent programming have 
already emerged, for example an architecture for organising an application around 
persistent L-value procedures which can be incrementally modified without the need for 
editing, recompiling or re-executing the programs containing the callees [Cutts 1993a].  
Nevertheless, other guidelines and more complete methodologies are still needed for 
other aspects of persistent programming.  This thesis contributes new aspects of a 
construction and maintenance methodology.  This includes the SPASM model which is a 
set of constraints to which each suite of application software should adhere in order to 
ensure correctness and maintainability.  Several of the constraints are based on a 
categorisation of programs into five groups according to their semantics.  This 
categorisation, which is done automatically, is also the basis for build management (see 
next section). 

Both SPASM and the other components of the methodologies are general in that they 
are independent of the actual real-world applications being implemented.  They are, 
however, couched in terms of the programming language (Napier88) even though most of 
the principles they encode are applicable to any database programming environment.  

1.5.3 EnvMake – Another Thesaurus-Based Supporting Tool 
At present, most Napier88 programmers use Make [Feldman 1979] to help rebuild the 
application after change.  The programmers have to manually specify compilation and 
execution dependencies.  Similarly, Make and sometimes Unix™ shell scripts are used to 
install software into the persistent store.  Nevertheless, a correct installation-order has to 
be determined and typed in manually into a Makefile or a script.  These problems are 
addressed by EnvMake – a tool that automatically infers the necessary dependencies from 
the thesaurus and initiates (re)compilation and (re-)execution.  If installation is requested, 
EnvMake installs components in correct order (if such an order exists)2 into the persistent 
store.  EnvMake thus relieves the programmers from the burden of maintaining Makefiles 
and scripts.  

In addition to replacing the use of Make, EnvMake provides additional functionality 
tailored for persistent application development such as checking the SPASM constraints 
and presenting information about which programs carry out which operations on which 
bindings in the persistent store. 

                                                 
1 This differs from what may be the original meaning: "a science or the study of method" [Webster 

1961]. 
2 If components cyclically refer to each other, installation is impossible. 

10 



CHAPTER 1:  INTRODUCTION  

1.6 Thesis Statement 

Measurements show that application programming deals with a very high rate of change to data 
definitions, dependent programs and dependent user interfaces.  This leads to severe problems 
propagating changes correctly.  It is common to find that necessary changes consequent on some 
other change have not been made, so that the system is inconsistent and will eventually fail to 
operate correctly. 

Methodologies and tools based on thesauri, containing automatically generated 
information about programs and data, have been proposed, prototyped and demonstrated.  It is 
argued that investing in following methodologies and using supporting tools would achieve 
significant improvement in application programmer productivity, including the ability to 
manage change.  It is further demonstrated that such methodologies and tools are pertinent to 
strongly typed persistent systems and can be integrated into an effective persistent programming 
environment. 

1.7 Thesis Structure 
Chapter 2 describes an industrial experiment conducted with the intention of identifying 
problems related to change management and building tools to help solve the problems.  
Measurements of the extent of change and change consequences are provided. 

Chapter 3 surveys diverse techniques and tools in software engineering with 
emphasis on maintenance. 

Chapter 4 presents persistent language technology as a platform for the research 
described in the subsequent chapters. 

Chapter 5 describes how the ideas behind the industrial experiment (Chapter 2) are 
further developed in a thesaurus tool built in the context of the strongly typed, persistent 
programming language Napier88.  The usefulness of the tool is, amongst others, 
demonstrated in an explorative study providing a plethora of measurements useful for 
language designers, tool builders and application programmers. 

Chapter 6 introduces models and methodologies for persistent application 
construction and maintenance.  As a means to improve correctness and maintainability, 
the SPASM model defines a set of constraints to which PASs should adhere.  
Measurements of eight Napier88 applications describe to what degree existing software 
complies with those constraints.  The chapter also discusses steps of a construction 
methodology and actions of a maintenance methodology that should be carried out, 
depending on the kind of change. 

Chapter 7 presents a tool, EnvMake, which checks the constraints of the SPASM 
model and supports the steps of the construction and maintenance methodology.  It also 
describes how EnvMake features automatic installation, (re)compilation and (re-
)execution, and how it visualises dependencies between identifiers in source programs 
and bindings in the persistent store in the form of dependency tables or matrices. 

11 



CHAPTER 1:  INTRODUCTION  

Chapter 8 concludes by emphasising thesauri as a foundation for change 
management methodologies and tools.  The chapter summarises the achievements of the 
thesis and outlines further work also based on thesauri.

12 



CHAPTER 1:  INTRODUCTION  

 

13 



 

Chapter 2 
The HMS Thesaurus Tool – 

An Industrial Experiment 
 

2.1 Introduction 
In order to relate the research issues described in this thesis to the “real world”, a large, 
industrial database application – a health management system (HMS) – was investigated 
in detail.  The purpose was twofold: first, to design and implement a tool that should 
assist in the current development and maintenance by providing information about the 
structure of the system; second, to monitor the evolution of the system and collect change 
measurements.  

When the investigation started, the scale and complexity of the HMS system 
complete with applications indicated that aids to keeping track of the structure of the 
system were becoming essential.  The thesaurus tool was developed to become such an 
aid.  Its main component is the thesaurus – a meta-database containing information about 
the names and their usage in all the software (including the database schemata1) 
constituting the HMS system.  On the basis of the thesaurus, the tool helps answer 
questions such as:  

• Which actions, classes, functions, macros, etc. are defined and where are they used? 

• Which fields and relations does this query or update function refer to? 

• Which actions are referenced in this Display Language program? 

• Does this name already denote an action? 

                                                 
1 There are several schemata in the HMS system – one for each subsystem, e.g. BED BUREAU and 

GP. 

13 



CHAPTER 2:  THE HMS THESAURUS TOOL  

The thesaurus tool also provides impact analysis, consistency checks and change history 
information.  Another feature of the tool is that it may serve as a measurement apparatus.  
This was demonstrated in an experiment undertaken with the purpose of acquiring a 
deeper understanding of the nature of evolution [Sjøberg 1993].  A particular goal was to 
quantify the problem of changes to database schemata and necessary change propagation.  
The HMS system was observed over a period of 18 months.  The study to be reported 
illustrates how significantly the schema changed and furthermore that even a small 
change to the schema may have major consequences for the rest of the application code.  
The measurements confirm the need for methodologies and tools for managing the 
consequences of changes to database schemata.  The measurements also help identify the 
requirements of such methodologies and techniques. 

2.1.1 The HMS System 
Relational database management systems (RDBMSs) are currently in widespread use in 
industry and commerce.  The HMS system is one example of an application system 
utilising this technology.  The system, running on high resolution colour Unix™ 
workstations, consists of Display Language and Hippo programs [Clifton 1990, England 
and Selwyn 1990],1 a query dictionary and a database including the associated schema 
(Figure 2.1). 

Applications are written as a graph of screens so that a user works via the icons and 
fields on screens and navigates to other screens in the graph using “buttons”.  The screens 
of the user interface are programmed in the Display Language.  A Display Language 
program contains classes and objects that both represent windows and have attributes that 
describe properties of these windows.  Objects can be defined within classes and within 
other objects.  A class can be used as the type of another class or as the type of an object.  
It is possible to modify the type of an object by adding attributes or by introducing new 
objects within the original object in a form of inheritance hierarchy.  So, the class-object 
relationship is not exactly the same as the one found in traditional object-oriented 
languages.  The Display Language is an interpreted language implemented in C and the X 
Window System. 

The procedural part of the user interface is programmed in the Hippo language.  An 
action is the main language construct.  An action can be global, or it can be local to a 
script which in turn may be associated with a main class in a Display Language program.  
Hippo is an interpreted language implemented in C. 

 
 

                                                 
1 These languages have recently been integrated into the Polyhedra programming environment [PSL 

1992]. 

14 



CHAPTER 2:  THE HMS THESAURUS TOOL  

 
 

Database

Query 
Dictionary

HippoDisplay 
Language

 

Figure 2.1:  The main components of the HMS system 

The query dictionary consists of queries (SQL select) and update functions (SQL insert, 
update and delete) which are used by the Display Language and Hippo programs when 
operating on the database.  Several update functions may be defined in a transaction 
(usually to ensure referential integrity after update).  The query dictionary concept was 
introduced in the HMS architecture to isolate as far as possible the Display Language and 
Hippo code from the database.  This permits some of the changes to the schema to be 
hidden from the application code by rewriting the queries and update functions.  These 
queries and update functions are referred to by name with named parameters (Hippo 
variables) called datums.1  The queries return their results in tables whose columns are 
also referred to as datums and which may be traversed or automatically displayed.  The 
query dictionary is intended to be sufficiently general not only to absorb change that need 
not be propagated further, but also to allow different DBMSs to be used and even 
different data models.  The query dictionary is implemented in the Pro*C™ embedded 
SQL language. 

The description of the relations, including their fields, constitutes the schema.  The 
actual DBMS is Oracle™. 

2.2 The Thesaurus Tool 
The thesaurus tool generates the names and associated information by analysing all the 
software and performs subsequent updates of the thesaurus data.  A definite requirement 
of the thesaurus tool – which has been satisfied – was that the contents of the thesaurus 
should not need to be manually maintained.  Experience shows that this is crucial for the 
use of such a tool.  The source programs and database schemata are periodically (each 
night) scanned to detect and record changes.  If there is a need for a more up-to-date 
version, a programmer may also initiate a scan.  All the executions are carefully logged.2  

                                                 
1  Plural of datum is data, but HMS uses datums to denote several occurrences of the special HMS 

concept datum. 
2 Appendix A shows an excerpt from an execution log. 

15 



CHAPTER 2:  THE HMS THESAURUS TOOL  

The scan and update are implemented by using a combination of Unix csh, awk and sed 
scripts, one C program and some Oracle commands for loading and unloading thesaurus 
data. 

An interface consisting of windows with pull-down menus, buttons, etc. is 
implemented in the Display Language and Hippo themselves and features the following: 

• search, sort and display of name information; 

• predefined queries for consistency checks like detecting names defined but not used, 
and names used but not defined; 

• finding consequences of proposed change; and 

• change history in the form of added and deleted thesaurus entries within a user-
specified time interval. 

Most of the features of the thesaurus tool are based on cross-reference information also 
found in other programming environment tools like source code analysers and data 
dictionary tools [Bourne 1979, IBM 1980, DEC 1989, SoftwareAG 1990], except that the 
thesaurus tool spans all the languages used to build the whole persistent application 
system, its user interfaces and its databases, and the thesaurus tool automatically collects 
the data in quiescent periods. 

2.2.1 The Meta-Data Relations 
Like the HMS databases, the thesaurus is a relational database.  It consists of three 
relations keeping meta-data information.  The main one is the Thesaurus relation which 
contains information about the names in the HMS system.  The Query_Dictionary 
relation describes the correspondence between the fields of the relations and the datum 
names used in the Display Language and Hippo programs.  In order to keep historical 
information, with the intention of studying the nature of change, the Versions_Thesaurus 
relation was introduced. 

2.2.1.1 The Thesaurus Relation 
The seven fields of the Thesaurus relation are described in Figure 2.2.  The values of 
NAME_TYPE correspond to the main constructs of the languages being used.  The 
DEFINITION_USE field indicates whether the container is the place where the name is 
defined or where it is used.  The REMARK field holds a comment on the name.  The 
programmer specifies the comment after a special symbol (##) following the definition of 
a name.  Only comments on definitions are supported since it proved difficult to find a 
handy syntax for giving comments wherever a name can be used.  
 
 

16 



CHAPTER 2:  THE HMS THESAURUS TOOL  

 • SEQ_NO – system-generated key 

 • NAME – textual form of the identifier 

 • NAME_TYPE – one of the following codes appropriate to the type of the identifier: 
  – AN (Action Name) 
  – AS (Action Script name) 
  – CN (Class Name) 
  – DN (Datum Name) 
  – FN (Field Name) 
  – FU (FUnction name) 
  – QN (Query Name) 
  – RN (Relation Name) 
  – SM (Screen Macro name) 
  – TN (Transaction Name) 
  – UN (Update function Name) 

 • CONTAINER – a textual form of where a name is used 

 • CONTAINER_TYPE – codes appropriate to the type of the CONTAINER value:1
  – AS (Action Script) 
  – DL (Display Language program) 
  – HP (Hippo Program) 
  – QN (Query) 
  – QD (Query Dictionary) 
  – RN (Relation) 
  – SC (Schema) 
  – TN (Transaction) 
  – UN (Update function) 

 • DEFINITION_USE (D/U) – indicates definition or use of the name 

 • REMARK – a comment on the name 
 

Figure 2.2:  The Thesaurus relation 

Determining the container types for the respective definitions and uses is not 
straightforward.  For example, relations are naturally defined in the schema, but where 
are they used?  At least indirectly, they are used in all kinds of application programs.  
However, they are only used directly in queries and update functions, which therefore 
have been chosen as the container types.  Similarly, one may think of fields as being 
defined in the schema.  However, since they are always defined as part of a relation, 
relation has become their container type.  This also ensures uniqueness of a (field name, 
container value) pair.  A (field name, “schema") pair would not necessarily have been 
unique.  The relationships between the NAME_TYPE, CONTAINER_TYPE and 
DEFINITION_USE fields are illustrated by Table 2.1.  The leftmost column contains the 
various name types.  The other columns represent the container types.  A ‘D’ (‘U’) in a 
cell indicates that a name of the given name type can be defined (used) in a container of 
the given container type. 
 
 

                                                 
1 The reason for the apparently unnatural choice of CONTAINER_TYPE codes in some cases is that 

they should match the NAME_TYPE codes where there are correspondences. 

17 



CHAPTER 2:  THE HMS THESAURUS TOOL  

NAME_TYPE  CONTAINER_TYPE  

 AS  DL  HP  QN QD  RN SC  TN  UN  

AN (Action Name) D, U U D, U       
AS (Action Script name)   D, U       
CN (Class Name)  D, U        
DN (Datum Name) U U U D     D 
FN (Field Name)    U  D   U 
FU (FUnction name) U  D, U       
QN (Query Name) U U U  D     
RN (Relation Name)    U   D  U 
SM (Screen Macro name)  U        
TN (Transaction Name) U  U D      
UN (Update function Name) U  U  D   D  

Table 2.1:  NAME_TYPE distributed by CONTAINER_TYPE and DEFINITION_USE 
By November 1991, the HMS system comprised about 150,000 lines of source code, but 
the thesaurus provides a better measurement of the size: the number of programmer-
introduced names of various types.  Figure 2.3 shows the proportion of definitions and 
uses for each name type.  There are 9152 defined names which are used 15098 times, i.e., 
a total of 24250 name occurrences.  These measurements include only unique 
occurrences within a container type.  That is, if, for example, a datum is referred to 
several times within an action, it is registered as only one entry in the thesaurus.  
Information about duplicated name occurrences within a container was not considered 
necessary for the HMS project.1  If several entries for the same name were to be 
recorded, then an indication of the place within the container should also be present (e.g. 
line number and possibly word number within a file).  However, including duplicates 
would have increased the volume of the thesaurus by 100%. 
 
 

                                                 
1 Among the container types, duplicates occur only in action scripts, Display Language programs and 

Hippo programs. 

18 



CHAPTER 2:  THE HMS THESAURUS TOOL  

DN FN AN CN SM RN QN UN AS FU TN
0

1000

2000

3000

4000

5000

6000

Definition
Use

NAME_TYPE  

Figure 2.3:  Definitions and uses of names distributed by NAME_TYPE 

The apparently low use of action scripts and update functions should be explained.  There 
are 168 action scripts that are called in the Hippo code.  Another sort of use is that an 
action script may be associated with a class having the same name as the script.  There 
are 128 such associations.  Among the 322 defined update functions, 237 are contained in 
transactions and are thus only called implicitly when the associated transaction is called. 

Normally, we would expect fewer definitions than uses.  Figure 2.3 shows, however, 
that actions (AN), datums (DN), functions (FU) and update functions (UN) all have more 
definitions than uses.  The major reason for this inconsistent state is that the data was 
recorded in a very active part of the development.  At that stage it is natural to define 
names that are not yet referenced in programs.  

2.2.1.2 The Query_Dictionary Relation 
In order to find the effects of changes to schemata, queries and update functions, the 
Query_Dictionary relation was introduced which describes direct correspondences 
between fields of the relations and datums used in the Display Language or Hippo 
programs (Figure 2.4).  This information cannot generally be inferred from the Thesaurus 
relation since neither a field nor a datum is globally unique.  For example, a field 
SURNAME may be the surname of a patient or the surname of a GP.  However, a field is 
unique within a relation, and a datum is unique within a QDfunction1. 
 

                                                 
1 A QDfunction denotes either a query or an update function defined in the query dictionary. 

19 



CHAPTER 2:  THE HMS THESAURUS TOOL  

 

 • RELATION 

 • FIELD 

 • QDFUNCTION – a name of a query or update function 

 • DATUM 
 

Figure 2.4:  The Query_Dictionary relation 

2.2.1.3 The Versions_Thesaurus Relation 
The Versions_Thesaurus relation is like the Thesaurus relation but for two added fields 
that specify whether a name has been added or deleted and the date of the incident 
(Figure 2.5).  A change to the name of a relation, for example, has been registered as one 
deletion and one addition.  It is generally impossible for a tool to distinguish between a 
rename and a deletion followed by an addition without any user provided information.  If 
the structure of the relation changes as well (fields added, deleted or changed), it is also a 
semantic problem to decide whether the same relation has been modified or a new one 
has been created.  So, a rename of a field or relation is registered as one deletion and one 
addition, whereas a change to the type of a field is not captured in the thesaurus at 
present. 
 
 

 • The fields of the Thesaurus relation 

 • ADD_DELETE (A/D) – specifies whether the name was added or deleted 

 • INTRODUCED – date of addition/deletion 
 

Figure 2.5:  The Versions_Thesaurus relation 

An entry with a ‘D’ in the ADD_DELETE field will always have a corresponding entry 
with the field value ‘A’.  The corresponding entry will have a prior INTRODUCED value 
and incidentally another system-generated key (SEQ_NO value).  

2.2.2 The Thesaurus Interface 
The interface of the thesaurus tool provides queries for general name information, impact 
analysis and simple consistency checks.  An “Information” button informs the user about 
the structure of the thesaurus relations including the fields and their value sets.  The 
interface has one window displaying information from the Thesaurus relation and another 
window displaying information from the Query_Dictionary relation.  The functionality of 
the interface is shown in Figure 2.6 which is a sketch of the actual screen (the SEQ_NO 
and REMARK fields are not included).  The real system is implemented using colour-
graphics on high resolution workstations.  Some (poor quality) screen dumps showing the 
results of various queries are presented in [Sjøberg 1991]. 
 
 

20 



CHAPTER 2:  THE HMS THESAURUS TOOL  

BedBureauWards     QN      bb.hip         HP          U
BEDS               DN      bb.hip         HP          U
SlotList           QN      design.hip     HP          U
BED_NO             DN      design.hip     HP          U 
OLD_BED_NO         DN      design.hip     HP          U 
BedList            QN      nurse.hip      HP          U 
BED_NO             DN      nurse.hip      HP          U 
BedList            QN      nurse.s        DL          U 
BED_NO             DN      nurse.s        DL          U 

BED             BED_NO        BedBureauWards   BEDS
BED             BED_NO        BedList          BED_NO   
BED             BED_NO        SlotList         BED_NO
BED             BED_NO        SlotList         OLD_BED_NO

Thesaurus Relation

Query Dictionary Relation

HMS THESAURUS   

Sorted 
Tables

Lookup Change to 
Relation

Change 
to Field

Change to 
QDfunction

Name

Relation

Consistency 
Check

Cont_TypeContainerName_Type Def_Use

DatumQDfunctionField

Information

 

Figure 2.6:  The thesaurus interface 

2.2.2.1 Name Usage Information 
To be an efficient and reliable programmer on the HMS project, a certain knowledge of 
the existing software is essential.  In particular, this is a potential problem when a 
programmer starts working on the project or has been away for some time.   

As shown in Figure 2.6, the main screen contains two tables that display data from 
the Thesaurus and Query_Dictionary relations.  Two buttons, “Sorted Tables” and 
“Lookup", provide sorted data and lookup of names according to user specified search 
criteria.  Clicking on the “Sorted Tables” button invokes a pull-down menu from which 
the user can select the relation and the fields by which the output should be sorted.  
Similarly, the pull-down menu of the “Lookup" button provides the user with the option 
of specifying a (substring of a) name and restricting the output by selecting only 
definitions or uses, a specific name type and/or a specific container type. 

As mentioned, even though a name may have several occurrences within a container 
(a script or program), there is only one entry for the name per container in the Thesaurus 
relation.  It is the responsibility of the programmer to find all the occurrences within the 

21 



CHAPTER 2:  THE HMS THESAURUS TOOL  

container.  It should be a trivial task to use the search functions of an editor or browser to 
find the exact location of the name occurrences.  

2.2.2.2 Schema Evolution – Impact Analysis 
As the HMS applications grow, the problem of managing changes to meta-data becomes 
increasingly difficult.  One important category of meta-data is the database schema, i.e., 
the definitions of the relations and fields.  A list of logical changes1 to a relational 
schema is: 

1) Add a new relation. 

2) Rename a relation. 

3) Delete a relation. 

4) Add a new field to a relation. 

5) Rename a field. 

6) Change the type of a field. 

7) Delete a field from a relation. 
Deletion of a relation or field may typically be a consequence of vertically factoring 
(splitting) relations.  Deletion of a relation may also result from joining two relations into 
one. 

The traditional answer to coping with schema changes in a relational database is to 
interface all software via topic specific views.  Changes in the definition of these views 
are then made to mask the changes in the application programs.  However, many of the 
changes are introduced to effect changes in system behaviour, and these changes must be 
appropriately propagated rather than masked.  Views are not used in HMS since the 
query dictionary provides the necessary flexibility and indirection.  When a change is 
made to the meta-data, it is necessary to identify which queries and which application 
programs are potentially affected.  The programmer then has to decide where the change 
should be propagated and where it should be masked. 

Impact analysis (also referred to as “what-if analysis”) helps in determining where a 
change should be propagated.  If an existing relation or field is to be changed, then an 
impact analysis will inform the places where that relation or field is used.  However, 
there is no indication of where additions should be propagated.  It is of course a semantic 
problem to identify such places, but if a field is added, for example, at least one 
application program and screen must be changed to collect the new data, and at least one 
program must eventually use it. 

The thesaurus interface provides three “Change to X” buttons (Figure 2.6) which 
execute queries for finding the name occurrences possibly affected by changes to a 

                                                 
1  Physical reorganisation is not an issue in this chapter as most RDBMSs absorb such changes – 

obviating the need to change applications. 

22 



CHAPTER 2:  THE HMS THESAURUS TOOL  

relation, field or QDfunction function.  Table 2.1 shows that relations (RN) are used in 
queries (QN) or update functions (UN) which, in turn, are used in Display Language 
programs (DL) and Hippo programs (HP).  Consequently, the query executed by the 
“Change to Relation” button may be explained as:  “If this relation is changed, which 
QDfunctions and thereby which Display Language programs and Hippo programs are 
then affected?” 

The effect of changing a field1 is more complicated to work out.  A field (FN) may 
be used in several QDfunctions (QN or UN).  Since a field is not necessarily globally 
unique, the relation of the field has to be specified in order to find the affected 
QDfunctions.  Via the QDfunctions, field values are transferred to datums used in 
Display Language or Hippo programs.  Hence, if a field has been changed, the programs 
containing the corresponding datums will also be affected.  The correspondence between 
a field and a datum, which is not always a one-to-one correspondence,2 is described by 
the Query_Dictionary relation. 

The “Change to Field” button invokes the impact analysis of changing a field.  If the 
query dictionary table of the interface contains some entries (a result of another query), a 
user can select (say) an occurrence of a field name and then press the button.  Figure 2.6 
shows an example where the field BED_NO of the BED relation has been selected.  In the 
query dictionary window, all entries having the actual field name are displayed.  The 
thesaurus window displays all occurrences3 of all datums corresponding to this field and 
all queries and update functions containing occurrences of the field.  The interface works 
similarly for the other “Change to X” buttons. 

Not only schema changes, but changes to other categories of software components 
may also significantly affect other parts of an application.  For example, a change to a 
QDfunction will affect the Display Language and Hippo programs that use that 
QDfunction.  Therefore, included in the interface is also a “Change to QDfunction” 

button which performs a query that finds all programs using a selected query or update 
function and all relations and fields referred to within that query or update function.  

2.2.2.3 Consistency Checks 
In a large-scale project such as the HMS project, software will be changed continuously.  
A high frequency of changes implies a high risk of leaving the application software in an 
inconsistent state.  One kind of inconsistency is that a name denoting an action, class, 
macro, etc. is defined, but not used.  Another, more serious kind, is that a name is used, 

                                                 
1 The problem discussed concerns changing the definition of a field, not its value, of course. 
2 A datum may obtain its value as a function of several fields; there are 0.62 datums per field on 

average. 
3 In this thesis occurrence denotes an occurrence of an identifier – a name of a datum, field, etc., not its 

definition or value. 

23 



CHAPTER 2:  THE HMS THESAURUS TOOL  

but not defined.  By clicking the “Consistency Check” button, the results from the check 
are displayed on the screen.  The results can also be presented in the form of a report.   

2.2.2.4 Change History 
A second screen of the thesaurus interface displays data from the Versions_Thesaurus 
relation.  A “Changes Between” button invokes a query that finds all the thesaurus entries 
added or deleted within a time interval specified by the user.  Table 2.2 shows changes in 
the interval from 29/6/90 to 12/10/90.   
 
 

               
NAME 

NAME_
TYPE 

      
CONTAINER 

CONT_ 
TYPE 

DEF_  
USE  

 
INTRODUCED 

ADD_ 
DELETE 

change_war
d 
change_war
d 
change_war
d 
other_logi
n 
other_logi
n 
other_logi
n 
AdminMenu 
AdminMenu 
AdminMenu 
AdminMenu 
AdminMenu 
AdminMenu 
........ 
........ 
TIME_OUT 
TIME_OUT 
TIME_OUT 
verify 
verify 
verify 
TERMINAL 
TERMINAL 
TERMINAL 

AN 
AN 
AN 
AN 
AN 
AN 
AS 
AS 
AS 
CN 
CN 
CN 
.. 
.. 
FN 
FN 
FN 
FU 
FU 
FU 
RN 
RN 
RN 

diary.hip 
diary.hip 
diary.hip 
WardAccess.
s 
WardAccess.
s 
WardAccess.
s 
admin.hip 
admin.hip 
admin.hip 
AdminMenu.s 
AdminMenu.s 
AdminMenu.s 
........ 
........ 
TERMINAL 
TERMINAL 
TERMINAL 
admin.hip 
admin.hip 
admin.hip 
SCHEMA 
SCHEMA 
SCHEMA 

HP 
HP 
HP 
DL 
DL 
DL 
HP 
HP 
HP 
DL 
DL 
DL 
.. 
.. 
RN 
RN 
RN 
HP 
HP 
HP 
SC 
SC 
SC 

D 
D 
D 
U 
U 
U 
D 
D 
D 
D 
D 
D 
. 
. 
D 
D 
D 
U 
U 
U 
D 
D 
D 

29-JUN-90 
03-AUG-90 
10-AUG-90 
20-JUL-90 
03-AUG-90 
07-SEP-90 
20-JUL-90 
27-JUL-90 
17-AUG-90 
20-JUL-90 
27-JUL-90 
17-AUG-90 
......... 
......... 
20-JUL-90 
27-JUL-90 
10-AUG-90 
20-JUL-90 
27-JUL-90 
12-OCT-90 
20-JUL-90 
27-JUL-90 
1 0-AUG-90 

A 
D 
A 
A 
D 
A 
A 
D 
A 
A 
D 
A 
. 
. 
A 
D 
A 
A 
D 
A 
A 
D 
A 

Table 2.2:  Excerpt from the Versions_Thesaurus relation 
As a curiosity, the table also shows that some names were introduced and then deleted – 
and thereafter reintroduced.  For example, the relation ‘TERMINAL’ was introduced 
20/7/90, deleted 27/7/90 and then reintroduced 10/8/90.  The fields of this relation (e.g. 
‘TIME_OUT’) will of course follow the same course of events.  It might be the case that a 
reintroduced name denotes an object with a different structure and/or semantics than the 
object denoted by the first introduced name.  It is more likely, however, that the “same” 
object has been reintroduced after – for some reason – having temporarily been removed 
from the application.   

By specifying appropriate clauses on the INTRODUCED and ADD_DELETE fields, 
one can generate a complete version of the Thesaurus relation that represents the state at 
any given time.  So, in theory the Thesaurus relation is unnecessary since all its 
information can be obtained from Versions_Thesaurus.  Using only the 
Versions_Thesaurus, however, would be very inconvenient.  The implementation of 

24 



CHAPTER 2:  THE HMS THESAURUS TOOL  

interfaces and queries would be much more complicated, and the performance would be 
drastically impaired. 

2.2.3 Implementation 
The generation of the names and the subsequent update of the thesaurus are performed by 
a combination of C-shell, awk and sed scripts and one C program.  The C-shell scripts 
use, amongst others, the Unix commands awk, cpp, diff, grep, sed, sort and uniq [Sun 
Microsystems 1988a].  The sqlplus and sqlload commands invoke Oracle.  A summary of 
the use of these commands follows:   

• The awk macro language facilitates pattern recognition in text files.  The lines and 
words of a file are automatically assigned to (an array of) variables.  Other 
predefined variables contain the file name, number of records, etc.  The command 
awk also includes a subset of the C programming language (e.g. the printf function 
which is used to write the names and related information into an appropriate form for 
the loader).  The awk scripts constitute the main component concerning the search 
patterns and rules for finding the names and additional information to be inserted 
into the Thesaurus relation.  The patterns and the rules depend on the name type, 
container type and whether the definition or a use of the name is searched for.  

• The Display Language includes C macros and the pre-processor commands #define, 
#else, #endif, #ifdef, #ifndef and #include.  The code must be expanded before the 
detailed name analysis can be performed by the thesaurus tool.  This is provided by a 
script that calls cpp (C pre-processor).1   

• The difference between the current version of the Thesaurus relation and the last 
generated data is detected by diff.  This delta is used for update of the 
Versions_Thesaurus relation (see below). 

• The grep command searches for patterns and is used to reduce the amount of code 
before it is handed to the awk scripts. 

• The sed scripts are used for automatic string substitution – a means of massaging the 
code before it is analysed by the awk scripts. 

• To prevent duplicates of names within the same container, the sort and uniq 
commands are used.  

• The sqlplus command invokes Oracle with scripts containing SQL queries 
performing the following tasks: 

                                                 
1 Analysing all files only once proved difficult since they are expanded by cpp each time they are 

included in another file.  (They should only be analysed when it is their turn in the traversal of the 
directories.)  However, cpp includes file name on the output so a special awk script was developed to 
exclude all the redundant cases. 

25 



CHAPTER 2:  THE HMS THESAURUS TOOL  

i) generate the current version of the HMS schemata by querying the system 
catalogue; 

ii) unload the contents of the thesaurus which is used for comparison (see below); 
and 

iii) delete old contents of the thesaurus relations. 

• The sqlload command provides the loading of the generated data into the database. 

• A modified version of the query dictionary parser (a C program) analyses the query 
dictionary and generates the data to be inserted into the Thesaurus and 
Query_Dictionary relations. 

The update of the Thesaurus relation is performed according to the following procedure.  
The contents of the current Thesaurus relation are unloaded to a file.  The sequence 
numbers are deleted, and the file is then compared with the data just generated.  A 
leading ‘<’ on a line produced by diff indicates that the line is only in the generated data 
and should thus be inserted into the Thesaurus relation.  A leading ‘>’ on a line produced 
by diff indicates that the line is only in the Thesaurus relation and should thus be 
removed.  The Query_Dictionary relation is updated in a similar manner. 

The Versions_Thesaurus relation is also updated by using the output from diff 
mentioned above.  The new data is inserted with an ‘A’ as the ADD_DELETE value.  
Instead of removing the disused names, as is the case with the Thesaurus relation, entries 
with a ‘D’ as the ADD_DELETE value are inserted. 
 
 

26 



CHAPTER 2:  THE HMS THESAURUS TOOL  

doBED_BUREAU* 
/doGP* insertThes*

hippoGen*

screensGen* 

schema.awk

dag*

QueryDictionary.awk 

diffAdd.awk

QDThesaurus.awk

diffDelete.awk

unload*

hippo.awk
hippo.sed

screens.sed
screenscpp*

screensMacro.awk

hippoAction.awk
actionExec*
hippoFunction.awk

delSeqno.awk 

screenscpp.awk
screenscpp.sed

diffVersions.awk

INSERT.ctl

INSERTQD.ctl

VERSIONSTHESAURUS.ct

unload*
diffAdd.awk
diffDelete.awk

GENERATION

UPDATE

sqlplus

HT

DL

SC

QD

THESAURUS

QUERY_DICTIONARY

VERSIONS_THESAURUS

 
Figure 2.7:  The thesaurus scripts and programs 

Figure 2.7 describes the relationships between the scripts performing the data generation 
and the subsequent update of the meta-data relations.  The extensions ‘*’, ‘awk’, ‘sed’, 
and ‘ctl’ indicate C-shell, awk, sed and sqlloader control scripts, respectively.  The upper 
part of the figure shows the scripts responsible for the data generation; the rounded boxes 
indicate a set of scripts for each of the container types HT, DL, SC and QD.  The lower 
part shows the scripts responsible for the update. 

2.2.4 Evaluation 
The usefulness of the tool in the HMS project was evident after short time.  For example, 
the database administrator used the tool to find all the QDfunctions using the various 

27 



CHAPTER 2:  THE HMS THESAURUS TOOL  

relations during a reorganisation of the database.  The tool has also been successfully 
used for consistency checks and software reuse.  This section also discusses other aspects 
influencing the success of the tool such as performance, how easy it is to learn and use 
the tool, and alternatives to the tool. 

2.2.4.1 Detecting Inconsistencies 
The thesaurus tool has proved useful in the process of finding bugs and inconsistencies in 
the HMS software.  A few examples follow: 

• Unused actions were found.  The most common reason was that existing actions 
were replaced with new ones without the programmers remembering to delete the 
old ones. 

• A few calls to non-defined actions were found.  

• Inconsistent use of the macro commands #ifdef, #ifndef and #include was detected, 
e.g. C-shell environment variables not set as appropriate, non-existent files included 
(because the file names had been changed in the meantime), etc. 

Some of the inconsistencies found by the tool (e.g. calling a non-defined action) might 
have been detected at run-time during a test.  However, there will always be cases of bugs 
not detected in a test (they may occur when the system has been operational for half a 
year).  In any case, it is advantageous to detect inconsistencies or bugs as early as 
possible. 

2.2.4.2 Software Reuse 
As in every large-scale application development project, one should aim at software 
reuse.  The extent of reuse depends heavily on the information provided about the 
existing software and how the software is documented.  As seems to be the case in most 
application development projects, in the HMS project there is hardly any written 
information available about software suitable for reuse, and the code itself is poorly 
documented.  In the HMS case, the information is given accidentally and informally 
among the programmers.  This may work as long as the project is small and there are 
only a few programmers, but in order to cope with growth in size and complexity, 
another strategy has to be chosen.  

It is believed that the thesaurus tool will encourage code reuse.  For example, the 
tool was helpful for the author in that several classes and screens, reused in the 
implementation of thesaurus interface, were detected via the thesaurus data. 

However, to really benefit from the tool with respect to reuse, it should be extended 
with that purpose in mind.  For example, one could introduce appropriate conventions for 
comments in the REMARK field of the Thesaurus relation.  A problem is that 
programmers are generally reluctant to make comments.  By introducing conventions, it 
would be easier for the programmers to make the comments, and they might become 
more informative. 

28 



CHAPTER 2:  THE HMS THESAURUS TOOL  

2.2.4.3 Performance  
The time it takes to generate and update the thesaurus data and the response times of the 
queries provided by the interface are two aspects of the thesaurus tool’s performance.  By 
July 1990 it took about 45 minutes to build the whole thesaurus for the BED BUREAU 
and GP applications.  Performance is no problem since building is normally done 
overnight, and the cost of machine resources, at this stage, is effectively negligible.  (The 
log in Appendix A shows how long it takes to build the various parts of the thesaurus.) 

Some performance tests on the various queries of the interface have been carried out.  
There were approximately 4300 records in the Thesaurus relation and 1000 records in the 
Query_Dictionary relation at the time of the tests.  Among the results were the following: 

• The “Lookup” operation, retrieving between 4 and 70 records for various search 
strings, used between 5 and 13 seconds. 

• The three “Change to X” operations, retrieving between 12 and 20 records, used 
between 3 and 15 seconds. 

• The “Consistency Check” used between 3 and 31 seconds for the respective name 
types. 

In general, response times depend of course on the actual computer, the machine load, the 
size of the thesaurus, the use of indices, etc.  Nevertheless, since the thesaurus tool is not 
of the kind that people interact with continuously, the measurements presented above 
indicate acceptable response times. 

2.2.4.4 Learning and Understanding 
The effort needed to become an active user of the thesaurus tool can be divided into two.  
First, the user must learn how to invoke the features for sort, look-up, change effects, 
consistency checks, etc.  This should be relatively straightforward since the interface is 
window-based with pull-down menus, buttons, help menus, etc.  Second, and harder, is to 
understand the underlying model, which is necessary in order to interpret the results.  
That is, the user must: 

• know the name types and container types;1  

• understand the distinction between definition and use of names; and 

• understand how the predefined queries for consistency checks, change effects, etc. 
operate on the thesaurus data. 

The knowledge and understanding mentioned above are directly related to the knowledge 
and understanding of the actual application system.  That is, if the general understanding 
of the system is good, understanding and using the tool should be straightforward – and 
correspondingly difficult if the general understanding is poor.  If the understanding is 
poor, it should be improved in any case.  So, acquiring the knowledge needed for using 
the thesaurus tool should not be regarded as an unnecessary burden on the software 
builder. 

                                                 
1  This information is provided by the "Information" button. 

29 



CHAPTER 2:  THE HMS THESAURUS TOOL  

2.2.4.5 Alternatives to the Tool 
There are two principal strategies for solving the problems of finding the place of an 
action or a function call, the uses of a macro, the effects of schema change, etc. without 
the thesaurus tool.  First, it is common that a few people are responsible for some part of 
the application, and they may feel they remember the software well enough to answer any 
question about the application.  This might be possible as long as the application is small 
or is in an early phase of the development, but such a strategy is impractical in the long 
run. 

Second, the system catalogue of the RDBMS and Unix commands like grep can be 
used.  The system catalogue, however, yields only database specific information such as 
schema descriptions; it contains no information related to other parts of the application.  
Grep and other Unix commands can be used to search for names in application programs, 
but have several limitations compared with the thesaurus tool: 

• It may be awkward to do grep on large applications with many (sub)directories.  
Experience shows that the risk of neglecting cases is significant.  

• Grep cannot be applied to all parts of an application, e.g. not to the database schema.  

• Grep may for example return the name of a query (say) 20 times in one Hippo 
program.  A programmer can, of course, use the sort and uniq commands to remove 
duplicates, as does the thesaurus tool, but after all, the operations of the programmer 
cannot be as consistent and thorough as the operations of the tool.  

• Since grep returns whole lines at a time, a lot of noise – irrelevant data – is included. 

• Using grep, etc. programmers have to scan the whole application each time they 
need the information.  This may take a long time and is inefficient with respect to 
programmer effort.  In contrast, the thesaurus tool has the information already in its 
meta-database.  Therefore, obtaining the information by executing predefined 
queries on the meta-database takes less time and is more efficient.  On the other 
hand, there is a small chance of the thesaurus’ meta-data being out of date. 

Regarding the consistency check and the impact analysis, their implemented queries are 
so complex that they are unlikely to be captured fully by ad hoc use of the grep, uniq, etc. 
commands. 

2.2.4.6 Granularity of Container Types 
It could be questioned whether the software builders would benefit from a finer partition 
of container types.  For example, actions and classes could be specified as containers.  
There is a trade-off, however, between more detailed information and the risk of losing 
the overview of the thesaurus.  For example, the notation for specifying the container of a 
name occurrence would be more complicated.  Another consequence is that having a 
container type CL (class) should also imply having a container type OB (object).  
(Regarded as container types, there is no intrinsic difference between a class and an 
object).  However, having an OB container type would be inconvenient in two ways.  
First, objects may be nested indefinitely (in theory).  The reference to an object might 

30 



CHAPTER 2:  THE HMS THESAURUS TOOL  

therefore be an arbitrary long list of names.  Second, due to the high number of objects 
(about 2000 in the BED BUREAU application by June 1990), the risk of losing the 
overview of the structure is significant. 

2.2.4.7 Recording Change 
The present version of the Versions_Thesaurus relation records only additions and 
deletions of name occurrences.  Changes to the definitions themselves, i.e., the body code 
of the screen definitions (classes and objects in the Display Language), actions, functions, 
queries and update functions, etc. are not captured.  Detecting and informing about such 
changes are complicated but would be very useful.  One of the major problems of 
software development in teams is that one team member changes a definition, and the 
first time that another team member finds out about this is when his or her part fails. 

A changed definition could be stored with a ‘C’ in the ADD_DELETE field1 of the 
Versions_Thesaurus relation and the time for the incident in the INTRODUCED field as 
in the add/delete cases.  In addition, the tool should ideally record the category of change.  
Proposing interesting change categories is not straightforward, but a few examples are: a 
new button referred to in an action, a field no longer referred to in an update function, an 
added join in a query, etc.  An even harder problem is to detect the actual change.  
Depending on the requirement of the kind of change that should be provided, there are 
several options for presenting the differences between new and old versions: 

 

i) present differences in the form of textual deltas; 

ii) present differences in the form of new, removed or changed statements of the code; 
or  

iii) present differences in terms of added or removed names within the containers. 
The first option could be provided by, for example, applying the Unix commands diff or 
comm to the modified and old versions of the definitions of a screen, action, etc.  
Alternatively, the thesaurus tool could exploit delta information provided by version 
control systems such as RCS (see Section 3.3.1).  Finding the semantics of the change 
would then be up to the user.  With hundreds or thousands of screens, actions, etc. this 
would probably be an expensive task.  By storing the code in the form of an abstract 
syntax tree or a similar structure, more detailed information about the kind of change in 
the code could be provided (second option).  The first and second options would require 
the previous version of the code to be stored in order to produce the deltas and would 
thus imply major modifications to the present thesaurus tool.   

If change information in terms of additions and deletions of name occurrences within 
a container is sufficient (third option), then the current Versions_Thesaurus relation could 
be used unchanged.  That is, for a given container, information about added or deleted 
names of types corresponding to the container type could be provided.  For example, 
changes to an action script could be measured in terms of added or deleted actions, 
datums, functions, queries, transactions or update functions.  (Table 2.1 shows the 
                                                 
1 The field should be renamed accordingly. 

31 



CHAPTER 2:  THE HMS THESAURUS TOOL  

possible name types for each container type.)  If found convenient, the container types 
may be refined in order to provide more detailed information (see previous section).   

2.2.4.8 The Tool in an Organisational Context 
When introducing the thesaurus tool into an application development environment, one 
should pose the following questions: 

• Who should use the tool? 

• How should the working process be organised in order to benefit as much as possible 
from the tool? 

• How should the project management motivate and encourage active use of the tool? 
Concerning the consistency check feature, it is particularly important that inexperienced 
and immature programmers find bugs and inconsistencies by themselves before the 
software is released.  The only purpose of the tool should be to improve the quality of the 
software; a negative attitude may be created if it is felt that the tool is used for individual 
monitoring purposes, such as by the project management. 

2.3 Quantifying Evolution 
By utilising the Versions_Thesaurus relation of the thesaurus tool, all changes (at present 
only additions and deletions) occurring within a given time interval (e.g. last year, month, 
week) can be found.  The relation can thus provide information about the project 
development at different times.  Usually, software engineers are too constrained by short-
term goals to compile such statistics.  One of the advantages of the thesaurus tool is that 
all data is generated automatically without the need of any user intervention.  In general, 
the tool may be a helpful means for studying the behaviour of long-lived database 
systems [Atkinson 1990].  

One area of system evolution that has been of particular interest recently is changes 
to database schemata (schema evolution).  The effects of schema changes are divided into 
three categories:1  

i) effects on other parts of the schema; 

ii) effects on extensional data; and  

iii) effects on application programs. 

Typically, there will be many application programs that utilise a type that has been 
changed in the schema.  These programs may use screen definitions, query definitions, 
procedures, etc.  It is not difficult to imagine that incompatibilities between a schema 
type and the corresponding type assumed by the application programs may have serious 
consequences. 

Recent work is concentrated in the area of object-oriented databases [Banerjee et al. 
1987, Penney and Stein 1987, Skarra and Zdonik 1987, Kim and Chou 1988, Panel 1989, 
Lerner and Habermann 1990] where the consequences of changing a type (class) may 

                                                 
1 Chapter 3 provides a more detailed discussion. 

32 



CHAPTER 2:  THE HMS THESAURUS TOOL  

lead to more significant changes in the schema itself than in a relational environment, but 
the consequences for extensional data and application code may be as serious as in a 
relational environment.   

The purpose of this section is to present the results of an experiment that was 
conducted with the intention of quantifying the evolution of the HMS schema and 
quantifying the consequences of such changes on the rest of the application code.  The 
period for the study started in June 1990 and continued until December 1991.  Initially, 
the HMS system was analysed every fortnight, but due to repetitive changes to the 
development environment and because the author was not present to instantly adapt the 
tool to this kind of change, sustaining this frequency proved impossible (Section 2.3.3).  
All measurements until November 1990 were in the development period.  Field trials 
began in November 1990.  During the year from November 1990 to November 1991, the 
HMS system development continued with operational use in one hospital beginning in 
May 1991.1  By December 1991 HMS was running in several hospitals.  The project 
team grew from six to thirteen people during the period of investigation. 

2.3.1 Evolution of the HMS Schema 
During the period of study, the number of relations increased from 23 to 55 (139% 
increase) and the number of fields increased from 178 to 666 (274%).  However, what is 
more interesting than this considerable growth in size, is that every relation has been 
changed.  At the beginning of the development almost all changes were additions.  After 
the system provided a prototype and later went into production use, there was no 
diminution in the number of changes, but the additions and deletions were more nearly in 
balance. 
 
 

 Relations Fields 

Date Added Deleted Current  Added Deleted Current  

22/6/90   23   178 
6/7/90 6 0 29 103 0 281 
20/7/90 13 0 42 78 0 359 
3/8/90 1 -1 42 9 -15 353 
17/8/90 18 0 60 97 0 450 
Oct-90 3 -23 40 52 -126 376 
Nov-90 47 -40 47 528 -376 528 
Nov-91 40 -28 59 550 -290 788 
Dec-91 20 -24 55 229 -351 666 

Total 148 -116  1646 -1158  

Table 2.3:  Added and deleted relations and fields in the HMS schema 

                                                 
1 The operational system concerned the management of in-patient information.  Many of the changes 

were the result of improvements to this system, changed requirements by government (the minimum 
data set) and the development of an out-patients system due for delivery in April 1992. 

33 



CHAPTER 2:  THE HMS THESAURUS TOOL  

Table 2.3 shows the development for the relations and fields.  (A diagrammatic 
interpretation is given in Figures 2.8 and 2.9, respectively.)  The number of deleted 
relations and fields appears as a negative value, so the Current value is the previous 
Current value plus the values of the Added and Deleted columns.  Added and Deleted 
include both fields explicitly added to and deleted from a relation and fields added and 
deleted implicitly as a part of an addition or deletion of a relation.  Most changes to the 
fields are such implicit changes.  However, there are a substantial number of explicitly 
added and deleted fields as well.  For example, of the 20 relations found in both the 
November 90 and November 91 schemata, only 4 have unchanged structure (the fields 
remained the same).  During the period of examination, a total of 148 relations and 1646 
fields have been added, whereas respectively 116 and 1158 have been deleted.  That is, 
there have been 28% (relations) and 42% (fields) more additions than deletions. 
 
 

-40
-30
-20
-10

0
10
20
30
40
50
60

22
/6

/9
0

6/
7/

90

20
/7

/9
0

3/
8/

90

17
/8

/9
0

O
ct

-9
0

N
ov

-9
0

N
ov

-9
1

D
ec

-9
1

Added

Deleted

Current 

 
Figure 2.8:  Change history of the relations 

 

-400

-200

0

200

400

600

800

22
/6

/9
0

6/
7/

90

20
/7

/9
0

3/
8/

90

17
/8

/9
0

O
ct

-9
0

N
ov

-9
0

N
ov

-9
1

D
ec

-9
1 Added

Deleted

Current 

 
Figure 2.9:  Change history of the fields 

34 



CHAPTER 2:  THE HMS THESAURUS TOOL  

As mentioned, rename of a field or relation and changes to the type1 of a field are not 
captured by the automatic measurements.  However, a visual check on the November 91 
and December 91 schemata found that there was only one rename of a relation where the 
relation's structure was unchanged, that 3 relations were vertically factored and that in 
one case 2 relations were joined together.  The rest were “pure” additions and deletions.  
Regarding the fields, there were 18 renamings, 4 changes of unique/non-nulls, 23 
changes of length and 4 changes of representation (3 from character to integer and one 
vice versa), i.e., 31 changes of field type.  Respectively 31 and 48 fields were explicitly 
added and deleted. 

In a large-scale project, with many people involved, there will always be different 
interests and opinions on how to solve the problems.  Changes of the specification, 
context and customer generate drastic changes to the project.  This was, for example, the 
case in the HMS project when the November 90 version replaced the October 90 version.   

2.3.2 Consequences of the Schema Evolution 
The previous section gives an impression of how significantly the HMS schema changed 
during the period of investigation.  In order to provide a consistent application system, 
such schema changes have to be propagated to the application code.  This necessary 
change propagation will be discussed in terms of the extent to which programs must be 
changed (edited) for each kind of schema change.  The modification of the Nov-91 
schema into the Dec-91 schema will be used as an example when describing the impact 
on the application code.  A presentation of the use of the relations and fields in the Nov-
91 version of the HMS system should help one to understand the example.  
 
 

query   AdmissionHall =  
[  select 
   HMS_PATIENTS.surname...] 
{ Surname......}      ...

HMS_PATIENTS 
 ( patient_id,  
    surname, ...)   

SCHEMA ... Surname...QUERY DICTIONARY

HIPPO

DISPLAY LANGUAGE

Direct use
Indirect use

... Surname...

 

Figure 2.10:  Direct and indirect use of relations and fields 

Screens, actions, functions, queries, update functions, etc. are all dependent on the 
schema.  The references to relations and fields in the screens and actions are all indirect 
via the query dictionary.  The query dictionary was introduced to absorb change.  Its 
analogy is a traditional view mechanism, but the query dictionary is more general 
supporting update and allowing interfacing to different DBMSs.  Schema changes have 
direct consequences only for the query dictionary, but in general it is necessary to 
propagate these changes to the Display Language and Hippo code.  For example, if the 
relation HMS_PATIENTS gets a new field, place_of_birth, the actual values must be entered 

                                                 
1  A very general interpretation of the type concept is here used which includes the field properties 

unique, non-nulls, length and representation (integer, char, date, etc.). 

35 



CHAPTER 2:  THE HMS THESAURUS TOOL  

via a screen (Display Language code).  Furthermore, at least one application program 
should utilise this new information.  Figure 2.10 illustrates the direct and indirect use of 
relations and fields.  In the example, the query AdmissionHall uses the field 
HMS_PATIENTS.surname whose value is assigned the datum Surname which in turn is used 
in Display Language and Hippo code. 
 
 

Measurement Number Min Max Mean Std Sum 

Relations 59 0 101 16.9 27.1 997 
Fields 788 0 167 6.6 14.2 5181 
Fields grouped by Relation 59 0 795 87.8 178.3 5181 

Table 2.4:  Direct use of relations and fields in the query dictionary 
Table 2.4 describes the direct use of relations and fields in the query dictionary.  The first 
measurement, “Relations”, shows that among the 59 relations there is at least one that is 
never used (Min) and at least one other used 101 times (Max).  The average is 16.9 
(Mean), and the total number of times a relation name appears in the query dictionary is 
997 (Sum).  The standard deviation (Std) is high because most of the use is represented by 
only a few relations. 

Both the “Fields” and “Fields grouped by Relation” measurements describe use of 
the fields.  The extra information obtained by introducing “Fields grouped by Relation” is 
that the field statistics are related to the associated relation.  For example, the maximum 
value 795 in row of “Fields grouped by Relation” indicates that there is at least one of the 
59 relations that has in total 795 occurrences of its fields.  An analysis of the raw data 
reveals that the fields of 3 relations constitute 45% of the use which implies a high 
standard deviation.  The maximum number of occurrences for a field is 167; the average 
6.6.  The total number of field occurrences in the query dictionary is 5181. 
 
 

Measurement Number Min Max Mean Std Sum 

Fields 788 0 193 5.0 14.0 3946 
Fields grouped by Relation 59 0 661 66.9 152.5 3946 

Table 2.5:  Indirect use of fields in Display Language and Hippo code 
Table 2.5 shows the indirect use of fields in the Display Language and Hippo code.  
These measures have been obtained by: 

i) finding all correspondences between fields and datums in the queries and update 
functions, 

ii) finding all the queries/update functions1 and datums used in the Display Language 
or Hippo code, and 

iii) joining the results of i) and ii) by query/update function and datum. 

                                                 
1 A transaction call is regarded here as a call to all its containing update functions. 

36 



CHAPTER 2:  THE HMS THESAURUS TOOL  

The 788 fields are on average used indirectly 5.0 times, whereas the measure for fields 
grouped by relation is 66.9 times.  The use of a field and all fields of a relation ranges 
from 0 to 193 and 0 to 661 occurrences, respectively.  

As an illustration of consequences of schema changes, the effect of the modification 
of the Nov-91 schema into the Dec-91 schema is now described.  Figure 2.11 shows that 
more than one third (36%) of all name occurrences had to be deleted.  There were only a 
few renamings (less than 1%).  The consequences of adding relations and fields are 
difficult to measure, but the minimum number of necessary additions can be estimated to 
about 10% of the number of existing name occurrences (see discussion below). 

 
 

Add Rename Delete
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 e

xi
st

in
g 

pl
ac

es

10.1%
0.8%

35.7%

 

Figure 2.11:  Consequences of the December 1991 HMS schema modification 

A more detailed description of the consequences is given in Table 2.6 which contains one 
row for each kind of schema modification.  (The number in brackets is the number of 
occurrences of the named change.)  The change consequences are measured in terms of 
how many places that need to be edited for the changed relations and fields.  A place is a 
position in a query or update function where a relation, field or datum name occurs, or 
where a datum name in a Display Language or Hippo program occurs.1  Duplicates have 
been removed.  That is, the measurements record only one occurrence of a relation, field 
or datum name in each container.  (In the actual code there are about twice as many 
occurrences.)  In Table 2.6 Query Dictionary means queries or update functions and DL 
or H means Display Language or Hippo programs. 
 
 

                                                 
1 A place could be localised by, for example, a (line number, word number) pair. 

37 



CHAPTER 2:  THE HMS THESAURUS TOOL  

 Query Dictionary DL or H   

Operation (occurrences) Relations Fields Datums Datums Total 

Add relation (19) 38 360 360 360 1118 
Add field (31)  62 62 62 186 
Rename relation (1) 8    8 
Rename field (18)  128   128 
Delete relation (23) 268 1555 628 1370 3821 
Delete field (48)  351 151 156 658 

Total (140) 314 2467 1201 1948 5930 

Table 2.6:  Consequences of the December 1991 HMS schema modification 
For each added field at least one screen (Display Language code) should collect the new 
data, and an update function should insert it into the database.  Moreover, at least one 
Display Language or Hippo program should eventually use the new data which also 
implies a new or modified query.  To collect and use the fields of an added relation, the 
argument above implies that the relation name must be included in an update function 
and query as well.  So, the names of the 19 added relations in the Dec-91 schema1 must 
be inserted into the query dictionary at least 38 times.  These relations have 180 fields 
implying that a minimum of 360 places for the fields and 360 places for the 
corresponding datums must be edited in the query dictionary and at least the same 
number of datum names in the Display Language or Hippo code.  It is generally 
impossible for a tool to detect places affected by additions.  Human intervention is 
required. 

The renaming of the single relation and the 18 fields cause at least 8 and 128 places 
to require editing.  There is not necessarily any effect on the Display Language or Hippo 
code because the name change may be absorbed in the query dictionary.  However, if the 
intention is that new field names should be propagated to the corresponding datums, then 
97 datums in the query dictionary and their 112 uses in the Display Language and Hippo 
code would also have to be edited (not shown in Table 2.6).   

An examination of Table 2.4 reveals that removing a relation will on average affect 
87.8 field occurrences in the query dictionary.  In the best case, no field occurrences will 
need to be edited, but 795 in the worst case.  The average number of field occurrences of 
the 23 actually deleted relations is 67.6, indicating that these relations are used less than 
average.  The consequences of the deletions, however, are still significant.  The deleted 
relations cause 268 removals of the relation names and 1555 removals of the names of 
their fields.  These field names correspond to 628 datums, which have 1370 occurrences 
in the Display Language or Hippo code.  In summary, the number of places affected by 
the deletion of the 23 relations is 3821.   

In addition to the changes described above, some new update functions and queries 
will generally be needed which may be referenced in the Display Language or Hippo 
code.  However, the query dictionary may absorb such changes because the same update 

                                                 
1 Table 2.3 shows 20 added relations (not 19) because the single renamed relation is registered as one 

deletion and one addition by the thesaurus tool. 

38 



CHAPTER 2:  THE HMS THESAURUS TOOL  

functions and queries can operate on new relations and fields with only internal changes.  
That is, their references in Display Language and Hippo code may be unchanged.  So, 
introducing a query dictionary is one means of alleviating the consequences of schema 
changes. 

This section has described consequences of schema modifications in terms of the 
number of changes to places in which names of relations, fields and datums occur.  It 
should be emphasised that the actual number of changes to the code will be much larger.  
For example, if a relation is added, not only will the names of the relation, its fields and 
corresponding datums be added (at least twice), but other code segments related to these 
items will be added as well. 

2.3.3 Problems of Measuring Evolution 
The thesaurus tool was installed to measure the changes to the HMS schema and its 
consequences over the 18 month period from June 1990 to December 1991.  However, in 
addition to the changes to the HMS schema and application programs, the system 
structure and development environments also changed significantly (mainly to cope with 
the growth of the system).  The thesaurus tool itself had to be changed correspondingly.1  
The kinds of change were: 

• Completely new structure and names of directories and change to file name 
conventions. 

• Changes to the support software (operating system, DBMS, version control systems, 
etc.). 

• Changes to the application programming languages, like modified syntax and 
extended run-time library (the query dictionary language, Display Language and 
Hippo language were all changed during the period of investigation).  

Keeping the continuity of the observations may prove difficult due to such changes.2  As 
mentioned, they were the reason for the different time intervals shown in Table 2.3.   

Anybody attempting to carry out similar experiments or build equivalent tools would 
certainly need to cope with changes in the representation and storage organisation of the 
software and new versions of programming support software.  In the HMS system the 
program directories were reorganised without notifying the thesaurus tool.  (Figure 2.12 
illustrates the scale of change.)  This excluded several programs from the analysis for a 
short period of time.  Another failure was that the program for unloading the thesaurus 
data from the database was not recompiled when a new version of Oracle was introduced.  

                                                 
1 One year after the initial release of the thesaurus tool, the author was asked by the HMS development 

team for a total upgrade of the tool so that it could cope with, and benefit from, the changed 
environments. 

2 In the HMS case, the hardware was at least the same throughout the period of investigation.  
Hardware changes may result in yet another category of problems.  For example, since the period of 
investigation a major part of the work has moved from Unix machines to PCs under Windows 3. 

39 



CHAPTER 2:  THE HMS THESAURUS TOOL  

The result was that no data was unloaded.  The tool then assumed (wrongly) that the 
thesaurus relations were empty, and the subsequent test for change detection was 
invalidated.  Therefore, thesaurus tools need to be subject to the same change control 
mechanisms as the rest of the system under study. 

Major changes to the languages used may be unusual in a typical programming 
environment.  Nevertheless, the HMS application languages are continuously being 
developed, and this was experienced as a problem during the implementation of the 
thesaurus tool.  New constructs, new built-in functions, etc. in the application languages 
had to be reflected in the thesaurus analyser.  For example, at present, awk scripts test 
potential actions and functions against a list of built-in names.  All changes have to be 
done manually with the risk of being insufficient or not performed at all (at least in a 
transitional period).  A more sophisticated version of the tool should be driven from the 
same data as the parsers of the respective languages, enabling changes to be 
automatically reflected in the thesaurus analyser.   

Completely automated collection of change data seems impossible.  Therefore, in 
order to collect reliable measurements of a real-world system, the application 
development people on the site must have the time and interest in co-operating with the 
experiment.  One problem is to convince them that the data collection is worth the 
investment.  This problem may not be so great if the change measurement and 
management tools were closely integrated with the programming environment. 
 
 

40 



CHAPTER 2:  THE HMS THESAURUS TOOL  

Appl1

Hippo Screens

Appl

*.s *.dqp*.hip

HMS

SchemaLib

QD

Appln

Hippo Screens

*.s *.dqp*.hip

QD

Lib1

Hippo Screens

*.s *.dqp*.hip

QD

Libn

Hippo Screens

*.s *.dqp*.hip

QD

... ...

HMS

Hippo Screens

*.s hms.dqp*.hip

Schema

Jun-90:

Dec-91:

 

Figure 2.12:  Extension of the system structure 

2.3.4 Schema Evolution in Different Application Domains 
The purpose of collecting change measurements is to identify requirements for 
methodologies and tools for maintaining large, long-lived application systems.  The 
measurements presented in the previous sections were conducted to discover the extent of 
change to the schema of a health management system.  The results show that, at least in 
this application, there were large numbers of changes with considerable consequential 
changes to code.  However, to acquire more general knowledge about the extent and form 
of change, applications systems in various application domains should be measured.   

In recent literature on schema evolution, which mostly concerns object-oriented 
databases, it is commonly claimed that facilities for schema evolution are more important 
in new application areas such as CAD/CAM, CASE design, etc., than in traditional areas 
such as payroll, accounting, reservation systems, etc.  These claims are generally not 
supported by measurements.  On the other hand, a study of the evolution of seven 
traditional applications (“Sales and payments”, “Property inventory”, etc.) [Marche 
1993]1 shows that approximately 60% of the entity attributes changed during the period 

                                                 
1 Marche's study and a summary of the measurements presented in this chapter [Sjøberg 1993], are the 

only examples of schema (or data model) evolution measurements found in the literature.  

41 



CHAPTER 2:  THE HMS THESAURUS TOOL  

of investigation.  The data models1 were measured (manually) in a period varying from 6 
to 80 months for the respective applications.   

In spite of the changes reported in that study, it might be the case that there are fewer 
schema changes in traditional application domains than in newer areas.  One reason could 
of course be that there is less need for change in traditional systems because they are 
simpler and their functionality and behaviour better understood.  Another reason, 
however, could be that the traditional systems are so rigid, and the consequences of 
change so enormous, that due to lack of appropriate methods and tools, user requested 
change is simply rejected.  An example is the Norwegian census database – a CODASYL 
network database containing 5 gigabytes of data about 5 million persons.  In spite of 
changed user needs, the schema has not been changed during the last decade due to 
extreme costs – typically measured in units of person-years; any (minor) schema change 
would imply database reorganisation and application code modification, the needed work 
amounting to at least half a person-year per minor schema change [Gløersen 1993]. 

2.4 Summary 
Research on methodologies and tools for change management should focus on real-world 
problems.  In accordance with this view, the problems of a health management system 
(HMS), currently running in several hospitals in the UK, were investigated in detail.  
HMS is implemented as a relational database with application programs written in 
different languages tailored for defining and using screens, actions, functions, queries, 
update functions, etc.  When the system reached a certain size, it was evident that aids in 
keeping track of the structure of the system were becoming essential.  The thesaurus tool 
was therefore developed.  The tool is centred around the thesaurus which is a meta-
database containing information about names and identifiers defined and used in all the 
software including database schemata.  For each name occurrence, the thesaurus records 
the name type, the container of the occurrence, the container type, whether the occurrence 
is a definition or a use, and so forth.   

It should be emphasised that the thesaurus spans all the languages used in the HMS 
system, which is in contrast to, for example, the system catalogue which only contains 
database specific information such as schema descriptions.  Hence, the thesaurus tool also 
tracks down dependencies across software written in different languages, for example 
dependencies between fields used in queries and variables used in screens and actions.  
All the thesaurus information is automatically generated, and the thesaurus is regularly 
updated (every night).   

The thesaurus tool has been successfully used in the HMS project.  The usefulness is 
closely related to scale.  So, as the HMS system grows and becomes more complex, with 

                                                 
1 In compliance with Marche’s parlance, data model means in this context a concrete model of an 

application and should thus not be confused with data models such as the relational data model 
[Tsichritzis and Lochovsky 1982]. 

42 



CHAPTER 2:  THE HMS THESAURUS TOOL  

many new programmers entering the project, the tool is expected to become even more 
useful. 

The thesaurus tool also contains change history in terms of added and deleted entries.  
This information was used in a study conducted with the purpose of quantifying schema 
evolution and its impact on the rest of the application.  The HMS system was observed 
over a period of 18 months.  Both the schema changes and their consequences, measured 
in terms of potentially affected places in the application code, were significant.   

Most of the recent research on schema evolution has focused on object-oriented 
databases.  Ideas for managing the impact of schema changes on the schema itself (class 
hierarchy) and on extensional data (objects) have been implemented.  Managing the 
consequences for application programs (methods) proves to be a more complex issue.  
The results reported in this chapter were based on the use of a relational DBMS and 
confirm that change to database schemata is an important issue – independent of the data 
model of the actual application – and that change management tools are needed – at least 
in the context of advanced and experimental application development such as that 
measured here.  The extent and sort of change may differ between various application 
domains.  Others are invited to conduct similar experiments, based on similar technology, 
in other environments.  Much effort is required, however, to carry out such experiments 
and may be one reason for the lack of schema evolution statistics reported in the 
literature. 

This chapter has discussed the thesaurus tool which was developed due to lack of 
appropriate commercial tools.  The next chapter surveys existing and proposed software 
engineering techniques and tools for use in commerce and industry.

43 



CHAPTER 2:  THE HMS THESAURUS TOOL  

 

44 



 

Chapter 3 

Software Evolution and 
Supporting Tools – A Survey 

 

3.1 Introduction 
This chapter describes concepts in the field of software engineering with emphasis on 
supporting change.  State-of-the-art models and tools for change management will be 
discussed as a context for the research presented in the subsequent chapters. 

3.1.1 The Software Development and Maintenance Process 
Software engineering includes models, methodologies, techniques and tools for system 
construction and maintenance.  The classical model for describing the software 
development process is the so-called waterfall model [Royce 1970].  This analysis-
design-implementation-testing model of the software development life cycle, however, 
does not comply with the way systems are built in the real world.  Obvious inadequacies 
are the lack of recognition of the importance of system changes and its description of 
system development as a sequential process.  The spiral model [Boehm 1988] was 
introduced to encompass some of the deficiencies of the “waterfall model”.  The “spiral 
model” adds the notion of risk analysis and allows for iteration of the development tasks.   
 
 

45 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

Development 
& 

Maintenance

Development 
& 

Maintenance

Development 
& 

Maintenance

Development 
& 

Maintenance

Analysis Design Implementation Testing

 

Figure 3.1:  The software development and maintenance process 

The problem of software maintenance, however, is not explicitly addressed by any of 
these models, though it is common to extend the classical model with a separate 
maintenance phase after testing [Sommerville 1992, Pressman 1992].  Instead of 
representing maintenance as a final phase after testing, each box (phase) in the simplified 
model of Figure 3.1 contains elements of both development and maintenance.  In 
practice, the phases of development are repeated during maintenance.  New requirements 
must be determined, the existing software application needs re-design and re-coding, new 
tests must be undertaken, etc.  This complies with the view presented in [Lehman 1980] 
that both development and maintenance should be regarded as one process – software 
evolution.  This does not mean that the software development and software maintenance 
life cycles follow the exactly same pattern; at a detailed level the stages and the relative 
effort applied to the stages may differ [Chapin 1988].  Nevertheless, a detailed discussion 
of the suitability of software process models is not a concern of this thesis.  The intention 
of this thesis is to describe tools and techniques for managing various kinds of software 
change – independent of whether they occur during initial construction or after the 
software application has become operational. 

The purpose of this introduction is to place, in terms of life cycle phases and levels, 
the concepts (processes, tools and tool environments) to be discussed in this chapter.  The 
emphasised box in Figure 3.1 indicates that implementation aspects will be the focus.  
Figure 3.2 presents a more detailed picture.  The boxes with thick borders indicate 
concepts directly related to the research presented in this thesis.  The thin border boxes 
represent concepts that are included merely to illustrate the context of the concepts under 
consideration.  A concept placed in the implementation phase may also be relevant to 
other phases (for example, a data dictionary may contain design information).  From the 
viewpoint of this thesis, however, the concepts are interesting for aspects relevant to 
implementation.  The figure shows two levels.  The lower level describes concepts 
pertinent to particular phases, whereas the upper level describes concepts concerned with 
the management of the overall software construction and maintenance process.   
 

46 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

Sy
st

em
 C

on
st

ru
ct

io
n 

 
an

d 
M

ai
nt

en
an

ce

Pr
og

ra
m

m
in

g 
En

vi
ro

nm
en

ts

:  
A 

su
pp

or
ts

 B
A

 B
:  

B 
is

 a
 g

en
er

al
is

at
io

n 
of

 A

M
et

a-
D

at
ab

as
es

Sc
he

m
a 

 
M

an
ag

em
en

t

D
E

S
IG

N

A
ut

om
at

ic
 P

ro
gr

am
  

D
oc

um
en

ta
tio

n

 R
ev

er
se

 E
ng

in
ee

rin
g

 In
te

gr
at

ed
 P

ro
je

ct
  

 S
up

po
rt 

En
vi

ro
nm

en
ts

 In
te

ra
ct

iv
e 

Sc
he

m
a 

  
 D

ef
in

iti
on

 a
nd

  
 M

an
ip

ul
at

io
n

 S
ch

em
a 

M
er

gi
ng

 C
om

pi
le

rs
 B

ro
w

se
rs

 L
an

gu
ag

e 
Se

ns
iti

ve
  

 E
di

to
rs

  D
at

a 
Fl

ow
 A

na
ly

se
rs

 C
on

fig
ur

at
io

n 
 M

an
ag

em
en

t T
oo

ls

 B
ui

ld
 M

an
ag

em
en

t T
oo

ls

 S
ch

em
a 

 
Ev

ol
ut

io
n

 D
at

a 
 M

od
el

lin
g 

 

 F
or

m
al

  
 S

pe
ci

fic
at

io
n

 S
of

tw
ar

e 
Pr

oc
es

s 
 M

od
el

lin
g 

 

 S
ta

tic
  

 P
ro

gr
am

 
 A

na
ly

se
rs

 D
at

a 
D

ic
tio

na
rie

s

 R
ep

os
ito

rie
s

 T
ex

t  

 D
ia

gr
am

s 
 

 S
ys

te
m

 C
at

al
og

ue
s

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t 

IM
P

LE
M

E
N

TA
TI

O
N

O
VE

R
AL

L 
C

O
N

S
TR

U
C

TI
O

N
 A

N
D

 
M

A
IN

TE
N

A
N

C
E

 P
R

O
C

E
S

S

TE
S

TI
N

G

 C
on

si
st

en
cy

 
 C

he
ck

in
g

 C
ro

ss
-R

ef
er

en
ce

rs

A
 B

:  
Is

su
es

 o
f t

hi
s 

th
es

is
:  

O
th

er
 re

le
va

nt
 is

su
es

 

Figure 3.2:  Concepts in software construction and maintenance 

47 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

3.1.1.1 Data Modelling 
A data model is characterised by having an inherent structure and a set of techniques and 
tools used in the process of designing, constructing and manipulating databases.  The data 
modelling process produces, among other things, database schema specifications and is 
thus closely related to schema management. 

3.1.1.2 Formal Specifications 
By introducing formal methods and corresponding tools the quality of analysis and 
design may be improved [Bjørner 1991].  This may in turn amend the software 
implementation in terms of fewer errors and better structure.  Consequently, there will be 
less need for modification.  However, a major part of software change is due to change in 
user requirements after system installation (Chapter 1).  Work on formal specifications 
has also focused on that problem.  Determining change effects and necessary change 
propagation may be easier if the software is formally specified [Nakagawa and Futatsugi 
1991].  Moreover, if a program is automatically generated from a design, the maintenance 
process is simplified since only the program specifications need to be manually 
maintained [Baxter 1992].  However, a practical realisation of this approach is probably 
several years away. 

One of the deficiencies of this approach is its ability to cope with the large quantity 
of existing code (cf. the problem of “legacy systems” [Brodie 1992]).  How should one 
formally specify all those systems whose implementations generally are a mixture of 
code written in different languages and data stored in various forms? 

3.1.1.3 Automatic Documentation 
A severe problem in the software application industry is obsolete or missing 
documentation.  The major reason for this is that documentation is normally not updated 
in accordance with modifications to the software.  For some sorts of documentation this 
problem may be alleviated by tools that provide automatic documentation based on static 
analysis of source code.  Such tools may typically generate call graphs, control and data 
flow charts, cross-reference information, metrics reports, etc. [Ryder 1979, Jandrasics 
1981, Meekel and Viala 1988].  

3.1.1.4 Reverse Engineering 
There is a significant amount of “legacy code” [Brodie 1992] which will still be 
operational for many years to come.  In order to satisfy new requirements, such code is 
continuously being modified causing deterioration of its structure [Lehman 1978].  
Reverse engineering is one approach to help solve this problem [Bachman 1988].  “By 
definition, re-engineering changes the underlying technology of a system without 
affecting the functionality” [Colbrook and Smythe 1989].  The idea of reverse 
engineering is to generate an abstract version of a concrete program and then re-
implement the abstract version.  Since most existing code is written in COBOL, typically 
COBOL programs are being re-implemented in COBOL itself or in a more up-to-date 
programming language.  Even though almost all reverse engineering tools are developed 
for COBOL, recent work on restructuring is also reported for other languages [Griswold 
and Notkin 1992]. 

48 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

3.1.2 Change Management – An Aspect of Project Management 
Project management is an activity at the overall software life cycle level and involves 
tasks like scheduling, team management and resource allocation (people, programming 
languages, tools, operating systems, hardware, etc.).  The administration of changes at 
this level is an important part of project management and is commonly referred to as 
change management [Humphrey 1989, IBM 1992].1  The change process is formalised in 
that all change requests are evaluated with respect to the need for the change, the impact 
of the change on the project and system, schedule of necessary activities, etc.  During the 
implementation of a change, information is recorded about who did what when, what is 
the status, what remains, etc.  IBM's Information/Management product is an example of a 
tool providing support for such change management [IBM 1992]: 

The Change Management facility helps you coordinate the various tasks your organization 
performs to make and test changes in your data processing environment.  You can enter data 
about changes made to any area of your organization's operations: to software and hardware 
components of the operating system or to procedures, publications, and facilities. 

Change management tools at this level are thus support systems that record information 
and produce corresponding reports. 

3.1.2.1 Software Process Modelling 
One approach to managing changes is to describe software processes by programs written 
in a software process programming language [Osterweil 1987].  A collection of such 
programs may constitute a formal model for a particular process typically involving 
activities like editing, compilation, change of tools, etc. and objects such as specifi-
cations, tools, hardware, etc.  It has been argued that given a formal process model, 
impact analysis and propagation of necessary consequential changes may be automated 
[Sutton et al. 1990, Shepard et al. 1992].  An example is:  “What are the consequences of 
changing a programming tool?” 

The feasibility of describing software processes formally has still to be investigated.  
At least, there will be many aspects that can never be captured by such a formalism. 

3.1.3 Software Change Management – Focus of this Thesis 
The focus of this thesis is methodologies and tools for change management at the 
software implementation level.  They should support the software builder or maintainer in 
the following activities: 

• Predicting change consequences (impact analysis) 

• Propagating necessary consequential changes 

• Detecting inconsistencies after change or preventing them 

• Detecting and recording change (necessary for recompilation, etc.) 
An issue is to what extent it is possible to automate these activities. 

A traditional software application can be viewed at two levels of granularity.  At the 
coarse granularity, the application is viewed as a collection of files or programs, and 
                                                 
1  Another term, which seems to be used synonymously, is change control [Ferraby 1991, Pressman 

1992].  Yet another related term is configuration management which will be discussed in Section 3.3. 

49 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

databases.  At the fine granularity, the application is viewed as a collection of concepts 
like type definitions, variables, values, procedures, statements, etc. depending on the 
actual programming language.  That is, the contents of the files or programs are 
important.  This distinction corresponds to the two tiers in the Eclipse Two-Tier Database 
[Cartmell and Alderson 1989].  First tier data is objects (files, directories, records, etc.); 
second tier data is fine structure objects (sentence in a document, nodes in an abstract 
syntax tree, etc.). 

At the fine granularity level, a particular kind of change that may have serious 
consequences for the rest of the application, is change to type definitions or schema 
evolution in a database context.  Determining the effect of type or schema changes and 
ensuring correct change propagation is a challenging research issue. 

Change management at the coarse granularity level involves problems such as 
keeping track of which versions of a program can be integrated with which versions of 
other programs in order to constitute a valid application (configuration management).  A 
special case of configuration management is when only the last (i.e., current) 
configuration is managed.  This is commonly referred to as build management.  Re-
building typically involves recompilation and relinking; the classical supporting tool is 
Make [Feldman 1979].  In order to determine dependencies between programs, the 
program contents (fine granularity level) must be investigated.  For a programming 
language like C, with simple dependency relations between programs, there are several 
tools that automatically determine such dependencies.  A research issue is how to develop 
similar tools in other, more sophisticated programming environments.   

A consequence of software changes is that the application system may become 
inconsistent.  In this thesis consistency means compliance with the rules or constraints of 
a given application independent model.1  A constraint could, for example, be that 
nothing should be declared without being used.  The consistency term should thus not be 
confused with application dependent constraints such as those specified in an application 
model developed with a data modelling tool [Cooper and Qin 1992].  However, the same 
technology may be used to express constraints of both kinds, cf. work in the context of 
ADABTPL [Fegaras et al. 1989, Fegaras and Stemple 1991] and TRPL [Sheard 1990]. 

3.2 Schema and Type Evolution 
One of the most challenging problems of constructing and maintaining large, long-lived 
data-intensive application systems is to cope with all the changes that inevitably will be 
imposed on the systems over time.  Many large application systems are centred around a 
database, and a particular kind of change that may have serious consequences for the rest 

                                                 
1  However, the model will typically depend on the actual programming language or other aspects of the 

programming environment. 

50 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

of the application systems (Chapter 2) is change to database schemata – schema 
evolution.1  User requested enhancements in functionality are a major cause of schema 
evolution.  Modifications to schemata or type definitions may also be consequent on 
merge of database applications.  The respective schemata need to be integrated [Batini et 
al. 1986] requiring resolution of naming conflicts, removal of duplicates, determining 
dependencies between definitions, etc.   

At present, schema modifications are often dealt with in an ad hoc way.  The 
necessary data conversions and program modifications may be expensive due to factors 
such as a requirement to shutdown the system, programmer effort, machine resources, 
etc.  

Research on schema evolution is still in its infancy.  Some recent work has been 
undertaken in the context of relational systems [McKenzie and Snodgrass 1990, Ariav 
1991, Roddick 1992], but the majority has been concentrated in the area of object-
oriented databases [Banerjee et al. 1987, Penney and Stein 1987, Skarra and Zdonik 
1987, Kim and Chou 1988, Lieberherr and Holland 1989, Osborn 1989, Panel 1989, 
Lerner and Habermann 1990, Casais 1991, Waller 1991, Zicari 1992, Bratsberg 1993, 
Monk and Sommerville 1993]. 

Some parts of the literature give the impression that the problem of meta-data 
changes is particular to application areas such as computer-aided design and 
manufacturing (CAD/CAM), computer-aided software engineering (CASE), etc.  
Moreover, since the database research in this field has concentrated on object-oriented 
databases, the problems of schema evolution have been associated with object-oriented 
technology.  For example, in [Banerjee et al. 1987] it is claimed that: 

... existing database systems allow only a few types of schema changes: for example, SQL/DS 
allows only dynamic creation and deletion of relations (classes) and addition of new columns 
(instance variables) in a relation ... the applications they support (conventional record-oriented 
business applications) do not require more than a few types of schema changes ... 

This is not necessarily true, as was demonstrated by the study described in Chapter 2 and 
in [Sjøberg 1993] showing that the kinds and extent of schema changes may be 
significant also in areas where relational systems are used.   

Nevertheless, it might be the case that the schemata are modified more frequently in 
special design support applications than in conventional “record-oriented business 
applications” (see discussion in Section 2.3.4).  And, since the schema structure of 
object-oriented schemata is typically more complex than relational schemata, the 
consequences of changing a type (class) in an object-oriented environment may lead to 
more significant changes in the schema itself than in a relational environment.  However, 
the consequences for extensional data and application code, which depend on the volume 
of data in the database, the amount of application code based on the schema, etc., may be 
                                                 
1 Schema evolution in traditional databases corresponds to class evolution in object-oriented database 

systems, to type evolution in applications developed in strongly typed programming languages and, at 
a higher level, to changes to conceptual data models. 

51 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

as serious as in a relational environment.  The effects of schema changes are divided into 
three categories:  

i) Effects on other parts of the schema 

ii) Effects on extensional data (user data stored in the database) 

iii) Effects on application programs (including interfaces for data entry, queries, report 
generation, etc.) 

The respective categories are discussed in the following sections. 

3.2.1 Consequences on other Parts of Schema 
In a strongly typed world, a change to one type definition may affect other type 
definitions in which the former is used.  Naming conflicts may occur when new type 
definitions are created. 

A relational schema offers little support for ensuring consistency; only relationships 
between a relation and its fields are captured.  For example, an RDBMS does not 
normally provide mechanisms for expressing that a field is a foreign key (cf. referential 
integrity).  A relational schema has a simple structure with poor modelling capabilities, 
and the kinds of schema change are correspondingly few (see Section 2.2.2.2 for a list of 
logical schema changes).  So, hardly any schema change is consequent on other schema 
changes (except in cases of naming conflicts).  This does not imply, however, that it is 
simple to perform schema changes in a relational environment.  On the contrary, it means 
that consistency of the extensional data and the application programs must be ensured by 
the user almost without any support from the system itself. 

In an object-oriented environment, a change in one place in the class hierarchy may 
have significant impact on other parts of the hierarchy.  A schema change taxonomy is 
presented in [Banerjee et al. 1987].  That paper also describes invariants for ensuring 
consistency after schema changes and rules for guidance in cases where there is more 
than one way to preserve the invariants (rules for solving name conflicts, the rule that the 
domain of an instance variable can only be generalised, not specialised, etc.). 

3.2.2 Consequences on Extensional Data 
The need for evolution is still present after the database has been populated with user 
data.  Addressing the consequences of schema change on the extensional data is therefore 
required.  If a type definition is changed, the instances of that type must conform to the 
new definition.   

3.2.2.1 Conversion 
A typical consequential change of schema evolution is database reorganisation [Sockut 
and Goldberg 1979].  Ideas for avoiding reorganisation after schema change by 
introducing views have been proposed [Tresch and Scholl 1993], but only special cases 
of schema change can be accommodated.  For example, a view mechanism does not 

52 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

support augmented information capacity such as adding a new attribute, and it is often 
not possible to create new instances of a view. 

A conversion strategy can be immediate in that all instances are converted in one 
“big bang” when the schema is changed, or it can be lazy in that the instances are 
changed only when they are needed (accessed). 

3.2.2.2 Filtering 
An alternative to the conversion strategy described above, is a strategy where different 
versions of a type definition coexist.  Under such a scheme “every instance of the type 
remains linked to the version under which it was created” [Skarra and Zdonik 1987].  The 
user can specify filters to make type changes transparent [Ahlsen et al. 1983]; that is, old 
instances can be viewed as instances of the new type and thus be used in application 
programs conforming to the new type.  Similarly, new instances can be viewed as old 
instances and thus be used in existing application programs.   

The usefulness of this strategy still has to be evaluated; there are practical 
limitations, particularly in large systems. 

3.2.3 Consequences on Application Programs 
The literature reports little research on the impact of schema evolution on the existing 
application programs.  This is in stark contrast to its significance for application 
programmers (Section 2.3.2). 

Typically, there will be many application programs that utilise a type that has been 
changed in the schema.  These programs may use screen definitions, query definitions, 
procedures, etc.  It should not be difficult to imagine that incompatibilities between a 
schema type and the corresponding type assumed by the application programs may have 
serious consequences.  For example, if a new information carrying capacity is added to 
the schema, programs that do not use it should not change.  However, at least one 
program must be created or changed to collect the data, and all programs that display 
closely related data should be considered for amendment to show the new data.  This will 
in turn propagate to new screen designs and changed working practices. 

3.2.4 Approaches 
A strategy based on subtyping may support limited forms of evolution [Wegner and 
Zdonik 1988].1  It allows for adding attributes to a type (which is a common kind of 
change).  No change to other types is necessary, and there is no need for conversion since 
there are no instances of the new (sub)type.  In an object-oriented database system this 
strategy may allow code to continue in operation but may reduce the information to 
programmers about where consequential changes are necessary in the programs that 
should utilise the change.  

                                                 
1 An unsolved problem, first identified in [Albano 1983], concerns subtyping in combination with 

assignments.  A general discussion of this problem can be found in [Connor et al. 1991]. 

53 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

A combination of strategies based on views (allowing changes for preserving or 
reducing the information capacity) and subtyping (allowing changes for augmenting the 
information capacity) may cover many kinds of change.  However, to the author’s 
knowledge no evaluations of such strategies in the context of real-world applications 
have been reported.  With a plethora of versions of each type (many implementations of 
the same conceptual type) there is a risk of creating unmaintainable and inefficient code. 

Most of the research on schema evolution has been undertaken in an untyped world.  
A major and challenging research issue is to what extent schema evolution and its 
consequences can benefit from a strongly typed world that allows for persistent programs 
and other kinds of data.  This problem is not investigated in depth in this thesis, but 
advisory systems have been developed, and the methodologies and tools to be described 
establish a framework for further research (Section 8.2.1). 

3.3 Software Configuration and Build Management 
Software configuration management is a discipline for controlling change and managing 
software modules that have been subject to change.  Configuration management tools 
assist in controlling versions of the modules and in building configurations of a system.  
A configuration is a collection of all the modules of a system where each module is 
represented by exactly one version selected according to a certain criterion (e.g. the latest 
version). 

3.3.1 Source Code Control – SCCS/RCS 
SCCS [Rochkind 1975] and RCS [Tichy 1985] are two classical configuration 
management tools which manage multiple versions of text files (typically program 
sources).  Files are read, compiled and edited according to a check-out/check-in protocol.  
For storage efficiency, a change to a file is recorded as a delta.  To create the latest 
version of a system, SCCS applies all the deltas to the original version.  RCS applies such 
forward deltas only to branches (which represent variants of a version) but apply reverse 
deltas to versions, which gives fast access to the latest versions.  Identifying valid 
configurations and keeping track of them is up to the user, but support is given in that the 
tools automatically generate and manage the version numbers.  RCS also allows for 
symbolic names, enabling combinations of versions to be described independently of 
version numbers. 

3.3.2 Build Management 

3.3.2.1 Make 
One kind of configuration is software modules combined into complete executable 
programs.  Such configurations are built by compiling and linking modules.  Make 
[Feldman 1979] is the classical supporting tool.  The user describes the files containing 
the modules and the dependencies between files in a Makefile.  This information together 
with some implicit rules (which might be hard to understand) enable Make to re-create 
the executable code after a change has been made to the source code.  

54 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

Make is language independent and general in that it does not only support 
compilation and linking – any user-specified commands can be executed on the files 
dependent on the ones that have been changed.  The general rule is [Feldman 1979]: 

To “make” a particular node N, “make” all the nodes on which it depends.  If any has been 
modified since N was last changed, or if N does not exist, update N. 

Creating and maintaining Makefiles may be a cumbersome task; it is up to the user to 
continuously infer dependencies and ensure that the referenced files actually exist.  
Commonly used languages may have utilities for automatic generation of dependency 
descriptions.  For example, makedepend [Brunhoff 1991] for C describes dependencies 
between a source program and its “#include” files.  Some PC compilation systems keep 
track of changes and initiate necessary compilation and linking automatically without the 
need for any user-maintained “Makefile”.  The THINK C™ product [Symantec 1989] for 
the Macintosh, with its Auto-Make facility, is one example. 

3.3.2.2 Smart Recompilation 
In large application systems, recompilations represent a significant part of the 
maintenance costs and may thus be a hindrance for required system evolution.  Avoiding 
unnecessary recompilations is therefore an important issue.  It has been reported that in a 
larger Ada application more than half of the compilations were redundant [Adams et al. 
1989].  Make is not particularly helpful in avoiding unnecessary recompilations; it is 
unlikely that any language independent tool can be smart in that respect.   

If a file containing declarations is shared by many programs, any change to that file 
typically initiates recompilations of all the programs – whether or not they use a changed 
declaration.  Tichy [Tichy 1986] has proposed a “smart recompilation” method for 
reducing the number of recompilations after a change to such declarations.  The 
compiler’s1 symbol table was extended to keep track of finer granularity dependencies 
between declarations (type definitions, constants, variables, macros, etc.) in a compilation 
context and the items in the compilation units referencing the declarations.  The possible 
changes in the context are classified.  For each kind of change, the dependency 
information is used in a test to decide whether recompilation is necessary. 

An extension of Tichy’s “smart recompilation” to “smarter recompilation” is 
described in [Schwanke and Kaiser 1988].  It is argued that Tichy’s definition of 
compilation consistency could be relaxed without the risk of introducing new errors and 
thus reduce the turn-around time even further.   

A proposal for reducing unnecessary recompilations by analysing the source code, 
detecting dependencies and then clustering related declarations, files, etc. is described in 
[Schwanke and Platoff 1989].  

Also the linking time may be significant in large systems.  An incremental linker that 
processes only the changed modules is reported in [Quong and Linton 1991].  The linking 

                                                 
1 A Pascal compiler was used in a prototype implementation, but the method is generally applicable. 

55 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

time is proportional to the size of a change, rather than to the size of the program.  Use-
dependency graphs are used in the implementation. 

3.3.3 Other Configuration Management Tools 
Many configuration management tools integrate the features of SCCS/RCS and Make 
and provide additional functionality.  One example is DSEE [Leblang et al. 1985], which 
introduces the notion of configuration thread – a rule-based language for describing 
which versions of the source files that should be used to build the application system.  
Configuration management may also be incorporated in larger support environments such 
as Sun’s NSE™ [Sun Microsystems 1988b].  Other major vendors like IBM, DEC and 
ICL have their own configuration management tools of various kinds.  One recent 
example is the Vesta system at DEC [Levin et al. 1992] which is tailored for large-scale 
configuration management and includes a repository of Vesta objects and a (functional) 
programming language for describing configurations.  

Several tools have also been developed by minor vendors and academic institutions; 
a representative selection of 15 products is described in [Dart 1991]. 

3.4 Tools Based on Static Program Analysis 
This section describes tools supporting software construction and maintenance based on 
static program analysis.  Such tools range from simple compiler enhancements to tools 
centred around internal repositories with sophisticated user interfaces. 

3.4.1 Compiler Supporters 
Some program analysis tools have been developed to compensate for the poor static 
checking by compilers for languages like COBOL, FORTRAN and C.  For example, 
DAVE [Osterweil and Fosdick 1976] is an old tool developed for FORTRAN.  The 
FORTRAN Toolkit [Parsys 1993] is a recent, more sophisticated example.  LINT 
[Ritchie et al. 1978] is the classical tool for C.  Such tools check, for example, that all 
variables are declared and that the number and type of actual parameters match the 
formal parameters.  They may also perform checks for unreachable code, unused 
identifiers, same name for “different” objects, etc. which are not commonly found in 
compilers even for strongly, statically typed languages. 

3.4.2 Data Flow Analysis 
The tools described above are typically based on data flow analysis which is an analysis 
of variable usage in some path through a program [Fosdick and Osterweil 1976].  In 
addition to assisting in detecting anomalies and errors, data flow analysis has traditionally 
been used for compiler optimisation, but it may also be useful to aspects of software 
maintenance such as understanding existing software, impact analysis and verifying 
software after changes have been made [Keables et al. 1988].   

A particular technique based on data flow analysis, also useful for software 
maintenance, is program slicing [Weiser 1982].  A large program is broken down into 
smaller pieces containing a set of statements related by their data flow – statements 

56 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

without influence on a given variable are stripped from the program.  A more 
sophisticated scheme for statically breaking down large software applications is reported 
in [Gopal et al. 1992].  The software is decomposable along three dimensions (level, type 
and aspect), and various aspects of software maintenance can be supported by focusing 
on the appropriate decompositions. 

3.4.3 Cross-Referencers 
Simple cross-referencers generate annotated listings of the names used in a program and 
the types of the named objects.  Each line declaring a name contains references to its 
uses, and each line where a name is used contains a reference to its declaration.  Cross-
referencers useful for large application systems have proprietary databases populated 
with source code information and provide command or query languages tailored for 
retrieving and analysing the static information.  The databases are normally updated 
during compilation if a parameter is set.  An example of a commercially available tool is 
SCA [DEC 1989] which is the source code analyser component of DEC’s VAXset suit of 
CASE tools.  FUSE [DEC 1993], running under OSF/Motif™, is another DEC tool that 
provides a sophisticated user interface including coloured call graphs (inconsistencies in 
red), different box types for different types of objects, pop-up windows containing the 
source text associated with icons on the screen, etc. 

3.5 Meta-Databases 
This section describes concept usage, standards and products in the field of meta-data 
management.  A meta-database contains information about the definitions and uses of the 
data in an application system.  The contents are thus meta-data (data about data).1  
Information about the use of data is particularly useful for change management.  
Unfortunately, this kind of information is incomplete in most commercially available 
products.  For example, the relationships between names in the schema, queries and 
programs are rarely tracked down.  Nevertheless, the area is rapidly growing, and there 
are many proposals for sophisticated tools. 

3.5.1 History of Development 
The term data dictionary emerged in the late sixties [King 1967] and then denoted a 
collection of rather simple file and field descriptions.  Typically, the information was 
similar to what can be derived from the data division of COBOL programs and was 
stored in a “computer-held data dictionary file” [King 1969]. 

In most of the seventies the intention of a data dictionary was still to hold the names 
and definitions of data items used in an information processing system.  In 1977, 
however, the Data Dictionary Systems Working Party of the British Computer Society 
[DDSWP 1977] extended the data dictionary concept further to include, amongst others, 
the description of the nature of each data item and cross-references to where they were 
used. 

                                                 
1 From the viewpoint of this thesis, programs are data, i.e., information about programs is meta-data. 

57 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

As time went on, the original data dictionary concept expanded its scope to denote a 
tool for storing information throughout the entire life cycle including analysis and design.  
This development was also reflected in the terminology.  The term repository has been 
launched (cf. IBM's Repository Manager [IBM 1990]), and the concept is also referred to 
as system encyclopædia.  The American National Standards Institute (ANSI) started work 
(in 1980) on a standard in which the term Information Resource Dictionary System  
(IRDS) was introduced [ANSI 1988].  ISO [ISO 1990] has also standardised a framework 
for IRDS (which does not agree with that of ANSI).  A discussion on various data 
dictionary standards can be found in [Holloway 1988a]. 

Another variant of the concept, data dictionary/directory, has also been commonly 
used [Uhrowczik 1973, IBM 1980, Allen et al. 1982].  The dictionary component refers 
to textual and structural description of data elements, name usage, relationships between 
elements, etc.; the directory component refers to physical properties such as the location 
of the data, its internal representation, how it can be accessed, etc.  However, as DBMSs 
have been introduced to achieve physical data independence, the information traditionally 
captured by the directory part has become less significant, which is also reflected in that 
the directory term is less used today. 

3.5.2 Standards 
The need for a common framework for describing data dictionaries or repositories 
resulted in a set of ISO IRDS standards [Spurr 1988].  A basic component of IRDS is the 
four-level model (see description in [Olle and Black 1988]).  There are four levels and 
three level pairs, each of which consists of a higher level and a lower level.  The higher 
level describes how information at the lower level can be represented (Figure 3.3).   

• The Application Level is concerned with data relevant to end users of an information 
system (for example, a patient with name Smith is allocated to bed number 314).   

• The IRD Level typically contains database schemata, class definitions in object-
oriented systems or type definitions in strongly typed programming languages.  This 
layer may also describe which programs, screens, queries, etc. operate on which 
parts of the schema. 

• The IRD Definition Level describes what kind of information can be held at the IRD 
Level.  For example, it defines whether “record type”, “object type”, “program”, 
“screen”, etc. are concepts whose instances can be created at the IRD Level.  The 
type system of a programming language would typically belong to the IRD 
Definition Level.   

• The Fundamental Level describes the representation of information at the IRD 
Definition Level.  For example, the IRDS Services Interface standard uses a special 

58 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

version of a SQL Data Definition Language.  An entity-relationship model is another 
example.   

 
 

FUNDAMENTAL LEVEL 
Definition of concepts used to define dictionaries

IRD DEFINITION LEVEL 
Definition of Information Resource Dictionary

IRD LEVEL 
Definition of Application Database

APPLICATION LEVEL 
Application Database

IRD Definition Level Pair

IRD Level Pair

Application Level Pair

 

Figure 3.3:  The IRDS levels and pairs 

Since this model has become an ISO standard [ISO 1990], it is being used by leading tool 
vendors such as ICL [Kay 1992].  An example of a relational implementation of IRDS is 
described in [Dolk and Kirsch 1987].   

The four-level model has also been adopted by the CASE Data Interchange Format 
(CDIF) standard [EIA 1991] developed by the Electrical Industries Association in the 
United States.  CDIF is not a standard for repositories, but defines a standard that will 
enable repositories and CASE tools to interchange information in a standard format 
[Imber 1991]. 

Another related standard is Portable Common Tool Environment (PCTE) which is 
defined by the European Computer Manufacturers Association [ECMA 1990].  In 
addition to being a vehicle for data exchange, PCTE aims at becoming a coherent 
framework for integration of tools from various vendors running on various platforms.  
PCTE includes a repository (the Object Management System) and a set of services such 
as data and schema management, version and configuration management and inter-
process communication. 

59 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

A comparison of IRDS, CDIF and PCTE from the viewpoint of CASE data 
integration can be found in [Thompson 1992]. 

3.5.3 Features of Meta-Data Systems 
Most data dictionary tools have been built for mainframes and thus have an old-fashioned 
user interface.  Even though several products have versions for PCs or workstations, their 
interface capabilities are generally not fully exploited since the vendors strive for a 
common interface independent of platform.  Another problem is the poor (if any at all) 
integration with other CASE tools such as configuration and build management tools.  
Rectifying these deficiencies are two of the desiderata of data dictionary users [Holloway 
1988b].  Other desiderata, more relevant to this thesis, are automatic update, impact 
analysis and extensibility. 

A crucial feature of meta-databases is to what extent they are automatically updated.  
Experience shows that manually updated information is rarely correct or up-to-date.  This 
will in turn compromise tools that use the meta-data information as source for producing 
cross-reference information, call-graphs, methodology relevant information, etc.  At least 
with the current technology, there is a trade-off between the spectrum of information 
contained in the meta-database and the degree of automatic update. 

Information in meta-databases about software components and their relationships 
makes impact analysis possible.  The quality of the analysis depends on the extent and 
granularity of the information.  Many data dictionary tools do not support any automatic 
extraction of program information; others support COBOL or other “record-oriented” 
languages including so-called 4GLs.  Some sophisticated products also support more 
modern programming languages, but the extracted program information is generally too 
coarse to produce satisfactory impact analysis. 

It has been advocated that compilers and other static analysers should be tightly 
integrated with data dictionaries [Marti 1983]: “...the considerable overhead of 
populating a data dictionary during compilation is well worthwhile in computing 
environments with hundreds of data elements and a multitude of applications, where each 
comprises several thousands lines of code.”  Such an integration may enable both more 
detailed and more up-to-date information. 

Extensibility is the ability to add user defined dictionary types at the IRD definition 
level (Figure 3.3).  The user may require special types to support particular requirements 
which could range from detailed program information to support for a certain 
programming methodology, or even information relevant to requirements analysis and 
design.  However, supporting extensibility, and at the same time automatic update, is a 
research issue of the future. 

60 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

3.5.4 Commercially Available Products 
This section describes briefly some commercially available meta-data systems in each of 
the categories system catalogues, data dictionaries and repositories. 

3.5.4.1 System Catalogues 
The (system) catalogue of relational DBMSs (DB2, INGRES, ORACLE, SQL/DS, etc.) 
is a kind of meta-database with a simple structure and a simple interface – it is a 
relational database like any other application database.  The catalogue contains the 
database schema and additional information about indices, users, access privileges, etc.   

3.5.4.2 Data Dictionaries 
Software AG's Predict [SoftwareAG 1990] is a data dictionary system that includes query 
panels to the meta-data, cross-reference information, call-graphs (textual indention) and 
simple statistics on references (the number of times a certain field is referred to by 
catalogued program, for example).  Predict is developed in and for a certain 4GL 
(Natural), but it also offers some support for COBOL, PL/1, FORTRAN and Ada. 

Another sophisticated data dictionary system is ICL’s DDS [Bourne 1979] which 
adheres to the IRDS architecture.  There are a plethora of products from other vendors; 
some of them are compared in [Holloway 1988b]. 

3.5.4.3 Repositories 
The repository concept – an extension of the data dictionary concept – emphasises the 
repository as a vehicle for tool integration.  An example is IBM's AD/Cycle which 
provides “a framework for developing and maintaining applications throughout the entire 
development process” [IBM 1991].  AD/Cycle is a collection of application development 
(AD) tools and a platform providing services for the integration of these tools.1  The 
Repository Manager [IBM 1990] is part of the AD/Cycle framework and provides an 
interface to a repository containing information about the data processing environment 
and other aspects about the enterprise's organisation, activities and processes.  So, the 
repository contains information related to all phases of the application development life-
cycle which is indeed a significant extension compared with what is currently held in 
system catalogues and data dictionaries.  The idea is that such data can be further defined, 
accessed, manipulated and controlled by tool builders and by other tools of AD/Cycle.  
User written tools and other software vendor's tools are also provided with these services 
if these tools comply with the standardised interface. 

Other major software vendors have proposed sophisticated repository systems such 
as DEC’s Cohesion, Hewlett Packard’s Softbench and ICL’s Open Dictionary.   

3.6 Support Environments 
Many attempts have been made to integrate supporting tools (such as those described in 
the previous sections) into software development environments.  The variety of tools and 
environments makes classification difficult, but one may classify environments according 
to whether they are language independent or language specific, and whether they focus 
                                                 
1  Several components of the AD/Cycle concepts still have to be realised. 

61 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

their support on the whole software life cycle or on the programming process.  Table 3.1 
shows the categories of some environments that will be referred to in the following 
sections.   
 
 Language Independent Language Specific 
Whole Life Cycle Eclipse (IPSE) 

 
Arcs, Ada Env (APSE) 

 VAXset, NSE 
 

 

Programming Process Unix Interlisp, Smalltalk env., Trellis env., 
Gandalf, Synthesizer Generator 

Table 3.1:  Categories of support environments 
More detailed description and classification can be found in [Dart et al. 1987].   

3.6.1 Language Independent Support Environments 
The Unix programming environment [Dolotta et al. 1978], which is continuously being 
extended with new tools, is probably the most well-known language independent 
programming environment.  DEC’s VAXset and Sun’s NSE are more sophisticated 
environments that support other life cycle phases as well. 

An Integrated Project Support Environment (IPSE) aims at covering all the phases of 
the software life cycle.  An IPSE should support in planning and control, provide office 
information facilities, be able to adapt to new technologies, etc.  The idea behind an IPSE 
is that by integrating a large collection of software engineering tools into a common 
framework, the benefits should be greater than using the tools as separate units.  Tools 
should communicate via an object management system (typically implemented on top of 
a DBMS), which is in contrast to integration around a file store (as in Unix). 

Eclipse [Bott 1989] is one attempt at implementing an IPSE.  The usefulness of 
IPSEs has yet to be demonstrated; there are indications that they control the process more 
than they support it [Sommerville 1993].   

3.6.2 Language Specific Support Environments 
Probably the most comprehensive language dependent programming environments are 
built, or proposed, around Ada, but many sophisticated programming environments have 
also been developed around other languages. 

3.6.2.1 APSE 
In connection with the development of Ada it was recognised early that in order to build 
large, complex and long-lived application systems, there was a need for a common 
support environment independent of the language processing environment.  In the context 
of Ada this was called an Ada Programming Support Environment (APSE), and its 

62 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

requirements were defined in the Stoneman report [Buxton 1980].1  A description of the 
structure of an APSE can also be found in [Sommerville and Morrison 1987]. 

Arcs [Schefström 1991] is one example of a commercially available instance of an 
APSE.  Arcs’ vision [Schefström 1991] coincides with the motivation of the research 
presented in this thesis: 

The finding of a remedy for the frustration we feel when being confronted with a large piece of 
software that we want to modify, extend, or otherwise evolve, but cannot since we do not 
understand its structure and the possible effects of a change. 

Rational's Ada Environment [Archer and Devlin 1986] is another example of an APSE. 

3.6.2.2 Other Closed Environments 
Interlisp [Teitelman and Masinter 1981] is a tightly integrated Lisp programming 
environment that contains tools such as Masterscope and DWIM (Do What I Mean).  
Masterscope analyses programs and stores cross-reference information in a database that 
can be queried.  Masterscope can also invoke the editor on all functions satisfying the 
restrictions of a user query.  A major component of DWIM is a spelling corrector.  On the 
basis of contextual information DWIM can in several cases modify erroneous programs 
to contain the correct spelling.  The variety of programming methodologies and tools 
accommodated has made Interlisp rather complex; even for highly motivated and skilled 
programmers mastery of all the tools has proved difficult. 

The Trellis programming environment [O'Brien et al. 1987] supports object-oriented 
programming.  Tools in the environment share a common database that is updated by an 
incremental compiler.  The database contains source and object code, type checking 
information and cross-reference information.  Another, well-known object-oriented 
programming environment is built around Smalltalk [Goldberg 1984]. 

Structure-oriented environments such as Gandalf [Habermann and Notkin 1986] and 
those generated by the Synthesizer Generator [Reps and Teitelbaum 1989] are another 
kind of language specific environments that are centred around a syntax-directed editor. 

3.7 Summary 
This chapter has presented models and tools intended to support various kinds of 
software evolution.  Problems of schema evolution and build management have been 
discussed in particular, as well as tools such as static analysers, cross-referencers, data 
dictionaries (repositories), configuration management systems and support environments.  
Both research and commercially available products have been referenced. 

The presented survey establishes a conceptual context for the research presented in 
Chapters 5, 6 and 7.  Chapter 4 establishes the experimental context, which is persistent 
language processing technology.

                                                 
1 In fact, the notion of APSE preceded the notion of IPSE (which is basically a language independent 

generalisation of APSE). 

63 



CHAPTER 3:  SOFTWARE EVOLUTION AND SUPPORTING TOOLS – A SURVEY  

 

64 



 

Chapter 4 

Enabling Technology 
 

4.1 Persistent Programming 
This chapter describes the pertinent features of Napier88 that is used for the experiments 
described in the subsequent chapters. 

DBMSs have proved a useful basis for the organisation and management of large-
scale, data-intensive application systems (e.g. the provision of physical data 
independence).  The task of application programming, however, has become more 
complicated in that the programmer has to relate to a new set of concepts.  The data 
definition, manipulation and query languages of the DBMSs support programming 
paradigms and data types that are normally incompatible with those of the traditional 
programming languages.  A description of this problem was first published in [Atkinson 
1978].  The problem has later been referred to as the “impedance mismatch” [Copeland 
and Maier 1984].  Figure 4.1 illustrates that the programmer must understand the set of 
mappings between each pair of the components: real world system, programming 
language and DBMS (data model). 

Persistent programming languages were created to solve the problems mentioned 
above [Atkinson et al. 1982, Atkinson et al. 1983a, Atkinson et al. 1983b, Atkinson et al. 
1983c].  Persistent programming unifies database programming and traditional 
application programming.  This significantly simplifies the conceptual task of the 
programmer since only one mapping is needed – the one between the real world and the 
constructed system (Figure 4.2).  The target of the persistent language designers was “to 
provide a totally integrated environment where the user never has to step outside the 
programming language for any computational activity” [Atkinson and Morrison 1985]. 

66 



CHAPTER 4:  ENABLING TECHNOLOGY   

 
 

  

 
  Data Model, DBMS

Programming 
Language

Real World 
System

 

Figure 4.1:  The three mappings of a traditional database system 

 
 

  
Programming 
Language

Real World 
System

 

Figure 4.2:  The only mapping of a persistent system 

Two principles guide the provision of persistence: 

i) Persistence Independence 
 The semantics of a program is not changed by changes in the longevity of the data on 

which the program operates. 

ii) Persistence Orthogonality 
 The same facilities for persistence are accorded to data irrespective of the type of 

that data. 

So, from the viewpoint of a programmer there is no boundary between data in the 
memory and data in the persistent store.  He or she never has to write code in order to 
move or convert data between long and short term storage.  In the persistent literature it is 
frequently quoted that typically 30% of all code is concerned with transferring data to and 
from secondary storage [IBM 1978].  In contrast, in persistent programming languages 
values of all types (a procedure, a complex tree structure, an instance of an abstract data 
type, etc.) have the same ability to outlive program executions. 

One orthogonally persistent language [PS-algol 1987] has recently been successfully 
used in the implementation of commercial CASE tools [Greenwood et al. 1992].  
Research in persistence is extensively reported [Atkinson and Buneman 1987, Atkinson 

67 



CHAPTER 4:  ENABLING TECHNOLOGY   

et al. 1988, Dearle 1988, Atkinson 1989, Brown 1989, Cooper 1990a, Connor 1991, 
Atkinson 1992, Kirby 1993, Cutts 1993a]. 

4.2 Napier88 
Napier88 [Morrison et al. 1989a] is a strongly typed orthogonally persistent language.  It 
provides labelled Cartesian product (structures), labelled disjoint sums (variants) and 
explicit parametric polymorphism [Cardelli and Wegner 1985].  Existential 
polymorphism [Mitchell and Plotkin 1985] is used to implement abstract data types.  
Napier88 is a store-based language that combines persistence, higher-order procedures 
[Atkinson and Morrison 1985] and L-value and R-value binding [Morrison et al. 1990].  
Persistence in Napier88 is defined by the model of reachability [Atkinson et al. 1983a], 
that is, an object will only outlive a program execution if it is reachable from one or more 
persistent roots. 

4.2.1 Types 
The Napier88 type system [Morrison et al. 1989b, Dearle et al. 1989] is based on the 
notion of types as sets of objects from the value space [Cardelli and Wegner 1985].  
These sets are either built-in base types such as integer, real and string, or they are 
constructed by the use of built-in type constructors such as structure and proc.   

A type expression may be given a name by declaring a type definition of the form as 
follows:1

[rec] type <identifier> is <type expression> 
For example, the definition: 

type Person is structure( name, address : string ) 
introduces Person as a type identifier that can be used later on in the program.  Since 
Napier88 provides structural type equivalence, any type that is a structure of two string 
fields named name and address (either a type definition with another name or a type 
specified anonymously) is equivalent to the type Person.  This may complicate certain 
issues such as determining whether a value conceptually belongs to Person or another 
type that happens to have the same structure.  A discussion of type equivalence models in 
the light of persistent programming can be found elsewhere [Atkinson et al. 1988, 
Connor 1991]. 

4.2.1.1 Type Databases 
The Napier88 system provides a mechanism for storing pre-compiled type definitions in a 
database analogously to the meta-database used with conventional databases to hold 
schemata.  Programs can be compiled against such a type database.  Several type 
databases may exist within the same PAS – typically one for each sub-application.  A 
type database is created or updated by compiling a program that consists only of type 
definitions.  (The compiler must be invoked with a special command.)  There are several 
advantages of type databases: 

                                                 
1 The syntax descriptions in this thesis are generally not complete; consult the manual for a full 

grammar description [Morrison et al. 1989a]. 

68 



CHAPTER 4:  ENABLING TECHNOLOGY   

• they reduce the need to recompile type definitions; 

• they enable sharing of type definitions; and 

• they remove the need to duplicate type definitions and thus reduce the verbosity of 
programs. 

Most Napier88 installations store the type representations in a PS-algol database, but the 
latest Napier88-in-Napier88 compiler [Cutts 1993a] uses Napier88 environments.  It 
should be emphasised that the provision of type environments is only a convenience in 
the compilation process.  The types in type environments cannot be accessed and bound 
to identifiers from within the language like other bindings.  It is still more than an include 
facility as found in other programming languages, however, since the types are already 
compiled and interconnected with other types in the type graph that they use. 

4.2.2 Higher-Order Procedures 
In Napier88, as in for example ML [Milner 1984] and Quest [Cardelli 1989b], procedures 
are first class values.  That is, they have the same civil rights as any other values in the 
language to be bound to identifiers, be assigned, be parameters of or returned by 
procedures, be elements of structures, variants or vectors, etc.  It has been demonstrated 
that the combination of first class procedures and orthogonal persistence enables 
implementation of abstract data types, modules, separate compilation, views and data 
protection [Atkinson and Morrison 1985].  This powerful combination was exploited in 
the implementation of the tools described in the subsequent chapters.   

Procedures that can take or return other procedures are referred to as higher-order 
procedures.  In particular, the ability to return procedures may complicate error 
diagnostics and the provision of adequate program information based on static analysis.  
It may be difficult to determine which procedure activation returned a given procedure.  
The static universe of identifiers is different from the dynamic universe of identifiers.  
Essential to the understanding of these issues is the notion of procedure closure [Strachey 
1967].  The following description is from [Atkinson and Morrison 1985]: 

The closure of a procedure includes all the information required to execute the procedure 
correctly.  It has two parts.  The first part is the code to execute the procedure, and the second 
part is its environment, which contains the local and free variables of the procedure and is often 
implemented by a static chain. 

A mechanism for inspecting the closure – the source code and the state bound to it, i.e., 
the values of the local and free variables in the closure’s environment – would provide 
the user with useful dynamic information.  The hyper-programming environment [Kirby 
1993] features such a mechanism (Section 8.2.6).  There is a potential problem, however, 
in that allowing closure inspection will compromise the encapsulation of the procedure 
state (which is essential to the implementation of abstract data types, modules, etc. 
mentioned above). 

4.2.3 Environments 
An environment in a block-structured language is defined as the set of identifiers 
currently in a scope.  The binding is static, that is, the set can be determined from the 

69 



CHAPTER 4:  ENABLING TECHNOLOGY   

source code alone.  Napier88 environments, which are of type env, are a dynamic model 
of the block-structured environments [Dearle 1988].  Environments are extensible 
collections of bindings, represented as name-type-value-constancy quadruples [Morrison 
et al. 1990], used to organise the persistent store.  Moreover, environments are 
themselves first class values allowing the construction of arbitrary graphs with a root 
environment yielded by the built-in procedure PS.1   

The standard procedure environment returns a new, empty environment.  In addition, 
there are operations for inserting a binding into an environment, using a binding of an 
environment in a program, removing a binding from an environment and checking 
whether a binding is contained in an environment. 
 
 

insert-declaration:  in <environment-clause> let <object_init> 
use-clause:  use <environment-clause> with <signature> in <clause> 
 
 
drop-clause:  drop <identifier> from <environment-clause>   
contains-check:  <environment-clause> contains <identifier> [: <type_id>]

header body

 

Figure 4.3:  Operations on environments 

A simplified syntax of the respective operations is shown in Figure 4.3.  The leading 
phrase of each line and use-clause header and body are terms that will be used in the 
subsequent text.  

4.2.3.1 Type Checking and Binding  
The earlier in the software life cycle errors are detected, the less are the costs of 
correcting them.  In particular, detecting errors during compilation (statically) is 
preferable to detecting them during execution (dynamically).  The safest approach to 
avoiding run-time errors is to perform type checking and binding statically.  There is a 
trade-off between safety and flexibility, however.  From a persistent programming point 
of view there are several cases in which it is impractical to perform static binding 
[Atkinson et al. 1988]: 

(i) reuse and distribution of programs; 
(ii) selection of databases; 
(iii) combination of information from several databases; 
(iv) incremental data and program definition. 

Hence, persistent languages like Napier88 have been designed with elements of dynamic 
binding but without compromising the quality and strictness of the type checking.  The 
languages adhere to the principle of checking as much as possible as early as practical – 
for which Atkinson and Morrison coined the phrase eager checking [Atkinson and 
Morrison 1986].  

                                                 
1  Most applications organise their persistent store as a hierarchy of environments. 

70 



CHAPTER 4:  ENABLING TECHNOLOGY   

In Napier88 the signature of the use-clause header (Figure 4.3) provides the point of 
dynamic type checking for incremental binding.  In the use-clause body the type checking 
of identifiers declared in the signature is static.  It is only necessary to specify the 
bindings that will actually be used in the program.  That is, the signature needs only 
partially match the bindings in the environment.  Therefore, the environments can be 
extended with new bindings without changing the existing programs.  Bindings can also 
be removed safely as long as they do not occur in any use-clause.  If during execution, 
however, a program attempts to access a binding not present in the respective 
environment, the following error message will occur:  “Cannot find •binding® with type: 
•type expression®.” 

Insert and drop are the two other environment operations that may cause run-time 
errors.  If an attempt is made to insert a binding into an environment that already contains 
a binding with the same name, the following error message is given:  “Attempt to re-
declare •binding® with type: •type expression®.”  An attempt to drop a binding not 
present in the environment results in the following error message:  “Cannot drop 
•binding® it is not present.” 

A binding to a location is referred to as an L-value binding.  A binding to the value 
contained in a location is referred to as an R-value binding.  The reason for this naming is 
that in a block-structured languages an expression on the left hand side of an assignment 
operator is usually evaluated to the location, and an expression on the right hand side or 
any expression occurring elsewhere is evaluated to the value.  In addition to this 
conventional left hand side evaluation, the binding to an environment expression in a use-
clause header is also an L-value binding in Napier88. 

There are no other languages with an explicit, dynamic environment construct like 
the one provided by Napier88.  In a language with a static environment construct, e.g. 
Galileo [Albano et al. 1985], a program binds and type checks its environments 
completely at compile-time.  Such a model is less flexible with respect to separate 
development, incremental update and dynamic choice of databases.  This may be 
particularly impractical for large application systems [Atkinson and Buneman 1987, 
Morrison et al. 1990]. 

4.2.3.2 Separate Compilation 
There are several reasons for organising separate compilation [Atkinson 1993]: 

(i) to allow several people to construct parts of a system independently; 
(ii) to allow parts of the system under construction or maintenance to be replaced; 
(iii) to allow the construction and reuse of common subsystems such as libraries; 
(iv) to enable incremental system construction of the form that has proved beneficial with 

databases; and 
(v) to economise on computational time compared with re-compiling and re-linking total 

systems. 

71 



CHAPTER 4:  ENABLING TECHNOLOGY   

In conventional systems the incremental assembly of meta-data and data are organised 
under one regime, and the incremental construction and introduction of programs are 
organised via different mechanisms.  The incremental program construction mechanism 
then involves three parts: 

i) a means of identifying the component’s context (schema name and procedures or 
abstract data types imported from other program parts); 

ii) separate source text translation to some intermediate form; and 

iii) linking all of the intermediate form fragments into one whole program (resolving and 
replacing the use of external names imported from other compilation fragments). 

For safety in a strongly typed system the linking phase should verify that the names are 
being used correctly with respect to the type rules.  This is a complex task, especially in 
the many systems that have general purpose linkers used by a variety of languages.  
Hence, it is often not performed or performed incompletely.  Although this linking is 
performed statically1 in conventional systems, much of the binding to schemata is 
resolved and verified dynamically as the program executes. 

In contrast, Napier88 supports incremental construction that may be incrementally 
bound, is always fully type checked and uses a uniform model for all aspects of binding.  
It depends on the use-clause to identify the context and give enough information for 
complete type checking prior to binding.  It depends on environments to hold the existing 
program and data to which the new increment binds.  The principle of data type 
completeness ensures that precisely the same mechanism and notations can be used for 
all the incremental binding requirements. 

4.2.3.3 Some Napier88 Programs’ Impact on the Persistent Store 
The previous sections have stated that Napier88 facilitates incremental application 
construction by its environment construct, L-value semantics, separate compilation, etc.  
This section will illustrate how the state of part of the persistent store is changed by 
executing a few small, but complete, programs.  The program examples and diagram 
technique are inspired by a lecture note in Napier88 programming [Atkinson 1993].  
Other similar examples can be found elsewhere [Members 1990, Connor 1991].  First a 
naïve incremental method is shown.  This has deficiencies when code is to be revised.  
An incremental method more accommodating to change is then presented. 

 
 

                                                 
1 There are incremental linking systems that do it dynamically. 

72 



CHAPTER 4:  ENABLING TECHNOLOGY   

PS() 
root

square

i+i

cube

* i

 
in PS() let square = proc( i: int ∅ int ); i + i   !Prog1.N – erroneous definition 

use PS() with square: proc( int ∅ int ) in   !Prog2.N 
in PS() let cube = proc( i: int ∅ int ); square( i ) * i   

Figure 4.4:  Part of the store after running Prog1.N and Prog2.N1

Figure 4.4 shows the store after the programs Prog1.N and Prog2.N have been compiled 
and executed.  Prog1.N inserted the procedure square into the persistent store.  (In 
practice, such a procedure would be inserted into an appropriate environment at a lower 
level, but for simplicity in the following examples all bindings are inserted directly into 
the top level.)  The procedure cube of Prog2.N used square in its definition, which is 
shown in the figure by the arrow from the ellipse body of cube to the location of square.  
Both square and cube are declared as constants which means that their locations are 
immutable. 

We realise that the definition of square was wrong.  Before we can insert a corrected 
version, the existing square must be dropped.  This is performed by Prog3.N.  After 
Prog3.N has been executed, the state of the store is as shown in Figure 4.5.  Note that 
cube still uses the old version of square.   

 
 

                                                 
1 Solidly drawn boxes are locations that cannot be updated; solidly drawn vertical bars are values of 

type env; the identifiers to the right of them are identifiers in the bindings held in that environment; 
the lightly drawn boxes (appearing in Figures 4.7 and 4.8) are L-values (which can be updated), and 
the divided diamonds are procedure closures with the bottom part denoting the code and the top part 
denoting the computational context; the ellipses are code segments corresponding to procedure 
bodies; there may be arrows coming out of the ellipses corresponding to references to procedures or 
other boxed data that the procedure bodies use. 

73 



CHAPTER 4:  ENABLING TECHNOLOGY   

PS() 
root

cube

* i

i+ii+ii+ii+i

square

i+ii*i

 
drop square from PS()       !Prog3.N 
in PS() let square = proc( i: int ∅ int ); i * i  !correct version 

Figure 4.5:  Part of the store after running Prog3.N 

However, dropping cube and then re-defining it by referring to the new square (as shown 
in Prog4.N) will give a correct version.  Figure 4.6 shows that after executing Prog4.N 
there is no reference to the old square, and thus it will be garbage collected. 

The strategy shown above requires ever increasing numbers of programs being 
dropped and redefined as cascades of “false” changes ensue from one correction.  An 
incremental method of programming, which simplifies changing values, creates 
procedures as L-values.   

74 



CHAPTER 4:  ENABLING TECHNOLOGY   

 

PS() 
root

square

i+i

cube

* i

 
use PS() with square: proc( int ∅ int ) in   !Prog4.N 
begin 
 drop cube from PS()       
 in PS() let cube = proc( i: int ∅ int ); square( i ) * i  
end 

Figure 4.6:  Part of the store after running Prog4.N 

Prog5.N is equivalent to Prog1.N except that square is declared as a variable, rather than 
a constant, implying that its location is mutable.  If Prog5.N and then Prog2.N were 
executed, the store would be as shown in Figure 4.7.  The only difference from Figure 4.4 
is that square is represented by a lightly drawn box.   
 
 

PS() 
root

square

i+i

cube

* i

 
in PS() let square := proc( i: int ∅ int ); i + i   !Prog5.N – erroneous definition 

Figure 4.7:  Part of the store after running Prog4.N and Prog2.N 

Since square is now bound to its L-value, the contents of the location can be changed by 
simply compiling and executing Prog6.N (Figure 4.8).  Since cube is bound to square’s 
location, the change will be directly visible to cube without the need for any 
recompilation or re-execution.  The closure with body “i+i” has no references and will 
thus be garbage collected. 

 
 

75 



CHAPTER 4:  ENABLING TECHNOLOGY   

PS() 
root

square

cube

* i

i+ii+ii+i

i+ii+ii*i

 
use PS() with square: proc( int ∅ int ) in    !Prog6.N 
 square := proc( i: int ∅ int ); i * i 

Figure 4.8:  Part of the store after running Prog6.N 

The program examples shown are extremely small and simple.  In large application 
systems it may be very hard to keep track of the structure of the persistent store as 
programs are being executed.  Supporting methodologies and tools are obviously needed. 

4.3 The Napier88 Programming Environment 
A Napier88 release includes a standard environment containing commonly used 
procedures and other values.  In addition, the Napier88 programming environment1 
includes a callable compiler [Cutts 1993a], the WIN window manager [Cutts et al. 1990], 
browsers [Kirby and Dearle 1990, Farkas et al. 1992], hyper-programming2 features 
[Kirby 1993], both model and schema editors [Qin 1993] and the maps library (Section 
4.3.1).  Facilities for copying values between persistent stores have been implemented, 
and current research aims at providing Napier88 with concurrent technology for 
distributed systems [Munro 1993]. 

Napier88 has proved a robust and stable language platform both for teaching and 
research, and the collection of libraries is continuously being extended [Atkinson et al. 
1993].   

The current Napier88 compilers are running under Unix on Sun SPARCstations; 
each persistent store is contained in a (big) Unix file. 

4.3.1 The Maps Library 
The maps library [Atkinson et al. 1990, Atkinson et al. 1991a, Atkinson et al. 1991b] is 
heavily used in the implementation of the tools described in the subsequent chapters.  

                                                 
1 This environment should not be confused with the environment construct discussed above. 
2 See Section 8.2.6. 

76 



CHAPTER 4:  ENABLING TECHNOLOGY   

Maps constitute an add-on bulk type language implemented as a library of polymorphic 
Napier88 procedures.   

Formally, maps are extensional functions from a domain of any type A to a range of 
any type Z.  Values of this type constructor denote a stored finite mutable function and 
may be considered as a set of tuples.  By appropriate parameterisation the map construct 
is capable of modelling other bulk types used in other database programming languages 
such as 1NF relations in Pascal-R [Schmidt 1977], NFNF relations in DBPL [Schmidt 
and Matthes 1992], sets in P-Pascal [Berman 1991] and sequences in Galileo [Albano et 
al. 1985].  The operators over maps provide: insertion, update and removal of entries; 
iteration and individual access to entries; and an algebra for deriving new maps from 
existing maps with a power similar to that of relational query languages or set 
comprehensions. 

4.4 Napier88 Language Processing Technology 
The Napier88-in-Napier88 (NinN) compiler is a procedure in the persistent store that can 
be called dynamically and facilitates a particular form of reflection [Maes 1987].  
Programs that operate on the persistent store can be generated and executed at run-time 
which means that programs can change their own environment.  This ability is referred to 
as run-time linguistic reflection [Stemple et al. 1992].  

The NinN compiler is built according to the single-pass technique of recursive 
descent compiling [Davie and Morrison 1981].  The syntax analyser of productions in the 
grammar defining language is provided by corresponding recognition procedures.  These 
procedures are mutually recursive in compliance with the mutually recursive definition of 
the language.  Other procedures focus on lexical analysis, type checking, code generation 
and error handling.  Still, the various components of the current compiler are rather 
intertwined making reuse of separate components difficult.  Work is in progress, 
however, to identify substitutable generation interfaces for syntax analysis, code 
generation, etc. which will simplify reuse [Cutts 1993b]. 

Tools for browsing, hyper-programming, etc. need to determine the names and types 
of the bindings in the persistent store.  The implementation of the Napier88 browser  
includes facilities for scanning the store [Kirby and Dearle 1990].  A first implementation 
used linguistic reflection, but owing to unsatisfactory performance the browser was re-
implemented using low-level technology [Kirby 1993].  This technology is a collection of 
procedures that are not type-safe and are thus not available in standard Napier88; they are 
only accessible via a special system-builders’ version of the compiler.  

4.5 Summary 
Napier88 is an orthogonally persistent programming language that provides a 
sophisticated type system, first class (polymorphic) procedures and an environment 

77 



CHAPTER 4:  ENABLING TECHNOLOGY   

construct for organising programs and other data in the persistent store.  The language is 
designed to facilitate the construction and maintenance of long-lived, data-intensive 
application systems.  Among other things, application programs can be stored as values 
within the store and as such are susceptible to manipulation by change management 
software.  Also, since several useful libraries exist for Napier88 (e.g. maps) and the 
language processing technology has proved robust and powerful, Napier88 was chosen as 
the experimentation and implementation language for the methodology and tool research 
described in the following chapters.  

The persistent technology itself also provides some challenging problems for 
methodology and tool construction.  Napier88 is still in its infancy as an implementation 
language for large-scale applications.  For example, guidelines and tools are still needed 
to organise the interaction between programs and bindings in the persistent store.

78 



CHAPTER 4:  ENABLING TECHNOLOGY   

 

79 



 

Chapter 5 

TSIT – A Thesaurus-Based 
Software Information Tool  

 

5.1 Introduction 
In order to fully benefit from the features of persistent programming, a programmer 
should be assisted by tools that help in keeping track of the structure of the programs and 
the persistent store.  He or she may want the answers to questions like:  Which 
environments, types, procedures, etc. exist?  In which programs or environments are they 
defined or used and in which contexts do they occur?  Which programs operate on which 
environments?  The need for tools providing such information has often been experienced 
by persistent programmers, for example when the integrated Thesaurus Application was 
built – a multi-author, multi-level project [Sjøberg et al. 1993]. 

One proposal in this direction is the Thesaurus-based Software Information Tool 
(TSIT).  In TSIT the ideas and principles behind the HMS thesaurus tool (Chapter 2) 
have been further developed.  The information provided is different, however, since TSIT 
operates in a strongly typed, persistent programming environment, while the HMS 
thesaurus tool operates in an untyped, conventional programming environment. 

For each application using TSIT there is an associated thesaurus holding the names 
bound to Napier88 concepts (type definitions in addition to environments, procedures and 
other values).  The (meta) data in the thesaurus is generated by the analyser component of 
TSIT which scans all the source files and all environments in the persistent store of the 
actual application.  Each time a name occurrence is encountered, the name and associated 
information are stored in the thesaurus.  To ensure correctness and consistency, thesaurus 
entries cannot be inserted, modified or removed interactively or by any program that is 

79 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

not part of TSIT.  This is not enforced, but no difficulties with inconsistency (due to 
programs that do not comply with TSIT’s consistency expectations) have been 
encountered. 

As will be demonstrated in this chapter, the thesaurus may form a basis for various 
kinds of measurements.  The thesaurus also provides an appropriate platform for other 
software engineering tools (to be described in Chapters 6 and 7). 

5.2 The Napier88 Thesaurus 
The heart of TSIT is the thesaurus which is a fine-grained, enhanced cross-reference 
database containing information about all user-introduced names occurring in the source 
programs of an application and the names of the bindings in the associated persistent 
store.  There is one thesaurus entry per identifier occurrence (declaration or use).  The 
information held by a thesaurus entry is as follows: 

• Name is a textual form of an identifier in a source program or of a name-type-value-
constancy binding in a persistent store. 

• Container indicates whether the entry is contained in an environment or in a file. 

• Block depth, block sequence and line number of the identifier occurrences are 
meaningful and are recorded if the container is a file. 

• Kind is an approximate representation of the type, i.e., base type (integer, real, string, 
etc.) or constructed type (structure, variant, (polymorphic) procedure, ADT, etc.). 

• Constancy shows whether the identifier was declared constant or variable. 

• Usage indicates how the identifier is being used, e.g. declaration or use of a type 
identifier, or declaration, left context or right context of a value identifier. 

• Context indicates whether the identifier occurs in an environment operation or as a 
declaration of a type parameter, procedure parameter, structure field, variant tag, etc. 
or as a dereferenced structure field, projected variant, etc.  

• Date keeps track of the date and time of when the entry was inserted. 
Figure 5.1 shows the kind of data held about a thesaurus entry.  Rectangular boxes 
represent structures; rounded boxes variants.  The container field indicates whether the 
name denotes an identifier in a source program contained in a file or a binding in an 
environment in a persistent store.  The directory path and file name are recorded if the 
container is a file.  Similarly, the environment name and the path from the persistent root 
are recorded if the container is a persistent environment.  (As opposed to files, environ-
ments can be organised in any structure – not only hierarchies.)   

If the container is a file, the line number of the name occurrence is stored in the 
thesaurus together with block depth and block sequence which yield information about 
the scope of an identifier.  Block depth is the number of nested ‘begin’s (or ‘{‘s), i.e., the 
number of encountered ‘begin’s (or ‘{‘s) minus the number of encountered ‘end’s (or 

80 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

‘}’s).  Block sequence is the total number of ‘begin’s (or ‘{‘s) encountered before the 
name occurrence. 

The kind field is a variant holding information about the type of the associated 
identifier if it has a base type or about the applied type constructor (structure, variant, 
proc, etc.) if it has a constructed type.  In addition, the kind can be Quantifier, 
TypeParameter, UnboundQuantifier, etc. (Figure 5.1).  A discussion of these concepts 
can be found elsewhere [Connor 1991].  (Note that file is a base type of a value that is not 
bound to a file in the file system but to an identifier in a Napier88 program.  Such values 
should therefore not be confused with the files containing the Napier88 programs that 
constitute an application.) 

The usage field informs whether the name occurs as a declaration or use of a type 
identifier, or as a declaration, left context or right context of a value identifier.  For each 
of these five alternatives the name appears in a collection of variants that are referred to 
as context.  For example, typeDeclaration is a variant having the context values1 
RecursiveTypeDecl and TypeDecl as tags, typeUse has the values ArgUnaryOpType, 
ProcQuantifierUse, TypeNameUse, TypeParameterInTypeDecl and Witness as tags, etc.  
The type of all these tags (and the tags of the kind variant) is null (omitted from the figure 
for simplicity).  

 
 

                                                 
1  The tags of the variants defined in the type Usage are referred to as context values. 

81 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 
 name : string 
 
 
 container : 
 
 
 kind :  
  
 
 constant : bool 
 
 
 usage :  
 
 
 date : string

 inEnv :  
 
 inFile : 

 envir : env 
 pathName : string

 pathNameFile : string 
 blockDepthNo : int 
 blockSeqNo : int 
 lineNo : int 

 typeDeclaration : 
 
 typeUse : 
 
 valueDeclaration : 
 
 rightContext : 
 
 leftContext : 
 
 inPS : null 

 ADTFieldDeref 
 ArgUnaryOpValue 
 BindingDropped 
 ContainsCheck 
 PrimFunctionCall 
 StructFieldDeref 
 VariantProjectDynamic 
 VariantProjectStatic 
 VariantTagRead

 any 
 bool 
 char 
 env 
 file 
 image 
 int 
 null 
 pic 
 pixel 
 real 
 string 
 AbstractDataType 
 ParameterisedType 
 ProcMono 
 ProcPoly 
 Quantifier 
 RecursiveType 
 Structure 
 TypeParameter 
 TypeWithFreeQuantifier 
 UnboundQuantifier 
 UnboundWitness 
 Variant 
 Vector 
 WitnessType 

 RecursiveTypeDecl 
 TypeDecl

 ArgUnaryOpType 
 ProcQuantifierUse 
 TypeNameUse 
TypeParameterInTypeDecl     
 Witness

 ADTAlias 
 BindingInserted 
 ProcParamDecl 
 RecursiveValueDecl 
 StructFieldDecl 
 ValueDecl 
 VariantAlias 
 VariantTagDecl 
 UseClause

 Assignment 
 VariantInject 

ThesaurusEntry   

Container  

Kind

Usage

"Context"

structure

variant

Legend:

 

Figure 5.1:  Definition of thesaurus entry 

The contents of a thesaurus are best illustrated by an example.  The corresponding 
thesaurus entries of the program writePerson.N (Figure 5.2) are shown in Table 5.1.  
Since these entries are contained in a file (the container variant is inFile), they are 
recorded with a file name and line number.1  The constant attribute is represented in the 
table with a ‘C’ (constant) for true and ‘V’ (variable) for false.   
 
 

                                                 
1 The block depth, block sequence and date information have been omitted from the table for 

simplicity. 

82 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

type Person is structure( name : string; salary : int ) 
 
use PS() with IO, Adm : env      in 
use IO with writeString : proc( string ); 
      writeInt      : proc( int )    in 
 
in Adm let writePerson :=  proc( p : Person ) 
      begin 
       writeString( "'nName: " ++ p( name ) ) 
       writeString( "'nSalary: " ) 
       writeInt( p( salary ) ) 
      end 

Figure 5.2:  The program writePerson.N 

 
Name Container L-No Kind Constant Usage Context 

Person writePerson.N 1 Structure V typeDeclaration TypeDecl 
name writePerson.N 1 string V valueDeclaration StructFieldDecl 
salary writePerson.N 1 int V valueDeclaration StructFieldDecl 
PS writePerson.N 3 ProcMono C rightContext PrimFunctionCall 
IO writePerson.N 3 env V valueDeclaration UseClause:PS 
Adm writePerson.N 3 env V valueDeclaration UseClause:PS 
IO writePerson.N 4 env V rightContext ArgUnaryOpValue 
writeString writePerson.N 4 ProcMono V valueDeclaration UseClause:IO 
writeInt writePerson.N 5 ProcMono V valueDeclaration UseClause:IO 
Adm writePerson.N 7 env V rightContext ArgUnaryOpValue 
writePerson writePerson.N 7 ProcMono V valueDeclaration BindingInserted:Adm 
p writePerson.N 7 Structure V valueDeclaration ProcParamDecl 
Person writePerson.N 7 Structure V typeUse TypeNameUse 
writeString writePerson.N 9 ProcMono V rightContext ArgUnaryOpValue 
p writePerson.N 9 Structure V rightContext ArgUnaryOpValue 
name writePerson.N 9 string V rightContext StructFieldDeref 
writeString writePerson.N 10 ProcMono V rightContext ArgUnaryOpValue 
writeInt writePerson.N 11 ProcMono V rightContext ArgUnaryOpValue 
p writePerson.N 11 Structure V rightContext ArgUnaryOpValue 
salary writePerson.N 11 int V rightContext StructFieldDeref 

Table 5.1:  The corresponding thesaurus entries for the program writePerson.N 
If an identifier occurs in one of the contexts BindingInserted, BindingDropped, 
UseClause or ContainsCheck, the name of the actual environment is also registered.1  For 
pragmatic reasons, the whole environment path has not been included in the current 
implementation since the combination of environment name and binding name is always 
unique in the analysed applications (but may not necessarily be in the general case).2

                                                 
1 The environment name is the one occurring in the <environment-clause> described in Figure 4.3.  If 

the <environment-clause> is a procedure returning an environment (e.g. PS), then the procedure name 
is recorded. 

2 Identification of environments is discussed in Sections 7.5.2 and 8.2.5. 

83 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

5.3 Querying the Thesaurus 
Programmers may wish to query the thesaurus for debugging support, help in 
understanding the structure of an application, etc.  Moreover, it may be beneficial to 
determine the effect of changes before actually carrying them out.  Such impact analysis 
may influence the change plans – the consequences of change could be so extensive that 
another solution might be sought.  A few examples of queries that can be performed on 
the thesaurus are: 

• Which type definitions, procedures, structures, environments, etc. exist?  

• Where are they defined and used? 

• In which contexts do they occur? 

• Which procedures, structures, etc. does a given program or environment contain? 

• Which persistent procedures are used in a given procedure? 

• Which bindings are inserted into or are in a given environment? 

• Which operations are performed on which environments? 

For large PASs the output from the thesaurus queries may be overwhelming.  Some  
filtering mechanisms are therefore provided.  The user can choose to exclude identifiers 
exceeding a certain lexical depth, identifiers with length one (e.g. counting variables in 
for loops) and contents of standard environments. 

As the interface to the thesaurus and the query facilities provided by TSIT are rather 
primitive, a need was felt for a more convenient window-based interface with enhanced 
query possibilities.  Lopes developed the ShTh component [Lopes 1993] by using WIN 
[Cutts et al. 1990].  ShTh provides a graphical interface to one or more thesauri and 
includes a simple query language, a subset of a generalised relational algebra, for 
operations on the thesaurus.  Menu-driven facilities help the user to query a thesaurus and 
visualise the result of query application.  “Select”, “Project” and “Sort” menus are used to 
build a query.  From an “Actions” menu the user has options to load, close, save, save as, 
delete, revert and run queries; it also has undo and quit.  

Complex queries (involving recursion), however, cannot be expressed in the standard 
TSIT interface or the ShTh interface.  To meet this deficiency, another software 
component, the ringad comprehension query language, was constructed by Trinder 
[Trinder 1991].   

Typical data-intensive applications often use a powerful, usually embedded, query 
language for three reasons.  First, although interactive query languages, like those 
provided by TSIT and ShTh, may be used by naïve users, they lack the computational 
power to express some useful queries.  A thesaurus query that requires a powerful query 
language is procedure explosion.  An explosion discovers all of the procedures that are 
called by a given procedure, and all of the procedures they in turn call, and so forth.  
Another thesaurus query requiring power implodes a procedure to find all procedures that 

84 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

call it, and any procedure that calls the caller, and so forth.1  Information about explode 
and implode hierarchies (also referred to as call and contain trees) is presented to the user 
in a rather primitive way in the current version (only a label describing the level and then 
textual information about the procedure).  An enhanced interface could visualise the 
different call levels by textual indention, as provided by Predict [SoftwareAG 1990], for 
example.  A more sophisticated interface could be similar to the one provided by FUSE 
[DEC 1993] in which procedures and calls are represented as boxes and arrows in a 
colour graphical, window-based environment.   

Second, a powerful, non-interactive query language can be used for “canned queries” 
which are queries or reports that are run regularly end-of-day, end-of-month, etc.  Such 
queries are stored, i.e., canned, primarily to avoid errors.  Storing a query may also aid 
efficiency and ensure that the information is always provided in the same format.   

Third, many thesaurus users will have a high degree of computing skill and be able 
to use a powerful query notation themselves to extract information of interest about their 
programs.  Incidentally, for any naïve users, the utility queries could easily be packaged 
into a menu. 

Ringad comprehensions are a general purpose query language.  In particular they can 
be defined over several different bulk types, e.g. maps, lists, ordered sets and vectors in 
Napier88.  Comprehension queries are both powerful and easily optimised [Trinder 
1991].  Because the utility queries access thesauri, which are maps, they use procedures 
out of the map library. 

The experience of integrating the ShTh and comprehension query components with 
TSIT, in particular how the project benefited from persistence, is fully described in 
[Sjøberg et al. 1993]. 

5.4 Registration and Update 
The thesaurus information is generated by a scan of all the registered source files and the 
registered parts of the persistent store associated with the actual application system.  Each 
time a name occurrence is encountered, the name and additional information are inserted 
into the thesaurus.  TSIT must be informed of the name and location of all the source files 
belonging to the application system.  At present, TSIT reads a user-created file that 
contains the names of the respective directory paths and files.  The user can also request 
analysis of one program at a time by specifying the path and name of the corresponding 
file via an interactive menu.  A simple enhancement could be to leave the localisation of 
the files to TSIT if the application were structured according to a convention such as that 
given as part of a methodology (see Section 6.3.7).  If all the ‘.N’ files in a directory and 
its subdirectories were part of the application, then TSIT would only need the top level 
directory as user input.   

                                                 
1 Note that because Napier88 procedures are first class values, the list of called/calling procedures may 

not be exact.  The tool is nevertheless useful. 

85 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

The TSIT interface also provides a menu for registering and scanning environments 
in the persistent store.  TSIT extracts information about all bindings in a registered 
environment and recursively traverses all its subenvironments. 

The contents of a thesaurus reflect a state of the corresponding application system.  
In order to reflect the continuous evolution of such systems, the thesauri must be updated 
correspondingly.  It is not possible to add, change or remove entries from the thesauri 
manually.  To ensure correctness and consistency, the contents should rely exclusively on 
TSIT.  There are two exceptions, however.  First, the possibility of removing all the 
entries of a given file has proved convenient when files have been included by mistake.  
Second, so-called derived-thesauri can be created as a result of querying the automati-
cally generated master-thesaurus (simply called thesaurus in this thesis) [Sjøberg et al. 
1993].   

It is crucial that the thesaurus is as up-to-date as practically possible.  There are 
several strategies for when to initiate an update: 

i) Automatic initiation at regular times, e.g. daily at 02:00 

ii) Update on user request 

iii) Update during compilation 

iv) Update during program composition – on edit 
The first two strategies are possible in the current implementation of TSIT.  Among other 
tools that analyse source code – both experimental [Marti 1983] and commercial 
[SoftwareAG 1990] – update during compilation is common.  Typically, an extended 
compiler has a parameter indicating whether or not the program information database 
should be updated.  In general, this strategy gives the most up-to-date information – if the 
user remembers to set the parameter.  One might argue that the compiler could always 
update the database.  In practice, however, the performance would deteriorate, and since 
most compilations are due to various kinds of bug-fixing (e.g. correcting typing errors), 
programmers will probably not accept the extra performance penalty.   

TSIT was built as a tool separate from the compiler since the performance penalty 
pertaining to the thesaurus update would make it inconvenient to do the update during 
compilation.1  The reason for the poor performance is that for each identifier occurrence 
encountered, an entry is created and inserted into the thesaurus in the persistent store.  
Store operations are expensive at present, but current work aims at improving the 
performance [Atkinson 1992].   

Poor performance is also a significant reason not to update the thesaurus during 
program composition.  Another problem is that the code should be tested before 
information is extracted and the thesaurus updated.  The code should at least be without 
compilation errors (a requirement of TSIT).  So, the code should be compiled before it is 
analysed. 
                                                 
1 The separation from the compiler also made the implementation simpler. 

86 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

5.5 Implementation 
TSIT is implemented in Napier88.  The component of TSIT that processes Napier88 
source programs is based on the NinN compiler [Cutts 1993a].  The lexical and syntax 
analysers of the compiler have been adjusted to conform to special information needs of 
TSIT.  Instead of generating executable code, the TSIT analyser extracts a variety of 
information during the analysis and inserts it into the thesaurus. 

Reusing the lexical analyser was straightforward – as opposed to reusing the syntax 
analyser.  The NinN compiler is one-pass, i.e., the parsing and code generation are inter-
twined which means that detecting all program parts concerned with code generation is 
difficult.  The documentation and some structuring principles alleviated the problem but 
were not sufficient for easy modification of the software to the needs of TSIT.  In spite of 
this problem, the gain of reusing the compiler components was significant – developing 
TSIT would have been very much harder without reusing the NinN compiler.  

The code for extracting information from the persistent store into the thesaurus was 
implemented by directly reusing low-level procedures used in the implementation of the 
Napier88 browser.  This proved easy due to good documentation [Kirby and Dearle 
1990].  

The maps library [Atkinson et al. 1990] is heavily used in the implementation of 
TSIT.  In particular, the predefined map operations enabled rapid development. 

The type definition Thesaurus in Figure 5.3 shows that a thesaurus is a structure 
containing five fields.  The type ThesaurusEntries defines a map of thesaurus entries (the 
entries field) where the domain (key) is a system-generated sequence number.  (The 
range has already been described, see Figure 5.1.)  The next number to be used is stored 
in the nextSeqNo field.  The field registeredFiles denotes a map containing the registered 
source files constituting an application.  The domain of this map is a concatenation of the 
directory path and file name.  The range, specified by the FileEntry structure type, 
contains information about when a registered program was last compiled and executed.  
Section 7.4 discusses the use of that information.  The registeredEnvs field is a vector 
containing direct references to the registered environments in the persistent store.  
Information about the type databases (Section 4.2.1.1) used in the PAS is recorded in 
typeEnvs.  Finally, the type Thesauri defines a map containing a collection of thesauri, 
each thesaurus indexed by a name. 
 
 

87 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 type ThesaurusEntries is Map[ int, ThesaurusEntry ] 
 
 type Date is structure( day, month, year, time : string ) 
 
 type FileEntry is structure( compiled, run : Date ) 
 
 type FileEntries is Map[ string, FileEntry ] 
 
 type Thesaurus is structure( nextSeqNo  : int;  
        entries   : ThesaurusEntries; 
        registeredFiles : FileEntries; 
        registeredEnvs : *env; 
        typeEnvs  : *string ) 
 
 type Thesauri is Map[ string, Thesaurus ] 

Figure 5.3:  Thesaurus definition 

The TSIT analyser and the queries performed on the thesaurus may be slow for large 
applications.  Optimisation has not been emphasised in the current version.  The 
implementation of the TSIT analyser prioritises easy modification over efficiency.  For 
example, in an optimised version a few procedure calls could be saved for each name 
processed.  Furthermore, shorter response times for the queries could be provided by 
additional data structures such as indices over entry name, file name, etc. and direct 
references between definitions and use of identifiers. 

5.6 TSIT versus other Tools 
Like the HMS thesaurus tool, TSIT records information about all names and identifiers 
used in the implementation of the whole application system.1  The two tools are different, 
however, since their environments are different.  For example, the HMS thesaurus tool 
was developed in an industrial, relational database context where four (untyped) 
languages were being used.  In contrast, the development of TSIT benefited from a 
persistent programming context in which all computation and data management are dealt 
with within the same (strongly typed) language – Napier88.  Moreover, since Napier88 is 
more sophisticated than the HMS languages, the information provided by TSIT is 
accordingly more sophisticated than the information provided by the HMS tool.  Some of 
the differences are summarised in Table 5.2. 
 
 

                                                 
1 Comments are not regarded as part of the code. 

88 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Criterion HMS Thesaurus Tool TSIT 

context industry research 

programming 
environment 

multi-language (Hippo, Display 
Language, query dictionary language,  
schema definition language) 

one language (Napier88)  

analysis interpretation compilation 

type checking untyped, dynamic strong, static and dynamic (stronger 
notion of type, user defined types, etc.) 

program     
containers 

files files and environments in the persistent 
store 

implementation Unix scripts (awk, grep, sed, etc.) and 
one C program 

modified Napier88 compiler and tailored 
Napier88 programs 

Table 5.2:  The HMS thesaurus tool versus TSIT 
It may be worthwhile to briefly compare TSIT with the Napier88 browser [Kirby and 
Dearle 1990].  Both tools support the user in understanding the structure of an 
application, but their functionality differs.  The browser provides ad hoc information 
about the contents of the persistent store selected explicitly on each occasion.  TSIT also 
provides such information, but it is collected automatically.  The user queries the 
thesaurus rather than browsing the store directly.  The TSIT information may not be 
completely up-to-date since the contents of the store may have changed since the last 
thesaurus update.  However, the browser does not provide any information about the 
source programs in the file system.  (Traditionally, tools like Unix grep and the search 
facilities of editors have been used to locate identifiers in source programs.)  As has been 
described in detail, TSIT can be queried for such selected information.  Moreover, the 
thesaurus can be the subject of many forms of analyses such as application measurements 
(Section 5.7) and automatic consistency checks (Chapter 6).  

Modifying compilers to generate dependency information is not a new idea.  For 
example, DBPLXref [Matthes et al. 1992] is a tool that provides cross-reference 
information for applications built in the database programming language DBPL [Schmidt 
and Matthes 1992].  DBPLXref is not as comprehensive as TSIT.  For example, detailed 
information about the context of each identifier occurrence is not provided, and the 
DBPLXref designers did not regard information about all local identifiers as interesting.  
On the contrary, the intention of TSIT was that the thesaurus information should be 
complete.  For the purpose of various analyses all name occurrences should be recorded. 

The main difference between TSIT and commercial source code analysers [DEC 
1989] and data dictionary tools [Bourne 1979, SoftwareAG 1990] is a consequence of the 
mismatch in the underlying technology between programming languages and file 
systems/DBMSs (Chapter 4).  The source code analysers view source programs as closed 
units and do not record information about how the programs interact with a file system or 
DBMS.  The data dictionary tools emphasise database schema and file definition 
information.  Some data dictionary tools also store source code and cross-reference 
information, but do not record dependencies between names in source programs and 
names in the schema (e.g. dependencies between variables in a program written in a 

89 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

language with embedded SQL and a field of a relation).  As experienced when building 
the HMS thesaurus tool (Chapter 2), recording such information is quite complicated in a 
traditional programming environment.  In the context of a persistent programming 
language like Napier88, however, it is trivial (as demonstrated by TSIT). 

Even though some TSIT information may be more detailed (scope levels, contexts of 
identifier occurrences, etc.) and more integrated (source program versus persistent store 
information), the commercial data dictionary and repository tools generally have more 
extensive information related to the whole software life cycle (information about users, 
activities, documents, etc.).  TSIT could be extended in that direction, but a problem is 
that such information is inserted manually.  This is in contrast to the principle behind 
TSIT that all information should be generated automatically. 

5.7 Measuring Name and Identifier Usage – A TSIT Experiment 
As a guidance to research in language design, methodologies and tools for application 
development, this section presents measurements showing how programmers use the 
constructs of a higher-order persistent language like Napier88 and how they organise 
their software.  Programmers may also benefit from such measurements.   

The thesaurus contents of eight applications written in Napier88 were analysed.  The 
analysis focuses on the use of names.  A name in this context denotes an identifier in a 
source program.  (Names denoting bindings in the persistent stores were not analysed 
since the author did not have access to all the individual persistent stores.)  In most cases 
an identifier is uniquely denoted by its name.  The same name can, however, denote 
different identifiers if they appear in different scopes.  In those cases there are more 
identifiers than names.1  All words that are not keywords of the language represent name 
occurrences.  A name occurrence is simply an occurrence of a name independent of 
which identifier it denotes.  For example, there are one name, two identifiers and three 
name occurrences in the following program: 

let counter := 0 

begin 

 let counter := 1 

end 

counter := 1 

Below follow some examples of questions that may be of interest to those designing 
tools, compilers and languages: 

• How many different names are used? 

                                                 
1  Actually, 13% of the names in the analysed applications denote more than one identifier. 

90 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

• How many name occurrences represent value declarations, left contexts and right 
contexts, respectively? 

• What is the distribution of names with respect to kind (base types or constructed 
types)? 

• How frequently are type definitions used? 

• How frequently are procedures used? 

• What is the proportion of constants versus variables? 

• How much code is concerned with operations on persistent store?  

• How many programs update the contents of an environment?  

• How many environments are updated within one program? 

• How many declared identifiers are not used in each program? – in each application? 

• How many type definitions are not used in each program? – in each application? 

• How many bindings are inserted into the persistent store but never used in the 
application? 

Measurements answering such questions may be useful in several respects.  Programmers 
may get an overview of their software (e.g. the number of inconsistencies) and thus learn 
more about their way of programming.  Language designers may wish to know how a 
programming language is actually used by programmers.  Is the use of language 
constructs as expected?  For example, the Napier88 language designers might question 
why abstract data types are hardly used in the analysed applications.  

The main purpose of the name analysis, however, is the provision of measurements 
that may support or inspire the development of methodologies and tools for maintenance 
of persistent application systems.  Measurements of the consequences of various kinds of 
change are of particular interest.  For example, if the type of a procedure is changed, how 
many places in the programs have to be changed?  What if a type declaration is changed?  
Where and how is persistent data created and modified?  Such dependency statistics yield 
knowledge about consequences of change to various parts of an application system and 
thereby also about the extent of necessary change propagation. 

Source code information from the following eight applications written in Napier88 
has been collected and analysed:  

• Benchmark: Sun engineering database benchmark [Birnie 1991]; 

• Bibliography: automatic generation of references in a text [Acheampong 1993]; 

• Comp/TSIT: a combination of a modified version of a Napier88 compiler [Cutts 
1993a] and TSIT specific programs; 

• EcoSystem: a graphical interface to an ecological database [Barclay et al. 1992]; 

• ImplADT: two implementations of parameterised abstract data types [Tabkha 1993]; 

91 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

• Map: a language construct for bulk data types [Atkinson et al. 1991a]; 

• PartsDB: an implementation of the parts explosion problem [Tabkha 1991]; and 

• WIN: a persistent window management system [Cutts et al. 1990]. 

Bibliography and EcoSystem are the only real-world applications and developed by 
programmers not part of the “Napier88 community” in the Universities of Glasgow and 
St Andrews.  Eleven programmers contributed to the application collection.  In total, 
51328 lines of code with 84501 name occurrences in 367 programs were analysed.  

The study presented here is concerned with static aspects only.  Similar studies have 
been reported for other languages, e.g. FORTRAN [Knuth 1972], PL/1 [Elshoff 1976], 
APL [Saal and Weiss 1977] and Ada [Agresti and Evanco 1992].  Also programs written 
in persistent programming languages have been analysed by others, but only dynamic 
aspects related to performance have been measured [Loboz 1989, Bailey 1989].  

5.7.1 Scale of Analysis 
Some measurements describing the size of the applications will be presented in order to 
give an impression of the scale of the analysis.  Traditionally, programmers and project 
managers describe the size of their applications in terms of lines of source code.  A better 
measure for the size may be the number of occurrences of programmer-introduced names 
of various kinds.  Table 5.3 shows the size of the analysed applications in terms of lines 
of code.  The applications consist of between 4 and 156 programs which each contains on 
average (Mean) 139.9 lines of code.  Table 5.4 describes the applications in terms of 
name occurrences, where Mean is the average number of name occurrences in the 
programs.  The number of different names within a program varies from minimum 10 
(Comp/TSIT) to maximum 1945 (WIN).  The last column contains the number of names 
per line, which is a measure for compactness of code, showing that the programs of 
ImplADT, Map and PartsDB are about twice as dense as the programs of EcoSys.  
 
 

Application Programs Mean Min Max Std Sum 

Benchmark 29 85.7 29 319 69.0 2484 
Bibliography 38 170.8 14 449 109.7 6490 
Comp/TSIT 80 104.5 6 427 87.7 8356 
EcoSys 24 161.1 16 479 111.5 3867 
ImplADT 11 104.2 8 303 85.1 1146 
Map 25 193.8 9 541 176.3 4844 
PartsDB 4 198.3 140 269 56.9 793 
WIN 156 154.2 16 927 147.6 24053 

Total 367 139.9 6 927 128.6 51328 

Table 5.3:  Lines of code 
 

92 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Application Programs Mean Min Max Sum Name/line 

Benchmark 29 118.3 26 1141 3431 1.4 
Bibliography 38 285.2 12 856 10838 1.7 
Comp/TSIT 80 182.9 10 1141 14626 1.8 
EcoSys 24 175.5 12 685 4213 1.1 
ImplADT 11 241.1 12 786 2652 2.3 
Map 25 379.2 13 1141 9479 2.0 
PartsDB 4 429.0 286 645 1716 2.2 
WIN 156 240.7 12 1945 37546 1.6 

Total 367 230.2 10 1945 84501 1.6 

Table 5.4:  Name occurrences 

5.7.2 Name Frequencies 
A frequency analysis was performed on all names used in the applications.  For example, 
in the Map application there are 641 different names which have 9479 occurrences in 
total.  The number of occurrences of a given name varies between 1 and 1219.  Such 
name usage information may encourage people to be more conscious of their choice of 
names and thus make programs more readable and understandable.  

The histogram of Figure 5.4 shows the frequency of the times a name is used in the 
whole application collection, i.e., the number of names occurring once, the number of 
names occurring twice, etc.  It appears that most names have 2 or 4 occurrences 
(respectively 14.3% and 12.4%).  Moreover, 10% of the names are used 30 or more 
times. 

 
 

Name Occurrences

0

100

200

300

400

500

600

700

800

1 11 21 31

 

Figure 5.4:  Name frequency 

Name use within programs is described in Table 5.5.  The Names column contains the 
number of unique (file name, name) combinations.  Mean is the number of times the 
same name is used within a program on average and appears to be relatively stable in the 

93 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

applications (ranging from 3.3 to 5.5).  The standard deviation, however, varies 
considerably (from 3.3 to 16.4). 
 
 

Application Names Mean Min Max Std Sum 
Benchmark 960 3.6 1 372 16.4 3431 
Bibliography 3482 3.1 1 50 3.3 10838 
Comp/TSIT 4406 3.3 1 372 9.1 14626 
EcoSys 1338 3.1 1 68 4.1 4213 
ImplADT 482 5.5 1 120 11.5 2652 
Map 1879 5.1 1 372 15.1 9479 
PartsDB 437 3.9 1 77 6.5 1716 
WIN 9125 4.1 1 205 5.1 37546 

Total 22109 3.8 1 372 9.5 84501 

Table 5.5:  Name use within programs 
Table 5.6 shows to what extent names of identifiers are reused within programs, i.e., re-
declared in another scope (re-declaration in the same scope is illegal).  The table reveals 
that between 5.0% (Comp/TSIT) and 23.4% (ImplADT) of the names denote more than 
one identifier.1  The applications Comp/TSIT, EcoSys, Map and WIN all have names 
that denote ten or more different identifiers within the same program. 
 
 

Times 
Declared 

Bench-
mark  

Biblio-
graphy 

Comp/ 
TSIT 

  
EcoSys 

Impl-
ADT 

      
Map 

Parts-
DB 

     
WIN 

1 91.0 92.7 95.0 88.0 76.6 79.4 84.5 82.2 
2 6.8 6.1 3.2 9.8 13.2 12.1 10.1 8.5 
3 0.6 0.8 0.9 1.2 5.7 4.1 3.3 4.3 
4 1.5 0.2 0.4 0.3 2.3 2.2 0.9 2.7 
5 0.1 0.1 0.1 0.1 1.8 1.2 0.9 1.4 
6  0.0 0.1 0.2 0.2 0.5 0.2 0.4 
7  0.1 0.1 0.1 0.2 0.0  0.1 
8   0.1 0.1  0.2  0.0 
9   0.0 0.0  0.1  0.0 

>= 10   0.2 0.2  0.2  0.1 

Table 5.6:  Number of times a name is declared within a program (percentages) 

5.7.3 Kind 
The values are either of base types or constructed types.  Constructed types are created by 
use of type constructors.  A base type or type constructor is referred to as a kind.  The 
infinite union of all types is any.  Table 5.7 shows the distribution of the name 
occurrences with respect to kind.  A question-mark indicates an unknown type.  For 
example, when a binding is dropped from an environment, the type of the binding is not 

                                                 
1 The proportion of re-declarations is 100% minus the percentage of singular declarations (95.0% in 

Comp/TSIT and 76.6% in ImplADT). 

94 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

specified by the programmer.1  It appears, among other things, that there are only 375 
occurrences of abstract data types.  Most occurrences are structures (19108).  

The tendency of Table 5.7 is also reflected in the individual applications.  Table B.1 
in Appendix B shows the distribution of kind by application.  Structure is the most 
frequent kind in six of the applications, and monomorphic procedure is either the most or 
second most frequent kind in another set of six applications.  Some kinds vary 
significantly among the applications, however, such as unbound quantifier (from 0.1% to 
29.1%) and polymorphic procedure (from 0.1% to 10.2%). 
 
 

Kind Freq %  Kind Freq % 

Structure 19108 22.6  TypeParameter 868 1.0 
ProcMono 16299 19.3  RecursiveType 767 0.9 
int 12231 14.5  null 731 0.9 
env 10373 12.3  ParameterisedType 417 0.5 
Variant 6029 7.1  ADT 375 0.4 
UnboundQuantifier 5248 6.2  real 294 0.4 
string 3866 4.6  file 248 0.3 
ProcPoly 1790 2.1  UnboundWitness 84 0.1 
image 1634 1.9  pixel 28 0.0 
Vector 1617 1.9  pic 6 0.0 
bool 1304 1.5     
any or ? 1184 1.4  Total 84501 100.0 

Table 5.7:  Distribution of kind 

5.7.4 Name Usage and Context 
The usage attribute defined in ThesaurusEntry (Figure 5.1) divides entries into type 
declarations, type uses, value declarations, left contexts and right contexts.  Figure 5.5 
shows how the entries are distributed among these options.2  The pie chart reveals that 
declarations, left and right contexts of value identifiers constitute respectively 24.9%, 
3.7% and 53.4% of all name occurrences.  That is, a value identifier occurs in a right 
context about 2.1 times on average and in a left context about 0.2 times, indicating that 
identifiers are rarely updated compared with how often their values are accessed.  Names 
of unbound quantifiers and type parameters constitute a large proportion (40%) of the 
type use.  These type names are distinct from user-defined types in that they do not have 
any declaration – all their occurrences are classified as TypeUse. 
 
 

                                                 
1  The type information could have been extracted from the symbol table of the compiler but has not 

been regarded as important in the current analysis. 
2  All statistics on the whole application collection are weighted.  For example, the weight of WIN 

(37564 thesaurus entries) is about four times the weight of Map (9479 entries). 

95 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

53.37%

24.90%

1.00%
3.71%

17.02%

ValueDecl

TypeDecl

LeftContext

TypeUse

RightContext

 

Figure 5.5:  Name usage – total 
 

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

B
en

ch
m

ar
k

Bi
bl

io
gr

ap
hy

C
om

p/
TS

IT

E
co

S
ys

te
m

Im
pl

A
D

T

M
ap

P
ar

ts
D

B

W
in

TypeDecl

TypeUse

ValueDecl

RightContext

LeftContext

 

Figure 5.6:  Name usage – by application 

Figure 5.6 and Table 5.8 describe the distribution of usage for each application.  
RightContext has the largest value for all the applications.  Thereafter follow respectively 
ValueDecl and TypeUse for half of the applications and vice versa for the other half. 
 
 

96 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Application Type Decl Type Use Value Decl R-Context L-Context Total 

Benchmark 127 1179 798 1270 57 3431 
Bibliography 122 1130 2973 5893 720 10838 
Comp/TSIT 168 2951 3617 7312 578 14626 
EcoSystem 50 818 1137 2039 169 4213 
ImplADT 84 870 538 1101 59 2652 
Map 116 3357 1899 3824 283 9479 
PartsDB 109 537 420 643 7 1716 
WIN 73 3541 9655 23015 1262 37546 

Total 849 14383 21037 45097 3135 84501 

Table 5.8:  Name usage by application 
The contexts are special cases of usages (Figure 5.1).  Table 5.9 shows that the most 
frequent context is as an argument of a unary value operation, which includes: R-values 
in assignments, actual procedure parameters, use of environments, etc.  Less frequent are, 
for example, contexts related to abstract data types (ADTFieldDeref, ADTalias and 
Witness).  Differences and similarities between the applications with respect to context 
can be found in Table B.2 in Appendix B. 
 
 

Context Freq %  Context Freq % 
ArgUnaryOpValue 36413 43.1  VariantInject 632 0.7 
TypeNameUse 11124 13.2  BindingDropped 471 0.6 
UseClause 7618 9.0  VariantTagRead 466 0.6 
ValueDecl 6726 8.0  PrimFunctionCall 358 0.4 
StructFieldDeref 5338 6.3  VariantTagDecl 325 0.4 
ProcParamDecl 2911 3.4  PameterInTypeDecl 274 0.3 
Assignment 2503 3.0  RecursiveTypeDecl 165 0.2 
ArgUnaryOpType 2074 2.5  VariantProjectStatic 156 0.2 
StructFieldDecl 1693 2.0  ADTFieldDeref 100 0.1 
BindingInserted 1584 1.9  VariantAlias 86 0.1 
VariantProjectDyn 956 1.1  RecursiveValueDecl 62 0.1 
ProcQuantifierUse 904 1.1  ADTalias 32 0.0 
ContainsCheck 839 1.0  Witness 7 0.0 
TypeDecl 684 0.9  Total 84501 100.0 

Table 5.9:  Distribution of context 
A “context by kind” table showing the distribution of kind for each context value (and a 
similar “kind by context” table) can be found in [Sjøberg 1992]. 

5.7.5 Constancy 
In Napier88 a value identifier is declared as either a constant (the ‘=’ assignment operator 
is used) or variable (the ‘:=’ assignment operator is used).  This section describes the 
distribution of constancy for the value identifiers.1  Table 5.10 shows that 30% are 
constants and 70% are variables.  There is hardly any difference between constants and 
variables with respect to how often they are used (the rightContext row).  A constant is 
by definition not mutable and therefore cannot occur in a left context. 
                                                 
1  Type identifiers are immutable and are thus not included in the constancy measurements. 

97 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 

98 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 

Usage Constant (%) Variable (%) Total (%) 

valueDeclaration 6288 (29.9) 14749 (70.1) 21037 (100.0) 
rightContext 13392 (29.6) 31705 (70.3) 45097 (100.0) 
leftContext 0 (0) 3135 (100.0) 3135 (100.0) 
Total 19680 (28.4) 49589 (71.6) 69269 (100.0) 

Table 5.10:  Constancy distributed by usage 
 

0

10

20

30

40

50

60

70

80

90

100

B
en

ch
m

ar
k

B
ib

lio
gr

ap
hy

C
om

p/
TS

IT

E
co

S
ys

te
m

Im
pl

A
D

T

M
ap

P
ar

ts
D

B

W
in

To
ta

l
 

Figure 5.7:  Proportion of constants in the applications 

Constancy is distributed by application in Figure 5.7 revealing that the proportion of 
constants is relatively stable among the applications (perhaps with the exception of 
ImplADT). 

It may be worthwhile to illustrate the constancy concept with respect to vectors since 
it may not be intuitive.  In the program example of Figure 5.8 the first line declares a 
vector v as a variable and the second line an integer i as a constant.  In line three both v 
and i appear in a right context1 – implying that also v could have been declared as a 
constant.  In that case, however, the assignment in line four would have failed.  Table 
5.11 contains the corresponding thesaurus entries of the program. 
 
 

                                                 
1 So, even though the expression occurs on the left hand side of the assignment operator, the vector 

identified by v is not updated; the assignment applies only to the value of one of the vector’s 
elements.  

99 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

  Name LineNo Kind Constant Usage 
let v := vector 1 to 3 of "test1"  v 1 Vecto

r 
V valueDeclaratio

n 
let i = 2  i 2 int C valueDeclaratio

n 
v( i ) := "test2"  v 3 Vecto

r 
V rightContext 

v := vector 1 to 2 of "test3"  i 3 int C rightContext 
  v 4 Vecto

r 
V leftContext 

Figure 5.8:  A vector program     Table 5.11:  Corresponding thesaurus entries 

5.7.6 Name Length 
The choice of names for identifiers is crucial for the readability of programs.  One aspect 
of a name is its length.  There may be different guidelines for the optimal length.  Some 
examples follow: 

i) Names should generally be long since long names can convey more information than 
short ones. 

ii) The less frequently an identifier is used, the longer it should be.  

iii) The greater the distance between identifiers, the longer they should be.  (The dis-
tance could for example be measured in terms of number of lines or scope levels.) 

iv) What is important is that the name is carefully chosen – which is independent of the 
name length (e.g. abbreviations can be very meaningful). 

The appropriateness of these guidelines, which are not mutually exclusive, is not an issue 
of this thesis.  The point is, however, that the thesaurus provides a means for testing the 
software against such guidelines.  Only the distribution of the name length will be shown 
below.  Identifiers denoting values in the standard environment are excluded since they 
would bias the result.  Unbound quantifiers and type parameters have also been excluded 
since it is common practice to give them very short names (respectively 80% and 87% 
have length one).  If two (or more) identifiers have the same name, that name has double 
(or more) weight.  Figure 5.9 shows that most names have five or six characters.  The 
average is 8.1 (Table 5.12).  The maximum length is 29.  (This information was useful 
when the screen interface of TSIT was implemented; the name length could be assumed 
not to exceed 30 characters.)  Moreover, the table reveals that, for example, the ImplADT 
programmer has generally chosen names that are less than half the length of the Map 
names.  
 

100 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 

Name Length

%

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262729

 

Figure 5.9:  Distribution of name length 

 
Application Names Mean Min Max Std 

Benchmark 748 8.3 1 26 4.8 
Bibliography 2548 8.1 1 24 4.0 
Comp/TSIT 3560 7.4 1 26 4.1 
EcoSys 1062 8.9 1 21 3.9 
ImplADT 598 4.2 1 14 3.1 
Map 1812 9.3 1 26 5.6 
PartsDB 518 4.8 1 12 2.7 
WIN 8426 8.5 1 29 4.6 
Total 19272 8.1 1 29 4.6 

Table 5.12:  Name length of type and value identifiers 
An analysis of the name length distributed by kind showed that procedures have longer 
names than other kinds.  There was no clear distinction between the other kinds. 

5.7.7 Use of Type Definitions 
The use of type definitions is illustrated in Figure 5.10.1  A type definition used null 
times means that it is never used within the application.  There are 208 (33%) such cases 
among the 626 different type definitions.2  Moreover, 17% of all type definitions are 
used once, 6% twice, etc., and 10% are used 30 or more times with two extremes of 504 
and 549 times.   
 
 

                                                 
1 A table containing the underlying numbers can be found in [Sjøberg 1992]. 
2 In this context a type name in one application is regarded as different from a type name in another 

application even though the name, and possibly the type expression, happen to be the same.  
However, the applications typically re-declare types defined in other applications such as libraries 
(Map and WIN).  See also discussion in Section 6.3.2. 

101 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Times a type definition is used

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

>= 30

 

Figure 5.10:  Distribution of use of type definitions 

 
Application Type Def Mean Min Max Sum Std 

Benchmark 125 3.0 0 87 370 8.5 
Bibliography 85 8.5 0 74 722 10.9 
Comp/TSIT 162 11.8 0 503 1904 47.5 
EcoSys 40 18.6 0 177 742 33.0 
ImplADT 15 12.4 3 65 186 11.2 
Map 116 6.2 0 260 724 24.1 
PartsDB 28 7.1 3 66 200 9.3 
WIN 55 60.9 1 548 3349 99.5 
Total 626 13.1 0 548 8197 40.9 

Table 5.13:  Statistics on the use of type definitions 
Table 5.13 shows how many type definitions are defined in the various applications and 
some statistics on their use.  The 626 type definitions are on average used 13.1 times.  
The average use varies significantly between the applications (from 3.0 in Benchmark to 
60.9 in WIN).  So, on average for all the applications a renaming of a type identifier will 
imply that 13 places must be edited.  In the best case only the definition itself needs to be 
changed (Min is 0) while 548 places (Max) in the worst case.  If the expression of a type 
definition is changed, the places of use must be changed depending on the context and 
whether or not the type is parameterised.  Since type parameters and unbound quantifiers 
are not included in this section, there are basically two uses of type identifiers.  First, the 
context may be TypeNameUse.  That is, the type identifier appears in a declaration on the 
form <value identifier> : <type identifier> in the signature of a use-clause header or in a 
procedure parameter declaration. 

Second, the context may be ArgUnaryOpType.  That is, the type identifier is used to 
create instances of the type denoted as for example in: 

let newPerson := Person( "Dag", "Glasgow" ) 

These two contexts constitute respectively 25% and 75% of the use of type definitions.  
In the former case a change to the type declaration does not affect the code if the type is 
not parameterised; only recompilation is necessary.  If the type is parameterised, 

102 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

however, the place of use must be edited if the number of parameters is changed.  In the 
current sample 26% of all type definitions are parameterised. 

In the latter case a change to the type1 denoted by an identifier must be propagated 
to all places where the identifier is used to create new instances.  For example, if the type 
Person is extended with a field for occupation, that field must also be given a value as for 
example in: 

let newPerson := Person( "Dag", "Glasgow", "Student" ) 

Table B.3 in Appendix B shows how many times a type definition is used in value 
instantiations.  There are 166 different type definitions2 which are used in 2074 
instantiations implying that a change to the denoted type will affect 12.5 places on 
average.  Moreover, 10% are used more than 26 times with three extremes of 130, 166 
and 261 times.   

Due to structural type equivalence in Napier88, the thesaurus information about the 
use of types may not be complete.  That is, instead of the name of a type definition, 
anonymous types may be used in value instantiations and other declarations.  For 
example, in the declaration: 

let anotherPerson := struct( name = "Paul"; university = "Glasgow" ) 

the created value has the same type as the created value in the first instantiation of Person 
above.  If the definition of Person is to be changed, then the declaration of anotherPerson 
should probably be changed as well.  This illustrates that programmers may be 
encouraged to use named types in order to facilitate efficient change propagation. 

5.7.7.1 Use of Structure Fields and Variant Tags 
The use of structure fields and variant tags may be of special interest.  If a field of a 
structure type is changed, all places where that field is dereferenced must be edited.3  
Table 5.14 shows the number of field declarations and dereferences.  On average 3.2 
places are affected, but the applications differ significantly (from 0.8 to 11.0).  Table 5.15 
is a similar table for variant tags. 
 
 

                                                 
1 Being precise, in a language with structural type equivalence types are not changed.  When saying 

that a type is changed, we mean that the type denoted by a type identifier has been replaced by 
another type.  For example, in the first declaration of newPerson above the Person identifier denotes a 
type that is a structure with two string fields.  In the next declaration Person denotes a type that is a 
structure with three string fields. 

2  Only 166 of the 626 type names are used in instantiations.  The remainder are either used exclusively 
in the declarations of other types or not used at all. 

3 This is always the case for deletion and renaming.  For change to the type of the field or tag, however, 
there are cases where editing may be unnecessary (e.g. if the field or tag appears on the right hand 
side of an assignment). 

103 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

      
Measurement 

Bench
- mark 

Biblio-
graphy

Comp/ 
TSIT 

 
EcoSys

Impl-
ADT 

   
Map 

Parts
-DB 

    
WIN 

   
Total  

StructFieldDecl 67 440 259 196 175 41 174 341 1693 
StructFieldDeref 79 527 915 252 244 450 141 2730 5338 
Deref per field 1.2 1.2 3.5 1.3 1.4 11.0 0.8 8.0 3.2 

Table 5.14:  Use of structure fields 
 

      
Measurement 

Bench
- mark 

Biblio-
graphy

Comp/ 
TSIT 

 
EcoSys

Impl-
ADT 

   
Map 

Parts
-DB 

    
WIN 

   
Total  

VariantTagDecl 23 51 70 21 62 17 48 33 325 
VariantDeref1 20 245 431 113 161 213 48 979 2210 
Deref per tag 0.9 4.8 6.2 5.4 2.6 12.5 1.0 29.7 6.8 

Table 5.15:  Use of variant tags 
A frequency table (context by kind) presented in [Sjøberg 1992] yields information about 
the distribution of kind for each context value.  Two extractions, Tables 5.16 and 5.17, 
show respectively how many occurrences of structure fields and variant tags that are 
procedures, integers, recursive type declarations, etc.  For example, most structure fields 
are monomorphic procedures or integers, whereas most variant tags are nulls or recursive 
type declarations.  
 

                                                 
1  VariantDeref is the union of the context values VariantProjectDyn, VariantInject, VariantTagRead 

and VariantProjectStatic. 

104 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 
Kind Freq %  Kind Freq % 
ProcMono 547 32.3  null 127 39.1 
int 326 19.3  RecursiveTypeDecl 66 20.3 
RecursiveTypeDecl 179 10.6  Structure 64 19.7 
Structure 169 10.0  TypeParameter 39 12.0 
Variant  156 9.2  string 12 3.7 
string 133 7.9  image 5 1.5 
Vector 69 4.1  int 4 1.2 
bool 56 3.3  Vector 2 0.6 
TypeParameter 23 1.4  real 1 0.3 
real 15 0.9  pixel 1 0.3 
image 10 0.6  pic 1 0.3 
null 4 0.2  file 1 0.3 
ProcPoly 4 0.2  bool 1 0.3 
pixel 1 0.1  Variant  1 0.3 
env 1 0.1     

Total 1693 100.0  Total 325 100.0 

Table 5.16:  Kind of structure fields Table 5.17:  Kind of variant tags 

5.7.8 Use of Procedures 
Code is contained in the persistent store in the form of procedures, which are therefore of 
particular interest.  Their use frequency has been investigated.  The histogram of Figure 
5.11 shows that using a procedure only once is most common.  There is also a relatively 
large number of procedures that are declared but never used (times used is 0).1  The 
rightmost bar represents 30 or more uses.  A table containing the exact numbers [Sjøberg 
1992] shows that 10% are used more than 15 times including the maximum of 569 times 
(which is the writeString procedure).  The average is 8.3; the standard deviation 28.9.  

In these measurements a procedure is either monomorphic or polymorphic, and 
standard procedures are included.2  Moreover, procedure here means procedure name 
and is independent of application.  That is, even though two procedures with the same 
name are declared differently in different applications, programs or scopes, they are still 
counted as one procedure in this context.  However, there are very few cases of such 
name duplication. 

                                                 
1 Note that the samples include libraries; see also Section 6.3.3. 
2 A comparison between standard procedures and user-defined procedures showed that standard 

procedures were used more frequently, otherwise the two groups followed the same pattern (the 
results are not presented here).  

105 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 

Times Used

0

50

100

150

200

250

300

0 5 10 15 20 25 30

>= 30

 

Figure 5.11:  Distribution of use of procedures 

5.7.8.1 Consequences of Change to Procedures 
A procedure can be changed by changing its name, type or value.  A change to the value 
(body) will normally not require any propagation to other parts of the application [Dearle 
1987, Connor 1991, Dearle et al. 1992, Atkinson 1993, Cutts 1993a] (see Chapter 6).  So, 
in the following text, a change is either a change to the name or to the type of a 
procedure.  Changing a procedure implies that all places of use must be changed 
accordingly.  Table 5.18 shows the use of procedures in the applications.  Only proce-
dures that are both defined and used are included.  (Changing an unused procedure does 
not have any consequence, of course.)  On average between 3.4 (PartsDB) and 9.2 
(Comp/TSIT) places have to be edited.  The average use seems to be relatively indepen-
dent of the number of procedures in the application.  The use frequency varies from one 
(Min) to between 11 and 204 places (Max).  

The argument above should be modified slightly.  If a procedure p1 is changed 
(excluding renaming), it is not necessary to perform any edit if the occurrences of p1 are 

on the right hand side (in right context) of assignments on the form: 

let p2 := p1 (or let p2 = p1) 

However, such assignments occur only occasionally in the analysed applications.  If there 
are such cases, however, then the changes must also be propagated to all places where p2 
is used.  If p2, in turn, is also used in right contexts of assignments, then there is yet 
another level of change propagation, and so on.   

Moreover, if the type of a procedure p3 is changed, and p3 is passed as a parameter 
to another procedure p4, then the call places do not require change.  The declaration of p4 
must be changed, however. 
 
 

106 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Application Procs Min Max Mean Std Sum 

Benchmark 8 1 12 4.0 4.0 32 
Bibliography 215 1 77 4.9 9.2 1060 
Comp/TSIT 145 1 156 9.2 23.4 1341 
EcoSys 101 1 51 3.9 7.8 389 
ImplADT 20 1 13 4.2 3.9 84 
Map 62 1 44 7.4 11.2 458 
PartsDB 14 1 11 3.4 3.5 48 
WIN 423 1 204 7.1 13.4 2998 

Total 988 1 204 6.5 13.8 6410 

Table 5.18:  Use of procedures 

5.7.8.2 Context of Procedures 
Table 5.19 describes the context in which the procedures are used.  Regarding 
declarations, 923 are inserted into some environment (in practice that means made 
persistent), whereas 1538 are declared local to a program (ValueDecl and 
RecursiveValueDecl) and are thus made temporary.  The UseClause row (3385) shows 
how many times a persistent procedure is brought into the scope of a program.  The 
context values are dominated by ArgUnaryOpValue which is mostly procedure calls, but 
also includes procedure identifiers, not representing calls, occurring on the right hand 
side of ‘=’ or ‘:=’ in assignments.  PrimFunctionCall denotes calls to the only built-in 
procedure PS. 
 
 

Context Frequency Percentage 

ArgUnaryOpValue 8453 48.4 
UseClause 3385 19.4 
ValueDecl 1476 8.5 
StructFieldDeref 1360 7.8 
BindingInserted 923 5.3 
StructFieldDecl 551 3.2 
Assignment 418 2.4 
PrimFunctionCall 358 2.1 
ProcParamDecl 206 1.2 
ContainsCheck 157 0.9 
ADTFieldDeref 100 0.6 
RecursiveValueDecl 62 0.4 
Total 17449 100.0 

Table 5.19:  Context of procedures 

5.7.8.3 Polymorphic and Specialised Procedures 
The previous two sections do not distinguish between monomorphic and polymorphic 
procedures.  This section, however, describes the use of polymorphic procedures and to 
what extent they are specialised.  Determining the consequences of changing a 
polymorphic procedure also involves measuring the use of specialised procedures.  The 
notion of specialised procedure is best illustrated by an example.  Assume that a 
polymorphic procedure p is defined as follows: 

107 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

let p := proc[ t ]( x : t ) 
 begin ... end 

The procedure is specialised by instantiating it with a type, e.g. integer as in: 

let pInt := p[ int ] 

The specialised procedure pInt is now an ordinary monomorphic procedure with one 
parameter of type integer. 

In total, 19.3% of all name occurrences are monomorphic procedures and 2.1% are 
polymorphic (Table B.1).  There are, however, significant variations between the 
applications.  For example, Map has 10.7% monomorphic and 10.2% polymorphic 
compared with 20.3% monomorphic and 0.2% polymorphic in WIN.  Even though nearly 
all polymorphic procedures are made persistent, their use is about 30% lower than the use 
of monomorphic procedures.  One reason for this relatively low use is that most of the 
polymorphic procedures in the study are provided by the Map application which does not 
use most of them itself.  The intention is that the map constructs should be utilised by 
other applications.  This has only been done to a lesser extent, however, because the Map 
implementation has by the time of the study (August 1991) just been released.  Another 
reason is that polymorphic procedures are used indirectly in specialisations. 

Measurements pertaining to polymorphic and specialised procedures are presented 
below.  Since some of these measurements cannot be obtained from TSIT alone but must 
be collected by investigating the source code manually, only three applications have been 
measured: Benchmark, Comp/TSIT and Map.  Table 5.20 shows how much the 
polymorphic procedures are used and how many different types that are used in the 
procedure calls.  A type in this context means a tuple of actual type parameters: [string], 
[int, env], etc.  Benchmark has 9 polymorphic procedures which are used 1.1 times on 
average.  The 20 polymorphic procedures of Comp/TSIT have the largest use frequency 
(6.3).  In Benchmark the same type is always used, whereas the Map procedures are 
instantiated with up to 17 different types.  Comp/TSIT has the largest average (2.5) of 
different types used per procedure. 
 
 

  Times Used Different Types 

Application Poly Procs Min Max Mean Min Max Mean 

Benchmark 9 1 2 1.1 1 1 1.0 
Comp/TSIT 20 0 37 6.3 1 10 2.5 
Map 112 0 16 4.6 1 17 1.8 

Table 5.20:  Use frequency and number of types instantiated 
Table 5.21 shows the extent of polymorphic procedure specialisation.  The PolyProcs 
column contains the number of polymorphic procedures that are specialised.  The Spec 
Procs column shows the number of specialised procedures – ranging from 7 (Benchmark) 

108 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

to 83 (Map).  A comparison with Table 5.20 reveals that respectively 78%, 10% and 16% 
of the polymorphic procedures of the three applications are involved in specialisations. 

Below the Specialised Procedures heading, Min, Max and Mean denote respectively 
the smallest, greatest and average number of specialisations for one polymorphic 
procedure.  The Different Types column describes the number of different types (a tuple 
as described above) that are used in specialisations of one particular polymorphic 
procedure.  For example, in Comp/TSIT there are on average 6.5 different types that are 
used per polymorphic procedure. 
 
 

 Poly Spec Specialised Procedures Different Types 

Application Procs Procs Min Max Mean Min Max Mean 

Benchmark 7 7 1 1 1.0 1 1 1.0 
Comp/TSIT 2 13 3 10 6.5 3 10 6.5 
Map 18 83 1 32 4.6 1 5 2.2 

Table 5.21:  Specialised procedures 
Table 5.20 indicates that a change to a polymorphic procedure would affect between 1.1 
and 6.3 places on average (Times Used, Mean).  In addition, for polymorphic procedures 
being specialised the changes must also be propagated to the places where the specialised 
procedures are used, that is, 3.3, 6.8 and 1.0 places in Benchmark, Comp/TSIT and Map, 
respectively (Table 5.22).1  In summary, changing a polymorphic procedure used in 
specialisations will on average affect 4.4, 50.5 and 9.2 places in the respective 
applications.2
 
 

                                                 
1  In Table 5.22 the context values BindingInserted and ValueDecl constitute the number of specialised 

procedures, while a use means an occurrence in one of the contexts UseClause or ArgUnaryOpValue.  
So, the use is calculated by dividing the sum of UseClause and ArgUnaryOpValue by the sum of 
BindingInserted and ValueDecl. 

2 The calculation follows:  
 average use of polymorphic procedures [1.1, 6.3, 4.6] 
 + (average number of specialised procedures [1.0, 6.5, 4.6]  
 * average use of specialised procedures [3.3, 6.8, 1.0]) 
 = total number of affected places [4.4, 50.5, 9.2] 

109 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

Application Usage Context Frequency Percentage 

Benchmark ValueDeclaration BindingInserted 7 23.3 
  UseClause 9 30.0 
 RightContext ArgUnaryOpValue 14 46.7 
Benchmark Total   30 100.0 
Comp/TSIT ValueDeclaration BindingInserted 12 11.8 
  UseClause 34 33.3 
  ValueDecl 1 1.0 
 RightContext ArgUnaryOpValue 55 53.9 
Comp/TSIT Total   102 100.0 
Map ValueDeclaration ValueDecl 83 49.1 
 RightContext ArgUnaryOpValue 86 50.9 
Map Total   169 100.0 

Table 5.22:  Usage and context of specialised procedures 

5.7.9 Measurements Related to Environments 
A substantial part of Napier88 code is concerned with operations on environments.  Table 
5.23 shows the number of identifier occurrences in such contexts.  The occurrences of the 
involved environments themselves are also included (fifth row).  It appears that in total 
20% of all name occurrences pertain to environments.  This proportion may be compared 
with corresponding measurements in other programming environments.  One example is 
the classical figure in the persistent literature that typically 30% of all code in 
conventional languages is concerned with transferring data to and from secondary storage 
[IBM 1978].  Compared with that figure, using Napier88 seems to reduce the volume of 
code related to secondary storage by about one third.1
 
 

Context and     
Environments 

Bench
- mark 

Biblio-
graphy

Comp/ 
TSIT 

 
EcoSys

Impl-
ADT 

   
Map 

Parts
-DB 

    
WIN 

   
Total  

BindingInserted 70 31 235 31 42 188 15 972 1584 
BindingDroppe
d 

0 30 11 31 17 7 0 375 471 

UseClause 380 999 1614 463 94 644 65 3359 7618 
ContainsCheck 0 30 14 31 0 6 0 758 839 
Environments 239 431 602 364 102 409 44 4197 6388 
Sum 689 1521 2476 920 255 1254 124 9661 16900 
% of Total 20.1 14.0 16.9 21.8 9.6 13.2 7.2 25.7 20.0 

Table 5.23:  Number of name occurrences related to operations on environments 
There are 3706 name occurrences of environments associated with the 7618 occurrences 
in the use-clauses.  In total, these 11324 occurrences constitute 13% of all name 
occurrences which confirms the need for tools that (partly) automate the process of 
specifying use-clauses (Section 8.2.4). 

                                                 
1  Being precise, these operations apply to environments in general which do not necessarily have to be 

persistent.  In practice, however, there are only a very small number of environments that are only 
transient (less than 5% in the actual sample of applications). 

110 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

5.7.9.1 Changes to Environments 
A problem experienced by Napier88 programmers is the management of bindings in the 
persistent store.  A change to a program that inserts bindings may have unexpected 
consequences for other programs that utilise these bindings.  The removal of bindings 
may also have serious impact on other parts of the application.  
 
 

          
Application 

       
Programs 

Programs 
with Insert 

Bindings 
Inserted 

Per 
Program 

Programs 
with Drop 

Bindings 
Dropped 

Per 
Program 

Benchmark 29 11 70 6.4 0 0  
Bibliography 38 26 31 1.2 25 30 1.2 
Comp/TSIT 80 11 235 21.4 9 11 1.2 
EcoSys 24 20 31 1.6 20 31 1.6 
ImplADT 11 8 42 5.3 3 17 5.7 
Map 25 11 188 17.1 3 7 2.3 
PartsDB 4 2 15 7.5 0 0  
WIN 156 148 972 6.6 147 375 2.6 

Total 367 237 1584 6.7 207 471 2.3 

Table 5.24:  Programs modifying environments 
Table 5.24 shows the number of programs inserting or dropping bindings.  The Programs 
column contains the total number of programs in the respective applications.  The 
organisation of the applications with respect to the way environments are being operated 
on varies significantly.  For example, in Comp/TSIT only 14% of programs insert 
bindings which is in contrast to the 83% and 95% of EcoSys and WIN.  The number of 
bindings inserted per program (average of the programs that actually contain insertions) 
also differs considerably – with Bibliography (1.2) and Comp/TSIT (21.4) as the two 
extremes. 

The problem of installing and modifying a Napier88 application would be simplified 
if no program updated more than one environment.  How does current practice compare 
with such a convention?  Table B.4 in Appendix B shows the minimum, maximum and 
mean number of different environments modified (BindingInserted or BindingDropped) 
per program.  (The same sort of statistics are also provided for UseClause and 
ContainsCheck.)  The table reveals that in Bibliography and EcoSys, a program never 
inserts into more than one environment (Max is 1) which is in contrast to, e.g., PartsDB 
and WIN in which the average is 3.0 and 2.7, respectively. 

Table B.5 in Appendix B shows how many programs operate on each environment.  
It appears that bindings are inserted into an environment in 6.4 programs on average.  
Bibliography is an extreme case in which the same environment is being inserted into in 
26 programs.  WIN is another extreme with a maximum of 143 programs and 10.2 
programs on average.  At the other end of the scale are Map and PartsDB whose 
environments only 1.5 and 1.2 programs are being inserted into, on average.  

Most of the removals of bindings occur in the same programs as the insertions, but 
not always.  Table 5.25 shows the number of environments a given program either inserts 

111 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

into or drops from.  Table 5.26 shows the number of programs that inserts into or drops 
from a given environment. 
 
 

Application Programs Min Max Mean Std Sum 

Benchmark 11 1 3 1.5 0.7 16 
Bibliography 26 1 1 1.0 . 26 
Comp/TSIT 12 1 4 2.3 0.9 27 
EcoSys 20 1 1 1.0 . 20 
ImplADT 11 1 3 1.4 0.9 15 
Map 12 1 4 1.6 0.9 19 
PartsDB 2 1 5 3.0 2.8 6 
WIN 148 1 13 2.7 2.3 406 

Total 243 1 13 2.2 1.8 535 

Table 5.25:  Environments modified by a program 
Comparing Table 5.25 with Table B.4 reveals that only Comp/TSIT, ImplADT and Map 
have programs that drop bindings from an environment without also inserting into the 
same environment.  (The Programs columns of Table 5.25 have larger values than 
Programs columns of Table B.4 for the context BindingInserted.)  Comparing Table 5.26 
with B.5 reveals that for all environments from which bindings are dropped, there are 
also bindings being inserted (which is reasonable). 
 

Application Envs Min Max Mean Std Sum 

Benchmark 5 1 6 3.2 1.9 16 
Bibliography 1 26 26 26.0 . 26 
Comp/TSIT 9 1 5 3.0 1.7 27 
EcoSys 4 2 11 5.0 1.0 20 
ImplADT 6 1 3 2.5 0.9 15 
Map 11 1 3 1.7 0.8 19 
PartsDB 5 1 2 1.2 0.4 6 
WIN 40 1 143 10.2 12.0 406 

Total 81 1 143 6.6 8.5 535 

Table 5.26:  Programs modifying an environment 

5.8 Summary 
The Thesaurus-based Software Information Tool (TSIT) has been built in order to 
support program development and maintenance in Napier88.  The major component of 
TSIT is the thesaurus which holds information about names in the source programs and 
names denoting name-type-value-constancy bindings in a persistent store.  The thesaurus 
contains cross-reference information and detailed information about kinds of identifiers, 
contexts of identifier occurrences, etc.  The need for tools providing such information has 
often been experienced by persistent programmers, for example when TSIT itself was 
built.  Part of the work was to modify the Napier88 compiler.  Modifying such a 
relatively large piece of software requires a thorough understanding of its structure.  In 
the case of the compiler, it was difficult to discover which environments, procedures and 
other values were required by which compiler components.  Discovering the name of the 

112 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

program that inserted those values was also difficult, but necessary in order to locate the 
source code.  In general, the potential success of software reuse depends heavily on the 
availability and quality of the information about the existing software.  A name-based 
dependency graph like the thesaurus is a useful aid in that respect. 

All the thesaurus information is automatically generated and inserted into the 
persistent store.  TSIT itself is also contained in the store. 

The TSIT tool was used in a study of the use of names and identifiers in Napier88 
programs.  A large number of measurements were collected on the basis of thesaurus data 
from eight Napier88 applications.  Some of the measurements were found interesting and 
have been presented in this chapter.1  In order to illustrate how system builders use 
Napier88 and how they organise their software, the following (amongst others) were 
measured: 

• the distribution of base types and the type constructors provided by Napier88; 

• the proportion of uses versus declarations of type identifiers (an indication of the 
consequences of changing type definitions); 

• the proportion of declarations, left contexts and right contexts of value identifiers; 

• the proportion of constants versus variables; and 

• the interaction between programs and the persistent store (frequencies of insertion, 
use and removal of persistent bindings, the number of environments a program 
operates on, the number of programs an environment is being operated on, etc.). 

The sample of the study is too small and specific to conclude that some properties are 
application dependent and others are programmer dependent.  These are examples, 
however, of hypotheses that could be tested in a more well-defined experiment based on 
a larger, more representative sample of Napier88 applications. 

It has been demonstrated that the thesaurus information can be the source of useful 
measurements.  As will be described in Chapters 6 and 7, the thesaurus information can 
also be utilised by methodologies and tools for maintaining large, persistent application 
systems.  TSIT will therefore, in addition to the basic persistent technology presented in 
Chapter 4, serve as enabling technology for the work described in the following two 
chapters.

                                                 
1 Chapter 6 and Appendix B also present measurements relevant to the issues of the thesis. 

113 



CHAPTER  5:  TSIT – A THESAURUS-BASED SOFTWARE INFORMATION TOOL     

 

114 



 

Chapter 6 
Models and Methodologies 

 

6.1 Introduction 
A system development methodology specifies guidelines directing the performance of the 
various phases of a system development process including analysis, design, 
implementation, testing, etc.  A programming methodology, however, focuses only on the 
implementation phase.  This chapter describes the design of a proposed programming 
methodology for construction and maintenance of application systems developed in a 
persistent programming language.  It also introduces a structured persistent application 
system model (SPASM) which specifies an architecture for persistent application systems 
(PASs).  That is, SPASM defines a set of constraints that are believed to improve the 
maintainability of a PAS and which can be both supported and exploited by change 
management tools.  Hence, SPASM describes criteria of the product (the PAS); the 
methodology describes criteria of the development and maintenance process of that 
product.  SPASM and the methodology mutually support each other (Figure 6.1).  
Obtaining a PAS compliant with SPASM is simpler (but is still not guaranteed) if the 
methodology is followed during construction and maintenance. 

Both the proposed SPASM and the methodology are general in that they are 
independent of the actual real-world applications being implemented.1  They are, 
however, couched in terms of the persistent programming language Napier88 even 
though most of the principles they encode are applicable to any persistent programming 
environment.  

                                                 
1  The constraints of SPASM would typically be included in what are referred to as general integrity 

rules of a database, which constrain the application programs, the types (schema) and the collected 
data (database) and their combination [Date 1990].  Specific integrity rules express constraints in the 
real-world application; general integrity rules are independent of a specific application but may 
depend on a data model being used (e.g. the relational data model). 

115 



CHAPTER 6:  MODELS AND METHODOLOGIES 

Adhering to the SPASM and methodology may seem awkward for small programs.  
Nevertheless, it is an investment that will pay off as the PASs become older and larger. 
 
 

Construction and Maintenance 
Methodology

SPASM

supports
imposes structure on

 

Figure 6.1:  Relationship between SPASM and the methodology 

6.1.1 Motivation 
Traditionally, no specific application models or programming methodologies were 
proposed for languages like COBOL and FORTRAN, though guidelines or design 
principles existed.  One example is structured programming that implies a top-down 
approach to program development, no use of goto statements, etc. [Dahl et al. 1972, 
Jackson 1975].  Another example is the principle of modularisation where one should 
pursue a high degree of cohesion and a low degree of coupling among software 
components [Constantine and Yourdon 1979].  

The interaction among components developed in COBOL and FORTRAN was 
simple (no program-to-program communication – programs communicated via data 
files).  However, when Ada emerged with its sophistication (multitasking, etc.), the 
interaction became more complex, and there was a need for tools to manage this 
complexity, cf. the notion of APSE (Section 3.6.2.1).1  Napier88 is also a sophisticated 
language that provides persistence through its ability to operate on environments and 
was, like Ada, designed with a specific application domain in mind, namely serving as an 
implementation language for large and long-lived application systems.  Experience shows 
that many untutored novices tend to program in Napier88 in the same style as they 
previously used in Pascal, C or whatever is their familiar programming language.  Even 
worse, direct misuse of powerful language constructs occurs, which leads to very 
awkward programs. 

Programmers who share a common view of how to develop applications in their 
environment form a particular programming culture.  Such cultures may differ 
considerably from group to group even though the programming language is the same.  
The rules and conventions of a programming culture implicitly express application 

                                                 
1 Ada was purported to be for embedded systems – “where the computer acts as the controlling device 

for some larger system” [Sommerville and Morrison 1987]. 

116 



CHAPTER 6:  MODELS AND METHODOLOGIES 

models and programming methodologies adhered to within that culture.  The work 
described in this chapter explicitly formulates such models and methodologies in the 
context of persistent programming.  Some aspects represent rules and conventions in a 
current Napier88 culture and are already adhered to by experienced Napier88 
programmers, e.g. the persistent location binding methodology1 [Dearle 1987, Connor 
1991, Dearle et al. 1992, Atkinson 1993, Cutts 1993a] in which values (particularly 
procedures) are updated incrementally without the need for recompilation or re-execution 
of components referencing these values.  Other aspects represent novel ideas also 
expected to be beneficial for construction and maintenance of PASs. 

In addition to supporting development of efficient and consistent PASs, commonly 
used and explicitly defined models also: 

• assist in teaching persistent programming; 

• simplify collaboration; 

• simplify maintenance of unknown software; and 

• permit supporting tools. 
Tools above a certain level of sophistication have underlying models which should be 
made explicit.  In compliance with this principle this chapter describes the models that 
form the basis for the EnvMake tool discussed in Chapter 7. 

6.1.2 Requirements for Models and Methodologies  
Factors such as programmers, development environments, underlying technology, etc. 
influence the potential success of the models and methodologies being introduced.  
Success is more likely to be achieved if the following requirements are obeyed: 

i) the programmers should find the models and methodologies intelligible and easy to 
use; 

ii) the models and methodologies should be accompanied by supporting tools;  

iii) they should include provision for maintenance; and 

iv) there should be a cost/benefit criterion. 
Developing large and long-lived PASs is a complex and time consuming task.  The aims 
of the models and methodologies are to assist in managing this complexity and increase 
the efficiency and reliability of the development.  It is crucial that the software engineers 
and programmers find it worthwhile to learn and apply the models and methodologies.  It 
should be easier to fulfil the programmers' tasks by using the models and methodologies; 
i.e., they should not hinder normal working practice.  Nevertheless, programmers must 
understand that they have to invest in setting up and preserving structure if they want an 
easier maintenance future. 

                                                 
1 This is the term used in this thesis, but the methodology is also referred to as an “L-value binding 

methodology”, a “stub methodology”, an “incremental construction methodology” and an 
“application construction architecture”. 

117 



CHAPTER 6:  MODELS AND METHODOLOGIES 

In order to help achieve the requirement of (i) and to simplify tasks that may be 
imposed by the models and methodologies (housekeeping operations, checking 
compliance with constraints and conventions, etc.), appropriate supporting tools must be 
provided.   

Whatever the implementation technology, maintenance is the principal activity for 
software engineers responsible for a PAS.  Maintenance is required to remedy errors, 
improve existing function and adapt the PAS to its changing circumstances and 
requirements.  The effectiveness of maintenance will be one of the critical factors in 
assuring longevity.  As opposed to traditional system development methodologies 
[DeMarco 1979, Jackson 1983], the proposed models and methodologies should have an 
inherent understanding of the nature of evolution in large application systems.  Hence, 
they should provide adequate means for managing change, including necessary 
consequential change.   

6.2 A Structured Persistent Application System Model – SPASM 
SPASM is a model of a structure for persistent application systems.  It is defined in terms 
of certain constraints and outlines an architecture for such systems.  The consistency of a 
PAS is evaluated relative to this model; a PAS is partly consistent if it adheres to only 
some of the SPASM constraints.  The reasons why each constraint is included will be 
explained.  These will include the general arguments: simplification of change 
management, prevention of potential run-time errors, performance improvements, etc.  In 
order to find how these constraints comply with current practice, eight Napier88 
applications were analysed (see Section 5.7).   

SPASM is concerned with identifying and simplifying the relationships between 
programs (e.g. source code files) and stored fragments of the PAS (e.g. persistent 
environments).  It focuses on categorising and organising the operations that modify the 
set of persistent bindings between names and values.  The relationship between model, 
methodology and meta-data will be illustrated; the name information in the thesaurus is 
used to formulate and verify the SPASM constraints.  

The persistent location binding methodology defines a technique for incremental 
development.  Except when type change is involved, programs can be changed 
independently without the need for recompilation or re-execution of other programs.  
This methodology is part of the construction and maintenance methodology – the main 
purpose of the persistent location binding methodology is to support maintenance.  
SPASM supports this methodology which will therefore be explained before the 
presentation of the SPASM constraints.  The discussion that follows assumes that a PAS 
compliant with SPASM is being constructed.  The reader is reminded that other 
methodologies would adopt different practices and might still produce viable PASs. 

118 



CHAPTER 6:  MODELS AND METHODOLOGIES 

The SPASM constraints are described in detail in Section 6.3.  Categories of 
programs and bindings that are referred to in the definitions of the constraints will be 
described in the following subsections.   

6.2.1 A Persistent Location Binding Methodology 
A dummy procedure value, or other types of dummy value denoting an instance of 
another type, is referred to as a stub.  A stub for a procedure or another type is initially 
inserted into a new, persistent location to which other programs can then bind, as an 
identifier referring to it is declared in a persistent environment.  For each stub a template 
program is created that updates the L-value of the location to hold a useful value.1  
Incremental development is supported in that the template program can be edited and the 
location correspondingly updated (but its type does not change) with a new L-value 
without the need for editing, recompilation or re-execution of the other programs using 
the value.2

It is convenient to include a procedure called uninitialised3 as the body of a 
procedure stub (instead of leaving it completely empty).  If a procedure is called before it 
has been updated, uninitialised gives an error message reporting the name of the 
uninitialised procedure.   

Experience has shown that adhering to the persistent location binding methodology 
is a convenient way of implementing Napier88 applications.  To date, almost all stubs in 
Napier88 applications are procedures.  However, as the usage of this methodology 
increases, one might expect more widespread use of other kinds too.  For example, 
complex data structures such as symbol tables, tables with geographical information, lists 
of images, etc. could also be initially created as stubs.  The initial values of base type 
variables are not regarded as stubs.  If such variables are made persistent, they may 
typically be updated in several programs.  Hence, the methodology is not feasible for 
base type values. 

6.2.2 Program Categories 
A program in this context is a unit of compilation, typically contained in a single Unix 
file.4  There are two forms of a program: a source program (identified by the “.N” file 

                                                 
1 In principle, a useful value could be created initially, but it is inconvenient.  For example, when 

changing a procedure body, the “in <env_clause> let” part must be removed from the source program 
and a use-clause for the procedure must be added.  (The original version would still be useful for re-
installation or when changing the procedure type.)  In contrast, in the interactive hyper-programming 
environment one can change the procedure body directly by editing the source associated with the 
procedure (see Section 8.2.6). 

2 The stages of this methodology will be explained further in Section 6.5.1. 
3 In fact, two dummy values are necessary: uninitialised_void: proc( string ) to report premature use of 

a procedure that returns no value and uninitialised: proc[ XX ]( string ∅ XX ) to report premature 
application of a procedure that should return a value of type XX. 

4 In principle, a program may be represented by several files (e.g. assembled first by a pre-processor, 
held in a source code control system like RCS, etc.) or may be extracted from one file.  Nonetheless, 

119 



CHAPTER 6:  MODELS AND METHODOLOGIES 

naming convention in Napier88, “.c” in C, etc.) and an executable program (identified by 
the “.out” file naming convention). 

In order to define and describe the SPASM model and the methodology to be 
introduced, it has been found convenient to categorise the programs according to their 
semantics.  On the criteria of how they operate on the persistent store and where they 
define types, programs are divided into the following categories:1

• Type-program – a program whose contents are exclusively type definitions. 

• Insert-program – a program that inserts at least one binding into a (normally) 
persistent environment but neither updates a persistent location nor drops any 
binding. 

• Update-program – a program that updates at least one persistent location but neither 
inserts nor drops any binding. 

• Drop-program – a program that drops at least one binding but neither updates a 
persistent location nor inserts any binding. 

• Startup-program – a program that uses at least one binding but neither changes the 
binding to a persistent location, nor inserts or drops any binding. 

A type-program contains the source code for the types in a corresponding type database 
(Section 4.2.1.1).   

An insert-program contains insert-declarations which are of three kinds: 

i) declaration of environments; 

ii) declaration of stubs; 

iii) declaration of other values. 

The purpose of an update-program is: first, to assign a useful value to a persistent 
location that has previously been initialised with a stub; second, to modify that value2 as 
the application evolves.  In the analysed applications that adhered to the persistent 
location binding methodology, the number of update-programs is several times greater 
than the number of other programs.3

                                                                                                                                                 
the crucial issue in this context is that a file is the unit on which edits are performed when a 
programmer is carrying out a step in the task of performing a change. 

In a hyper-programming environment (Section 8.2.6), an alternative definition would be 
appropriate since source code (linked to values) is contained in the persistent store. 

1 It should be emphasised that when it is mentioned in the text that a binding is inserted, dropped, etc., 
it is meant in a static sense; that is, the source code contains insert-declarations, drop-clauses, etc.  
These declarations and clauses could be part of procedures or conditions implying that they are not 
necessarily being executed when the program is being executed. 

2 One might argue that a value itself cannot be changed; rather, a new value is created in the variable's 
location.  For simplicity, however, common language usage will be adhered to. 

3 This distribution will of course change if programmers adhere to a convention of four programs per 
stub (Section 6.5.1). 

120 



CHAPTER 6:  MODELS AND METHODOLOGIES 

A startup-program contains at least one use-clause and typically invokes an 
interactive menu or any persistent procedure.  Its distinguishing feature is that it does not 
change any of the bindings in any persistent environment.  A PAS must have at least one 
startup-program in order to start up an application. 

The term application-program will be used to denote any program that is not a type-
program.  Naming conventions for files holding programs of the various categories will 
be suggested. 

6.2.3 Binding Categories 
In this context a binding is a name-type-value-constancy quadruple contained in an 
environment accessible from a persistent root (Section 4.2.3).  An environment is a set of 
such bindings and is identified by its name and the path of environments from the root.1  
Relative to a given PAS there are three categories of bindings: 

• Export binding – a binding that is defined (i.e., occurs in an insert-declaration) 
within the PAS with the intention of being used by other PASs.  Procedures in 
libraries such as the Napier88 standard library, WIN and Maps are typical examples. 

• Import binding – a binding that is used (i.e., occurs in at least one use-clause) but not 
defined within the PAS.  Again, a typical example is procedures of a library. 

• Internal binding – a binding that is defined within the PAS but is not an export 
binding, i.e., intended for internal use, only. 

An import binding of one PAS corresponds to an export binding of another PAS.  An 
export binding may also be used within the defining PAS itself.  By definition only 
internal bindings are present in an internal environment.  The terms export, import and 
internal will be used as a prefix to categorise bindings of various kinds such as export 
procedure, internal environment, etc. 

In Figure 6.2 a box represents a collection of bindings of a certain category.  The 
example shows that PAS1 has no import bindings but has produced export bindings that 
are used in PAS2 and PAS3.  PAS2 has no export bindings.  PAS3 has export bindings 
but neither PAS1 nor PAS2 uses them. 
 

                                                 
1 There are cases where this is not possible (see Section 7.5.2). 

121 



CHAPTER 6:  MODELS AND METHODOLOGIES 

import

PAS2 PAS3

PAS1

internal

internal

export

import

internal

export

 

Figure 6.2:  Binding categories 

6.3 The SPASM Constraints  
For a given PAS, the SPASM defines the constraints as shown in Table 6.1.  The 
following sections describe them in detail and provide measurements on how the eight 
applications referred to in Section 5.7 comply with these constraints.1

It is generally difficult (in some cases hardly possible) and invariably time 
consuming to check the constraints manually.  So, a corresponding supporting tool is 
crucial for the success of the SPASM model.  EnvMake is such a tool and is the subject 
of Chapter 7.  

A violation of a SPASM constraint may be an error, or it may just be an indication of 
a situation that might cause problems – especially in the long run.  The software 
engineering process is improved by adherence to the criteria of SPASM, but sometimes 
constraint violation may be necessary.  Particularly during the initial development, 
inconsistent states will be normal.  Nevertheless, programmers will need reminding of the 
violation from time to time.  Even in the case of violations, the tools should still work 
correctly and help in developing viable and maintainable PASs (possibly after 
“consulting” programmers).  See further discussion in Section 7.3.2. 

                                                 
1 These applications were analysed after they were released and used for some time.  It is likely that the 

number of violations would have been greater if the applications had been analysed at various stages 
during the initial development.  On the other hand, if their programmers had been aware of this 
methodology and had had the benefit of tools proposed in Chapter 7, it is likely that the number of 
violations at any stage would have been much reduced. 

122 



CHAPTER 6:  MODELS AND METHODOLOGIES 

1 Program categories 
 A program should belong to exactly one of the five categories (Section 6.2.2). 
2 Type definitions 
a) All type definitions should be used. 
b) All components of a type definition should be used.  
c) A type name should be declared only once within a PAS. 
3 Declaration and use 
a) An internal binding in a use-clause should have exactly one corresponding insert-declaration. 
b) An identifier in an insert-declaration of an internal environment should occur in at least one use-

clause. 
c) An identifier declared in an application-program (except in insert-declarations) should also be used 

(either as L-value or R-value) within that program.  
d) If an identifier appears as an L-value in c), then it should also appear as an R-value within that 

program if the identifier is temporary.  If it is persistent and belongs to an internal environment, it 
should also appear as an R-value either within the same program or in another program. 

e) If an identifier is declared as variable, it should appear at least once as an L-value. 
4 Stub constraints 
a) A procedure inserted as a variable should always be a stub. 
b) For each stub declaration there should be exactly one corresponding update-program.   
c) An update-program should update only one persistent location (typically containing a procedure) or a 

coherent group of persistent locations contained in the same environment. 
5 Drop-clauses 
a) Only internal or export bindings should occur in a drop-clause (i.e., import bindings should not be 

dropped). 
b) A binding should occur in maximum of one drop-clause. 
c) A binding in a drop-clause should have exactly one corresponding insert-declaration. 
6 Order of insert- and type-programs 
a) There should be a partial order among the insert-programs, i.e., no loops among the insert-

declarations (Section 6.3.6). 
b) There should be a partial order among the type-programs, i.e., no loops among the type definitions. 
7 Structuring and naming conventions 
a) There should be a one-to-one correspondence between the structure of directories and environments 

and between their names. 
b) A program should insert, update or drop bindings of only one environment, and the file containing 

the program should be stored in the directory corresponding to that environment. 
c) A naming scheme for environments, directories and files with programs should be followed (see 

Section 6.3.7). 

8 Persistent store1

a) A binding in a use-clause should be present in the persistent store (unless something else is indicated 
by the programmer).   

b) A binding in a drop-clause should be present in the persistent store (unless something else is 
indicated by the programmer).   

c) A binding present in an internal environment should occur in at least one use-clause. 
d) A binding present in an internal or export environment should occur in exactly one insert-

declaration.   

Table 6.1:  The SPASM constraints 

                                                 
1 The constraints described above involve only source code.  The constraints in this group concern 

relationships between source code and bindings present in the persistent store at the time of analysis. 

123 



CHAPTER 6:  MODELS AND METHODOLOGIES 

type- 
program

application-program

insert-program

drop-program

update- 
program

inserts

startup- 
program

type 
database

type 
definitiondefines

 
environment

binding

persistent 
location

program

uses

uses

removes

updates

uses

B

Legend:

A

An instance of B is associated with null or more instances of A.

An instance of B is associated with exactly one instance of A.

BA

BA An instance of B is associated with one or more instances of A.

An instance of B is associated with null or one instance of A.BA

 

Figure 6.3:  ER diagram of programs, bindings and type definitions 

Some of the constraints can be expressed in an Entity-Relationship diagram1 (Figure 6.3) 
describing relationships between the type definitions, program categories, persistent 
locations, environments and other kinds of binding.  The type definition entity denotes 
type definitions in type-programs – not those defined locally in application-programs.  
The arrow texts should be read from the entity on the left of the relationship to the entity 
on the right.  The diagram shows, for example, that a persistent location is associated 
with exactly one update-program, but one update-program can update several persistent 
locations.   

                                                 
1 This kind of Entity-Relationship diagram is one of many variants of the original definition [Chen 

1976]. 

124 



CHAPTER 6:  MODELS AND METHODOLOGIES 

6.3.1 Program Categories 
Since any program should belong to exactly one of the five categories (constraint 1), only 
one of the following operations can take place within the same program: declaration of a 
binding, drop of a binding and update of a persistent location.  The main reason for this 
constraint is to simplify formulation and verification of the other constraints.  Another 
positive effect is that the structure of the actual PAS becomes more intelligible since the 
programs are categorised according to what they are doing (their semantics). 

Measurements 

Half of the analysed applications have insert-declarations and drop-clauses in the same 
program.1  One of these applications also updates persistent locations in programs that 
perform insert and drop.  Otherwise constraint 1 is complied with. 

6.3.2 Type Definitions 
Napier88 has structural type equivalence enabling types to be used anonymously, i.e., 
without any name.  Nonetheless, programmers should be encouraged to introduce type 
definitions, and those required globally should be collected in type-programs where they 
constitute a useful description of a body of data.  In a large PAS there may typically be 
many type-programs each containing type definitions used in a subsystem.   

Unused type definitions and components may confuse maintenance programmers.  
The application also becomes unnecessarily large and complex which in turn may impair 
performance and maintainability.  Therefore, all type definitions should be used within a 
PAS (constraint 2a).2  Also all components of a type definition should be used.  That is, 
the structure fields, variant branches, components of abstract data types, etc. of instances 
of the type should be de-referenced at least once (constraint 2b).  

Constraint 2c states that a type name should be declared only once.  Two or more 
type definitions in different application-programs may violate this constraint in two ways.  
First, since types may be defined locally in application-programs, then two or more types 
might be defined with the same name and type (expression) in the overall application.  In 
that case they should be replaced by exactly one definition in a type-program.  The same 
argument applies to equivalent type definitions in different type-programs.  Such type 
definitions should be replaced by one definition in a type-program at a higher level, i.e., 
the type definitions should be more global. 

Second, type definitions may have the same name but denote different types.  To 
avoid confusion they should then be renamed to acquire unique names.3

                                                 
1 The reader is reminded that these applications were written before SPASM was formulated.  The 

programmers had no supporting tools and had no expectation that their code would be examined. 
2 The compiler already checks the inverse – that a type definition is declared either within the program 

itself or in an associated type database. 
3  The inverse – that several names denote the same type – is accepted.  A useful by-product of a tool 

checking the second group of constraints could be an alias list of such type names. 

125 



CHAPTER 6:  MODELS AND METHODOLOGIES 

Multiple declarations of type names are confusing, require unnecessary compilation 
and are a potential problem with respect to change.  Maintaining consistency requires that 
all declarations describing the same concept (e.g. Person) must be changed if the 
intention is to modify the implementation of the concept (e.g. add a new attribute).  It is 
difficult to arrange that when several programmers (responsible for several components) 
require use of a common type, they each write out equivalent type definitions 
(particularly if they are complex).  It is even harder to ensure that when the type is 
amended, the same amendments are applied in every usage context.  One concept should 
therefore be represented by only one type definition. 

Measurements 

Table 6.2 describes the proportion of unused type definitions in the eight analysed 
applications.  The Programs column contains the number of programs in each 
application.  Type Programs shows the number of programs that actually include type 
definitions.  There are significant variations among the applications.  The principle of 
ImplADT and PartsDB (and partly Bibliography and EcoSystem) seems to be to declare 
all types within each program in which they are used, whereas in the other applications, 
type-programs are used extensively.  The last two columns of the table show respectively 
the total number of type definitions and the number of type definitions that are unused.  
Only three applications use all type definitions (0 unused types).  Benchmark and 
Comp/TSIT have many unused type definitions (90 of 127 and 100 of 168, respectively).  
The reason is that when parts of other applications are integrated with the one currently 
being developed, it is easiest to apply a “maximum approach” with respect to type 
declarations.  That is, all the type declarations of the other applications are copied into the 
new application.  In Comp/TSIT the Napier88 compiler types, TSIT specific types and 
the Map types are copied.  Most of the 100 unused types in Comp/TSIT are part of the 
Map types; a few of them are compiler specific types not used in Comp/TSIT.  This 
indiscriminate copying of types is probably indicative of a requirement for a tool to 
collect required items (types or values). 

Similar measurements of the proportion of components declared as part of type 
definitions but never de-referenced within the applications can also be provided by 
analysing the thesaurus contents.  The average use of structure fields and variant tags in 
the analysed applications is described in Section 5.7.7.1. 
 

Application Programs Type Programs Type Decl Unused Types 
Benchmark 29 4 127 90 
Bibliography  38 23 122 7 
Comp/TSIT 80 3 168 100 
EcoSystem 24 13 50 3 
ImplADT 11 8 84 0 
Map 25 1 116 0 
PartsDB 4 4 109 8 
WIN 156 5 73 0 
Total 367 61 849 208 

Table 6.2:  Unused type definitions 

126 



CHAPTER 6:  MODELS AND METHODOLOGIES 

In applications where types are defined locally in application-programs – rather than 
being collected in type-programs – the study shows that type definitions tend to be re-
defined.  Table 6.3 contains the number of type identifiers and type names and the ratio 
between them.  The ratio describes the average number of identifiers per name.  Re-
definitions do not occur in Map and (practically speaking) not in Benchmark and 
Comp/TSIT either, whereas in ImplADT and PartsDB the same type name is declared 
respectively 5.6 and 3.9 times on average. 
 
 

          
Measurement 

Bench-
mark  

Biblio-
graphy 

Comp/ 
TSIT 

Eco-
Sys 

Impl-
ADT 

     
Map 

Parts-
DB 

      
WIN 

    
Total 

Type identifiers 127 122 168 50 84 116 109 73 849 
Type names  125 85 162 40 15 116 28 55 626 
Identifiers per name 1.0 1.4 1.0 1.3 5.6 1.0 3.9 1.3 1.4 

Table 6.3:  Relationship between type identifiers and type names  

6.3.3 Declaration and Use 
Constraint 3a ensures the existence of a corresponding insert-program for each of the 
internal bindings used within the PAS.  The constraint is violated if there is not exactly 
one insert-declaration.  If there never was any corresponding insert-program or if it has 
been removed, re-declaration or declaration at another site as part of a system installation 
would be impossible.1  Hence, after a re-installation the run-time error “Cannot find 
•binding® with type: •type expression®” would be given during execution of a use-
clause specifying •binding®.  Validation of the constraint plus the automation of build 
management (see EnvMake in Chapter 7) will prevent this error occurring at PAS run-
time. 

Several insert-declarations for the same binding may cause confusion and are 
unnecessary.  During an installation, a binding can only be inserted once (under the 
reasonable assumption that no bindings are dropped during an installation).  If several 
insert-declarations were allowed, there would be a risk of the run-time error indicated by 
the message “Attempt to re-declare •binding® with type: •type expression®”. 

Any identifier declared in an application-program should also be used within that 
program.  (An exception is identifiers occurring in insert-declarations.)  More specifi-
cally, the value of a local (i.e., transient) identifier should be accessed within the program 
(an assignment is not sufficient).  However, an assignment of a persistent identifier 
suffices since its value may be accessed in other programs.  Constraints 3b, 3c, 3d and 3e 
all aim at preventing identifiers from being declared (in the manner indicated by the 
declaration) if they are not used elsewhere in the application.  Even though redundant 

                                                 
1 At present, systems are installed by executing insert- and update-programs (though facilities for 

copying values directly between stores have been developed [Munro 1993]).  However, it should still 
be possible to re-create a persistent system on the basis of the source code (stores may get corrupted, 
be remote, be isolated or use different value representations).  Furthermore, the source programs serve 
as documentation for the declaration and usage of the bindings in the store. 

127 



CHAPTER 6:  MODELS AND METHODOLOGIES 

declarations do not affect the functionality of a program, there are several reasons for 
why that situation should be avoided: 

• An unused identifier might indicate a logical error somewhere.  (The intention might 
have been to use the identifier somewhere but due to a programmer error it is not.) 

• Unused identifiers might cause confusion when someone tries to understand the 
program. 

• The programs become unnecessarily verbose. 

• For performance reasons – for example, holding unused bindings in the persistent 
store impairs the performance. 

If an identifier is declared without being used, it is not necessarily a mistake.  Typically, 
during initial construction programmers may write the declarations of identifiers before 
they write the code using those identifiers.  In any case, the programmers should be 
informed about all unused identifiers. 

Measurements 

All the analysed applications have at least one corresponding insert-declaration for each 
binding occurring in a use-clause.  Duplicated insert-declarations are avoided with one 
exception.  In WIN 27% (180 out of 671) of such declarations were duplicates due to a 
style of conditional coding1 in order to prevent run-time errors.  This implies verbose and 
quite clumsy code, but was a way of pursuing safety in the absence of proper 
methodologies and supporting tools during the initial development of WIN. 

Compliance with constraints 3b and 3d has not been measured, but measurements 
concerning constraint 3c are available.  Table 6.4 shows that 7.1 per cent of all declared 
value identifiers are unused.  (Declarations of formal procedure parameters are excluded 
since a large number of them are declared in dummy procedures – in compliance with the 
persistent location binding methodology – and are thus deliberately not used within the 
procedure body.) 
 
 

Context Total Unused % Unused 

UseClause 7618 719 9.4 
ValueDecl 6726 302 4.5 
RecursiveValueDecl 62 1 1.6 
Total 14406 1022 7.1 

Table 6.4:  Unused value identifiers 
Table 6.4 reveals that the majority of unused identifiers are declared in use-clauses.  
There are several reasons for why this kind of redundancy occurs: 

• Large use-clause specifications are copied indiscriminately from other programs. 
                                                 
1 This typically involves writing code that checks whether a binding with a specified name and type is 

in the store before it is being used.  If the store contains a binding with the matching name but not 
matching type, then drop it and insert a new binding with the correct name and type.  A new binding 
is also inserted if no binding with the matching name is present. 

128 



CHAPTER 6:  MODELS AND METHODOLOGIES 

• Too many identifiers are declared in the belief that they would be needed later. 

• Code using identifiers are removed without the programmer remembering to remove 
the corresponding declarations. 

The extent of unused identifiers in use-clauses varies significantly among the applications 
(ranging from 2.8% to 29%).  This range includes the Comp/TSIT application which has 
an extremely low value (0.5%), but that was due to the use of the EnvMake feature for 
detecting such anomalies (Section 7.3.1).  The measured programs were developed by 
programmers related to the “Napier88 community”.  It is reasonable to assume that real-
world application programmers without tool support would have an even greater 
proportion of inconsistent software.  In any case, the measurements confirm the need for 
tools to detect redundant declarations.  

More detailed measurements showing the variations between the applications, the 
kind and context of the unused identifiers, etc. can be found in [Sjøberg 1992]. 

6.3.4 Stub Constraints 
The purpose of the stub constraints is to accommodate the persistent location binding 
methodology.  Emphasis is on procedures even though the methodology can be applied to 
all kinds of values (Section 6.2.1). 

Constraint 4a ensures that a program creating a variable procedure is separated from 
the program filling it with a useful value (the update-program).  Incremental update could 
have been facilitated even though the insert-program had created the procedure with a 
useful value initially, but experience has shown that it is convenient to separate the 
creation and update.1  If a procedure is not supposed to be updated, then it should be 
declared as a constant. 

Constraint 4b ensures that there actually exists a corresponding update-program for 
each stub.  If no update-program were present, then the value would remain dummy.  A 
dummy procedure, implemented with uninitialised (Section 6.2.1), aborts if it is called.  
Moreover, there should be exactly one update-program since managing several update-
programs is error-prone and complicates the application structure unnecessarily.2

Constraint 4c aims at enhancing simplicity and clarity by stating that only one 
persistent location should be updated in a program.  Finding this corresponding update-
program is easier if the variable and the file have the same name.  It may sometimes be 
convenient to update a group of closely related persistent locations in the same program 
(in which case the naming convention cannot be followed, of course).3

                                                 
1 For example, when changing a procedure body, the “in <env_clause> let” part must be removed from 

the source program and a use-clause for the procedure must be added, but the original version would 
still be useful for re-installation or when changing the procedure type. 

2 As mentioned, the SPASM constraints apply to a given version of a PAS.  If a programmer wishes 
several alternative update-programs, then they should belong to different versions of the PAS.   

3 Some methodologies would insist on exactly one persistent location being updated within an update-
program (Section 6.5.1). 

129 



CHAPTER 6:  MODELS AND METHODOLOGIES 

Measurements 

Only three of the eight applications insert variable procedures.  Table 6.5 shows that a 
significant number of variable procedures in WIN do not have a corresponding update-
program.  The reason is that the use of stubs was not commonly adhered to at the time 
WIN was developed.  So, the procedures were assigned “sensible” values when they were 
initially inserted into the persistent store. 
 
 

Application Variable procedures   No update     More than one 

Comp/TSIT 84 16 0 
Map 122 3 2 
WIN  472 76 8 

Table 6.5:  Update of procedure variables 
The 16 procedures not being updated in Comp/TSIT were caused by the lack of 
knowledge of the compiler application when the author was modifying it to adapt it to the 
needs of TSIT.  Code that updated stubs was removed without removing the 
corresponding insert-declarations.  This may be common when large suites of software 
are modified (particularly other people’s software). 

6.3.5 Drop-Clauses 
Only internal or export bindings should occur in a drop-clause (constraint 5a).  An 
imported binding belongs to another PAS (for which it is an export binding).  Removal 
should thus only be allowed from within that PAS.  At present, standard libraries and 
other libraries are copied to the programmer’s local persistent store.  In future, when 
concurrency and distribution are provided [Munro 1993], the system itself should prevent 
any attempt at dropping bindings belonging to other PASs. 

Constraint 5b is introduced since an application is unnecessarily complex and may 
cause confusion if there are several drop-clauses for the same binding.  For example, if a 
binding has been dropped, detecting the actual drop-program might be difficult. 

Constraint 5c helps prevent the run-time error indicated by the message “Cannot 
drop •binding® it is not present”.  If there is no corresponding insert-declaration for the 
binding, it would not be inserted by any of the programs belonging to the actual PAS. 

Measurements 

Constraint 5b is violated by the WIN application only and is due to its conditional style of 
programming mentioned earlier.  All the applications comply with constraints 5a and 5c. 

6.3.6 Order of Insert-Programs and Type-Programs 
The concepts of partial order and topological sorting will be explained on the basis of 
[Knuth 1973] which should be consulted for a more detailed description. 

In general, a partial order of a set S is a relation between the objects of S which may 
be denoted by the symbol “p”.  The notation x p y means that x precedes y.  In our 
context we may have T1 p T2, where T1 and T2 are type-programs, indicating that T2 
depends on T1, i.e., a type definition used in T2 is declared in T1.  Another example is 

130 



CHAPTER 6:  MODELS AND METHODOLOGIES 

related to the use of bindings.  If a program P1 inserts a binding used by a program P2, 
then P1 p P2.  Figure 6.4 shows a diagram of six programs in a partial order.  For 
example, the arrow from P1 to P2 means that P1 p P2.  The programs are in partial order 
since there are no closed loops in the diagram.  If, for example, the program P1 were 
changed to use a binding inserted by P4, an arrow should be drawn from P4 to P1.  In that 
case P1, P2, P3 and P4 would constitute a loop and thus violate the partial order.  The 
order is partial since there is no ordering between P1 and P6, for example. 
 
 

P1

P2
P3

P4

P5

P6

 

Figure 6.4:  A partial order in the set of programs 

The process of topological sorting is closely related to partial order [Knuth 1973]:  

The problem of topological sorting is to “embed the partial order in a linear order,” i.e., to 
arrange the objects into a linear sequence a1, a2, ..., an such that whenever aj p ak, we have j < 
k.  Graphically, this means that the boxes are to be arranged into a line so that all arrows go 
towards the right.   

 

P1 P2 P3 P4 P5P6

 

Figure 6.5:  Linear sequence after topological sorting 

A topological sorting is always possible on a partial order.  The result is not necessarily 
unique – there may be many linear sequences that satisfy the arrangement as described in 
the quotation.  Figure 6.5 illustrates a linear sequence of the programs of Figure 6.4.  

System installation requires that the insert-programs are executed in a correct order.  
That is, the bindings used by one insert-program must already have been inserted by 
another insert-program before the former can be executed.  This is always possible if 
there exists a partial order among the insert-programs.  If the procedures in the insert-
declarations contain only dummy bodies (in compliance with the persistent location 
binding methodology), then all bindings accessed in the insert-programs are 

131 



CHAPTER 6:  MODELS AND METHODOLOGIES 

environments (except some standard procedures like date, which may be used in the 
creation of an environment, and uninitialised and uninitialised_void, which may be used 
in the declaration of a stub).  

If neither constraint 1 nor the persistent location binding methodology is adhered to, 
then the topological sort is particularly useful when installing large systems since 
bindings may be inserted, updated or used anywhere. 

Analogously, the compilation order of interdependent type-programs is significant.  
A cycle in the use of type definitions could not be processed by the compiler.   

There are two issues concerning the partial order: 

i) checking that a set of programs has a partial order, and 

ii) when possible (see i) discovering any of the linear sequences compliant with the 
partial order. 

As part of checking all the SPASM constraints, EnvMake checks whether the programs 
of a PAS have a partial order (Section 7.3.1).  A linear sequence is suggested (if possible) 
as an option of an interactive menu of EnvMake (Section 7.2) and as part of EnvMake’s 
features for automatic compilation and installation (Sections 7.4.2 and 7.4.4). 

Measurements 

The applications were not measured for these constraints, but the author experienced 
severe difficulties regarding the declaration order during the installation of a modified 
version of the Napier88 compiler. 

6.3.7 Structuring and Naming Conventions 
To organise and manage large and complex PASs, certain structuring and naming 
conventions are necessary.  Figure 6.6 sketches the structure of environments in the 
persistent store for a given PAS.  The structure representing current development has a 
similar structure under the “Error” environment.  This isomorphic structure should also 
be reflected in the file directories since file directories and environments should have the 
same structure (constraint 7).  That is, a root directory should have a corresponding root 
environment, and for each subdirectory there should be a corresponding subenvironment, 
and so on.  To make this correspondence obvious, a good convention is to use the same 
name for the respective directories and environments.1  

The part of a PAS that is in the persistent store and the part that is in the file system 
are just different representations of the same system.  The purpose of the isomorphic 
structure is to make it easy to discover the correspondences and dependencies between 
these representations. 

 
 

                                                 
1 Similar structuring and naming conventions could also be introduced for test and release directories, 

files and environments. 

132 



CHAPTER 6:  MODELS AND METHODOLOGIES 

PS()

Developing

Error

<PAS>

<subsys1> <subsys2> <subsysn>...

Developing

<PAS>

<subsys1> <subsys2> <subsysn>...
 

Figure 6.6:  Environment structure in persistent store 

Files holding Napier88 source programs should have “.N” as suffix.  Table 6.6 shows a 
proposal for naming conventions for programs of the various categories.  The naming 
conventions depend on the methodology to be chosen.  If a scheme of four programs per 
stub is adhered to (Section 6.5.1), the names could respectively be of the form: 
 •binding®_insert.N, •binding®_update.N, •binding®_drop.N and •binding®_test.N.  
Yet another (only slightly different) convention is used in the Napier88 libraries work 
[Atkinson et al. 1993].  The important point is that there is a naming scheme – not its 
exact form. 
 
 

Program category Naming convention 

type-program •PAS or subsys®_types.N 

insert-program i) •PAS or subsys®_envInsert.N 
ii) •PAS or subsys®_stubInsert.N 
iii) •PAS or subsys®_dataInsert.N 

update-program  Generally “anything”_update.N 
If only one binding: 
•binding®_update.N 

drop-program •envName®_drop.N 

startup-program “anything”startup.N 

Table 6.6:  File naming conventions 

Measurements 

Two of the applications adhere to the principle of isomorphism (although not 100%) as 
specified by constraint 7a.  One does not comply with it at all, whereas the other 
applications do it only in part.  The “.N” convention is complied with except for three 
applications that omit the “.N” in their type-programs.  The other conventions are mostly 
new proposals not being adhered to by existing applications. 

133 



CHAPTER 6:  MODELS AND METHODOLOGIES 

6.3.8 Persistent Store  
The last group of constraints concern dynamic issues in that they involve the actual 
contents of the persistent store.  After system installation all necessary procedure stubs 
and other persistent values should have been inserted.  The look-up of bindings specified 
in use-clauses are performed at run-time.  Hence, failing to find bindings in the persistent 
store with access path, name, type and constancy as specified in a use-clause will cause a 
run-time error when the program is executed.  Constraint 8a assists in preventing this 
kind of error.  If programs are separately developed, violation of this constraint may be 
the general case before overall system installation. 

The same argument applies to bindings occurring in drop-clauses.  Complying with 
constraint 8b reduces the chances of attempting to drop a binding not present in the store.  

During development and ad hoc programming, unused bindings tend to accumulate 
in the persistent store since programmers tend to forget to remove them.  Typically, new 
versions of bindings are inserted (due to, for example, type changes or changes in 
subsystem structure) without the obsolete versions being removed.  Constraint 8c ensures 
that the persistent store is tidied up in compliance with the current use-clauses in the 
source code.  Collecting such obsolete bindings may be regarded as a form of garbage 
collection where “garbage” is defined in terms of failure to comply with source code, 
whereas conventional garbage collectors operate on the persistent store only and define 
garbage in terms of unreachability from a persistent root.  So, a binding in the store that is 
not referred to in the source code should possibly be removed.  However, it could be the 
case that the source code was changed or a source program deleted by accident.  Hence, it 
is impossible to automate this process entirely without any user intervention, but a 
warning of the case would undoubtedly be useful.   

Bindings in the export environments of an application are exempt from constraint 8c 
since they are not primarily created with the intention of being used within the 
application itself.   

Constraint 8d concerns compliance between the contents of the persistent store and 
the insert-programs.  If a binding, not imported, in the store does not have any 
corresponding insert-declaration, then the insert-program must have been changed or 
deleted by mistake, or the programmer must have forgotten to drop the binding when the 
code was deliberately changed. 

6.4 Actions to Conform to the SPASM Constraints 
There are an infinite number of kinds of change that may cause violation of the SPASM 
constraints (though many violations will not occur if certain methodologies are followed).  
For example, constraint 1 would be violated if an insert-declaration is added to a type-, 
update-, drop- or startup-program, or if a drop-clause is added to a program that is not a 
drop-program, etc.  There is no point in attempting to describe a plethora of possible 
causes; it suffices that the programmer knows the kind of violation, where it occurs and 
the possible actions to rectify the inconsistent states.  

134 



CHAPTER 6:  MODELS AND METHODOLOGIES 

For each violation of a SPASM constraint, Table 6.7 describes one or more actions 
to be undertaken in order to re-establish conformance with the constraint.  
 
 
No. Violation Action to resolve the violation 
1 i) An insert-declaration or a drop-clause is 

contained in an update-program. 
Move the insert-declaration or drop-clause to an 
(existing or new) insert- or drop-program, 
respectively. 

 ii) An insert-declaration and a drop-clause are 
contained in the same program. 

Split them – move (say) the insert-declaration to 
an (existing or new) insert-program. 

2a There exists a type definition that is never 
used. 

Modify or create a new program that will use 
the type definition, or delete the type definition. 

2b There exists a component of a type definition 
that is never used. 

Modify or create a new program that will use 
the component of the type definition, or delete 
the component. 

2c i) A type declared with same name and type is 
declared more than once. 

If the type is declared in a type-program and the 
duplicate is in an application-program or in the 
type-program of a subsystem, then delete the 
duplicates.  If the type is declared in more than 
one application-program, replace these 
definitions with one definition in a type-
program. 

 ii) The same type name is used to declare 
different types. 

Inspect the definitions with the intention of 
creating unique names. 

3a i) A binding of an internal environment 
occurring in a use-clause does not have any 
corresponding insert-declaration. 

Delete the use-clause if the binding is not used 
in the program, or create a corresponding insert-
declaration for the binding in an (existing or 
new) insert-program. 

 ii) A binding of an internal environment 
occurring in a use-clause has more than one 
corresponding insert-declaration. 

Delete all but one of the insert-declarations. 

3b An identifier in an insert-declaration is not 
used. 

Modify or create a new program that will use it 
or delete the declaration. 

3c An identifier is declared in a program without 
being used within that program. 

Delete the declaration or use the identifier. 

3d i) A temporary identifier occurs only as an L-
value. 

Remove the declaration of the identifier, or 
create an R-value occurrence within the same 
program. 

 ii) A persistent internal identifier occurs only 
as an L-value. 

Remove the declaration of the identifier, or 
create an R-value occurrence in the same or 
another program. 

3e A variable does not appear as an L-value. Remove the variable or use it as an L-value. 

Table 6.7:  Actions to reconform to constraints that have been violated (continues) 
 

135 



CHAPTER 6:  MODELS AND METHODOLOGIES 

No. Violation Action to resolve the violation 
4a A procedure with “useful” body appears in an 

insert-declaration. 
Create an update-program for the procedure 
where the “useful” body is being assigned the 
procedure identifier.  Replace the body in the 
insert-declaration with an appropriate dummy 
one. 

4b i) There exists no update-program for a stub. Create a corresponding update-program or 
delete the stub. 

 ii) There exists more than one update-program 
for a stub. 

Keep one of the update-programs. 

4c More than one (major) procedure (possibly in 
different environments) are updated in the 
same program. 

Create a separate update-program for each of 
the major procedures with the same name as the 
procedure (plus the “.N” suffix).  Store the 
program file in the directory corresponding to 
the environment of the procedure. 

5a There exist more than one drop-clause for the 
same binding. 

Keep one of the drop-clauses. 

5b There exists one or more drop-clauses for an 
imported binding. 

Delete the drop-clauses. 

5c i) A binding of an internal environment 
occurring in a drop-clause does not have any 
corresponding insert-declaration. 

Delete the drop-clause if the binding is not used 
in the program, or create a corresponding insert-
declaration for the binding in an (existing or 
new) insert-program. 

 ii) A binding of an internal environment 
occurring in a drop-clause has more than one 
corresponding insert-declaration. 

Delete all but one of the insert-declarations. 

6a There exists a loop among the type definitions. Inspect the type definitions and resolve the 
loop. 

6b There exists a loop among the insert-
declarations. 

Inspect the insert-declarations and resolve the 
loop. 

7a The directories and environments of the PAS 
are not isomorphic. 

Create programs for appropriate reorganisation 
and renaming in such a way that no information 
is lost. 

7b i) A program inserts, updates or drops bindings 
associated with more than one environment. 

Split the program in such a way that the new 
programs only operate on one environment. 

 ii) At least one file containing an insert-, 
update- or drop-program is not stored in the 
directory that corresponds to the environment 
operated on by the program. 

Move the file to the appropriate directory. 

7c The naming scheme is not fully complied with.  Rename accordingly. 
8a A binding occurring in a use-clause is not 

present in the persistent store. 
If the programmer is not certain that the binding 
will be inserted, then add a corresponding 
insert-declaration to an existing or new insert-
program, or delete the use-clause. 

8b A binding occurring in a drop-clause is not 
present in the persistent store. 

If no program will insert the binding, then 
delete the drop-clause. 

8c An unused binding is present in an internal 
environment. 

Add a corresponding use-clause to an existing 
or new program, or drop the binding from the 
persistent store. 

8d i) A binding present in an internal or export 
environment does not have any corresponding 
insert-declaration. 

Create a corresponding insert-declaration, or 
drop the binding from the persistent store. 

 ii) A binding present in an internal or export 
environment has more than one corresponding 
insert-declaration. 

Drop all but one of the insert-declarations. 

Table 6.7:  Actions to reconform to constraints that have been violated (continued) 

136 



CHAPTER 6:  MODELS AND METHODOLOGIES 

6.5 Future Development of a Maintenance Methodology 
A persistent maintenance methodology is a model for the process of maintaining PASs.  
Programmers inevitably need to maintain a PAS by adding new functionality, improving 
performance and correcting errors.  New functionality may require new or modified 
subsystems and tasks that typically involve adding, removing, renaming or moving files 
and directories.  In a persistent programming environment similar operations would apply 
to programs and other objects in the persistent store.  Required changes to the type 
definitions or the schema of a PAS may have major impact on other parts of the schema, 
on the extensional data and on the application programs (Section 2.3).  In a higher-order 
persistent language, where programs are typically represented in the form of procedures 
in the persistent store, changing the type of a procedure (e.g. adding a parameter) is also a 
kind of change that potentially requires extensive consequential change. 

A maintenance methodology should provide guidelines for how to carry out various 
kinds of maintenance tasks in a safe and efficient way.  Adding a subsystem or changing 
a collection of type definitions are two examples.  The methodology must have an 
inherent notion of correctness or consistency; its purpose is to guide software builders 
and maintainers to perform all necessary and no unnecessary changes in a consistent way 
according to some model of consistency.  SPASM (Section 6.3) is an example of such a 
model in a persistent programming environment. 

A problem of designing a programming methodology is to determine its level of 
detail.  For example, experienced programmers may only need a high-level description of 
the actions to be undertaken for a given kind of change, whereas novices may also wish 
detailed descriptions.  A programming methodology accommodates and makes explicit 
knowledge and experiences of sophisticated programmers.  The support given by the 
methodology to novices and other programmers at various levels of sophistication may 
thus compensate for some of their lack of experience.1   

The problem of details is present, for example, in that a maintenance methodology 
should help ensure maintainability by preventing deteriorating structure and 
inconsistencies.  In the extreme case, the methodology could specify a list of all 
conceivable precautions to be taken into account before any change is carried out.  For 
example: “if a file is to be deleted, check what kind of program it holds; if it is a type-
program, check that none of its type definitions are used in any program; if it is an insert-
program, check, first, that the inserted binding is not used in any other program; second, 
that the binding is not present in the store; third, etc. etc.”  It is unlikely, and probably 
undesirable, that programmers would make all the effort needed to carry out such detailed 
checks.  Provided inconsistent states can be rectified, it is more efficient to perform a 
bulk check of the consistency (the SPASM constraints) at certain stages – preferably 

                                                 
1 A methodology could therefore be outlined at different levels for different categories of programmers. 

137 



CHAPTER 6:  MODELS AND METHODOLOGIES 

automatically by a tool.1  For changes with potentially serious consequences (e.g. schema 
changes) one may want to indicate a change and perform the check on the state after the 
change but before committing the change [Jacobs and Hull 1991, Waller 1991]. 

The following sections propose an illustrative outline for a maintenance 
methodology by describing necessary actions to be carried out when changing the type of 
persistent procedures, when adding or removing subsystems or when changing the 
schema.  The reader is reminded that the outline is a tentative proposal that is as yet 
unevaluated and unsupported by tools. 

6.5.1 Modifying Procedure Types 
Procedures, representing programs in persistent store, are commonly created and 
maintained by Napier88 programmers in compliance with the persistent location binding 
methodology.  As mentioned (Section 6.2.1), any kind of (complex) data value can be the 
subject of that methodology and be stored in strongly typed persistent locations.  
Incremental update of values in persistent locations is relatively simple as long as the 
type and name are unchanged.  It suffices to edit, recompile and re-execute the 
corresponding update-program; editing, recompiling or re-executing any other program is 
unnecessary.  In contrast, renaming or changing the type of an existing binding has 
greater impact.  It involves dropping the old location, creating a new location and 
changing and recompiling all the programs that use the binding.  For example, a 
procedure's type – its signature – can be modified by a change to the number or types of 
the formal parameters of the procedure or by a change to its result type.2  

Three strategies for how to manage changes to the type of an L-value binding are 
presented in respectively Figures 6.7, 6.8 and 6.9.  For a given (sub)system, the 
“Organisation” paragraph describes the programs that insert stubs3 and the programs 
that insert other bindings.  Possible drop-programs are also described.  “Transaction” de-
scribes the actions necessary to carry out the change. 

                                                 
1 However, even a detailed precautionary check might be feasible if it is automatically and quickly 

performed by a tool. 
2 When in common parlance saying that “a procedure changes its type,” it effectively means in a 

strongly typed language that the location containing the procedure is dropped and a new one is 
created, which may hold procedures of the new type.  So, from the system’s point of view, one 
procedure has been deleted and another one has been created.  From the programmers point of view, 
however, it is the same procedure (identified by the same programmer-introduced name) which has 
changed. 

3 A stub declaration creates a persistent location initialised with an L-value binding to a dummy value. 

138 



CHAPTER 6:  MODELS AND METHODOLOGIES 

 

Organisation 
i) All insert-declarations are collected in one file (insert.N). 
ii) For each stub declaration there is exactly one corresponding update-program.  An update-

program, in turn, updates only one persistent location or a coherent group of persistent 
locations contained in the same environment. 

 
Transaction 
i) Drop the existing binding by creating, compiling and executing an ad hoc drop-program. 
ii) Edit the existing insert-declaration in insert.N to accommodate the new type. 
iii) Create an ad hoc insert-program by copying the use-clauses and the newly changed insert-

declaration from insert.N. 
iv) Compile and execute the ad hoc program and then delete it. 
v) If it is an L-value binding, edit, recompile and re-execute the corresponding update-

program.   
vi) Edit, recompile and re-execute all programs that used the old binding.   
 
Evaluation 
+ Works for any kind of binding – L-value or R-value. 
+ The file insert.N contains all necessary insert-declarations for the (sub)system – this 

simplifies installation. 
+ Efficient – no unnecessary drop or insertion. 
+ Relatively few files in the directory – easy management. 
- The emphasis on ad hoc programs may lead to errors and inconsistencies (copy wrong 

code, etc.) and difficulties in reconstructing the actions. 
- Unsuitable for automation. 

Figure 6.7:  Strategy 1 

All three strategies can be applied in any persistent language providing first-class 
procedures that can be stored in strongly typed persistent locations.  At present, Napier88 
programmers adhere to either strategy 1 or strategy 2.  Except for the update-programs 
corresponding to the L-value bindings, there is no difference between L-value and R-
value bindings in strategy 1.  Although efficient, the use of ad hoc programs in strategy 1 
is error-prone and results in poor documentation; not even source code documents the 
actions that have been carried out.  Strategy 2 represents a more organised alternative but 
is extremely inefficient. 

139 



CHAPTER 6:  MODELS AND METHODOLOGIES 

 

Organisation 
i) All insert-declarations of stubs in one file (stubInsert.N); all insert-declarations of 

other bindings in another (dataInsert.N). 
ii) For each stub declaration there is exactly one corresponding update-program (as strategy 

1). 
iii) There is a drop-program (stubDrop.N) corresponding to all L-value-bound persistent 

locations. 
 
Transaction 
i) Drop the existing L-value bindings by executing stubDrop.N. 
ii) Edit the existing insert-declaration in stubInsert.N to accommodate the new type. 
iii) Insert the new and re-insert the old bindings by compiling and executing 

stubInsert.N.1   
v) Edit and recompile the program that updates the changed binding.  Re-execute that and all 

the other update-programs of the other bindings. 
iv) Edit and recompile all programs using the changed binding.  Re-execute all programs 

using any L-value binding. 
vii) Modify (if necessary) the drop statement for the changed binding in stubDrop.N. 
 
Evaluation 
+ Having only two insert-programs (stubInsert.N and dataInsert.N) simplifies 

installation and bulk insertion.   
+ Relatively few files in the directory makes management easy. 
- Works only for L-value bindings with corresponding update-programs. 
- Inefficient – many unnecessary drops, insertions and updates, i.e., unnecessary 

compilation and execution. 
- Unsuitable for automation. 

Figure 6.8:  Strategy 2 

Strategy 3 is a new proposal whose potential success depends on corresponding tool 
support (a proposal is outlined in Section 7.6).2  To illustrate, in the analysed Napier88 
applications (Chapter 5) 1015 different bindings3 were inserted in total.  Four files per 
binding would give a total of 4060 files.  Leaving out test programs (since such programs 
were not included in the analysis either) there would have been 381 files per application 
on average – compared with 46 in the analysed applications.  Tools are therefore clearly 
needed for program management, automatic program generation and build management 
(Section 7.4).  Moreover, it would be awkward for the programmer to repeatedly edit the 
needed use-clauses for each binding.  Such specifications may be generated by future 
tools (Section 8.2.4) or could be replaced by “hyper-references” (Section 8.2.6). 

                                                 
1 For simplicity of the text, executing a •name®.N program should, of course, be read as executing the 

corresponding •name®.out program. 
2 The current Napier88 libraries [Atkinson et al. 1993] are being implemented according to this 

strategy. 
3 Bindings are counted as unique (environment name, binding name) combinations. 

140 



CHAPTER 6:  MODELS AND METHODOLOGIES 

 

Organisation 
 Four files per binding: •binding®_insert.N, •binding®_update.N,1 

•binding®_drop.N and •binding®_test.N. 
 
Transaction 
i) Drop the existing binding by executing •binding®_drop.N. 
ii) Edit the insert-declaration in •binding®_insert.N. 
iii) Insert the new binding by compiling and executing •binding®_insert.N.   
v) If it is an L-value binding, edit, recompile and re-execute •binding®_update.N. 
iv) Edit, recompile and re-execute all programs using the changed binding. 
vii) Modify and recompile •binding®_drop.N (if necessary). 
 
Evaluation 
+ Works for any kind of binding – L-value or R-value. 
+ Efficient – no unnecessary drop or insertion. 
+ Suitable for automation. 
- A vast amount of files to be edited and managed; even with appropriate naming 

conventions, tool support is crucial. 

Figure 6.9:  Strategy 3 

6.5.2 Modifying Directories and Environments 
A (sub)system of a PAS written in a language like Napier88 is represented by a directory 
in the file system and a corresponding environment in the persistent store.  In addition, 
there may be a corresponding error directory and a corresponding error environment.  For 
each of the modifications accomplished for a directory, similar changes should be 
performed on corresponding environments (and vice versa).  Any change (addition, 
modification or removal) to the tasks of a subsystem will typically be reflected in the files 
of the directories and in the contents of the environment corresponding to the subsystem.   

For example, if a subsystem has ceased to be used, the corresponding directory 
(including its files) should also be removed since unused components make the PAS 
unnecessarily large and complex.2  If the directory was not removed, it would require 
maintenance like editing the code that uses global3 type definitions that are subsequently 
changed.  Leaving inconsistent code around should be avoided even though it is (at least 
temporarily) unused.  However, before removal a check should be made to verify that 
none of the bindings in the corresponding environment are referred to in other 

                                                 
1 There is no •binding®_update.N program if the binding is an R-value. 
2 It is assumed that convenient back-up routines are in effect. 
3 Global type definitions refer here to those that are defined in the overall PAS or in a subsystem at a 

higher level in a possible hierarchy of subsystems. 

141 



CHAPTER 6:  MODELS AND METHODOLOGIES 

subsystems.  If this is the case, either leave the system as it is, or move the insert- and 
update-programs operating on these bindings to another subsystem. 

If the construction methodology has been strictly followed, no type definitions 
should be used in other subsystems. 

The environment is dropped by creating and executing a corresponding drop-
program.  If there are other references to that environment, however, it will not be 
removed from the persistent store.  Similarly, values (including L-values) in that 
environment will be retained if they are referenced.  That is, the environment will not be 
accessible via a use-clause of a program any more, but it will be accessible from the 
objects already referencing the environment (i.e., no dangling references will occur).  So, 
if the programmer wishes to remove references to the environment as well, this must be 
done explicitly by tailored programs.  The thesaurus information (Chapter 5) could give 
advice on possible references (e.g. identifying all of the programs using that 
environment).   

6.5.3 Modifying Types – Schema Evolution 
In a language with structural type equivalence, programmer-introduced type identifiers 
are just tokens or abbreviations for types introduced for the convenience of the 
programmers.  In languages where types can be declared in any program (e.g. Napier88), 
there is no concept of a schema, like database schema in database systems, which 
necessarily contains all the type definitions used in a (sub)system.  Nevertheless, 
programmers should be encouraged to collect all the type definitions of a PAS or 
subsystem in one file – a type-program (Section 6.2.2).  The set of type definitions in 
such a file and the corresponding set of types in a type database are two representations 
of what will be referred to as a schema.  

As stated earlier in Section 3.2, the consequences of schema changes are divided into 
three categories: 

i) Effects on other parts of the schema 

ii) Effects on instances – extensional data  

iii) Effects on application programs 
The consequences of adding, renaming and deleting a type definition are described in 
Table 6.8.  Renaming may not be regarded as a basic schema change; it can be viewed as 
decomposition of a deletion followed by an addition.  The activities to be carried out, 
however, are different and much simpler than the combination of the activities for 
deletion followed by those for addition.  The effect may not be so far reaching since no 
structure is modified, but it will still affect all the places where the renamed type is being 
used.  Renaming will therefore be regarded as a schema change in this context. 
 
 

142 



CHAPTER 6:  MODELS AND METHODOLOGIES 

Change Action on schema Action on extensional data Action on application code 

Add type 
definition 
 

Add the new type definition 
to the type-program in the 
actual (sub)system.   
 

No action is necessary. 
 

At least one program should 
declare instances of the new 
type and at least one program 
should use them.1  

Rename 
type 
definition 

Replace all occurrences of 
the old type name with the 
new name in the type-
program.   
 

Due to structural type 
equivalence existing 
instances in the persistent 
store can remain unchanged. 

Replace all occurrences of 
the old type name with the 
new name in the application-
programs. 

Delete 
type 
definition 
 

Delete the type definition 
from the type-program.  If 
the type name is used in 
another type definition, then 
that type definition, in turn, 
must either be deleted or 
changed, and so on. 

In principle, delete existing 
instances of this type from 
the persistent store.  
However, a warning should 
be generated (if possible) in 
the case instances exist.   

Delete all declarations in the 
code where the type 
definition occurs and all 
places where instances of this 
type occur. 
 

Table 6.8:  Impact of adding, renaming or deleting a type definition 
There are several strategies for tackling the problem of inconsistency between instances 
of the old type and the new type definition.  Some ideas of approaches in the context of a 
strongly typed language have been presented in [Atkinson 1993] (see also Section 3.2).  
One should note, however, that in a language with structural type equivalence, the 
problem of consistency between type definitions and instances is purely at the conceptual 
level – from the modelling point of view.  From the language point of view, instances are 
bound to types, not to type definitions.  However, that does not make the problem less 
important.  This is discussed further in [Connor et al. 1990]. 

The intention of this section was not to describe detailed strategies for how to 
manage schema or type changes but to present an overview of issues that must be dealt 
with in further research in this area (Section 8.2.1).  Table 6.8 outlines what kinds of 
change and change consequences that must be included in an analysis.  A similar table 
should be created for changes to a type definition.  For each kind of type change (adding 
a field, changing the type of a field, delete a field, renaming a variant field, adding a 
variant branch, etc.) the consequences for the schema, extensional data and application 
code should be analysed.   

6.6 Summary 
This chapter has introduced two models applicable to persistent applications systems and 
to their construction and maintenance: 

• SPASM – a model for the PAS to be built. 

• A construction and maintenance methodology – a model for how the PAS should be 
constructed and maintained. 

SPASM is a model for organising persistent application systems.  It defines a set of 
constraints concerning definitions and uses of types, operations on persistent objects 
                                                 
1 This is presumably the motivation for the type change in the first place. 

143 



CHAPTER 6:  MODELS AND METHODOLOGIES 

(including programs), redundant declarations, unused values, etc.  Consistency is defined 
relative to this model; i.e., an entirely consistent application is one that complies with all 
the constraints of SPASM.  

The SPASM constraints are based on the knowledge of experienced Napier88 
programmers and should thus be useful to most programmers in most situations.  Novices 
would particularly benefit from rules for how to organise their persistent applications.  
However, some constraints might be undesirable in certain circumstances, and there 
might be a need for additional constraints in other circumstances.  Some flexibility should 
therefore be allowed for when designing tools that support the model.  (An analysis of 
eight Napier88 applications shows that they comply with most of the constraints.)  There 
is a trade-off between flexibility and discipline.  Software builders may feel that SPASM 
constrains their personal programming styles.  However, in order to develop complex and 
long-lived PASs, with possibly many people involved, it is crucial that commonly agreed 
practices and conventions are used.  Standardisation may eliminate peculiar programming 
styles and may simplify collaboration, maintenance, software reuse, etc.  SPASM is an 
initial suggestion that needs evaluation through use. 

The construction methodology guides the software builders in constructing 
applications systems in compliance with SPASM.  

As part of the maintenance methodology, strategies for accommodating a method of 
programming based on programs bound as L-values to persistent locations have been 
outlined.  A new strategy was proposed whose potential success relies on appropriate tool 
support.  The maintenance methodology also includes a classification of type changes 
corresponding to schema evolution in database systems.  For each kind of change, the 
methodology presents a high-level description of the necessary steps to be undertaken in 
order to accommodate the change in a consistent way. 

One might argue that understanding and adhering to the SPASM model and the 
construction and maintenance methodology are a heavy burden to impose on software 
engineers and programmers.  However, developing and maintaining large and long-lived 
PASs are complex tasks, and one has to invest in adapting to suitable working practices 
in order to accomplish such tasks.  The possibly extra effort required in the short-term 
should pay off in the long run. 

A significant improvement in the programming process will be achieved if 
adherence to models like SPASM is checked automatically by a supporting tool.  
Similarly, accompanying tools should actively support, i.e., partly automate, construction 
and maintenance activities as defined by the methodologies.  Such tools are the subject of 
the next chapter.

144 



CHAPTER 6:  MODELS AND METHODOLOGIES 

 

145 



 

Chapter 7 
EnvMake – A Persistent 

Programming Tool 
 

7.1 Introduction 
The success of the methodology and the SPASM constraints discussed in the previous 
chapter depends heavily on supporting tools.  This chapter describes EnvMake which is a 
proposal for such a tool.  It supports application construction and maintenance in 
compliance with the persistent location binding methodology (Section 6.2.1).  In 
particular, it checks whether a PAS adheres to the SPASM constraints. 

The methodology described in the previous chapter supports incremental develop-
ment.  Programs in the persistent store, represented as procedures, can be changed 
(provided their types do not change), recompiled and re-executed without the need for 
any operations on the dependent programs.  If the procedure type is to be changed, then 
the dependent programs must be edited, recompiled and re-executed as well.  Similarly, if 
a program with only type definitions changes, then all dependent programs must be at 
least recompiled, usually also edited.  Automatic assistance in determining and initiating 
the necessary recompilations and re-executions is crucial.  Traditionally, Unix program-
mers use Make as the supporting tool.  All dependencies have to be inferred manually, 
however, and any change in the dependency structure requires a programmer to edit the 
Makefile correspondingly.  EnvMake is a language specific alternative, written in and for 
Napier88, that automatically infers the necessary dependencies from the thesaurus infor-
mation.  Hence, there is no need for any file like the Unix Makefile. 

Dependency tables used by EnvMake in the check of the SPASM constraints and by 
the build management features can also be browsed directly by a programmer.  The 

147 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

information obtained is useful for the understanding of the application’s structure – 
particularly for large and complex applications. 

EnvMake can be run in several modes determined by a parameter after the command 
as summarised in the following table. 

 
 

Command Function Section 

envMake Obtain menu giving structural information 7.2 
envMake 
consistency 

Obtain warnings of SPASM violations 7.3 

envMake plan Show compilation and execution plan 7.4.1 
envMake compile Perform all necessary recompilations 7.4.2 
envMake run Perform all necessary recompilations and re-executions 7.4.3 
envMake install Perform all compilations and executions necessary for installation 7.4.4 

Table 7.1:  Parameters of the envMake command 

7.2 Information about Application Structure 
Programmers can already obtain information about dependencies between names used in 
an application system through one of the query interfaces of TSIT (Chapter 5).  In the 
case of dependencies between environment operations and the corresponding bindings, 
EnvMake provides two alternative ways of presenting the information: as dependency 
tables and as matrices. 
 
 
INSERT-PROGRAM                  BINDING                  UPDATE-PROGRAM 
-------------------------------------------------------------------------------- 
...                             ...                      ... 
Library/KeyChooseLib_stub.N     Library\KeyChooseLib     Library/KeyChooseLib.N 
Library/MakeDummyLib_stub.N     Library\MakeDummyLib     Library/MakeDummyLib.N 
Library/WriteLibName_stub.N     Library\WriteLibName     Library/WriteLibName.N 
Person/FindPersonDepend_stub.N  Person\FindPersonDepend  *  
Person/MakeDummyPerson_stub.N   Person\MakeDummyPerson   Person/PersonValues2.N 
Person/WritePersonName_stub.N   Person\WritePersonName   Person/PersonValues1.N 
...                             ...                      ... 

Table 7.2:  Insert-update dependency table 
Table 7.2 shows some insert-programs, the bindings they insert and the programs that 
update those bindings.  A “*” means no occurrence.  It appears that the binding 
“FindPersonDepend” in the “Person” environment is not updated.  This indicates a 
potential error (the SPASM constraint 4b in Section 6.3 is violated), since the author of 
the personnel system used here as an example is expected to follow the persistent location 
binding methodology (Section 6.2.1). 
 

148 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

USE-PROGRAM              BINDING                     STORED  
-------------------------------------------------------------------------------- 
...                      ...                         ... 
Person/ModifyPerson.N    Person\FindPersonDepend     Person\FindPersonDepend 
Person/ModifyPerson.N    Person\GetInstancePerson    * 
Person/ModifyPerson.N    Person\KeyChoosePerson      Person\KeyChoosePerson 
Person/ModifyPerson.N    Person\ModifyPerson         Person\ModifyPerson 
Person/ModifyPerson.N    Person\PersonKey            Person\PersonKey 
Person/PersonValues2.N   Person\DuplicatePerson      Person\DuplicatePerson 
Person/PersonValues2.N   Person\ShowPerson           Person\ShowPerson 
Person/PersonValues2.N   Person\ShowPersons          Person\ShowPersons 
*                        *                           Person\WritePersonName 
...                      ...                         ... 

Table 7.3:  Use-stored dependency table 
 
 

***************************************************** 
*                                                   * 
*                 *** ENVMAKE ***                   * 
*                                                   * 
*    H – Help                                       * 
*                                                   * 
*    A – Write program names with category          * 
*                                                   * 
*    I – Write insert-programs with bindings        * 
*    U – Write update-programs with bindings        * 
*    D – Write drop-programs with bindings          * 
*    S – Write startup-programs with bindings       * 
*    P – Write stored bindings                      * 
*                                                   * 
*   IP – Write insert/update dependency table       * 
*   IU – Write insert/use dependency table          * 
*   ID – Write insert/drop dependency table         * 
*   IS – Write insert/stored dependency table       * 
*   UU – Write update/use dependency table          * 
*   UI – Write use/insert dependency table          * 
*   US – Write use/stored dependency table          * 
*   DU – Write drop/use dependency table            * 
*   DS – Write drop/stored dependency table         * 
*   TT – Write type_def/type_use dependency table   * 
*                                                   * 
*   PE – Write prog/env/binding matrix              * 
*   EP – Write env/prog/binding matrix              * 
*                                                   * 
*   PS – Write program status                       * 
*   TE – Write type databases                       * 
*                                                   * 
*   SI – Topological sort – insert-programs         * 
*   TI – Topological sort – type-programs           * 
*                                                   * 
*    E – Exit (Back to NPE main menu)               * 
*                                                   * 
***************************************************** 

Figure 7.1:  The EnvMake menu 

Table 7.3 is another kind of dependency table.  It shows the bindings (second column) 
occurring in the use-clauses of the programs in the first column.  The third column shows 
the corresponding bindings that are actually in the persistent store (at the time of the last 
thesaurus update).  A “*” in each of the two leftmost columns indicates that no program 
is using the binding found in the store (in this case “WritePersonName” in the “Person” 
environment).  This is a violation of the SPASM constraint 8c.  According to Table 6.7, 
“WritePersonName” should either be used in some program or be dropped from the 
persistent store. 

149 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

As shown in the menu of Figure 7.1, EnvMake offers several kinds of dependency 
tables.  EnvMake can also visualise dependency information in the form of matrices 
showing which operations are performed on which bindings in which programs.  Table 
7.4 shows the names of the bindings inserted, used or dropped in two programs.  The 
table is an excerpt from the full table generated as a result of selecting the “PE” option in 
the EnvMake menu.  A similar table sorted by environments rather than programs is 
generated when selecting the “EP” option. 
 
 
PROGRAM ENVIRONMENT INSERTED USED  DROPPED 
-------------------------------------------------------------------------------- 
DropCompany.N Company_Org * EDITIONs EDITIONs 
  * LIBRARIEs LIBRARIEs 
  * PERSONs PERSONs 
  * PRODUCTs PRODUCTs 
  * PROJECTs PROJECTs 
  * TASKsTASKs 
  * TEAMsTEAMs 
  * VERSIONs VERSIONs 
 PS * User  * 
 User * Company_Org * 
 
DeletePerson.N Company_Org * PERSONs * 
  * PROJECTs * 
  * TEAMs* 
 GlasgowLibraries * Lists* 
 IO * writeString * 
 Lists * cons  * 
  * hd  * 
  * l_empty * 
  * l_isu_append * 
  * tl  * 
 PS * GlasgowLibraries * 
  * IO  * 
  * User  * 
 Person * DeletePerson * 
  * DeletePersonReferenc*  
  * DuplicatePerson * 
  * KeyChoosePerson * 
  * MakeDummyProject * 
 User * Company_Org *  
  * Person * 
... ... ... ...  ... 
-------------------------------------------------------------------------------- 
Number of entries: 399             
-------------------------------------------------------------------------------- 

Table 7.4:  Excerpt from a program-environment matrix 
The information returned may be massive for large applications.  The matrix of Table 7.4 
originally had 399 entries, for example.  Programmers have three options for restricting 
the output.  They can select: 

• kind of binding (procedure, structure, etc.);1

• a particular program, environment or binding by specifying a (sub)string; or 

• bindings in internal environments only (i.e., excluding the standard libraries and 
other libraries). 

                                                 
1 See Section 5.2. 

150 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

The kind of the bindings and other information have deliberately been omitted from the 
tables and matrices to suppress details that would have obscured the overall structure.  
Programmers are advised to use the TSIT interfaces to obtain additional information. 

The “TI” and “SI” options of the menu in Figure 7.1 initiate topological sorting on 
the programs.  The names of the programs and bindings involved in a possible cycle will 
be printed.  This issue is discussed further in Section 7.3.   

The “PS” option writes the names, the time of the last compilation and the time of 
the last execution of all the programs registered with a given application.  The “TE” 
option provides information about which type databases are being used in the application.  
These two options concern build management and will be discussed in Section 7.4.   

In order to enable installation (see Section 7.4.4), there must exist a partial order 
among the insert-programs so that a binding inserted by one program can be executed 
before the program using that binding.  In particular, an environment must be created 
before it can be populated.  Similarly, to enable compilation, there must exist a partial 
order among type-programs.  Determining an order among dependent type-programs may 
be a non-trivial task if there are several type-programs with dependencies between them 
(see Section 7.4.2).  The “SI” and “TI” options of the EnvMake menu suggest a linear 
sequence compliant with the partial order if possible.  If a loop exists, the name of the 
programs constituting the loop and the involved bindings (type definitions) are presented 
to the programmer in a table. 

7.3 Supporting the SPASM Model 
A feature of EnvMake is that it checks the SPASM constraints (Table 6.1) in the context 
of Napier88.  The following sections discuss how the constraints are checked, how rigid 
the tool is and some programmer experiences. 

One should note that consistency checking based on static analysis may not be 
complete for all kinds of program.  In particular, some programs may apply a hidden 
operation, e.g. they execute a procedure variable or parameter defined elsewhere, or 
operations may occur within conditional constructs.  Nevertheless, structurally obscure 
programs that invalidate checks may arise negligibly often (Section 7.5.2), and even for 
these programs tools like EnvMake may be useful.  See further discussion in Section 
7.5.2. 

7.3.1 Checking the SPASM Constraints 
The thesaurus information collected by TSIT enables EnvMake to automatically check 
the SPASM constraints.1  Invoking EnvMake with the consistency parameter 

                                                 
1 Information about the binding categories (Section 6.2.3) must be provided by the programmers in the 

current implementation.  The default is that all bindings are regarded as internal (except those in the 
standard library).  Some of the constraints would have been too restrictive if libraries and other 

151 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

initiates a check of all the SPASM constraints.  In the case of violation, EnvMake gives a 
warning and indicates the source of the violation.  Only a warning is given since a 
violation is not necessarily an error but may be an anomaly indicating a situation that is 
liable to errors.  If any program has been changed after the last thesaurus update, 
EnvMake warns that the program should be analysed with TSIT to ensure up-to-date 
consistency analysis (Section 7.5.1).  The checks of most of the SPASM constraints are 
briefly described below. 

Program Categories 

EnvMake keeps track of the category of a program and gives a warning if it detects a 
program belonging to more than one of the categories.  For example, a program with both 
an insert-declaration and a drop-clause would be categorised as both an insert-program 
and a drop-program.  Programs violating this requirement are listed together with the 
name of their assigned categories. 

Type Definitions 

EnvMake writes a list of all type definitions and components of type definitions that are 
not used in any program.  In the case of several type definitions with the same name, 
EnvMake informs about all the places in which these type definitions are used. 

Declaration and Use  

An insert/use dependency table similar to those described in Section 7.2 (Tables 7.2 and 
7.3) forms the basis for the check of constraints 3a and 3b.  Entries in the table corre-
sponding to a violation are presented to the programmer (see analogous example in “Stub 
Constraints” below).  EnvMake writes a list of all identifiers declared but not used, as 
specified in the constraints 3c, 3d and 3e. 

Stub Constraints 

EnvMake writes the names of variable procedures not declared as stubs (constraint 4a).  
In the case of attempting to update a stub in more than one program (constraint 4b), 
EnvMake writes a table informing the name of the binding and the names of the 
corresponding insert- and update-programs.  Table 7.5 shows an example where two 
bindings are updated twice.  Table 7.2 in Section 7.2 already showed an example of 
violation of constraint 4b in which a procedure was never updated. 
 
 

                                                                                                                                                 
exported or imported bindings were regarded as internal, and corresponding violation messages would 
have been felt inappropriate.  Constraint 5a (Section 6.3) is meaningless without the categorisation. 

152 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

CHECKING CONSTRAINT 4B: MORE THAN ONE UPDATE PROGRAM 
------------------------------------------------------------------------------
- 
INSERT PROGRAM                  BINDING                 UPDATE-PROGRAM 
------------------------------------------------------------------------------
- 
Person/DeletePerson_stub.N      Person/DeletePerson     
Library/DeleteLibrary.N  
Person/DeletePerson_stub.N      Person/DeletePerson     Person/DeletePerson.N    
Person/DeletePersonRef_stub.N   Person/DeletePersonRef  
Library/DeleteLibrary.N 
Person/DeletePersonRef_stub.N   Person/DeletePersonRef  Person/DeletePerson.N    
------------------------------------------------------------------------------
- 
Number of entries: 4             
------------------------------------------------------------------------------
- 

Table 7.5:  Insert-update dependency table 

Drop-Clauses 

The constraints involving drop-clauses are checked by using insert/drop dependency 
tables, and the results are presented in a form similar to Table 7.5. 

Ordering of Insert- and Type-Programs 

The check for partial order among the insert-programs and among the type-programs 
gives an error message if no such order exists and in that case presents a table of the 
programs in the loop and the bindings or type definitions involved.   

Structuring and Naming Conventions 

Discrepancies from the structuring conventions are reported as a list of the names of the 
directories with no corresponding environments (and vice versa).  Names of environ-
ments, directories and files not following the naming scheme are also listed. 

Persistent Store 

The checks of the constraints in the eighth group detect inconsistencies between the 
source code and the actual contents of the persistent store.  The use/stored table in 
Section 7.2 (Table 7.3) showed one example of an inconsistency (violating constraint 8c).  
The insert/stored and drop/stored dependency tables are also used to check the constraints 
in this group.  If EnvMake has detected bindings in the store that are not used in any 
program, a future option of the tool could be that it (reflexively) generates and executes a 
corresponding drop-program upon user request.  The user must be consulted because it 
could be the case that the binding would be used in some program under development. 

7.3.2 Flexibility of EnvMake 
The principle of EnvMake of giving warnings when violations of the SPASM constraints 
have been detected, can be compared with the way modern grammar checkers work (e.g. 
the checker in Microsoft™ Word Version 5.0).  They check the text against some internal 
rules and give a warning if the text is not compliant with those rules.  Then it is up to the 
programmer to resolve the problem: leave the text as it is or modify it (suggestions are 
usually provided). 

EnvMake features optional selection of the constraints; programmers may “switch 
off” the check of individual constraints (cf. grammar checkers in which you can ignore 
rules).  For example, a programmer may know that certain constraints will not be adhered 

153 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

to during a certain period of the development (typically during initial construction) and 
may wish to avoid the noise of unnecessary inconsistency messages. 

Even though EnvMake supports and encourages the use of a certain programming 
methodology, it does not restrict its use to only systems that have been constructed in 
accordance with the methodology.  Most of the constraints are useful whatever the 
methodology.  For example, old software can be registered with EnvMake and make use 
of the facilities provided.  Moreover, EnvMake does not fall over if violations are 
detected; it informs the programmer about the kind and source of violation and then 
checks the next constraint. 

7.3.3 User Experiences 
Parts of EnvMake have been successfully used.  The implemented checks of the SPASM 
constraints were applied to Napier88 programs developed by seven programmers.  Some 
of the experiences are described below. 

• People claimed that the analysis increased their general understanding of their 
software.   

• EnvMake assisted in providing a consistent naming structure; several had forgotten 
which names they had been using. 

• The checks of unused identifiers stopped people from copying large segments of use-
declarations from other programs without selecting only those needed.  One person 
would still continue to do “bulk” copying:  this was the simplest way, he said, and it 
was of no concern that some declarations were unused. 

• One person had two cases in which two different programs updated the L-value of 
the same procedure in the persistent store and was very pleased to be informed about 
this error (see Table 7.5). 

• People asked for new reports and were curious about the quality of their software 
compared with other people’s software. 

• Cases were discovered in which variables were declared in the store with stubs and 
then updated and used within the same program, without being used in any other 
program.  Also other cases were detected in which global variables could be replaced 
by local variables. 

• The various checks were useful for the author during the development of TSIT since 
a large piece of software developed by others had to be modified (the NinN 

154 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

compiler).  For example, detecting procedure parameters not used within the 
procedure body enabled simplification of the procedure interface.1

The experiences described above indicates that EnvMake is useful.  Nevertheless, a 
thorough experiment of studying the effect of using EnvMake (and TSIT) is being 
planned (Section 8.2.7).  In additional to anecdotal information such as that described 
above, the extent to which programmers change their behaviour will be studied by 
comparing measurements of their software collected by TSIT before and after they adopt 
EnvMake.  New requirements of EnvMake will also be an issue of such a study. 

7.4 Build Management 
A major feature of EnvMake is its support for build management (Section 3.3.2).  In this 
context build management includes recompilation, re-execution (in compliance with the 
persistent location binding methodology) and installation of a release of a PAS.  In 
particular, the following tasks must be carried out: 

• All new and all changed programs should be compiled. 

• When type-programs are compiled, the corresponding type databases should be 
updated accordingly. 

• If a type-program is changed, all dependent programs should be compiled.  The type-
program must be compiled before the dependent programs.  In particular, type-
programs must be compiled in a correct order if there are dependencies among them. 

• Programs that update persistent locations should be re-executed after change. 

• Installation must be performed in a correct order, including all insert-programs 
before update-programs. 

At present, these tasks are either performed in an ad hoc way or by use of Unix 
Makefiles.  Programmers must infer dependencies and maintain Makefiles manually.  
EnvMake does not have any notion of “EnvMakefile” like Makefile in Make.  All the 
necessary information is automatically inferred from the thesaurus and the internal data 
structures (e.g. dependency tables) of EnvMake.  There are many advantages of such 
automation, and in particular it simplifies problems of change management as described 
in [Schwanke and Platoff 1989]: 

Many projects have a “catch-all” file of widely-used declarations.  Maintainers are unwilling to 
create a new file to contain a new declaration, because of the nuisance of changing Makefiles, 
notifying the configuration management team, and so on. 

A Makefile can also be regarded as a form of documentation of dependencies within the 
application.  However, the kind of information that can be read from Makefiles can be 
obtained via the interactive EnvMake menu (Figure 7.1) or by querying the thesaurus 

                                                 
1 Unfortunately, TSIT and EnvMake could be applied to themselves only at the end of their 

development – when they were being improved and tidied up – since they did not exist before they 
were developed, of course. 

155 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

directly (Section 5.3).  The build management tasks of EnvMake are invoked by the 
envMake command with a parameter corresponding to the actual task:1

• envMake plan 

• envMake compile 

• envMake run 

• envMake install 
These tasks are discussed separately in the following sections. 

7.4.1 Showing Status Information 
Applying one of the parameters compile, run or install to the envMake 
command may initiate compilations.  EnvMake determines the programs to be compiled 
and the order.  Invoking EnvMake with the run or install parameter may initiate 
executions, and EnvMake determines a corresponding execution plan.  This information, 
together with the times for the last compilation or execution, is written as a table on the 
screen before the actual compilation and execution.  The corresponding program 
categories are also specified.  A presentation of such a plan without actually performing 
any compilation or execution is provided by the envMake plan command. 

Table 7.6 shows an example from the implementation of EnvMake application itself.  
It appears that EnvMake_types.N is the first program to be compiled.  Type-programs are 
never executed so there are no corresponding entries in the two Execution columns.  
There are two rows with missing entries in the Compilation columns showing that there is 
no need for recompilation.  Nevertheless, the corresponding executable versions 
(dependTable.out and envMakeMainMenu.out) should be executed.  The program 
installGen.N appears with the value “00/00/00 00:00” for the last compilation indicating 
that this is a new program.  Drop-programs and startup-programs are never automatically 
executed in the current version of EnvMake. 
 
 
Compilation  Execution  Category 
-------------------------------------------------------------------------------- 
Source program Last compilation Executable program Last executed 
-------------------------------------------------------------------------------- 
EnvMake_types.N 21/08/92 21:35   type-prog 
stubInsert.N 21/08/92 21:39   insert-prog 
bindingMaps.N 21/08/92 22:35 bindingMaps.out 21/08/92 22:37 update-prog 
createMatrix.N 22/08/92 09:35 createMatrix.out 22/08/92 09:35 update-prog 
  dependTable.out 22/08/92 09:36 update-prog 
  envMakeMainMenu.out 22/08/92 09:40 update-prog 
installGen.N 00/00/00 00:00 installGen.out 00/00/00 00:00 update-prog 
LValueUpdate.N 21/08/92 21:37 LValueUpdate.out 21/08/92 21:39 update-prog 
drop.N 21/08/92 21:39   drop-prog 
callInstallGen.N 21/08/92 22:55   startup-
prog 

Table 7.6:  Compilation and execution plan 

                                                 
1 The current EnvMake implementation assumes that there is only one PAS in a given persistent store.  

A more sophisticated version should allow several PASs, and EnvMake would have to provide a 
mechanism for indicating the PAS being the subject of the task. 

156 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

During compilation and execution, the name of the actual program and possible error 
messages are written to the screen.  A log summarises the course of events as illustrated 
in Table 7.7 which shows that createMatrix.N failed compilation.  The “.out” version was 
therefore not executed. 
 
 
Compilation  Execution  Category 
-------------------------------------------------------------------------------- 
Source program Compiled Executable program Executed 
-------------------------------------------------------------------------------- 
EnvMake_types.N 23/08/92 08:35   type-prog 
stubInsert.N 23/08/92 09:19   insert-prog 
bindingMaps.N 23/08/92 09:25 bindingMaps.out 23/08/92 09:30 update-prog 
createMatrix.N Error! createMatrix.out No execution update-prog 
  dependTable.out 23/08/92 09:36 update-prog 
  envMakeMainMenu.out 23/08/92 09:40 update-prog 
installGen.N 23/08/92 09:35 installGen.out 23/08/92 10.39 update-prog 
LValueUpdate.N 23/08/92 09:37 LValueUpdate.out 23/08/92 10.42 update-prog 
drop.N 23/08/92 09:39   drop-prog 
callInstallGen.N 23/08/92 09:40   startup-
prog 

Table 7.7:  Log of compilations and executions 
The kind of status information described above is a significant improvement compared 
with what, e.g., Make provides – which is nothing.  The present version of EnvMake 
offers only a textual interface for input and output.  Later versions could provide a more 
sophisticated user interface with a separate log window displaying a table similar to that 
of Table 7.7 but with the time information and messages inserted into the Compiled and 
Executed columns as the compilation and execution proceed.  Colours could also be used 
– error messages in red, etc. 

7.4.2 Compilation 
Invoking EnvMake with one of the parameters compile, run and install, causes 
every new or changed program to be (re)compiled.1  In addition, programs that depend 
on modified type-programs will also be recompiled.  If no type-programs have been 
changed, the order of compilation is not significant.  If a type-program has been modi-
fied, however, the collection of dependent programs (which may include other type-
programs) must be determined.  Type-programs must precede the dependent programs in 
the compilation order.  If compilation of a type-program fails, EnvMake will not initiate 
compilation of the (unchanged) dependent programs since those compilations would also 
fail or be based on obsolete versions of the type definitions.   

There are two problems concerned with “the collection of dependent programs” of a 
type-program.  First, it is to define the semantics of dependency in this context; second, it 
is to detect the actual programs.  A simple rule of dependency is: all programs in a PAS 
or a subsystem are dependent on all the type-programs in that PAS or subsystem.2  That 
is, if a type-program is changed, then all programs are recompiled to ensure that no 
program refers to old type definitions.3  Applying this rule causes many programs to be 
                                                 
1 Changes are detected by the timestamping technique, as in Make. 
2 This seems to be the commonly practised rule. 
3 Some implementations of type processing will make type changes available to programs that use the 

types indirectly without the need for reprocessing these programs (e.g. relational databases that use 
type names as keys). 

157 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

recompiled unnecessarily.  This very simple way of defining dependency is mainly due to 
the lack of appropriate tools for determining the collection of dependent programs 
according to a more refined definition.1   

Probably the most obvious and correct way of defining type dependency is to regard 
a program as dependent on the specific type definitions that it uses.  So, if a type 
definition (say) T is used in a program (say) prog1.N, then prog1.N is said to be 
dependent on T.  In order to preserve consistency, a removal of or change to T requires 
prog1.N to be changed accordingly (if necessary) and thereafter recompiled.  In the 
current EnvMake implementation, however, no test has been implemented in order to 
detect a change to a specific type definition (though such a test could be implemented by 
appropriate type graph comparison algorithms [Connor 1991]).2  Nonetheless, the type-
program containing the changed type definition will be detected as changed by the 
conventional timestamping technique.  Therefore, as a compromise for implementation 
reasons, changes are recorded at the granularity of type-programs rather than the level of 
type definitions.  Hence, the type dependencies shown in Figure 7.2 indicate that at least 
one type definition in the program at the arrow tail is used in the program at the arrow 
head.  For example, prog1.N and B_types.N depend on A_types.N implying that EnvMake 
would initiate a recompilation of prog1.N and B_types.N after any change to A_types.N. 

 
 

                                                 
1 This problem of the coarse level of dependencies between a compilation context and the compilation 

units is described more generally in [Tichy 1986] (see Section 3.3.2.2). 
2 In the implementation of a tool described in [Tichy 1986], changes to declarations are detected by 

comparing their identifiers and their respective abstract syntax trees. 

158 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

A_types.N 

B_types.N C_types.N 

D_types.N

prog2.N prog3.N prog1.N

 

Figure 7.2:  Type dependencies 

In larger PASs it is common to have several type-programs, each of which covers a sub-
system.  For example, the WIN system [Cutts et al. 1990] has five type-programs; one in 
each of the subsystems “system”, “lineEditor”, “windowEditor”, “editors” and 
“managers”.  By compiling with the nps command instead of the standard npc, the type 
definitions are inserted into a type database in the persistent store.  Programs can be 
compiled later on against the definitions in such type databases (Section 4.2.1.1).  
EnvMake chooses the nps command when it compiles type-programs, ensuring that the 
corresponding type databases are up-to-date.  Moreover, EnvMake automatically com-
piles against these type databases whenever it compiles a program within the corre-
sponding subsystem. 

As mentioned above, a type-program must be compiled before its dependent 
programs.  The order is determined by the topological sort (Section 6.3.6).  A change to a 
type definition does not only imply that the dependent programs need to be recompiled – 
they also generally need to be edited.  Hence, these programs will be detected as changed 
by the timestamping algorithm and thus be subject of recompilation in any case.  
However, there are still at least two reasons for applying the type dependency rule 
discussed above.  First, there are cases in which programs do not need editing but still 
need recompilation.1  Second, if the dependent programs need editing, but this has not 
been done for some reasons, recompilation ensures that type inconsistencies are detected 
at an early stage rather than later at run-time (e.g. in use-clauses). 

                                                 
1 For example, if a type definition of kind variant has been extended with a new branch, programs that 

should not reference this new branch do not need to be changed.  For type equivalence purposes, 
however, they need to be recompiled.  (There exist languages, for example Machiavelli [Ohori et al. 
1989], where a partial match suffices, and for such languages recompilation would be unnecessary.) 

159 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

Avoiding unnecessary recompilations is not a new problem (Section 3.3.2.2).  It 
could be argued that the significant increase in machine power would make this problem 
redundant.  However, the compilation time may still be considerable, and the size of 
application systems is continuously increasing, so the desire to avoid total recompilation 
after minor changes will undoubtedly continue.  As explained above, EnvMake alleviates 
this problem by recompiling only changed programs and those that depend on them.   

7.4.3 Execution 
When the envMake command is invoked with the run parameter, it is first checked for 
necessary compilations according to the process described in the previous section.  
Thereafter, EnvMake starts execution of update-programs that have been recently 
compiled.  The order of execution is not significant.  Keeping track of which programs 
that are update-programs and when they should be executed is time consuming and error-
prone without appropriate tool support.   

One may question when programs of the other categories are executed since they are 
not executed when envMake run is requested.  As mentioned, type-programs are never 
executed.  Insert-programs are executed as part of a system installation (next section) and 
maintenance (including type evolution).  Startup-programs typically call persistent 
procedures to initiate a particular task or invoke the menu of an interactive application.  
These programs are executed on user request only.  Drop-programs are normally created 
and executed ad hoc but could be automatically generated and executed by a more 
sophisticated version of EnvMake (Section 7.6). 

7.4.4 Installation 
When installing bindings into a persistent store, the installation-order is significant.  That 
is, a binding must be inserted before it can be used.  For example, an environment must 
be created before it can be populated, a location must be created for a procedure before 
its L-value can be updated, etc.1  EnvMake provides automatic installation.  When the 
files of a PAS have been stored in the respective directories of the file system, the 
necessary installation into the persistent store is provided by envMake install 
which performs the following tasks: 

i) compilation of type-programs (in topologically sorted order) 

ii) compilation of other programs (in any order) 

iii) execution of insert-programs (in topologically sorted order) 

iv) execution of update-programs (in any order) 

                                                 
1 The author experienced difficulties when installing a relatively large piece of software developed by 

others (a modified version of the NinN compiler).  The original Makefiles could not be used since 
they had not been updated in accordance with the changes to the code.  The installation-order was 
eventually determined by trial-and-error. 

160 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

The type-programs are compiled (by the nps command) in a topologically sorted order.  
Then the rest of the programs are compiled (if needed) in any order.  Only insert- and 
update-programs are executed in an installation.   

7.5 Implementation  
EnvMake is implemented in Napier88, and Maps [Atkinson et al. 1990] are heavily used.  
The tool is tightly integrated with TSIT (Chapter 5).  All the internal data structures of 
EnvMake containing information about dependencies, program categories, timestamps, 
etc. are based on the thesaurus information.  The internal EnvMake information is 
updated immediately after the TSIT program analysis and subsequent thesaurus update.  
The actual update of timestamp information is managed by EnvMake itself,1 but the files 
being operated on are those registered with TSIT (Section 5.4).  Hence, any addition, 
deletion or renaming of a file belonging to the actual PAS must be registered with TSIT 
before the change becomes visible in EnvMake.   

In the current implementation the type databases are given the same names as the 
names of the PASs or subsystems, which can be extracted from the files holding the 
corresponding type-programs: •PAS or subsys®_types.N. 

7.5.1 Problems with Ensuring Up-To-Date Information 
A potential problem pertains to EnvMake’s build management feature of automatic 
program executions.  Only programs of certain categories (insert-programs and update-
programs) should be executed, and the order is significant (insert-programs before other 
programs, etc.).  The order is determined on the basis of the thesaurus information, which 
provides the input to the topological sorting algorithm.  If EnvMake has detected a file as 
being changed after inspecting the timestamp information, it might be the case that the 
change concerns code relating to insert, update or use of bindings which in turn may 
affect the execution order.  Theoretically, a program may also have changed its category 
(e.g. from startup-program to update-program) indicating that the program now should be 
automatically executed.2  Such changes will not be detected before the next TSIT 
analysis and thesaurus update.  Therefore, the strictly correct sequence of EnvMake’s 
tasks would be as follows: 

1) Inspect time stamps of the registered files. 

2) Compile all new or changed programs. 

3) If no compilation errors, let TSIT analyse the new or changed programs and update 
the thesaurus correspondingly. 

4) Update dependency tables and program category information. 

5) Perform topological sort. 

6) Execute the programs according to the (possibly new) order. 

                                                 
1 The time information provided by the Unix file system is used to detect when a file was last changed. 
2 Programmers should be encouraged not to change categories.  Such an undisciplined practice makes 

maintenance difficult, particularly in large projects with many people involved (see Section 6.6). 

161 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

A significant overhead is caused by the third step.  So, due to performance reasons, that 
step is sacrificed (implying that also the fourth step is ignored since the thesaurus 
information is unchanged).  This is reasonable since in practice very few changes affect 
the execution order, and change of program category is extremely rare.  If the thesaurus is 
updated (say) every night, the analysed information is still relatively up-to-date.  
However, if a programmer knows that he or she changed code pertaining to insert, update 
or use of bindings, then a thesaurus update should be requested promptly.   

Another problem pertains to the compilation order of type-programs which is 
determined on the basis of dependencies among type definitions.  These dependencies 
can be inferred from the thesaurus information.  This is too late, however, since the 
programs must already be fed into TSIT in a topologically sorted order.  Like the 
compiler, TSIT must first analyse the program containing certain type definitions before 
it can analyse the programs that use these type definitions.  To solve the problem, 
EnvMake is enhanced with a special procedure that analyses type-programs (EnvMake 
detects if they really are type-programs) with the only purpose of determining the order 
among them.  A two-pass analyser does the job.  In the first pass all the type definitions 
are found; in the second pass all the uses are found.  A type dependency table is then 
generated which is taken as input by the topological sorting algorithm. 

7.5.2 Problems of Naming and Identity 
The current EnvMake implementation is name-based only.  The SPASM constraints are 
checked under the assumption that environments are uniquely identified by their names 
and by paths of named environments from a persistent root if such paths exist.  If there 
are no paths, an environment is assumed to be identified by its name only.  It is also 
assumed that a given environment has only one name.  The dependency tables (Section 
7.2) on which the build management features of EnvMake are based, rely on these 
assumptions.  Problems may occur in the following three cases: 

i) Environments are returned by procedures. 

ii) Vectors, structures, variants, procedures, etc. have environments as elements, fields, 
branches, parameters, etc.  

iii) Different identifiers denote the same environment. 
The misleading warnings that might be given in these cases can be compared to grammar 
checkers that suggest changes in complex but entirely correct sentences.1

7.5.2.1 Returned Environments 

If a procedure returns an environment such as mk_env in p1.N2 in Figure 7.3, then the 
environment name used within the procedure body (e in that example) generally differs 
from the name of the identifier being assigned that environment in a call to the procedure 
(list in p2.N).   
                                                 
1 The suggestion does not necessarily concern the fact that the sentence is complex, but the sentence is 

too complex for the grammar checker to parse it correctly. 
2 This is an example from a real application (the maps library). 

162 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

 
 

p1.N 
use PS() with  lib : env;  
   date : proc( -> string ); 
   environment : proc( -> env ) in 
     in lib let mk_env = proc( -> env) 
 begin 
     let e = environment() 
     in e let created = date() 
     e 
 end 
 
p2.N 
use PS() with lib : env in 
use lib with mk_env : proc( -> env ) in 
in lib let list = mk_env() 
 
p3.N 
use PS() with lib : env in 
use lib with lists : env in 
use lists with created : string in {...} 

Figure 7.3:  Environment as result type 

Moreover, there is no path associated with the environment in the procedure body.  For 
example, checking that the binding created inserted into e is ever used is impossible since 
the binding is identified as e\created when it is inserted and as PS()\lib\list\created if it is 
used as an element in the list environment (p3.N). 

EnvMake would in this case report that e\created was unused and 
PS()\lib\list\created was undeclared, so EnvMake would issue unnecessary warnings.  
Probably what would happen, however, is that a programmer would use TSIT to find all 
occurrences of created and would then resolve the problem.   

Except for four standard procedures, there are only two procedures in the eight 
analysed applications that return environments, which indicates the problem is not that 
severe. 

7.5.2.2 Environments in other Data Structures 
As shown in Table 5.11, if an element of a vector is accessed, only the vector name is 
registered in the thesaurus.  This is reasonable since a vector element does not have a 
name but is identified by an index.  If a structure, variant or procedure has environments 
as fields, branches or parameters, then the environments are “identified” by the name of 
the field, branch or parameter in addition to the name of the associated structure, variant 
or procedure.  However, this does not ensure globally unique naming and may com-
promise the quality of the EnvMake support.  Nevertheless, in most cases the names are 
unique within an application.   
 
 

163 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

env BindingInserted 372 
env ProcParamDecl 103 
env StructFieldDecl 1 
env ValueDecl 388 
env Total 864 

Table 7.8:  Declaration of environments1

Among the 864 declarations2 of environments in the analysed applications, there are 103 
cases where environments are procedure parameters, one case with an environment as a 
structure field and no cases where environments are variant branches or vector elements 
(Table 7.8).  There are 372 cases in which environments are declared directly3 into other 
environments (usually persistent), and 388 cases in which they are declared directly but 
not into other environments. 

7.5.2.3 Aliases to Environments 
A potential problem occurs if several identifiers in a program or in the persistent store 
denote the same environment.  For example, in the following code a variable x is declared 
in the environment e1.  Then e1 is being assigned to another environment e2, so that e1 
and e2 denote the same environment.  Finally, x occurs in a use-clause of e2. 

in e1 let x := 2 

 e2 := e1 

use e2 with x : int in ... 

EnvMake would at present claim (incorrectly) that the variable x in the environment e1 
(identified as e1\x) is not used and that x in e2 (identified as e2\x) is not declared.  To 
solve this problem, some kinds of alias list could be constructed by sophisticated source 
code analysis in a future version of EnvMake or TSIT.4  Also, since the thesaurus itself is 
located in the persistent store, it could be enhanced in that its entries could contain 
references to the bindings themselves (rather than only containing their names).5  This 
might enable the thesaurus to store information about different identifiers referring to the 
same environment, and thus a list of aliases could be constructed for each environment.  
EnvMake could in turn use this information to improve the quality of its analyses.  The 
need for such alias lists, however, does not seem especially pressing.  There are only 
three assignments involving environments (0.1% of all assignments) in the analysed 
applications. 

7.6 Future Development of EnvMake 
The SPASM constraint that all programs should belong to exactly one of the five 
categories described in Section 6.2.2 makes individual programs easier to understand 
(and thus to write, update, manage, etc.).  On the other hand, there will be many more 
programs, which leads to it being potentially harder to comprehend the total system.  

                                                 
1 This is an excerpt from a large table in [Sjøberg 1992]. 
2 Use-clause declarations are excluded. 
3 That is, not as part of another structure (except environments). 
4 Hyper-programming (Section 8.2.6) may finesse this problem. 
5 See also Section 8.2.5. 

164 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

Supporting tools for program management (automatic generation, compilation and 
execution) are therefore essential.  

This section describes a tentative proposal (i.e., no implementation and no 
evaluation) for how EnvMake can be enhanced to offer support for the persistent location 
binding methodology when also the type of a location is changed (not only the contents).  
For example, if a procedure type is changed, the same location cannot be used any more.  
It is necessary to drop the old location and create a new location with a new procedure. 

Figure 6.9 in Section 6.5.1 summarises the necessary steps to be carried out in 
compliance with a certain strategy involving four files per binding.  The steps presented 
below are compliant with that strategy.  For each step the perpetrator is indicated 
(EnvMake or the programmer).  So, if the type of a binding is to be changed, the 
following steps should be carried out: 

1) EnvMake drops the existing location by executing the program in 
•binding®_drop.N. 

2) EnvMake removes the old •binding®_insert.N. 

3) User edits •binding®_update.N, and EnvMake infers the new type by analysing that 
program.1

4) On the basis of the information obtained in step (3), EnvMake generates a new 
•binding®_insert.N with a stub.  If the binding to be created is a procedure, then the 
stub includes a call to the uninitialised or uninitialised_void procedure (for security 
and debugging purposes)2 depending on whether or not the procedure returns a 
result.  Then EnvMake compiles and executes •binding®_insert.N. 

5) EnvMake recompiles and re-executes •binding®_update.N. 

6) EnvMake presents information about all the programs that use the binding, 
indicating which must be edited by the programmer.  EnvMake (re)compiles and re-
executes as required. 

If a new binding is to be created from scratch, steps (1), (2) and (6) should be ignored. 
EnvMake can also be enhanced to support other aspects of construction and 

maintenance, such as organising directories and environments.  For example, assume that 
a programmer manually creates the root directory of a PAS and (recursively) all 
subdirectories.3  The path of the root directory could then be passed to EnvMake which 
in turn could construct a matching hierarchy of environments in the corresponding 

                                                 
1 Alternatively, the programmer specifies the environment path, name and the new type interactively in 

a dialogue with EnvMake. 
2 See Section 6.2.1. 
3  A possible enhancement is that the programmer specifies all the directories in a shorthand notation or 

in a dialogue and leaves the actual creation to EnvMake. 

165 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

•PAS® environment (or vice versa).  In this way EnvMake would ensure isomorphism 
both in structure and naming (cf. SPASM constraint 7a). 

A whole class of tools that would enhance the EnvMake programming environment 
can be envisaged; some examples follow. 

• EnvMake could automatically generate use-clauses. 

• EnvMake could optimise programs to convert use paths into hyper-references and do 
the inverse to prepare code for shipment. 

• EnvMake could reflexively generate, compile and execute programs that fetch 
remote libraries when they are used the first time. 

• EnvMake could store annotations in environments to improve presentation and to 
support various forms of automation. 

The first two proposals are discussed further in Section 8.2. 

7.7 Summary 
This chapter has described a tool called EnvMake which supports application 
construction and maintenance in a persistent programming environment.  Even though 
EnvMake has been developed in the context of Napier88, the principles behind the tool 
apply to all persistent programming languages providing higher-order procedures and L-
value binding to persistent locations. 

EnvMake has been tailored to support the programming methodology and the 
SPASM model described in the previous chapter.  For each violation of a SPASM 
constraint, EnvMake produces a warning message and an indication of the source of the 
violation.  It is then the responsibility of the programmer to rectify the inconsistent state.  
(An enhanced version of EnvMake could often offer a solution.)  Several of the SPASM 
constraints prevent situations liable to provoke run-time errors.  The corresponding 
EnvMake checks are performed at “EnvMake-time” (which is between compile-time and 
run-time)1 and, as such, comply with the principle of “eager checking” [Atkinson et al. 
1988], i.e., performing as much as possible of the checking as early as possible.   

As part of the persistent location binding methodology, some programs should only 
be recompiled after change, some should also be re-executed (those that update code in 
the persistent store), programs with type definitions should update the corresponding type 
databases when they are compiled, etc.  Traditionally, programmers have carried out 
these tasks manually, or they have created and manually maintained Unix Makefiles for 
the tasks.  Both these strategies are tedious and error-prone, especially for large PASs.  
On the basis of the thesaurus contents, EnvMake infers which programs should be 
recompiled, which ones should also be re-executed, etc.  This information, together with 
                                                 
1 EnvMake is based on the thesaurus information which in turn is extracted from source programs after 

they have been checked for compilation errors (Section 5.4). 

166 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

timestamp information about the last change and compilation of a program, enables 
EnvMake to automatically perform all the needed recompilations and re-executions.   

The build management features of EnvMake support incremental update of programs 
stored in persistent locations as long as the types of the locations are unchanged.  At the 
end of this chapter, it was proposed how EnvMake could automate most of the tasks 
needed to change the location type as well. 

Automatic build management tools have also been developed in other programming 
environments, mostly for C (e.g. THINK C™ for the Macintosh [Symantec 1989]).  
However, persistent programming environments are generally more sophisticated in that 
they include issues that were traditionally dealt with by the operating system or DBMS, 
so they require correspondingly more sophisticated build management tools, such as 
EnvMake. 

EnvMake imposes a certain view on the programming process.  There is a trade-off 
between support and flexibility.  The more a programmer complies with the model of 
EnvMake, the more assistance EnvMake provides.  The conventions and constraints 
imposed by EnvMake should not be regarded as a hindrance.  On the contrary, they 
encourage the use of the persistent store in a disciplined way and assist in providing a 
common model for construction and maintenance of PASs in a community of software 
builders.

167 



CHAPTER 7:  ENVMAKE – A PERSISTENT PROGRAMMING TOOL   

 

168 



 

Chapter 8 

Conclusions and Future Work 
 

One of the most challenging problems of building and maintaining large, long-lived data-
intensive application systems is to cope with all the changes that inevitably will be 
imposed on the systems over time.  The motivation for the research presented in this 
thesis is to simplify and aid the process of changing such systems by providing 
supporting models, methodologies and tools.  The thesis has demonstrated that 
automatically generated thesauri prove a suitable basis for achievements in that direction.  

It is sometimes argued that change is a consequence of poor design or erroneous 
implementation.  Naturally, some changes arise from these causes, and improved 
techniques for reducing them are valid research.  However, the major cause of change is 
perceived to be user initiated, and the thesis takes the view that it is important to facilitate 
such change so that the people using a persistent application system are not discouraged 
from innovation. 

Most of the research was conducted in the context of the strongly typed, persistent 
programming language Napier88.  The ideas behind the introduced SPASM model, the 
methodologies and the EnvMake tool, however, are independent of Napier88 and can 
thus be applied to any persistent or database programming environment (e.g. persistent 
object-oriented systems) in which programs and other data reside in a persistent store. 

8.1 Summary – Utilisation of Thesauri  

The basis for the work presented in this thesis is automatically created and maintained 
thesauri which contain extensive information about all names used in the implementa-
tions of persistent application systems.  Our understanding of a system is closely related 

1 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

to the use of names.  Names are chosen as a focus on the assumption that most of the time 
they will be used consistently by people throughout the life of a system. 

8.1.1 Quantifying Evolution 

It is commonly known that there is a significant number of changes going on in the 
application software industry, but the kind and scale of various forms of change should 
now be quantified.  This thesis has introduced a research direction concerning the 
problem of quantifying schema evolution.  A relational database application, a health 
management system, was studied in depth during an 18 month period.  The study reveals 
that schema changes are significant both in the development period and after the system 
has become operational.  The main results were: 

• Number of relations: 139% increase. 

• Number of fields: 274% increase. 

• Every relation was changed. 

• 35% more additions than deletions. 

The consequences of the schema changes on the application programs have also been 
measured.  The results confirm the need for change management tools. 

The study reported has wider applicability than just to traditional database systems.  
The data descriptions and consequently dependent data (including programs) of all 
persistent application systems will inevitably have to be changed in order to reflect the 
changing user needs.  That is, schema evolution in traditional databases corresponds to 
class evolution in object-oriented database systems, to type evolution in applications 
developed in strongly typed, persistent programming languages (e.g. Napier88) and, at a 
higher level, to changes to application models described in the framework of conceptual 
data models (e.g. the Entity-Relationship model). 

The measurements were obtained by the HMS thesaurus tool which analyses the 
database schemata and application programs.  The tool spans all the languages used to 
build the whole persistent application system, its user interfaces and its databases.  
Information about programmer-introduced names denoting relations, fields, screens, 
actions, queries, update functions, etc. is extracted and inserted into the thesaurus.  
Changes to the set of occurrences of these names are also recorded.  In particular, the tool 
provides information about how many screens, actions, queries, etc. may be affected by a 
potential schema change and can thus be used to estimate the costs of this change.  Some 
of the statistics presented and the thesaurus’ raw data reveal possibilities concerning 
optimisation strategies.  

2 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

We have only been able to find one report on similar measurements [Marche 1993].  
In that case, change1 was measured at the data modelling level.  Also this study confirms 
the significant extent of change.  In general, change statistics from other projects should 
be collected, enabling systems in various application domains to be compared in a larger, 
more representative study. 

The causes of change may also vary from system to system.2  These causes, 
however, are another research issue and are regarded as irrelevant in our context.  The 
key point is that our measurements of a real, industrial system confirm that designers of 
tools for the management of large, long-lived systems involving databases must address 
the problem of changes to schemata.  The traditional view of first defining a (fixed) 
schema and thereafter developing the dependent application programs has proved 
inappropriate. 

8.1.2 Thesauri in a Strongly Typed Persistent Environment 

Persistent languages potentially support construction and maintenance of long-lived, 
data-intensive, application systems.  To exploit the benefits of persistence, however, sup-
porting models, methodologies and tools must be developed.  Automatically generated 
thesauri are a suitable platform for such development. 

The Thesaurus-based Software Information Tool (TSIT), based on the same ideas as 
the HMS thesaurus tool, was implemented for and in the strongly typed persistent 
language Napier88.  The heart of TSIT is the thesaurus which keeps track of identifiers of 
all kinds used in the application.  Information such as type, container, context, 
declaration/use, etc. is recorded for each identifier occurrence.  TSIT provides impact 
analysis (consequences of change) and a simple query interface (Figure 8.1).  TSIT can 
also be used as a tool to generate measurements of various kinds.  In particular, to 
support the arguments of the thesis, eight Napier88 applications were measured in detail.  
In total, 51328 lines of code with 84501 name occurrences in 367 programs were 
analysed.  The measurements comprise the use of names, the use of various language 
constructs, the extent of inconsistencies, how programs interact with environments in the 
persistent store and other programming issues.  Some specific measurements were 
undertaken in response to questions about language usage from language designers at the 
University of St Andrews. 

 
 

                                                 
1 No measurements on consequences of change were reported. 
2 In the HMS case considerable investment (much in excess of coding costs) went into design and 

planning.  Changes were still encountered due to changing organisational needs, changing regulations 
and the addition of major new subsystems. 

3 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

 
Thesaurus

 Window-based 
 Interface

    Enhanced Interface

 Recursive 
 Queries

 Impact 
 Analysers

    TSIT

 Cross 
 Referencers

 Consistency 
 Checkers

 Methodology 
 Supporters

 Build  
 Managers

     EnvMake 

 Measurement 
 Tools

 

Figure 8.1:  Thesaurus-based tools 

Models and methodologies for persistent software development are still in their infancy, 
but there are already many activities that are suitable for automation or that would benefit 
from supporting tools.  One example of such a tool is EnvMake which also utilises the 
thesaurus information (Figure 8.1). 

In general, the use of persistence has made it easy to build programs and applications 
working on top of the thesaurus.  Two examples are the enhanced interfaces to the 
thesaurus – a sophisticated query language [Trinder 1991] and a window-based, menu-
driven interface [Sjøberg et al. 1993]. 

The detailed information about application programs and data provided by the 
thesaurus, and its user interfaces, enable software builders and maintainers to explore and 
extract information of particular interest.  By investing in creating tailored interfaces, 
they can study evolution and other problems of application construction and maintenance 
from their specific points of view. 

4 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

8.1.3 Models and Methodologies 

Comparing file-based program construction methodologies with those based on persistent 
stores, we observe that in the persistent store case all possible data structures and their 
types are accommodated and preserved when data is stored for later use or passed 
between programs.  Typically, file-based program construction has little support from the 
type system and perforce loses structural information as data is mapped to a sequence of 
bytes.  Although persistence leads to more sophisticated interfaces between program 
parts using arbitrary modules, we believe it will ultimately yield benefits because of the 
significant structural information that is conveyed between programs.  Thesaurus tools 
will be better able to infer dependencies and verify model constraints by analysis of this 
richer structural information.  However, to fully benefit from the new technology, 
comprehensive programming methodologies are needed.  

This thesis takes a further step in that direction; it has introduced a construction and 
maintenance methodology together with a structured persistent application system model 
(SPASM) that specifies an architecture for application systems developed in Napier88.  
SPASM defines a set of constraints with which each suite of application software should 
comply.  At the time of writing, there are 24 constraints like the following: “a binding 
inserted into the store, not intended for export, should be used somewhere within the 
application”, “all type definitions should be used within the application”, “there should 
be exactly one program updating a procedure (or some other kinds of value) bound to a 
persistent location initialised with a stub”, etc.  A violation of a constraint could be a 
logical error, or it may just indicate a situation that might eventually cause problems.  
Inconsistent states will be the normal case, particularly during the initial development.  
Programmers may find it helpful to be able to request that certain subsets of these 
inconsistencies be enumerated. 

Both SPASM and the methodology are general in that they are independent of the 
applications being implemented.  They are, however, couched in terms of the program-
ming language (Napier88) even though most of the principles they encode are applicable 
to any persistent or database programming environment.  

Methodologies and constraints could be felt as a burden by some programmers since 
they may already have adopted their own more or less good programming style.  
Nevertheless, in the business of large-scale software application development, with 
typically many people on the same project, it is crucial that people work in a disciplined 
way.  Models and methodologies should be perceived as supportive rather than restrictive 
if they are based on well-founded principles and the common experiences of several 
programmers.  The availability of supporting tools may, however, influence the choice of 
methodologies.  Some approaches may be very convenient if there are corresponding 

5 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

tools but infeasible if there are not.  The next section describes EnvMake – an example of 
such a tool. 

8.1.4 EnvMake 

EnvMake is a thesaurus-based tool that supports persistent programmers in the process of 
creating and maintaining large application systems.  The provision of persistence, 
enabling applications and tools to be contained in the same store and implemented in the 
same language, creates new possibilities for enhanced and more integrated CASE tools.  
EnvMake is a demonstration of what such tools could be like.   

There are many tools available to support application development using file-based 
code, e.g. RCS, Make, awk, grep, etc.  Analogous tools are required to operate on code in 
persistent stores.  Potentially these tools can be superior to those operating on byte-
stream files because a persistent store is coherent, transactional, structured and typed.  
Programs are no longer large discrete units; instead they are smaller and typically extract 
and use subprograms from the persistent store.  Under this model libraries are potentially 
easy to use, and large applications can be constructed incrementally.  Code reuse could 
also be simplified with suitable tools.   

The information required by EnvMake is generated automatically.  Most of the 
needed information is obtained directly from the thesaurus, but EnvMake also holds some 
internal data structures, e.g. for keeping track of time stamps required for determining 
necessary recompilation and re-execution.  The present features of EnvMake include 
visualisation of structures and dependencies of an application, methodology support, 
checking model adherence and incremental build management. 

8.1.4.1 Structure and Dependency Visualisation 

EnvMake provides programmers and other parts of EnvMake itself (the SPASM 
checking and build management components, see below) with a table showing 
dependencies between programs that insert a binding and those that update the binding – 
a so-called “insert/update dependency table”.  There are similar dependency tables for 
insert/use, update/use, drop/stored, etc.  Another form of visualisation is matrices 
showing which programs perform which operations on which environments in the 
persistent store. 

8.1.4.2 Supporting Steps of the Construction and Maintenance Methodology 

EnvMake has been designed to support a strategy for implementing the persistent 
location binding methodology.  EnvMake automatically generates the programs that 
insert or drop a binding.  The user only needs to create or edit the program that updates 
the location with a meaningful value.  In addition, if the type of the binding changes, the 

6 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

user must change the programs using the binding.  These programs are indicated by 
EnvMake. 

EnvMake also assists in other aspects of construction and maintenance such as 
organising the structure of environments in the persistent store and directories in the file 
system.  EnvMake ensures isomorphism and adherence to naming conventions by 
actively taking part in the creation and maintenance of files and environments. 

8.1.4.3 Checking the SPASM Constraints 

The compiler of a programming language already performs many forms of consistency 
checks within a program such as type checking, ensuring declaration and unique naming 
of identifiers, etc.  EnvMake is concerned with complementary checks such as those 
between programs and those between programs and bindings in the persistent store.  
Being specific, EnvMake checks the 24 SPASM constraints.1

Several of the constraints are based on a categorisation of programs according to 
their semantics.  On the criteria of how they operate on the persistent store and where 
types are defined the programs are divided into the following categories: 

• Type-program – a program whose contents are exclusively type definitions. 

• Insert-program – a program that inserts at least one binding but neither updates a 
persistent location nor drops any binding. 

• Update-program – a program that updates at least one persistent location but neither 
inserts nor drops any binding. 

• Drop-program – a program that drops at least one binding but neither updates a 
persistent location nor inserts any binding. 

• Startup-program – a program that uses at least one binding but neither updates a 
persistent location, inserts nor drops any binding. 

This categorisation, which is done automatically by EnvMake, is also the basis for the 
build management features described below. 

8.1.4.4 Build Management 

At present, many Napier88 programmers use Make to install software and to help rebuild 
applications after change.  When using Make, the programmers have to manually work 
out the order of installing components into the persistent store.  This may be a difficult 
task for non-trivial applications.  A component must be inserted into the store before it 
can be used by another component.  EnvMake determines the correct installation order by 
topological sorting and initiates execution of the respective insert-programs. 

                                                 
1 At the time of writing, some of the checks still have to be implemented. 

7 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

Moreover, when using Make, the programmers also have to manually specify 
compilation and execution dependencies such as the following: 

 

• if a type-program is changed, all dependent programs should be compiled; 

• all type-programs must be compiled before other (dependent) programs; 

• type-programs must be compiled in correct order if there are dependencies among 
them;  

• the type database associated with a type-program should be updated; 

• a binding must be inserted before it is referred to in another insert-program (e.g. an 
environment must be inserted before it is populated). 

EnvMake automatically infers the necessary dependencies from the thesaurus and 
initiates (re)compilation and (re-)execution.  Hence, there is no notion of an 
(Env)Makefile which has to be created and maintained manually. 

8.2 Future Work – Further Utilisation of Thesauri 

The idea of a central repository as a vehicle for tool integration is currently being pursued 
by several software vendors.  IBM’s AD/Cycle [IBM 1991] is a collection of application 
development tools and a platform providing services for the integration of these tools. 
The Repository Manager [IBM 1990] is part of the AD/Cycle framework and provides an 
interface to a repository containing information utilised by the other tools.  DEC, ICL and 
other companies have similar proposals.   

This thesis has demonstrated that the fine-grained, name-based thesauri successfully 
serve as information repositories for several tools.  The provision of persistence enables 
the thesauri, as well as the tools, to be contained and integrated in the persistent store like 
any other values.  It should be emphasised that because the thesauri are in the same store, 
the thesaurus can be automatically constructed and updated with guarantees of 
consistency with the data that they describe.   

At present, the whole thesaurus is updated regularly or on user request.  An 
incremental update can be requested through an interactive interface.  Updating the 
whole thesaurus is inefficient since generally only a fraction of the associated PAS has 
changed.  This problem will be exacerbated as the PASs become larger.  The current 
feature for incremental update does not ensure up-to-date information as it relies on the 
programmer remembering to analyse the changed programs.  When improved hardware is 
available (Section 8.3), the performance cost of updating the thesaurus during 
compilation may be affordable.  Integrating the thesaurus with the compiler should 
enable incremental update and ensure up-to-date information. 
 

8 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

 

 
  Thesaurus

 Window-based 
 Interface

     Enhanced Interface

 Recursive 
 Queries

 Impact 
 Analysers

      TSIT

 Cross 
 Referencers

 Consistency 
 Checkers

 Methodology 
Supporters

 Build  
Managers

     EnvMake 

 Measurement 
 Tools

 Schema 
 Managers

 Data Modelling 
 Tools

 Version and 
 Configuration 
 Managers

 Program 
 Generators

 Diagram 
 Generators

 Enhanced 
 Measurements 
 Tools

Future tools

Existing tools

 

Figure 8.2:  More thesaurus-based tools 

Several programming support tools, such as EnvMake, have already been built on top of 
the thesaurus kernel, and various others are expected to follow (Figure 8.2).  The work 
described is thus a step towards a Persistent Software Engineering Environment. 

Proposals for future work on schema management (schema evolution), configuration 
management, some sort of automatic program generation and further measurements are 
described in the following sections.  Figure 8.2 also shows other examples of tools that 
could benefit from the thesaurus information: 

9 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

• Version management:  A thesaurus reflects the state of an application in a certain 
state.  If an application has several versions of its software, then there should be one 
thesaurus for each version.   

• Data modelling:  A thesaurus could also store information about names related to 
data modelling [Cooper 1990b, Cooper and Qin 1992].  It could record dependencies 
between concepts used at the data modelling level and the corresponding 
implementation at the (low level) programming language level.  Ultimately, the 
thesaurus tool could collect and correlate information from all phases of the software 
life cycle.  It is still crucial, however, that all the information is automatically 
generated (the tool could operate on design structures, for example) and that the 
generation is decoupled from the use of other tools. 

• Diagram generation:  The structure of the application programs and persistent store 
could be visualised in terms of Entity-Relationship diagrams or diagrams of other 
kinds generated automatically from the thesaurus information. 

8.2.1 Schema Evolution 

The problem of schema evolution, now identified as a major research issue, arises in any 
system capable of supporting PASs and is independent of the supported data model.  
However, Napier88 has a sophisticated type system (as opposed to relational systems, for 
example) making it a suitable language in which to experiment with strategies for 
planning and implementing incremental schema change. 

Types provide a way of controlling evolution, by partially verifying programs at each stage.  
Since typechecking is mechanical, one can guarantee, for a well designed language, that certain 
classes of errors cannot arise during execution, hence giving a minimal degree of confidence 
after change.  This elimination of entire classes of errors is also very helpful in identifying those 
problems which cannot be detected during typechecking.  [Cardelli 1989a] 

Some typing schemes to accommodate schema change in Napier88 have already been 
proposed [Atkinson 1993].  The challenge is to ensure that all consequential changes are 
dealt with by propagation throughout the system and that no unnecessary changes occur 
perturbing working practices and operational software.  For example, if a new 
information carrying capacity is added to the schema, programs that do not use it should 
not change.  However, at least one program must be created or changed to collect the 
data, and all programs that display closely related data should be considered for 
amendment to show the new data.  This will in turn propagate to new screen designs and 
changed working practices.  The semantic difficulties concerning addition require human 
intervention.  It is thus impossible to completely automate the consequences of addition 
which is the most common kind of change (followed by deletion) according to the HMS 
measurements.  Renaming does not occur so frequently and may be absorbed by 

10 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

organising the software appropriately (though a model for automatic renaming should be 
relatively simple).  In contrast, a model for automatic deletion is conceivable. 

TSIT is already an advisory system that returns a list of potential places where the 
change should be propagated.  A more comprehensive analysis including cost estimation 
of various schema changes is proposed. 

Napier88 has structural type equivalence which makes it hard to find all instances of 
a certain type compared with a language with name equivalence.  In languages with name 
equivalence the type of a value is associated with a certain type declaration, whereas in 
structural equivalence the type is represented as a graph independent of any type 
declaration.  By using the thesaurus information, one can easily find the definition of a 
type identifier and all the declarations in which it is being used.  However, in any 
declaration the type can be applied anonymously without using a name for it (although 
this may be awkward for the programmer if the type is complex). 

In the recent Napier88-in-Napier88 compiler [Cutts 1993a] type graphs are stored in 
environments in the persistent store.  Hence, to overcome the problem of structural type 
equivalence, one possibility would be to let the thesaurus store unique hyper-references1 
(returned by the compiler's type checker) to the type graphs in the persistent store.  
Extending the thesaurus to contain type information as well would enable various forms 
of type comparison.  Automatic detection of type change might then be possible. 

Although changing a procedure type is not a schema change in Napier88 (as opposed 
to object-oriented systems with procedures or methods defined within a class definition), 
it is a form of change with potentially serious consequences.  For example, all programs 
calling the actual procedure must be edited.  One question is to what extent it is possible 
to automate or support correct change propagation to all dependent programs. 

In addition to tools, also languages should be designed to support evolution.  
Language design should be influenced by the need to recognise dependencies.  As an 
illustration, consider projection of variants.  Programmers may want an alternative to the 
project statement that terminates complete requiring all the branches to be processed.  If 
a branch has been added to the variant type, but the programs that use the type have not 
been changed accordingly, the compiler should give an error message. 

8.2.2 Persistent Software Configuration Management 

Most software configuration management tools operate independently of data dictionary 
tools [Holloway 1988b].  One of the problems is that a data dictionary holds fine 
granularity information, whereas common software configuration management tools 
operate at the coarse level of files.  In a persistent programming environment, code 

                                                 
1 See hyper-programming, Section 8.2.6. 

11 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

resides in the persistent store in the form of procedures.  A candidate for grain size could 
thus be the procedure.  There is, however, no intrinsic difference between procedures and 
values of other kinds in a persistent environment.  An alternative level could therefore be 
the level of the values that are dealt with in the persistent location binding methodology – 
typically procedures and complex data structures (a table of geographical information, a 
list of images, etc.).  The challenge is to find a level that gives extensive support, but at 
the same time is intellectually manageable and does not lead to excess overhead and poor 
performance [Feldman 1991]. 

8.2.3 Extensibility of SPASM 

The default SPASM constraints, which are checked by EnvMake, may not be adequate or 
sufficient in all cases.  Hence, an enhancement of EnvMake would be to facilitate 
additional user-defined constraints.  One approach to providing such an extensibility 
would be to allow the user to specify constraints in some kind of formal language.  
Automatic generation of corresponding Napier88 code for checking the constraints, 
however, may prove difficult.  Alternatively, EnvMake could include a toolkit that 
supports users in creating the constraint checking code themselves.  Extensions in this 
direction might benefit from work by Stemple and Sheard [Stemple 1989, Sheard and 
Stemple 1989, Sheard 1991].  Future work should also take into consideration 
experiences with languages and tools supporting constraint specification such as CCEL 
[Meyers et al. 1993] for C++ and AdaPIC [Wolf et al. 1989] and PLEIADES [Tarr and 
Clarke 1993] developed in the context of Ada. 

8.2.4 Automatic Generation of Use-Clauses 

Declaring persistent bindings in the scope of a program (use-clauses) is the dominant 
operation pertinent to environments.  This is a tedious task that may impair programming 
efficiency – particularly for large applications with complex type expressions and deeply 
nested environments.  Recent measurements indicate that use-clauses occupy around 13% 
of all code (Section 5.7.9).  Furthermore, from experience the use-clauses of a new 
program are often created by copying use-clauses from other programs.  This may result 
in many unused bindings (Section 6.3.3) and thus confusing, verbose and inefficient 
programs.  A use-clause represents a view of an environment (a partial specification of 
the environment's contents), but the precision in the view identification is lost if the view 
contains unused bindings as well.  Hence, programmers may benefit from tools that 
support the process of specifying use-clauses.   

12 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

By utilising the thesaurus information, EnvMake could be enhanced to become such 
a tool.  The design could be as follows.1  If a potential binding name is passed to Env-
Make, EnvMake notices whether the name appears in a standard library, local library or 
elsewhere in the PAS.  EnvMake starts searching for a binding with that name in the root 
environment and then searches downwards, or a search path could be specified by the 
programmer.  If a binding with a matching name is found, EnvMake requests the pro-
grammer for acceptance or rejection.  If acceptance, EnvMake generates the environment 
path, the name, constancy and type of the binding.  If rejection, the search continues until 
the correct one is found.2  If there is no matching occurrence (i.e., the binding to be used 
is not yet in the persistent store) a warning is given, and the programmer has to complete 
the use-clause. 

There are basically two approaches to how and when EnvMake could generate use-
clauses.  One approach could be interactive in that every time a programmer needs to 
declare a binding into the scope of a program, he or she invokes EnvMake with a binding 
name as parameter and requests a corresponding use-clause template. 

Another, probably more convenient, approach would be that the programmer first 
writes the program without the use-clauses and then requests EnvMake to scan the code 
and, if possible, to generate the necessary use-clauses for all used identifiers that do not 
have a corresponding declaration within the program. 

As part of program evolution, identifiers denoting persistent bindings may be added 
to and removed from a program.  Hence, if the program has changed, EnvMake should 
re-generate all the needed use-clauses.  In order to simplify the implementation of such a 
feature, the use-clauses may be constrained to occur all together in the beginning of the 
program (which complies with the convention already adhered to by most Napier88 
programmers). 

In a hyper-programming context, the same extension of EnvMake could replace the 
unsatisfied references by hyper-references directly to the library routines.  Given the 
technology being developed by Munro [Munro 1993], this self-same extension of 
EnvMake could copy missing library functions from a definitive library store into the 
intended persistent store.  Both of these extensions automate a tedious programming 
chore and make use of the store and program construction more efficient. 

                                                 
1  At present, the thesaurus does not provide sufficiently detailed type information for constructed types 

but could do in the near future. 
2 Alternatively, EnvMake could present a list with all matching bindings from which the programmer 

could select the right one or search exhaustively, and if there were one match, use it.  Ambiguity 
could also be resolved by the programmer specifying search order. 

13 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

8.2.5 Referencing Environments 

The current thesauri identify environments by storing their names.  This approach may 
lead to problems when environments are returned by procedures, when they are elements 
of vectors, fields of structures, branches of variants, parameters of procedures, etc. or 
when different identifiers denote the same environment (Section 7.5.2).  An alternative 
way of identifying environments, that may help solve these problems, is to store direct 
references to them, i.e., values of type env (cf. hyper-references described in the next 
section).  All persistent environments of a PAS should be registered in the thesaurus with 
direct references.1  Other occurrences of environments (in use-clauses, drop-clauses, 
insert-declarations, assignments, etc.) could then be compared with the registered 
environments by simple equality tests.  However, several problems of this approach must 
be addressed by future research, for example: 

i) The environments must exist and be accessible at the time of the analysis.  There 
might be cases where programmers want to perform analyses before the 
environments have been created.  Moreover, since Napier88 at the time of writing 
does not provide distribution, analysing other people’s software (Section 5.7) would 
be difficult. 

ii) The performance would be impaired in some cases and improved in others.  For 
example, if the name of an environment occurs in a use-clause, it is faster to store the 
(textual) name during the source code analysis than to create a reference to the 
corresponding environment in the persistent store.   

iii) A reference from the thesaurus to the environment would prevent it from being 
garbage collected even if there were no references from the application programs. 

iv) How should the identity of an environment be conveyed to a thesaurus user, if not by 
its name?  For example, Table 5.1 shows that the environment name is indicated 
after the context attribute of an identifier occurrence (e.g. “UseClause: IO”).  In a 
hyper-programming environment, the name “IO” could be replaced with a “button” 
that could be clicked to access the environment.  Presenting extensive information 
this way may be impractical; printing the information may be infeasible. 

8.2.6 Hyper-Programming 

The notion of persistent hyper-programming has been introduced in the context of 
Napier88 [Kirby et al. 1992, Kirby 1993].  A hyper-program can directly reference the 
values and variables in the persistent store over which the program will work.  The 

                                                 
1 Actually, the current thesaurus definition (Figure 5.1) allows for registering environments with direct 

references, but this option has not yet been used. 

14 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

motivation behind hyper-programming is to provide an integrated programming 
environment that will support the software engineering process in a better way than is the 
case in conventional (including persistent) programming environments.  It is stated that 
the advantages of hyper-programming over conventional programming include the 
following [Kirby et al. 1992]:  

... it allows procedure values to be represented at a source code level; it supports a wider range 
of binding mechanisms; it allows earlier and more sophisticated type checking; it allows more 
succinct program representations; and it supports abstract views of source programs. 

The flexibility and the interactive nature of the gesture-based hyper-programming 
environment [Farkas et al. 1992] may result in a vast number of references or links and 
thus a persistent store that is intellectually unmanageable.  To alleviate this problem and 
to facilitate other software engineering needs, a hyper-world model has been proposed as 
a means to impose structure on hyper-programs [Kirby 1993]: 

The hyper-world model offers the programmer a loose coupling mechanism to application 
spaces or hyper-worlds.  Each hyper-world contains the program components and data used by 
an application, and a schema that describes their relationships.  Each hyper-programming 
system will also have to support additional facilities for ‘programming in the large’, that is, 
building large applications from smaller components.   

From one viewpoint hyper-programming is conceptually simpler than conventional 
persistent programming since files and directories are no longer needed.  (In hyper-
programming the source of a program is also contained in the persistent store.)  From 
another viewpoint, however, it may be conceptually more complex to manage the new 
notion of link, the more flexible binding mechanisms, the possible hyper-world construct, 
etc. which add to all the existing constructs of conventional Napier88.  In any case, to 
exploit and benefit from the new technology, there is a need for supporting 
methodologies and tools.  The experience reported in this thesis of developing 
methodologies and tools for conventional persistent programming will be useful in that 
respect. 

Most of the constraints of the SPASM model are directly applicable to hyper-
programming: “all type definitions and their components should be used”, “bindings 
inserted into the persistent store should be used in at least one program”,1 etc.  Other 
constraints may be adapted to the new concepts.  For example, “a type name should be 
declared only once within a PAS” could be changed to “a type name should be declared 
only once within a hyper-world”.  (If a type definition with the same name and type 
expression is defined in two hyper-worlds at the same level,2 then they should be 
replaced by one type definition in the enclosing hyper-world at the next level up.)  

                                                 
1 This should hold unless the bindings are deliberately created for external use such as library 

components (Section 6.2.3). 
2 A hierarchical structure of hyper-worlds is assumed here. 

15 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

Constraints that are particular to hyper-programming or to the hyper-world model should 
be added (e.g. constraints on the sort of links allowable within a hyper-world and on 
those between hyper-worlds). 

Methodologies supporting incremental program construction may be simpler in 
hyper-programming.  For example, in contrast to the persistent location binding 
methodology (Section 6.2.1), creating locations with dummy values (stubs) are no longer 
necessary1 – a useful value can be created initially in a convenient way. 

An example of something that may be conceptually more complicated is the choice 
between composition-time, compile-time and run-time binding and checking.  This extra 
flexibility may cause confusion for (at least novice) programmers if not accompanied by 
methodologies or guidelines indicating when to choose the various alternatives. 

Conscious naming and naming conventions are essential for the understanding of 
software.  This issue may be challenged in hyper-programming where significant values 
are “named” by being located and hence do not have a textual name.  In the gesture-based 
programming environment, a button can represent a link and can be named as a sort of 
comment insignificant for compilation and execution.  As happens with most forms of 
documentation that is not enforced, programmers may tend to ignore or “forget” to write 
the link names.  If such names exist, however, they could be entered into the thesaurus.  
Tools could insist on names being used.  In general, tools like TSIT and EnvMake in 
conventional Napier88 should be tailored for and benefit from the new hyper-
programming technology.  In addition to the traditional user names, the thesaurus must be 
extended to also contain non-textual “names” in the form of “hyper-identities”.  
Analogously to the dependency information provided by current EnvMake, a similar tool 
should analyse the reference structure in hyper-programming.  Build management 
involving automatic compilation and execution after change is another task. 

The suitability of hyper-programming has yet to be demonstrated.  Supporting 
methodologies and tools are crucial for its success.  Future research will investigate 
whether the hyper-programming environment facilitates sophisticated methodologies and 
tools in a better way than do conventional (persistent) programming environments. 

8.2.7 Further Measurements 

In order to turn computing science into a more exact science, more measurements should 
be obtained provided they are relevant.  Claimed problems and proposed solutions should 
be quantified.  Identifying what is interesting to measure and carrying out experiments 
yielding reliable results, however, are a non-trivial task (cf. the difficulties reported in 
Section 2.3.3).  For example, many human properties that are crucial for change 

                                                 
1 There is one exception, however; dummy locations are needed for mutually recursive procedures. 

16 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

management in large-scale application systems (people’s efficiency, skill in management, 
ability to communicate, etc.) are difficult to measure.  We are certain, however, that 
much more than is the case at present could and should be measured in software 
engineering in particular and in computing science in general.  The thesis is a step in that 
direction, and further work will also reflect this attitude.  

The HMS system was studied in detail and change statistics were collected by 
regular measurements [Sjøberg 1993].  By collecting measurements from other systems 
one might be able to identify properties related to change consequences that are indepen-
dent of application area, data model and implemented system.  Which properties remain 
constant?  For example, in the HMS project the times a field was used appeared to be 
relatively constant; it varied between 5 and 6 times – independent of the application size 
and the stage of the development.  The number of fields per relation, however, increased 
with the number of relations.  Moreover, one could investigate if there is a relatively 
fixed ratio between schema changes and consequences for the rest of the system.   

As a supplement to anecdotal description of user experiences, attempts should be 
made to quantify the potential benefits of new and enhanced methodologies and tools.  
This may be achieved by measuring people's software before and after the methodologies 
have been adhered to and the supporting tools applied.   

To conclude, more information about the extent and kind of change would be useful 
for further research on change management.  In addition to collecting change statistics 
ourselves, for example by recording differences between versions of the thesaurus for 
various Napier88 applications, we may also start collecting measurements provided by 
others [Marche 1993].  All results could eventually be compared in a bigger study on the 
nature of change. 

8.3 Finally 

The work described in this thesis concerns maintenance of large-scale, data-intensive 
application systems.  A persistent programming environment has been enhanced with 
models, methodologies and supporting tools.  At first sight application development 
appears more complicated in a persistent programming language context than in a 
traditional context.  The reason is that issues that earlier were dealt with by the operating 
system or DBMS, and not made explicit, are now dealt with within the programming 
language itself.  Methodologies and tools are needed whatever the programming 
environment. 

Hopefully, further experimentation will suggest a new, higher-level programming 
language that approaches the level of conceptual modelling and thus would be more 
understandable to humans.  Such a language should be designed with the purpose of 
supporting change, and it would benefit from generating strongly typed, persistent code 

17 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

such as Napier88 programs.  This vision complies with classical programming language 
development where a programming language at level n enhanced with methodologies and 
tools at the same level n eventually may result in a programming language at level n + 1 
(Figure 8.3). 
 

 
Methodology

 
Tool

 
Task

support
impose structure

 
Language

 
Task

 

Figure 8.3:  Methodologies and tools as input to a new language 

Holt [Holt 1993] has identified significant steady growth in the performance of certain 
components (processes, stores, networks, etc.) supporting computing.  For example, his 
predictions for computers by the end of the decade are given in Table 8.1. 
 
 
Platform Feature Improvement/Year 1993 2001 

Desktop Performance +50%  50 x 
 Memory +55% 8 MB    256 MB 
 Disc +45% 80 MB       3 GB 

Departmental Performance +60%  40 x 
 Memory +50% 128 MB      8 GB 
 Disc +50% 30 GB  750 GB 

Corporate Performance +50%   30 x 
 Memory +50% 10 GB    250 GB 
 Disc +50% 500 GB     15 TB 

Table 8.1:  Platform improvements 

The improvements, however, are not uniform; for example, the speed of transfer between 
stores improves about one tenth of the increase in store size or processing speed.  This 
may encourage wider use of persistent languages. 

A more important mismatch in the rate of improvement lies in our capacity to build 
and maintain PASs.  The improved and cheaper hardware will encourage the production 

18 



CHAPTER 8:  CONCLUSIONS AND FUTURE WORK  

of even larger and more sophisticated PASs.  However, our intellectual capacity is not 
improving at a measurable rate.   

The work of this thesis will therefore become ever more relevant.  The improved 
computational power will make use of the proposed tools more economic.  The use of 
tools of this nature for managing change will prove essential as a means of coping with 
the new scale of systems with current intellectual capacities.

 

19 



Appendix A:         HMS 
Execution Log 

 

The following excerpt from the execution log shows the number of names of the various 
name types that were generated on 4 July 1990 for the HMS, BED BUREAU application.  
The whole generation took about 50 minutes.  This was, however, during working hours 
on a rather loaded machine.  Normally, the generation starts at 02:00 and then takes less 
than 30 minutes. 
 
BED BUREAU Wed Jul 04 10:51:42 WETDST 1990: 
 
#####################   Generating from hippo   ############### 
cd /usr/hms/test/hippo 
cp /users/dag/hms/scripts/hippoGen /usr/hms/test/hippo 
hippoGen* 
Finding DEFINITIONS of actions, action scripts, and functions, and 
USES of action scripts, datums, queries, and update functions ... 
Name count from this scan: 
    821    821  26516 /users/dag/hms/scripts/hippo.sql 
Finding USES of actions (handlers) – the calls ... 
Name count after adding the action calls: 
    929    929  30238 /users/dag/hms/scripts/hippo.sql 
Finding USES of functions – the calls ... 
Name count after adding the function calls: 
    962    962  31256 /users/dag/hms/scripts/hippo.sql 
  
###################  Second Level, hippo   ################## 
Finding DEFINITIONS of actions, action scripts, and functions, and 
USES of action scripts, datums, queries, and update functions ... 
Name count after adding the first part of the second level: 
    962    962  31256 /users/dag/hms/scripts/hippo.sql 
Finding USES of actions (handlers) – the calls ... 
Name count after adding the action calls, second level: 
    962    962  31256 /users/dag/hms/scripts/hippo.sql 
Finding USES of functions – the calls ... 
Total number of records generated from the hippofiles:  
    962    962  31256 /users/dag/hms/scripts/hippo.sql 
rm hippoGen* 
  
####################   Generating from screens   ############### 
Time:  Wed Jul 04 11:04:08 WETDST 1990 
cd /usr/hms/test/screens 
cp /users/dag/hms/scripts/screensGen /usr/hms/test/screens 
screensGen* 
All the macro DEFINITIONS and USES (calls): 
     74     74   2331 /users/dag/hms/scripts/screens.sql 
Finding the DEFINITIONS of classes and USES of actions, classes, datums, and queries ... 
The total number of records generated from the Display Language programs:  
   1090   1090  35360 /users/dag/hms/scripts/screens.sql 
rm screensGen* 
# Getting the DEFINITIONS of the relations and fields from the schema # 
 
SQL*Plus: Version 3.0.6.1.1 – Production on Wed Jul  4 11:27:37 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
Connected to: ORACLE RDBMS V6.0.26.9.1, transaction processing option – Production 
SQL> SQL>  Disconnected from ORACLE RDBMS V6.0.26.9.1, transaction processing option  
– Production 
The total number of records and fields:  
    333    333  11034 schema.sql 
  
##########  Generating from the Query Dictionary (dd file)..  ######## 
Time:  Wed Jul 04 11:28:13 WETDST 1990 
The total number of records generated from the Query Dictionary:  
   2307   2509  81083 QDThesaurus.sql 

187 



APPENDIX A:  HMS EXECUTION LOG 

The total number of records that will be in the Query_Dictionary relation:  
   1026   1026  45020 QueryDictionary.sql 
A sorted file of all the generated data for the Thesaurus relation: Insert.sql 
The total number of records generated:  
   4692   4894 158733 Insert.sql 
################  Append to a separate sequential file:  ############## 
####  Comparisons, creations of deltas and update of the relations.  ### 
Time:  Wed Jul 04 11:29:56 WETDST 1990 
Unload the THESAURUS relation to the THESAURUS.dat file ... 
Connected 
********** Executing 
select * from THESAURUS 
********** Executed 
 
Time:  Wed Jul 04 11:36:00 WETDST 1990 
The number of records in the actual Thesaurus relation:  
   4551   4751 175689 THESAURUS.dat 
 The number of records to be inserted: 
    156    158   5267 INSERT.dat 
 The number of records to be deleted: 
     17    221   2383 DEL.sql 
Execute the deletions ... 
 
SQL*Plus: Version 3.0.6.1.1 – Production on Wed Jul  4 11:37:27 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
Connected to: ORACLE RDBMS V6.0.26.9.1, transaction processing option – Production 
SQL> SQL>  Disconnected from ORACLE RDBMS V6.0.26.9.1, transaction processing option  
– Production 
Loading the data into the Thesaurus relation ... 
SQL*Loader: Version 1.0.18 – Production on Wed Jul  4 11:38:17 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
Commit point reached – logical record count 44 
Commit point reached – logical record count 132 
Commit point reached – logical record count 156 
The number of records to be inserted into the Versions_Thesaurus relation:  
    173    175   7924 VERSIONS_THESAURUS.dat 
Loading the data into the Versions_Thesaurus relation ... 
SQL*Loader: Version 1.0.18 – Production on Wed Jul  4 11:38:30 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
 
Commit point reached – logical record count 33 
Commit point reached – logical record count 99 
Commit point reached – logical record count 165 
Commit point reached – logical record count 173 
Time:  Wed Jul 04 11:38:56 WETDST 1990 
Unload the QUERY_DICTIONARY relation to the QUERY_DICTIONARY.dat file ... 
Connected 
********** Executing 
select * from QUERY_DICTIONARY 
********** Executed 
 
Time:  Wed Jul 04 11:39:24 WETDST 1990 
The number of records in the actual Query_Dictionary relation: 
   1009   1009  44315 DICTIONARY.dat 
The number of records to be inserted into Query_Dictionary relation: 
     25     25   1185 INSERTQD.dat 
The number of records to be deleted from the Query_Dictionary relation: 
      8     88   1176 DELQD.sql 
Execute the deletions ... 
 
SQL*Plus: Version 3.0.6.1.1 – Production on Wed Jul  4 11:39:32 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
Connected to: ORACLE RDBMS V6.0.26.9.1, transaction processing option – Production 
SQL> SQL>  Disconnected from ORACLE RDBMS V6.0.26.9.1, transaction processing option  
– Production 
Loading the data into the Query_Dictionary relation ... 
SQL*Loader: Version 1.0.18 – Production on Wed Jul  4 11:39:59 1990 
Copyright (c) Oracle Corporation 1979, 1988.  All rights reserved. 
Commit point reached – logical record count 25 
 
Finished: Wed Jul 04 11:40:03 WETDST 1990 

188 



 

Appendix B:  TSIT Measurements 
 

 

189 



APPENDIX B: TSIT MEASUREMENTS 

              Kind Bench-
mark  

Biblio-
graphy 

Comp/ 
TSIT

Eco-
Sys

Impl-
ADT

    Map Parts-
DB 

    Win   Total 

Structure 514 1983 4373 1140 532 1561 644 8361 19108
 (15.0) (18.3) (29.9) (27.1) (20.1) (16.5) (37.5) (22.3)  (22.6)
ProcMono 679 2358 3475 902 96 1012 171 7606 16299
 (19.8)  (21.8)  (23.8) (21.4) (3.6) (10.7) (10.0) (20.3)  (19.3)
int 469 1674 779 444 278 1004 123 7460 12231
 (13.7)  (15.5)  (5.3) (10.5) (10.5)  (10.6)  (7.2) (19.9)  (14.5)
env 411 816 1055 608 147 616 83 6637 10373
 (12.0)  (7.5) (7.2) (14.4)  (5.5) (6.5) (4.8) (17.7)  (12.3)
Variant 191 669 1259 157 351 540 98 2764  6029
 (5.6) (6.2) (8.6) (3.7) (13.2) (5.7) (5.7) (7.4) (7.1)
UnboundQuantifie
r 

672 269 858 4 458 2759 78 150 5248

 (19.6)  (2.5) (5.9) (0.1) (17.3) (29.1) (4.6) (0.4) (6.2)
string 120 1305 1575 158 0 166 30 512 3866
 (3.5) (12.0)  (10.8) (3.8) (0) (1.8) (1.8) (1.4) (4.6)
ProcPoly 127 179 208 4 207 964 45 56  1790
 (3.7) (1.7) (1.4) (0.1) (7.8) (10.2)  (2.6) (0.2) (2.1)
image 0 415 13 102 0 0 0 1104 1634
 (0) (3.8) (0.1) (2.4) (0) (0) (0) (2.9) (1.9)
Vector 45 428 98 226 67 362 14 377 1617
 (1.3) (4.0) (0.7) (5.4) (2.5) (3.8) (0.8) (1) (1.9)
bool 8 237 283 92 26 176 4 478 1304
 (0.2) (2.2) (1.9) (2.2) (1.0) (1.9) (0.2) (1.3) (1.5)
any or ? 0 96 60 32 17 13 6 960 1184
 (0) (0.9) (0.4) (0.8) (0.6) (0.1) (0.4) (2.6) (1.4)
TypeParameter 102 46 139 28 247 102 176 28  868
 (3.0) (0.4) (1.0) (9.3) (1.0) (1.1) (10.3)  (0.7) (1.0)
RecursiveType 61 127 101 87 54 35 164 138  767
 (1.8) (1.2) (0.7) (2.1) (2.0) (0.4) (9.6) (0.4) (0.9)
null 14 91 203 61 58 32 21 251 731
 (0.4) (0.8) (1.4) (1.5) (2.2) (0.3) (1.2) (0.7) (0.9)
ParameterisedTyp
e 

18 12 57 6 114 128 59 23 417

 (0.5) (0.1) (0.4) (0.1) (4.3) (1.4) (3.4) (0.1) (0.5)
ADT 0 15 0 126 0 0 0 234 375
 (0) (0.1) (0) (3.0) (0) (0) (0) (0.6) (0.4)
real 0 0 45 4 0 0 0 245 294
 (0) (0) (0.3) (0.1) (0) (0) (0) (0.7) (0.4)
file 0 92 31 6 0 9 0 110 248
 (0) (0.9) (0.2) (0.1) (0) (0.1) (0) (0.3) (0.3)
Unb-Witness 0 26 0 26 0 0 0 32  84
 (0) (0.2) (0) (0.6) (0) (0) (0) (0.1) (0.1)
pixel 0 0 9 0 0 0 0 19 28
 (0) (0) (0.1) (0) (0) (0) (0) (0.1) (0.0)
pic 0 0 5 0 0 0 0 1 6
 (0) (0) (0.0) (0) (0) (0) (0) (0) (0.0)
Total 3431 10838 14626 4213 2652 9479 1716 37546 84501
 (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)

Table B.1:  Frequencies of Kind by Application1

 

                                                 
1 The table is sorted by the frequencies in the Total column. The cells contain number of occurrences 

and the (column) percentage is given in parentheses. 

190 



APPENDIX B: TSIT MEASUREMENTS 

           Context Bench-
mark 

Biblio-
graphy 

Comp/ 
TSIT

Eco-
Sys

Impl-
ADT

   Map Parts-
DB 

   WIN   Total

ArgUnaryOpValue 1153 5089 5995 1638 683 3187 450 18218 36413 
 (33.6) (47.0) (41.0) (38.9) (25.8) (33.6) (26.2) (48.5) (43.1) 
TypeNameUse 916 817 2425 383 707 2977 425 2474 11124 
 (26.7) (7.5) (16.6) (9.1) (26.7) (31.4) (24.8) (6.6) (13.2) 
UseClause 380 999 1614 463 94 644 65 3359 7618 
 (11.1) (9.2) (11.0) (11.0) (3.5) (6.8) (3.8) (8.9) (9.0) 
ValueDecl 154 1154 916 336 78 470 83 3535 6726 
 (4.5) (10.6) (6.3) (8.0) (2.9) (5.0) (4.8) (9.4) (8.0) 
StructFieldDeref 79 527 915 252 244 450 141 2730 5338 
 (2.3) (4.9) (6.3) (6.0) (9.2) (4.7) (8.2) (7.3) (6.3) 
ProcParamDecl 100 284 478 70 87 513 33 1346 2911 
 (2.9) (2.6) (3.3) (1.7) (3.3) (5.4) (1.9) (3.6) (3.4 
Assignment 49 658 441 78 43 218 5 1011 2503 
 (1.4) (6.1) (3.0) (1.9) (1.6) (2.3) (0.3) (2.7) (3.01) 
ArgUnaryOpType 25 189 224 424 30 111 35 1036 2074 
 (0.7) (1.7) (1.5) (10.1) (1.1) (1.2) (2.0) (2.8) (2.5) 
StructFieldDecl 67 440 259 196 175 41 174 341 1693 
 (2.0) (4.1) (1.8) (4.7) (6.6) (0.4) (10.1) (0.9) (2.0) 
BindingInserted 70 31 235 31 42 188 15 972 1584 
 (2.0) (0.3) (1.6) (0.7) (1.6) (2.0) (0.9) (2.6) (1.9) 
VariantProjectDyn 8 136 174 16 126 37 36 423 956 
 (0.2) (1.3) (1.2) (0.4) (4.8) (0.4) (2.1) (1.1) (1.1 
ProcQuantifierUse 206 110 260 2 49 237 18 22 904 
 (6.0) (1.0) (1.8) (0.0) (1.8) (2.5) (1.0) (0.1) (1.1) 
ContainsCheck  30 14 31  6  758 839 
  (0.3) (0.1) (0.7)  (0.1)  (2.0) (1.0) 
TypeDecl 111 103 144 43 60 108 57 58 684 
 (3.2) (1.0) (1.0) (1.0) (2.3) (1.1) (3.3) (0.2) (0.9) 
VariantInject 8 62 137 91 16 65 2 251 632 
 (0.2) (0.6) (0.9) (2.2) (0.6) (0.7) (0.1) (0.7) (0.7) 
BindingDropped  30 11 31 17 7  375 471 
  (0.3) (0.1) (0.7) (0.6) (0.1)  (1.0) (0.6) 
VariantTagRead 4 46 80 5 19 34 10 268 466 
 (0.1) (0.4) (0.5) (0.1) (0.7) (0.4) (0.6) (0.7) (0.6) 
PrimFunctionCall 26 34 83 20 12 26 6 151 358 
 (0.8) (0.3) (0.6) (0.5) (0.5) (0.3) (0.3) (0.4) (0.4) 
VariantTagDecl 23 51 70 21 62 17 48 33 325 
 (0.7) (0.5) (0.5) (0.5) (2.3) (0.2) (2.8) (0.1) (0.4) 
PameterInTypeDecl 32 11 42 7 84 32 59 7 274 
 (0.9) (0.1) (0.3) (0.2) (3.2) (0.3) (3.4) (0.0) (0.3) 
RecursiveTypeDecl 16 19 24 7 24 8 52 15 165 
 (0.5) (0.2) (0.2) (0.2) (0.9) (0.1) (3.0) (0.0) (0.2) 
VariantProjectStati
c 

 1 40 1  77  37 156 

  (0.0) (0.3) (0.0)  (0.8)  (0.1) (0.2) 
ADTFieldDeref    45    55 100 
    (1.1)    (0.1) (0.1 
VariantAlias  2 27 2  26  29 86 
  (0.0) (0.2) (0.0)  (0.3)  (0.1) (0.1) 
RecursiveValueDec
l 

4 12 18 1   2 25 62 

 (0.1) (0.1) (0.1) (0.0)   (0.1) (0.1) (0.1) 
ADTalias    17    15 32 
    (0.4)    (0.0) (0.0) 
Witness  3  2    2 7 
  (0.0)  (0.0)    (0.0) (0.0) 
Total 3431 10838 14626 4213 2652 9479 1716 37546 84501 

191 



APPENDIX B: TSIT MEASUREMENTS 

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) 

Table B.2:  Frequencies of Context by Application 
 

#Used Freq % Cum Cum% #Used Freq % Cum Cum% 
1 38 22.9 38 22.9 24 1 0.6 148 89.2 
2 26 15.6 64 38.5 26 1 0.6 149 89.8 
3 19 11.4 83 50.0 27 1 0.6 150 90.4 
4 11 6.6 94 56.6 34 1 0.6 151 91.0 
5 9 5.4 103 62.0 35 1 0.6 152 91.6 
6 14 8.4 117 70.5 37 1 0.6 153 92.2 
7 1 0.6 118 71.1 38 1 0.6 154 92.8 
8 5 3.0 123 74.1 40 1 0.6 155 93.4 
9 6 3.6 129 77.7 47 1 0.6 156 94.0 

11 3 1.8 132 79.5 51 2 1.2 158 95.2 
12 1 0.6 133 80.1 52 1 0.6 159 95.8 
13 2 1.2 135 81.3 64 1 0.6 160 96.4 
14 2 1.2 137 82.5 73 1 0.6 161 97.0 
16 1 0.6 138 83.1 93 1 0.6 162 97.6 
17 3 1.8 141 84.9 108 1 0.6 163 98.2 
19 1 0.6 142 85.5 130 1 0.6 164 98.8 
20 1 0.6 143 86.1 166 1 0.6 165 99.4 
22 1 0.6 144 86.7 261 1 0.6 166 100.0 
23 3 1.8 147 88.6    

Table B.3:  Use of type definitions in value instantiations 
The #Used column indicates the number of times a type definition is used.  The Freq 
column contains the number of different type definitions that are used the number of 
times indicated by the #Used column.  For example, the second row shows that there are 
26 type definitions (15.6% of all type definitions) that are used exactly twice. 

192 



APPENDIX B: TSIT MEASUREMENTS 

 
Context Application Programs Min Max Mean Std Sum 
BindingInserted Benchmark 11 1 3 1.5 0.7 16 
 Bibliography 26 1 1 1.0 . 26 
 Comp/TSIT 11 1 4 1.7 0.9 19 
 EcoSys 20 1 1 1.0 . 20 
 ImplADT 8 1 3 1.5 0.9 12 
 Map 11 1 4 1.5 0.9 16 
 PartsDB 2 1 5 3.0 2.8 6 
 WIN 148 1 13 2.7 2.3 406 
 Total 237 1 13 2.2 1.8 521 
BindingDropped Bibliography 25 1 1 1.0 . 25 
 Comp/TSIT 9 1 2 1.1 0.3 10 
 EcoSys 20 1 1 1.0 . 20 
 ImplADT 3 1 1 1.0 . 3 
 Map 3 1 3 2.0 1.0 6 
 WIN 147 1 3 2.5 1.2 371 
 Total 207 1 3 2.1 0.9 435 
UseClause Benchmark 26 3 8 6.2 1.4 162 
 Bibliography 33 1 19 10.2 4.3 336 
 Comp/TSIT 76 2 12 7.2 2.4 544 
 EcoSys 20 4 20 11.5 6.7 230 
 ImplADT 11 2 5 3.4 1.0 37 
 Map 24 1 11 7.3 3.0 174 
 PartsDB 4 3 9 6.0 2.4 24 
 WIN 151 4 23 9.7 4.7 1468 
 Total 345 1 23 8.6 3.9 2975 
ContainsCheck Bibliography 25 1 1 1.0 . 25 
 Comp/TSIT 10 1 2 1.1 0.3 11 
 EcoSys 20 1 1 1.0 . 20 
 Map 3 1 2 1.7 0.6 5 
 WIN 148 1 3 2.5 1.2 375 
 Total 206 1 3 2.1 0.9 436 

Table B.4:  Environments accessed per program1

The Programs column contains the number of programs involving identifiers occurring 
in the respective contexts.  Sum is the number of unique (program name, environment 
name) pairs. 
 
 

                                                 
1  Applications without identifiers in the respective contexts are omitted from the table. 

193 



APPENDIX B: TSIT MEASUREMENTS 

Context Application Envs Min Max Mean Std Sum 
BindingInserted Benchmark 5 1 6 3.2 1.9 16 
 Bibliography 1 26 26 26.0 . 26 
 Comp/TSIT 9 1 5 2.1 1.7 19 
 EcoSys 4 2 11 5.0 1.0 20 
 ImplADT 6 1 3 2.0 0.9 12 
 Map 11 1 3 1.5 0.8 16 
 PartsDB 5 1 2 1.2 0.4 6 
 WIN 40 1 143 10.2 12.0 406 
 Total 81 1 143 6.4 8.5 521 
BindingDropped Bibliography 1 25 25 25.0 . 25 
 Comp/TSIT 4 1 4 2.5 1.7 10 
 EcoSys 4 2 11 5.0 1.0 20 
 ImplADT 1 3 3 3.0 . 3 
 Map 3 2 2 2.0 . 6 
 WIN 16 1 142 23.2 16.7 371 
 Total 29 1 142 15.0 12.5 435 
UseClause Benchmark 14 1 26 11.6 6.5 162 
 Bibliography 26 1 33 12.9 10.2 336 
 Comp/TSIT 30 1 75 18.1 15.2 544 
 EcoSys 32 1 20 7.2 3.5 230 
 ImplADT 9 1 6 4.1 1.9 37 
 Map 18 1 24 9.7 6.2 174 
 PartsDB 10 1 4 2.4 1.1 24 
 WIN 49 1 151 30.0 31.2 1468 
 Total 188 1 151 15.8 17.7 2975 
ContainsCheck Bibliography 1 25 25 25.0 . 25 
 Comp/TSIT 5 1 4 2.2 1.6 11 
 EcoSys 4 4 11 5.0 1.0 20 
 Map 4 1 2 1.3 0.5 5 
 WIN 18 1 142 20.8 16.2 375 
 Total 32 1 142 13.6 12.1 436 

Table B.5:  Programs per environment

194 



APPENDIX B: TSIT MEASUREMENTS 

 

195 



Bibliography 
 

[Acheampong 1993] Acheampong, I., Persistent Programming Language Support for 
Information (Bibliographic) Retrieval., MSc thesis in preparation, Computing 
Science Department, University of Glasgow, 1993. 

[Adams et al. 1989] Adams, R., Weinert, A. and Tichy, W., “Software Change Dynamics 
or Half of all Ada Compilations are Redundant”, European Software Engineering 
Conference, 1989. 

[Agresti and Evanco 1992] Agresti, W.W. and Evanco, W.M., “Projecting Software 
Defects from Analyzing Ada Designs”, IEEE Transactions on Software Engineering, 
Vol. SE-18, No. 11, pp. 988–997, November 1992. 

[Ahlsen et al. 1983] Ahlsén, M., Björnerstedt, A., Britts, S., Hultén, C. and Söderlund, L., 
“Making Type Changes Transparent”, Proceedings of IEEE Workshop on Languages 
for Automation, Chicago, pp. 110–117, IEEE Computer Society Press, November 
1983. 

[Albano 1983] Albano, A., “Type Hierarchies and Semantic Data Models”, ACM 
SIGPLAN Notices, Vol. 18, No. 6, pp. 178–186, 1983. 

[Albano et al. 1985] Albano, A., Cardelli, L. and Orsini, R., “Galileo: A Strongly Typed, 
Interactive Conceptual Language”, ACM Transactions on Database Systems, Vol. 
10, No. 2, pp. 230–260, June 1985. 

[Allen et al. 1982] Allen, F.W., Loomis, M.E.S. and Mannino, M.V., “The Integrated 
Dictionary/Directory System”, ACM Computing Surveys, Vol. 14, No. 2, pp. 245–
286, June 1982. 

[ANSI 1988] ANSI X3.138-1988 Information Resource Dictionary System (IRDS), 
October 1988. 

[Archer and Devlin 1986] Archer, J.E. and Devlin, M.T., “Rational's Experience using 
Ada for Very Large Systems”, Proceedings First International Conference on Ada 
Applications for the NASA Space Station, 1986. 

[Ariav 1991] Ariav, G., “Temporally Oriented Data Definitions: Managing Schema 
Evolution in Temporally Oriented Databases”, Data and Knowledge Engineering, 
Vol. 6, No. 6, pp. 451–467, October 1991. 

[Atkinson 1978] Atkinson, M.P., “Programming Languages and Databases”, Proceedings 
Fourth International Conference on Very Large Data Bases (Berlin, West Germany, 
13th–15th September 1978), S.B. Yao (editor), pp. 408–419, IEEE and ACM, 1978. 

[Atkinson 1989] Atkinson, M.P., “Questioning Persistent Types”, Proceedings of Second 
International Workshop on Database Programming Languages (Salishan Lodge, 
Oregon, June 1989), Hull, R., Morrison, M. and Stemple, D. (editors), pp. 2–24, 
Morgan Kaufmann Publishers, San Mateo, CA, 1989. 

[Atkinson 1990] Atkinson, M.P., “The Principles and Problems of Database Research”, 
Proceedings of the 1990 Glasgow Database Workshop, Cooper, R., Stewart, A. and 
Trinder, P. (editors), pp. 1–12, Technical Report CSC 90/R16, Computing Science 
Department, University of Glasgow, March 1990. 

[Atkinson 1992] Atkinson, M.P., “Persistent Foundations for Scalable Multi-Paradigmal 
Systems”, Invited paper, Distributed Object Management (Edmonton, Alberta, 

1 



BIBLIOGRAPHY 

Canada, 18th–21st August 1992), Özsu, M.T., Dayal, U., and Valduriez, P. (editors), 
Morgan Kaufmann, 1992. 

[Atkinson 1993] Atkinson, M.P., Lecture Notes in Napier88 Programming, Computing 
Science Department, University of Glasgow, 1993. 

[Atkinson and Buneman 1987] Atkinson, M.P. and Buneman, O.P., “Types and 
Persistence in Database Programming Languages”, ACM Computing Surveys, Vol. 
19, No. 2, pp. 105–190, 1987. 

[Atkinson and Morrison 1985] Atkinson, M.P. and Morrison, R., “Procedures as 
Persistent Data Objects”, ACM Transactions on Programming Languages and 
Systems, Vol. 7, No. 4, pp. 539–559, 1985. 

[Atkinson and Morrison 1986] Atkinson, M.P. and Morrison, R., “Integrated Persistent 
Programming Systems”, Proceedings of the Nineteenth Annual Hawaii International 
Conference on System Sciences, pp. 842–854, January 1986. 

[Atkinson et al. 1982] Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P., “PS-algol: 
An Algol with a Persistent Heap”, ACM SIGPLAN Notices, Vol. 17, No. 7, pp. 24–
31, July 1982. 

[Atkinson et al. 1983a] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. and 
Morrison, R., “An Approach to Persistent Programming”, The Computer Journal, 
Vol. 26, No. 4, pp. 360–365, November 1983. 

[Atkinson et al. 1983b] Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P., “CMS – A 
Chunk Management System”, Software – Practice and Experience, Vol. 13, No. 3, 
pp. 273–285, March 1983. 

[Atkinson et al. 1983c] Atkinson, M.P., Chisholm, K.J., Cockshott, W.P. and Marshall, 
R.M., “Algorithms for a Persistent Heap”, Software – Practice and Experience, Vol. 
13, No. 3, pp. 259–272, March 1983. 

[Atkinson et al. 1988] Atkinson, M.P., Buneman, O.P. and Morrison, R., “Binding and 
Type Checking in Database Programming Languages”, The Computer Journal, Vol. 
31, No. 2, pp. 99–109, 1988. 

[Atkinson et al. 1990] Atkinson, M.P., Richard, P. and Trinder, P.W., “Bulk Types for 
Large Scale Programming”, In Next Generation Information System Technology: 
Proceedings of the First International East/West Database Workshop (Kiev, USSR, 
9th–12th October 1990), Schmidt, J.W. and Stogny, A.A. (editors), pp. 228–250, 
Lecture Notes in Computer Science 504, Springer-Verlag, 1991. 

[Atkinson et al. 1991a] Atkinson, M.P., Lecluse, C., Philbrow, P. and Richard, P., 
“Design Issues in a Map Language”, Proceedings of the Third International 
Workshop on Database Programming Language (Nafplion, Greece, 27th–30th 
August 1991), Kanellakis, P. and Schmidt, J.W. (editors), pp. 20–32, Morgan 
Kaufmann Publishers, San Mateo, CA, 1991. 

[Atkinson et al. 1991b] Atkinson, M.P., Lecluse, C., Philbrow, P.C., and Richard, P., 
“Maps as Bulk Types for Data Base Programming Languages”, Proceedings of the 
Annual Esprit Conference, pp. 731–757, 1991. 

[Atkinson et al. 1993] Atkinson, M.P., Bailey, P.J., Jackson, N. and Philbrow, P.C., 
Napier88 Libraries, Technical report in preparation, ESPRIT Basic Research Action, 
Project Number 6309 – FIDE, 1993. 

[Bachman 1988] Bachman, C., “A CASE for Reverse Engineering”, Datamation, Vol. 
34, No. 13, pp. 49–56, July 1988. 

[Bailey 1989] Bailey, P.J., “Performance Evaluation in a Persistent Object System”, In 
Persistent Object Stores (Proceedings of the Third International Workshop, 10th–

2 



BIBLIOGRAPHY 

13th January 1989, Newcastle, New South Wales, Australia), Rosenberg, J. and 
Koch, D. (editors), pp. 289–299, Springer-Verlag and British Computer Society, 
1989. 

[Banerjee et al. 1987] Banerjee, J., Kim, W., Kim, H.-J. and Korth, H.F., “Semantics and 
Implementation of Schema Evolution in Object-Oriented Databases”, Proceedings of 
the ACM SIGMOD 1987 Conference on the Management of Data (San Francisco, 
CA, 27th–29th May 1987), pp. 311–322, 1987. 

[Barclay et al. 1992] Barclay, P.J., Fraser, C.M. and Kennedy, J.B, “Using a Persistent 
System to Construct a Customised Interface to a Ecological Database”, International 
Workshop on Interfaces to Databases (Glasgow, 1st–3rd, July 1992), Cooper, R.L. 
(editor), pp. 225–243, Workshops in Computer Science, Springer-Verlag, June 1993. 

[Barnard et al. 1982] Barnard, P., Hammond, N.V., MacLean, A. and Morton, J., 
“Learning and Remembering Interactive Commands”, Proceedings of Conference on 
Human Factors in Computer Systems, ACM Washington, CD, 1982. 

[Batini et al. 1986] Batini, C., Lenzerini, M and Navathe, S.B., “A Comparative Analysis 
of Methodologies for Database Schema Integration”, ACM Computing Surveys, Vol. 
18, No. 4, pp. 323–364, April 1986. 

[Baxter 1992] Baxter, I.D., “Design Maintenance Systems”, Communications of the 
ACM, Vol. 35, No. 4, pp. 73–89, April 1992. 

[Berman 1991] Berman, S., P-Pascal: A Data-Oriented Persistent Programming 
Language, Department of Computer Science, University of Cape Town, August 
1991. 

[Birnie 1991] Birnie, A., Sun Engineering Database Benchmark, 2nd Annual FIDE 
Review Meeting, Computing Science Department, University of Glasgow, 
September, 1991. 

[Bjørner 1991] Bjørner, D., “Formal Methods in Software Development – Requirements 
for a CASE”, In Software Development Environments and CASE Technology, 
European Symposium (Germany, June 1991), Endres, A, and Weber, H. (editors), 
pp. 178–210, Lecture Notes in Computer Science 509, Springer-Verlag, 1991. 

[Boehm 1988] Boehm, B.W., “A Spiral Model of Software Development and 
Enhancement”, IEEE Computer, Vol. 21, No. 5, May 1988. 

[Bott 1989] Bott, F. (editor), ECLIPSE: An Integrated Project Support Environment, IEE 
Computing Series 14, Peter Peregrinus, 1989. 

[Bourne 1979] Bourne, T.J., “The Data Dictionary System in Analysis and Design”, ICL 
Technical Journal, Vol. 1, No. 3, pp. 292–298, November 1979. 

[Bratsberg 1993] Bratsberg, S.E., Evolution and Integration of Classes in Object-Oriented 
Databases, PhD thesis, The Norwegian Institute of Technology, University of 
Trondheim, Norway, June 1993. 

[Brodie 1992] Brodie, M., “The Promise of Distributed Computing and the Challenges of 
Legacy Systems”, Invited paper, Tenth British National Conference on Databases 
(Aberdeen, Scotland, 6th–8th July), Gray, P.M.D. and Lucas, R.J. (editors), pp. 1–28, 
Lecture Notes in Computer Science 618, Springer-Verlag, 1992. 

[Brooks 1975] Brooks, F.P., The Mythical Man-Month, Addison Wesley, 1975. 

[Brown 1989] Brown, A.L., Persistent Object Stores, PhD thesis, Department of 
Mathematical and Computational Sciences, University of St Andrews, 1989. 

[Brunhoff 1991] Brunhoff, T., Makedepend Manual Page, Tektronix, Inc. and MIT 
Project Athena, University of New Mexico, April 1991. 

3 



BIBLIOGRAPHY 

[Buxton 1980] Buxton, J.N., Requirements for Ada Programming Support Environments 
– “Stoneman”, Technical Report, US Department of Defence, Washington DC, 
1980. 

[Cardelli 1989a] Cardelli, L., Typeful Programming, Digital Systems Research Center 
Report 45, Digital Equipment Corporation, Systems Research Centre, Palo Alto, CA, 
USA, May 1989. 

[Cardelli 1989b] Cardelli, L., The Quest Language and System (Tracking Draft), Digital 
Equipment Corporation, Systems Research Center, Palo Alto, CA, USA, August 
1989. 

[Cardelli and Wegner 1985] Cardelli, L. and Wegner, P., “On Understanding Types, Data 
Abstraction, and Polymorphism”, ACM Computing Surveys, Vol. 17, No. 4, pp. 471–
522, December 1985. 

[Cartmell and Alderson 1989] Cartmell, J. and Alderson, A., “The Eclipse Two-Tier 
Database”, In ECLIPSE: An Integrated Project Support Environment, Bott, E. 
(editor), pp. 39–67, IEE Computing Series 14, 1989. 

[Casais 1991] Casais, E., Managing Evolution in Object Oriented Environments: An 
Algorithmic Approach, PhD thesis, Faculté des sciences économiques et sociales, 
University of Geneva, 1991. 

[Chapin 1988] Chapin, N., “Software Maintenance Life Cycle”, Proceedings Conference 
on Software Maintenance (Phoenix, AR, USA, 24th–27th October 1988), pp. 6–13, 
IEEE Computer Society Press, 1988. 

[Chen 1976] Chen, P.P., “The Entity-Relationship Model – Toward a Unified View of 
Data”, ACM Transactions on Database Systems, Vol. 1, No. 1, pp. 9–36, 1976. 

[Chikofsky and Cross 1990] Chikofsky and Cross, “Reverse Engineering and Design 
Recovery: A Taxonomy”, IEEE Software, January 1990. 

[Clifton 1990] Clifton, N., Display Language Documentation, October 1990. 

[Colbrook and Smythe 1989] Colbrook, A. and Smythe, C., “The Retrospective 
Introduction of Abstraction in Software”, Proceedings of Conference on Software 
Maintenance (Miami, FL, USA, 16th–19th October 1989), pp. 166–173, IEEE 
Computer Society Press, Los Alamitos, CA, 1989. 

[Collofello and Buck 1987] Collofello, J.S. and Buck, J.J., “Software Quality Assurance 
for Maintenance”, IEEE Software, pp. 46–51, September 1987. 

[Connor 1991] Connor, R.C.H, Types and Polymorphism in Persistent Programming 
Systems, PhD thesis, Department of Mathematical and Computational Sciences, 
University of St Andrews, 1991. 

[Connor et al. 1990] Connor, R.C.H., Brown, A.L., Cutts, Q.I., Dearle, A., Morrison, R. 
and Rosenberg, J., “Type Equivalence Checking in Persistent Object Systems”, 
Proceedings of the Fourth International Workshop on Persistent Object Systems, 
Their Design, Implementation and Use (Martha's Vineyard, USA, September 1990), 
Dearle, A., Shaw, G.M. and Zdonik, S.B. (editors), pp. 154–167, Morgan Kaufmann 
Publishers, San Mateo, CA, 1990. 

[Connor et al. 1991] Connor, R.C.H., McNally, D. and Morrison, R., “Subtyping and 
Assignment in Database Programming Languages”, Proceedings of the Third 
International Workshop on Database Programming Languages (Nafplion, Greece, 
27th–30th August 1991), Kanellakis, P. and Schmidt, J.W. (editors), pp. 363–382, 
Morgan Kaufmann Publishers, San Mateo, CA, 1991.  

[Constantine and Yourdon 1979] Constantine, L.L. and Yourdon, E., Structured Design, 
Englewood Cliffs, N.J. Prentice-Hall, 1979. 

4 



BIBLIOGRAPHY 

[Cooper 1990a] Cooper, R.L., On the Utilisation of Persistent Programming 
Environments, PhD thesis, Department of Computing Science, University of 
Glasgow, 1990. 

[Cooper 1990b] R.L. Cooper, “Configurable Data Modelling Systems”, Proceedings of 
the Ninth International Conference on the Entity Relationship Approach (Lausanne, 
Switzerland, 8th–10th October 1990), pp. 35–52, 1990. 

[Cooper and Qin 1992] Cooper, R.L. and Qin, Z., “A Graphical Data Modelling Program 
with Constraint Specification and Management”, Tenth British National Conference 
on Databases (Aberdeen, Scotland, 6th–8th July), Gray, P.M.D. and Lucas, R.J. 
(editors), pp. 192–208, Lecture Notes in Computer Science 618, Springer-Verlag, 
1992. 

[Copeland and Maier 1984] Copeland, G. and Maier, D., “Making Smalltalk a Database 
System”, Proceedings of the ACM SIGMOD 1984 Conference on the Management of 
Data (Boston, Mass., 18th–21st June), ACM SIGMOD Record, Vol. 14, No. 2, pp. 
316–325, June 1984. 

[Cutts 1993a] Cutts, Q.I., Delivering the Benefits of Persistence to System Construction 
and Execution, PhD thesis, Department of Mathematical and Computational 
Sciences, University of St Andrews, 1993. 

[Cutts 1993b] Cutts, Q.I., Private Communication, 1993. 

[Cutts et al. 1990] Cutts, Q.I., Dearle, A. and Kirby, G.N.C., WIN Programmers' Manual, 
Research Report CS/90/17, University of St Andrews, 1990. 

[Dahl et al. 1972] Dahl, O.J., Dijkstra, E.W. and Hoare, C.A.R., Structured 
Programming, A.P.I.C. Studies in Data Processing No. 8, Academic Press, New 
York, 1972. 

[Dart 1991] Dart, S., “Concepts in Configuration Management Systems”, Proceedings 
Third International Workshop on Software Configuration Management (Trondheim, 
Norway, 12th–14th June 1991), pp. 1–18, 1991. 

[Dart et al. 1987] Dart, S.A., Ellison, R.J., Feiler, P.H. and Habermann, A.N., “Software 
Development Environments”, IEEE Computer, Vol. 20, No. 11, pp. 18–28, 
November 1987. 

[Date 1990] Date, C.J., An Introduction to Database Systems, Volume 1, Fifth edition, 
Addison Wesley, 1990. 

[Davie and Morrison 1981] Davie, A.J.T. and Morrison, R., Recursive Descent 
Compiling, Ellis Horwood Publishers, 1981. 

[DDSWP 1977] Data Dictionary Systems Working Party, Report British Computer 
Society, March 1977. 

[Dearle 1987] Dearle, A., “Constructing Compilers in a Persistent Environment”, 
Proceedings of the Second International Workshop on Persistent Object Systems: 
Their Design, Implementation and Use (Appin, Scotland, 25th–28th August 1987), 
Research Report PPRR-44-87, Universities of Glasgow and St Andrews, 1987. 

[Dearle 1988] Dearle, A., On the Construction of Persistent Programming Environments, 
PhD thesis, Department of Mathematical and Computational Sciences, University of 
St Andrews, 1988. 

[Dearle et al. 1989] Dearle, A., Connor, R., Brown, A.L. and Morrison, R., “Napier88 – 
A Database Programming Language?”, Proceedings of Second International 
Workshop on Database Programming Languages (Salishan Lodge, Oregon, June 
1989), Hull, R., Morrison, M. and Stemple, D. (editors), pp. 179–195, 1989. 

5 



BIBLIOGRAPHY 

[Dearle et al. 1992] Dearle, A., Cutts, Q. and Connor, R., An Application Architecture 
using Type-Safe Incremental Linking, Technical Report FIDE/92/56, ESPRIT Basic 
Research Action, Project Number 6309 – FIDE, 1992. 

[DEC 1989] VAX Language-Sensitive Editor and VAX Source Code Analyzer User 
Manual, AA-PAJLA-TK, Digital Equipment Corporation, 1989. 

[DEC 1993] DEC FUSE Handbook, AA-PF4TA-TE, Digital Equipment Corporation, 
1993. 

[DeMarco 1979] DeMarco, T., Structured Analysis and System Specification, Englewood 
Cliffs, N.J. Prentice-Hall, 1979. 

[DeRemer and Kron 1976] DeRemer, F. and Kron, H.H., “Programming-in-the-Large 
versus Programming-in-the-Small”, IEEE Transactions on Software Engineering, 
Vol. SE-2, No. 2, pp. 80–86, June 1976. 

[Dolk and Kirsch 1987] Dolk, D.R. and Kirsch, R.A., “A Relational Information 
Resource Dictionary System”, Communications of the ACM, Vol. 30, No. 1, pp. 48–
61, January 1987. 

[Dolotta et al. 1978] Dolotta, T.A., Haight, R.C., Mashev, J.R., “The Programmer’s 
Workbench”, Bell Systems Technical Journal, Vol. 57, No. 6, pp. 2177–2200, 1978. 

[ECMA 1990] European Computer Manufacturers' Association (ECMA), Technical 
Report ECMA-149, December 1990. 

[EIA 1991] CDIF – Framework for Modeling and Extensibility, EIA-PN2387, July 1991. 

[Elshoff 1976] Elshoff, J.L., “An Analysis of some Commercial PL/1 Programs”, IEEE 
Transactions on Software Engineering, Vol. SE-2, No. 2, pp. 113–120, June 1976. 

[England and Selwyn 1990] England, A. and Selwyn, B., Hippo Language Guide, 
Perihelion Software Ltd., November 1990. 

[Farkas et al. 1992] Farkas, A., Dearle, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. and 
Connor, R.C.H., Persistent Program Construction through Browsing and User 
Gesture with some Typing, Technical Report FIDE/92/52, ESPRIT Basic Research 
Action, Project Number 6309 – FIDE, 1992. 

[Fegaras and Stemple 1991] Fegaras, L. and Stemple, D., “Using Type Transformation in 
Database System Implementation”, Proceedings of the Third International 
Workshop on Database Programming Language (Nafplion, Greece, 27th–30th 
August 1991), Kanellakis, P. and Schmidt, J.W. (editors), pp. 337–356, Morgan 
Kaufmann Publishers, San Mateo, CA, 1991. 

[Fegaras et al. 1989] Fegaras, L., Sheard, T. and Stemple, D., “The ADABTPL Type 
System”, Proceedings of Second International Workshop on Database Programming 
Languages (Salishan Lodge, Oregon, June 1989), Hull, R., Morrison, M. and 
Stemple, D. (editors), pp. 207–218, 1989. 

[Feldman 1979] Feldman, S.I., “Make – A Program for Maintaining Computer 
Programs”, Software – Practice and Experience, Vol. 9, No. 4, pp. 255–265, April 
1979. 

[Feldman 1991] Feldman, S.I., “Software Configuration Management: Past Uses and 
Future Challenge”, Proceedings of Third European Software Engineering 
Conference (Milan, Italy, October 1991), Lamsweerde A. van and Fugetta A. 
(editors), pp. 1–6, Lecture Notes in Computer Science 550, Springer-Verlag, 1991. 

[Ferraby 1991] Ferraby, L., Change Control During Computer Systems Development, 
Prentice-Hall (UK), 1991. 

6 



BIBLIOGRAPHY 

[Fosdick and Osterweil 1976] Fosdick, L.D. and Osterweil, L.J., “Data Flow Analysis in 
Software Reliability”, ACM Computing Surveys, Vol. 8, No. 3, pp. 305–330, 1976. 

[Gløersen 1993] Gløersen, R., Private Communication, Statistics Norway, Oslo, Norway, 
April 1993. 

[Goldberg 1984] Goldberg, A., Smalltalk-80: The Interactive Programming Environment, 
Addison Wesley, 1984. 

[Gopal et al. 1992] Gopal, R., Prasad, R. and Gopal, R., “Supporting System 
Maintenance with Automatic Decomposition Schemes”, Proceedings of the Twenty-
Fifth Hawaii International Conference on System Sciences, pp. 507–516, January 
1992. 

[Greenwood et al. 1992] Greenwood, R.M., Guy, M.R. and Robinson, D.J.K., “The Use 
of a Persistent Language in the Implementation of a Process Support System”, ICL 
Technical Journal, Vol. 8, No. 1, pp. 108–130, May 1992. 

[Griswold and Notkin 1992] Griswold, W.G. and Notkin, D., “Computer-Aided vs. 
Manual Program Restructuring”, ACM Software Engineering Notes, Vol. 17, No. 1, 
pp. 33–41, January 1992. 

[Habermann and Notkin 1986] Habermann, A.V. and Notkin, D., “Gandalf: Software 
Development Environments”, IEEE Transactions on Software Engineering, Vol. SE-
12, No. 2, pp. 1117–1127, December 1986. 

[Holloway 1988a] Holloway, S., The Future of Data Dictionaries, DATABASE 88 (19th–
20th May 1988, Open University, Milton Keynes), Gower Technical, The British 
Computer Society Database Specialist Group, 1988. 

[Holloway 1988b] Holloway, S., “Reporting from Data Dictionaries”, In The Future of 
Data Dictionaries, DATABASE 88 (19th–20th May 1988, Open University, Milton 
Keynes), Holloway, S. (editor), pp. 69–92, Gower Technical, The British Computer 
Society Database Specialist Group, 1988. 

[Holt 1993] Holt, N., High Technology Trends, Seminar, The 1993 IT Summit, 22th–
24th June, Glasgow, 1993. 

[Humphrey 1989] Managing the Software Process, SEI Series, Addison-Wesley, 1989. 

[IBM 1978] IBM Internal Report on the Contents of a Sample of Programs Surveyed, 
IBM Research Centre San Jose, California, 1978. 

[IBM 1980] DB/DC Data Dictionary General Information Manual, GH20-9104-3, IBM, 
1980. 

[IBM 1990] Repository Manager/MVS, General Information, GC26-4608-1, IBM, 1990. 

[IBM 1991] IBM SAA AD/Cycle Concepts, GC26-4531-01, IBM, 1991. 

[IBM 1992] The Information Management Library: Problem, Change, and Configuration 
Management, User's Guide, SC34-4328-00, IBM, March 1992. 

[Imber 1991] Imber, M., “The CASE Data Interchange Format (CDIF) Standards”, In 
Software Engineering Environments: Vol. 3, Long, F. (editor), pp. 457–474, Ellis 
Horwood Limited, Chichester, England, 1991. 

[ISO 1990] ISO/IEC 10027: Information Resource Dictionary System (IRDS) 
Framework, 1990. 

[Jackson 1975] Jackson, M.A., Principles of Program Design, A.P.I.C. Studies in Data 
Processing No. 12, Academic Press, London, 1975. 

7 



BIBLIOGRAPHY 

[Jackson 1983] Jackson, M., System Development, Englewood Cliffs, N.J. Prentice-Hall, 
1983. 

[Jacobs and Hull 1991] Jacobs, D. and Hull, R., “Database Programming with Delayed 
Updates”, Proceedings of the Third International Workshop on Database 
Programming Language (Nafplion, Greece, 27th–30th August 1991), Kanellakis, P. 
and Schmidt, J.W. (editors), pp. 416–428, Morgan Kaufmann Publishers, San Mateo, 
CA, 1991. 

[Jandrasics 1981] Jandrasics, G. “SOFTDOC – A System for Automated Software 
Analysis and Documentation”, Proceedings  ACM Workshop on Software Quality 
Assurance, April 1981. 

[Kay 1992] Kay, M.H., “The Architecture of an Open Dictionary”, ICL Technical 
Journal, Vol. 8, No. 1, pp. 85–107, May 1992. 

[Keables et al. 1988] Keables, J., Roberson, K. and von Mayrhauser, A., “Data Flow 
Analysis and its Application to Software Maintenance”, Proceedings Conference on 
Software Maintenance (Phoenix, AR, USA, 24th–27th October 1988), pp. 335–347, 
IEEE Computer Society Press, 1988. 

[Kim and Chou 1988] Kim, W. and Chou, H.T., “Versions of Schema for Object-
Oriented Databases”, Proceedings of Fourteenth Conference on Very Large 
Databases, Los Angeles, 1988. 

[King 1967] King, P.J.H., “Some Comments on Systematics”, The Computer Journal, 
Vol. 10, pp. 116–118, 1967. 

[King 1969] King, P.J.H., “System Analysis Documentation: Computer-Aided Data 
Dictionary Definition”, The Computer Journal, Vol. 12, No. 1, pp. 6–9, 1969. 

[Kirby 1993] Kirby, G.N.C., Reflection and Hyper-Programming in Persistent 
Programming Systems, PhD thesis, Department of Mathematical and Computational 
Sciences, University of St Andrews, 1993. 

[Kirby and Dearle 1990] Kirby, G.N.C. and Dearle, A., An Adaptive Graphical Browser 
for Napier88, Research Report CS/90/16, Department of Mathematical and 
Computational Sciences, University of St Andrews, 1990.  

[Kirby et al. 1992] Kirby, G., Connor, R., Cutts, Q., Dearle, A., Farkas, A. and Morrison, 
R., “Persistent Hyper-Programs”, Proceedings Fifth International Workshop on 
Persistent Object Systems. Design, Implementation and Use (San Miniato, Italy, 1st–
4th September 1992), Albano, A. and Morrison, R. (editors), pp. 86–106, Springer-
Verlag in collaboration with the British Computer Society, 1992. 

[Knuth 1972] Knuth, D.E., “An Empirical Study of FORTRAN Programs”, Software – 
Practice and Experience, Vol. 1, No. 2, pp. 105–133, April–June 1971. 

[Knuth 1973] Knuth, D.E., Fundamental Algorithms, Vol. 1, In series The Art of 
Computer Programming, Addison-Wesley, January 1973. 

[Krueger 1992] Krueger, C.W., “Software Reuse”, ACM Computing Surveys, Vol. 24, 
No. 2, pp. 131–183, June 1992. 

[Leblang et al. 1985] Leblang, D.B., Chase, R.P. and McLean, G.D., “The DOMAIN 
Software Engineering Environment for Large Scale Software Development Efforts”, 
First Conference on Computer Workstations, pp. 266–280, IEEE, November 1985. 

[Lehman 1976] Lehman, M.M., “Human Thought and Action as an Ingredient of System 
Behaviour”, In Encyclopædia of Ignorance, Duncan, R. and Weston-Smith, M. 
(editors), pp. 347–354, Pergamon Press, Oxford, 1976. (Reprinted in [Lehman and 
Belady 1985], pp. 237–246.) 

8 



BIBLIOGRAPHY 

[Lehman 1978] Lehman, M.M., “Laws of Program Evolution – Rules and Tools for 
Programming Management”, Proceedings of Infotech State of the Art Conference: 
Why Software Projects Fail, Pergamon Press, pp. 11.1–11.25, April 1978. (Reprinted 
in [Lehman and Belady 1985], pp. 247–274.) 

[Lehman 1980] Lehman, M.M., “Programs, Life Cycles and Laws of Software 
Evolution”, Proceedings of the IEEE Special Issue on Software Engineering, Vol. 
68, No. 9, pp. 1060–1076, September 1980. 

[Lehman 1981] Lehman, M.M., “Programming Productivity – A Life Cycle Concept”, 
Proceedings CompCon 81, IEEE Catalogue No. 81CH–1702–0, pp. 232–241, 
September 1981. 

[Lehman and Belady 1985] Lehman, M.M. and Belady, L., Program Evolution, 
Processes of Software Change, A.P.I.C. Studies in Data Processing No. 27, 
Academic Press, London, 1985. 

[Lerner and Habermann 1990] Lerner, B.S. and Habermann, A.N., “Beyond Schema 
Evolution to Database Reorganisation”, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications, pp. 67–76, October 
1990. 

[Levin et al. 1992] Levin, R., McJones, P.R., Ayers, R.M., Brown, M.R., Chiu, S.Y., 
Ellis, J.R. and Hanna, C.B., Precise Configuration and Construction of Large 
Software Systems using Vesta (Working Draft), Digital Equipment Corporation, 
Systems Research Center, Palo Alto, CA, USA, August 1992. 

[Lieberherr and Holland 1989] Lieberherr. K.J. and Holland, I.M., “Tools for Preventive 
Software Maintenance”, Proceedings of Conference on Software Maintenance 
(Miami, FL, USA, 16th–19th October 1989), pp. 2–13, IEEE Computer Society 
Press, Los Alamitos, CA, 1989. 

[Lientz and Swanson 1981] Lientz, B.P. and Swanson, E.B., “Problems in Application 
Software Maintenance”, Communications of the ACM, Vol. 24, No. 11, pp. 764–769, 
November 1981. 

[Lientz et al. 1978] Lientz, B.P., Swanson, E.B. and Tompkins, G.E., “Characteristics of 
Application Software Maintenance”, Communications of the ACM, Vol. 21, No. 6, 
pp. 466–471, June 1978. 

[Loboz 1989] Loboz, Z., “Monitoring Execution of PS-algol Programs”, In Persistent 
Object Stores (Proceedings of the Third International Workshop, 10th–13th January 
1989, Newcastle, New South Wales, Australia), Rosenberg, J. and Koch, D. (editors), 
Springer-Verlag and British Computer Society, pp. 279–288, 1989. 

[Lopes 1993] Lopes, J.C., ShTh – Show Thesaurus User Interface, Technical report in 
preparation, Computing Science Department, University of Glasgow, 1993. 

[Maes 1987] Maes, P., “Concepts and Experiments in Computational Reflection”, 
Proceedings of the Conference on Object-Oriented Programming Systems, 
Languages and Applications (Orlando, FL, 4th–8th October 1987), 1987. 

[Marche 1993] Marche, S., “Measuring the Stability of Data Models”, European Journal 
on Information Systems, Vol. 2, No. 1, pp. 37–47, 1993. 

[Marti 1983] Marti, R.W., “Integrating Database and Program Descriptions using an ER-
Data Dictionary”, In Database Techniques for Professional Workstations, Zehnder, 
C.A. (editor), pp. 119–140, ETH, Zürich, September 1983. 

[Matthes et al. 1992] Matthes, F., Rudloff, A., Schmidt, J.W. and Subieta, K., The 
Database Programming Language DBPL User and System Manual, Technical Report 
FIDE/92/47, ESPRIT Basic Research Action, Project Number 3070 – FIDE, 1992. 

9 



BIBLIOGRAPHY 

[McKenzie and Snodgrass 1990] McKenzie, E. and Snodgrass, R., “Schema Evolution 
and the Relational Algebra”, Information Systems, Vol. 15, No. 2, pp. 207–232, 
1990. 

[Meekel and Viala 1988] Meekel, J. and Viala, M., “LOGISCOPE: A Tool for 
Maintenance”, Proceedings of Conference on Software Maintenance (Phoenix, AR, 
USA, 24th–27th October 1988), pp. 328–334, IEEE Computer Society Press, Los 
Alamitos, CA, 1988. 

[Members 1990] Members of the FIDE types club with Atkinson, M.P. and Richard, P. as 
editors, Types for Large Scale Systems, Club Report of Meeting in Pisa, 5th–6th 
July, 1990, Technical Report FIDE/90/1, ESPRIT Basic Research Action, Project 
Number 3070 – FIDE, October 1990. 

[Meyers et al. 1993] Meyers, S., Duby, C.K. and Reiss, S.P., “Constraining the Structure 
and Style of Object-Oriented Programs”, Proceedings of the First Workshop on 
Principles and Practice of Constraint Programming (PPCP93), April 1993.  Also 
available as Brown University Computer Science Department Technical Report CS-
93-12, April 1993. 

[Milner 1984] Milner, R., “A Proposal for Standard ML”, Proceedings of the 1984 ACM 
Symposium on Lisp and Functional Programming (Austin, Texas, August 1984), pp. 
184–197, ACM, New York, 1984. 

[Mitchell and Plotkin 1985] Mitchell, J.C. and Plotkin, G.D., “Abstract Types Have 
Existential Types”, Proceedings of the Twelfth ACM Symposium on Principles of 
Programming Languages, pp. 37–51, New Orleans, January 1985. 

[Monk and Sommerville 1993] Monk, S. and Sommerville, I., “Schema Evolution in 
OODBs Using Class Versioning”, SIGMOD Record, Vol. 22, No. 3, pp. 16–22, 
September 1993. 

[Morrison et al. 1989a] Morrison, R., Brown, F., Connor, R. and Dearle, A., The 
Napier88 Reference Manual, Research Report PPRR-77-89, Universities of Glasgow 
and St Andrews, 1989. 

[Morrison et al. 1989b] Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, 
A. and Atkinson, M.P., “The Napier Type System”, In Persistent Object Stores 
(Proceedings of the Third International Workshop, 10th–13th January 1989, 
Newcastle, New South Wales, Australia), Rosenberg, J. and Koch, D. (editors), 
Springer-Verlag and British Computer Society, pp. 3–18, 1989. 

[Morrison et al. 1990] Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P., “On 
the Classification of Binding Mechanisms”, Information Processing Letters, Vol. 34, 
No. 1, pp. 51–55, February 1990. 

[Munro 1993] Munro, D., On the Integration of Persistence, Concurrency and 
Distribution, PhD thesis in preparation, Department of Mathematical and 
Computational Sciences, University of St Andrews, 1993. 

[Nakagawa and Futatsugi 1991] Nakagawa, A.T. and Futatsugi, K., “Propagating 
Changes in Algebraic Specifications”, Software Engineering Journal, Vol. 6, No. 6, 
pp. 476–486, November 1991. 

[Nelson 1992] Nelson, R.J, Naming and Reference, In series The Problems of 
Philosophy, Routledge, London 1992. 

[O'Brien et al. 1987] O'Brien, P.D., Halbert, D.C. and Kilian, M.F., “The Trellis 
Programming Environment”, Proceedings of the Conference on Object-Oriented 
Programming Systems, Languages and Applications (Orlando, FL, 4th–8th October 
1987), pp. 91–102, 1987. 

10 



BIBLIOGRAPHY 

[Ohori et al. 1989] Ohori, A., Buneman, O.P. and Breazu-Tannen, V., “Database 
Programming in Machiavelli – a Polymorphic Language with Static Type 
Inference”, Proceedings of the ACM SIGMOD 1989 Conference on the Management 
of Data (Portland, Oregon, 31st May – 2nd June), SIGMOD Record, Vol. 18, No. 2, 
pp. 424–433, June 1989. 

[Olle and Black 1988] Olle, W. and Black, M., “Data Levels in IRDS”, In The Future of 
Data Dictionaries, DATABASE 88 (19th–20th May 1988, Open University, Milton 
Keynes), Holloway, S. (editor), pp. 31–48, Gower Technical, The British Computer 
Society Database Specialist Group, 1988. 

[Osborn 1989] Osborn, S.L., “The Role of Polymorphism in Schema Evolution in an 
Object-Oriented Database”, IEEE Transactions on Knowledge and Data 
Engineering, Vol. 1, No. 3, pp. 310–317, September 1989. 

[Osterweil 1987] Osterweil, L.J., “Software Processes are Software Too”, Proceedings of 
the Ninth International Conference on Software Engineering, March 1987. 

[Osterweil and Fosdick 1976] Osterweil, L.J. and Fosdick, L.D., “DAVE – A Validation, 
Error Detection and Documentation System for FORTRAN Programs”, Software – 
Practice and Experience, Vol. 6, No. 4, pp. 473–486, 1976. 

[Oxford 1961] The Oxford English Dictionary, Oxford University Press, London, 1961. 

[Panel 1989] Panel on Schema Evolution and Version Management, Object-Oriented 
Database Workshop in OOPSLA'88, SIGMOD Record, Vol. 18, No. 3, pp. 90–95, 
September 1989. 

[Parikh and Zvegintsov 1983] Parikh and Zvegintsov, “The World of Software 
Maintenance”, Tutorial on Software Maintenance, Parikh and Zvegintsov (editors), 
Computer Society Press, Los Alamitos, CA, 1983. 

[Parnas 1972] Parnas, D.L., “On the Criteria to be Used in Decomposing Systems into 
Modules”, Communications of the ACM, Vol. 15, No. 12, pp. 1053–1058, December 
1972. 

[Parsys 1993] FTK – A Fortran Toolkit, Parsys, 1993. (See article in Engineering 
Computing Newsletter SERC, Rutherford Appleton Laboratory, Vol. 44, pp. 2–3, 
May 1993.) 

[Penney and Stein 1987] Penney, D.J. and J. Stein, “Class Modification in the GemStone 
Object-Oriented DBMS”, Proceedings of the Conference on Object-Oriented 
Programming Systems, Languages and Applications, pp. 111–117, October 1987. 

[Pfleeger 1987] Pfleeger, S.L., Software Engineering – The Production of Quality 
Software, Macmillan, 1987. 

[Pressman 1992] Pressman, R.S., Software Engineering – A Practitioner's Approach, 
Third edition, McGraw-Hill, 1992. 

[PS-algol 1987] PS-algol Reference Manual, Fourth edition, Research Report PPRR-12-
87, Universities of Glasgow and St Andrews, 1987. 

[PSL 1992] Polyhedra: Application Generation Environment, Version 1.0 (Beta 4) 
Release, Perihelion Software Ltd., December 1992. 

[Putnam 1982] Putnam, L.H., “Software Cost Estimating and Life Cycle Control”, IEEE 
Catalog, 1982. 

[Qin 1993] Qin, Z., Second Year Report, Computing Science Department, University of 
Glasgow, 1992. 

11 



BIBLIOGRAPHY 

[Quong and Linton 1991] R.W. Quong and M.A. Linton, “Linking Programs 
Incrementally”, ACM Transactions on Programming Languages and Systems, Vol. 
13, No. 1, pp. 1–20, January 1991. 

[Reps and Teitelbaum 1989] Reps T. W. and Teitelbaum T., The Synthesizer Generator: 
A System for Constructing Language-Based Editors, In series Texts and Monographs 
in Computer Science, Springer-Verlag, 1989. 

[Ritchie et al. 1978] Ritchie, D.M., Johnson, S.C., Lesk, M.E. and Kernighan, B.W., 
“The C Programming Language”, Bell Systems Technical Journal, Vol. 57, No. 6, 
pp. 1991–2020, 1978. 

[Rochkind 1975] Rochkind, M.J., “The Source Code Control System”, IEEE 
Transactions on Software Engineering, Vol. SE-1, No. 4, pp. 364–370, December 
1975. 

[Roddick 1992] Roddick, J.F., “SQL/SE – A Query Language Extension for Databases 
Supporting Schema Evolution”, SIGMOD Record, Vol. 21, No. 3, pp. 10–16, 
September 1992. 

[Royce 1970] Royce, W.W., “Managing the Development of Large Software Systems”, 
Proceedings of IEEE WESCON, August 1970. 

[Ryder 1979] Ryder, B.G., “Constructing the Call Graph of a Program”, IEEE 
Transactions on Software Engineering, Vol. SE-5, No. 3, pp. 216–226, 1979. 

[Saal and Weiss 1977] Saal, H.J. and Weiss, Z., “An Empirical Study of APL Programs”, 
Computer Languages, Vol. 2, No. 3, pp. 47–60, 1977. 

[Schefström 1991] Schefström, D., “The Arcs Experience”, Proceedings of Third 
European Software Engineering Conference (Milan, Italy, October 1991), 
Lamsweerde A. van and Fugetta A. (editors), pp. 443–464, Lecture Notes in 
Computer Science 550, Springer-Verlag, 1991. 

[Schmidt 1977] Schmidt, J.W., “Some High Level Language Constructs for Data of Type 
Relation”, ACM Transactions on Database Systems, Vol. 2, No. 3, pp. 247–261, 
September 1977. 

[Schmidt and Matthes 1992] Schmidt, J.W. and Matthes, F., The Database Programming 
Language DBPL Rationale and Report, Technical Report FIDE/92/46, ESPRIT 
Basic Research Action, Project Number 3070 – FIDE, 1992. 

[Schwanke and Kaiser 1988] Schwanke, R.W. and Kaiser, G.E., “Smarter 
Recompilation”, ACM Transactions on Programming Languages and Systems, Vol. 
10, No. 4, pp. 627–632, October 1988. 

[Schwanke and Platoff 1989] Schwanke, R.W. and Platoff, M.A., “Cross References are 
Features”, Proceedings Second International Workshop on Software Configuration 
Management (Princeton, New Jersey, November 1989), Published as Software 
Engineering Notices, pp. 86–95, 1989. 

[Sheard 1990] Sheard, T., A User's Guide to TRPL: a Compile-Time Reflective 
Programming Language, Dept. of Mathematics and Computer Science, Amherst 
College, Amherst, Ma 01002, USA, September 1990. 

[Sheard 1991] Sheard, T., “Automatic Generation and Use of Abstract Structure 
Operators”, ACM Transactions on Programming Languages and Systems, Vol. 13, 
No. 4, pp. 531–557, 1991. 

[Sheard and Stemple 1989] Sheard, T. and Stemple, D., “Automatic Verification of 
Database Transaction Safety”, ACM Transactions on Database Systems, Vol. 14, 
No. 3, pp. 322–368, September 1989. 

12 



BIBLIOGRAPHY 

[Shepard et al. 1992] Shepard, T., Sibbald, S. and Wortley, C., “A Visual Software 
Process Language”, Communications of the ACM, Vol. 35, No. 4, pp. 37–44, April 
1992. 

[Sjøberg 1991] Sjøberg, D., The Thesaurus – A Tool for Meta Data Management, 
Technical Report FIDE/91/6, ESPRIT Basic Research Action, Project Number 3070 
– FIDE, February 1991. 

[Sjøberg 1992] Sjøberg, D., Measuring Name and Identifier Usage in Napier88 
Applications, Technical Report FIDE/92/37, ESPRIT Basic Research Action, Project 
Number 3070 – FIDE, 1992. 

[Sjøberg 1993] Sjøberg, D., “Quantifying Schema Evolution”, Information and Software 
Technology, Vol. 35, No. 1, pp. 35–44, January 1993.  

[Sjøberg et al. 1993] Sjøberg, D., Atkinson, M.P., Lopes, J. and Trinder, P., “Building an 
Integrated Persistent Application”, Fourth International Workshop on Database 
Programming Languages (30th August – 1st September, Manhattan, New York City, 
USA), Springer-Verlag, 1993. 

[Skarra and Zdonik 1987] Skarra, A.H. and Zdonik, S.B., “Type Evolution in an Object-
Oriented Database”, In Research Directions in Object-Oriented Programming, 
Shriver, B.S. and Wegner, P. (editors), pp. 393–415, MITP, Cambridge, MA, 
Computer Systems, 1987. 

[Sockut and Goldberg 1979] Sockut, G.H. and Goldberg, R.P., “Database Reorganization 
– Principles and Practice”, ACM Computing Surveys, Vol. 11, No. 4, pp. 371–395, 
December 1979.  

[SoftwareAG 1990] The Predict Reference Manual Version 3.1, PRD-311-030, Software 
AG, Germany, 1990. 

[Sommerville 1992] Sommerville, I., Software Engineering, Fourth edition, Addison 
Wesley, 1992. 

[Sommerville 1993] Sommerville, I., Cooperative Systems Engineering, Seminar, 
University of Glasgow, March 1993. 

[Sommerville and Morrison 1987] Sommerville. I. and Morrison, R., Software 
Development with Ada, Wokingham: Addison-Wesley, 1986. 

[Spurr 1988] Spurr, K., “Introduction to the ISO IRDS Standards”, In The Future of Data 
Dictionaries, DATABASE 88 (19th–20th May 1988, Open University, Milton 
Keynes), Holloway, S. (editor), pp. 7–18, Gower Technical, The British Computer 
Society Database Specialist Group, 1988. 

[Stemple 1989] Stemple, D., “Exploiting the Potential of Persistent Object Stores”, In 
Persistent Object Stores (Proceedings of the Third International Workshop, 10th–
13th January 1989, Newcastle, New South Wales, Australia), Rosenberg, J. and 
Koch, D. (editors), pp. 45–55, Springer-Verlag and British Computer Society, 1989. 

[Stemple et al. 1992] Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P.C., Morrison, 
R., Kirby, G.N.C., Fegaras, L., Cooper, R.L., Connor, R.C.H., Atkinson, M.P. and 
Alagic, S., Type-Safe Linguistic Reflection: A Generator Technology, Technical 
Report FIDE/92/49, ESPRIT Basic Research Action, Project Number 3070 – FIDE, 
1992. 

[Strachey 1967] Strachey, C., Fundamental Concepts in Programming Languages, 
Oxford University Press, Oxford, 1967. 

[Sun Microsystems 1988a] The Sun Operating System Release 4.1, Sun Microsystems, 
October 1988. 

13 



BIBLIOGRAPHY 

[Sun Microsystems 1988b] Introduction to the NSE™, Part No: 800-2362-10 (Draft 7 
March 1988), Sun Microsystems, 1988. 

[Sutton et al. 1990] Sutton, S.M., Heimbigner, D. and Osterweil, L.J., “Language 
Constructs for Managing Change in Process-Centered Environments”, Proceedings 
of the Fourth ACM SIGSOFT Symposium on Software Development Environments, 
pp. 206–217, December 1990. 

[Swanson 1976] Swanson, E.B., “The Dimension of Maintenance”, Proceedings of the 
Second International Conference on Software Engineering, pp. 492–497, October 
1976. 

[Symantec 1989] THINK C™ User’s Manual, Symantec Corporation, 1989. 

[Tabkha 1991] Tabkha, I., “An Implementation of the Parts Explosion Problem”, Second 
Annual FIDE Review Meeting, Computing Science Department, University of 
Glasgow, September 1991. 

[Tabkha 1993] Tabkha, I., Two Implementations of Parameterised Abstract Data Types, 
Technical report in preparation, University of Glasgow, 1993. 

[Tarr and Clarke 1993] Tarr, P. and Clarke, L.A., “PLEIADES: An Object Management 
System for Software Engineering Environments”, to appear in ACM SIGSOFT '93: 
Proceedings of the Symposium of the Foundations of Software Engineering, Los 
Angeles, CA, December 1993.  Also available as University of Massachusetts, 
Amherst, Computer Science Department CMPSCI Technical Report 93-64, July 
1993. 

[Teitelman and Masinter 1981] Teitelman, W. and Masinter, L., “The Interlisp 
Programming Environment”, IEEE Computer, Vol. 14, No. 4, pp. 25–33, April 1981. 

[Thompson 1992] Thompson, A.K., “CASE Data Integration: The Emerging 
International Standards”, ICL Technical Journal, Vol. 8, No. 1, pp. 54–66, May 
1992. 

[Tichy 1985] Tichy, W.F., “RCS – A System for Version Control”, Software – Practice 
and Experience, Vol. 15, No. 7, pp. 637–654, July 1985. 

[Tichy 1986] Tichy, W., “Smart Recompilation”, ACM Transactions on Programming 
Languages and Systems, Vol. 8, No. 3, pp. 273–291, July 1986. 

[Tresch and Scholl 1993] Tresch, M. and Scholl, M.H., “Schema Transformation without 
Database Reorganisation”, SIGMOD Record, Vol. 22, No. 1, pp. 21–27, March 
1993. 

[Trinder 1991] Trinder, P.W., “Comprehensions, a Query Notation for DBPLs”, 
Proceedings of the Third International Workshop on Database Programming 
Language (Nafplion, Greece, 27th–30th August 1991), Kanellakis, P. and Schmidt, 
J.W. (editors), pp. 55–70, Morgan Kaufmann Publishers, San Mateo, CA, 1991. 

[Tsichritzis and Lochovsky 1982] Tsichritzis, D.C. and Lochovsky, F.H., Data Models, 
Englewood Cliffs, N.J. Prentice-Hall, 1982. 

[Uhrowczik 1973] Uhrowczik, P.P., “Data Dictionary/Directories”, IBM Systems Journal, 
Vol. 12, No. 4, pp. 332–350, 1973. 

[Waller 1991] Waller, E., “Schema Updates and Consistency”, Proceedings of the 
International Conference on Deductive and Object-Oriented Databases (DOOD) 
(Munich, Germany, 16th–18th December 1991), pp. 167–188, Lecture Notes in 
Computer Science 566, Springer-Verlag, 1991. 

14 



BIBLIOGRAPHY 

[Webster 1961] Webster's Third New International Dictionary of the English Language 
Unabridged, editor in chief P.B. Gove and the Merriam-Webster editorial staff, G. & 
C. Merriam Co., G. Bell & Sons Ltd., London, 1961. 

[Wegner and Zdonik 1988] Wegner, P. and Zdonik, S.B., “Inheritance as an Incremental 
Modification Mechanism or What Like Is and Isn't Like”, Proceedings of the 
European Conference on Object-Oriented Programming (Oslo, 15th–17th August 
1988), Gjessing, S. and Nygaard, K. (editors), pp. 55–77, Lecture Notes in Computer 
Science 322, Springer-Verlag, 1988. 

[Weiser 1982] Weiser, M., “Programmers Use Slices When Debugging”, 
Communications of the ACM, Vol. 25, No. 7, pp. 446–452, July 1982. 

[Weiser and Shneiderman 1987] Weiser, M. and Shneiderman, B., “Human Factors of 
Computer Programming”, In Handbook of Human Factors, Salvendy, G. (editor), 
pp. 1398–1415, John Wiley & Sons, 1987. 

[Wiederhold et al. 1992] Wiederhold, G., Wegner, P. and Ceri, S., “Toward 
Megaprogramming”, Communications of the ACM, Vol. 35, No. 11, pp. 89–99, 
November 1992. 

[Wolf et al. 1989] Wolf, A.L., Clarke, L.A. and Wileden, J.C., “The AdaPIC Tool Set: 
Supporting Interface Control and Analysis Throughout the Software Development 
Process”, IEEE Transactions on Software Engineering, Vol. SE-15, No. 3, pp. 250–
263, March 1989. 

[Zelkowitz 1978] Zelkowitz, M.V., “Perspectives on Software Engineering”, ACM 
Computing Surveys, Vol. 10, No. 2, pp. 197–216, June 1978. 

[Zicari 1992] Zicari, R., “A Framework for Schema Updates in an Object-Oriented 
Databases System”, In Building an Object-Oriented Database System: The Story of 
O2, Bancilhon, F., Delobel, C. and Kanellakis, P. (editors), pp. 146–182, Morgan 
Kaufmann Publishers, San Mateo, CA, 1992.

15 



BIBLIOGRAPHY 

 

16 



 

Index 
 

Acheampong (1993) 92 internal 121 
AD/Cycle 62 L-value 71, 74, 119, 140 
Ada 116, 180 R-value 71 
Adams et al. (1989) 56 unused 180 
AdaPIC 180 Birnie (1991) 92 
Agresti and Evanco (1992) 9, 92 Bjørner (1991) 48 
Ahlsen et al. (1983) 53 block 
Albano (1983) 54 depth 80 
Albano et al. (1985) 72, 77 sequence 80 
Allen et al. (1982) 59 Boehm (1988) 45 
ANSI (1988) 59 Bott (1989) 64 
application model 51, 117 Bourne (1979) 16, 62, 89 
application-program 121 Bratsberg (1993) 51 
APSE 64, 116 Brodie (1992) 48 
Archer and Devlin (1986) 64 Brooks (1975) 4 
Arcs 64 Brown (1989) 68 
Ariav (1991) 51 Brunhoff (1991) 56 
Atkinson (1978) 66 build management 155 
Atkinson (1989) 68 Buxton (1980) 64 
Atkinson (1990) 33  
Atkinson (1992) 68, 87 C 14, 56–57 

C++ 180 Atkinson (1993) 72–73, 106, 117, 144, 178 
Atkinson and Buneman (1987) 68, 72 call-graphs 61 
Atkinson and Morrison (1985) 66, 68–69 Cardelli (1989a) 178 
Atkinson and Morrison (1986) 71 Cardelli (1989b) 69 
Atkinson et al. (1982) 7, 66 Cardelli and Wegner (1985) 68 
Atkinson et al. (1983a) 7, 66, 68 Cartmell and Alderson (1989) 50 
Atkinson et al. (1983b) 66 Casais (1991) 51 
Atkinson et al. (1983c) 66 CCEL 180 
Atkinson et al. (1988) 68, 71, 167 CDIF 60 
Atkinson et al. (1990) 77, 87, 161 change 
Atkinson et al. (1991a) 77, 92 causes 2–3, 169, 171 
Atkinson et al. (1991b) 77 control 49 
Atkinson et al. (1993) 76, 134, 141 history 24, 31 
awk 25 management 5, 49–50 
 measurements 7 
Bachman (1988) 48 process 49 
Bailey (1989) 92 propagation 4, 23, 36, 106, 179 
Banerjee et al. (1987) 2, 33, 51–52, 53 measurements 109 
Barclay et al. (1992) 92 schema (see schema evolution) 
Barnard et al. (1982) 5 Chapin (1988) 46 
Batini et al. (1986) 51 Chen (1976) 124 
Baxter (1992) 48 Chikofsky and Cross (1990) 1 
Berman (1991) 77 class evolution 51 
binding 71 Clifton (1990) 14 

categories 121–122 closure (see procedure) 
export 121 COBOL 57, 116 
import 121 cohesion 2 

209 



INDEX  

Colbrook and Smythe (1989) 48 DEC (1989) 16, 58, 89 
Collofello and Buck (1987) 4 DEC (1993) 58, 85 
compilation (see also EnvMake) declaration and use 18–19, 24, 127, 152 

separate 72 DeMarco (1979) 118 
smart 56, 160 dependency 56, 89 (see also EnvMake) 
support 57 DeRemer and Kron (1976) 3 

comprehension query language 84 diff 25 
configuration management 55, 179 Display Language 14 
Connor (1991) 68, 73, 81, 106, 117, 158 documentation 4 
Connor et al. (1990) 144 automatic 48 
Connor et al. (1991) 54 Dolk and Kirsch (1987) 60 

Dolotta et al. (1978) 63 consistency 50 (see also SPASM) 
consistency checking 24  drop-clause 131 
Constantine and Yourdon (1979) 2, 116 drop-program 120 
constraints 10, 118, 173 (see also SPASM) DSEE 56 

specification 180  
violation 152 Eclipse 64 

context 80 ECMA (1990) 60 
conversion 53 EIA (1991) 60 
Cooper (1990a) 68 Elshoff (1976) 9, 92 
Cooper (1990b) 178 England and Selwyn (1990) 14 
Cooper and Qin (1992) 51, 178 Entity-Relationship diagram 124 
Copeland and Maier (1984) 66 environments (Napier88) 70, 73 
coupling 2 aliases 165 
cpp 25 assignments 165 
crane 8 contains-check 70 
cross-referencers 58, 61 drop-clause 70 
Cutts (1993a) 10, 69, 76, 87, 92, 106, 
 117, 179 

identification 162 
insert-declaration 70 

Cutts (1993b) 77 modification 142 
Cutts et al. (1990) 76, 84, 92, 159 references to 181 
 returned 163 
Dahl et al. (1972) 2, 116 use-clause 70 
Dart (1991) 57 EnvMake 10, 147, 166 
Dart et al. (1987) 63 application structure 148 
Data Dictionary Systems Working Party 59 build management 155 
data dictionary 5, 58, 61–62 compilation 158, 161 
data dictionary tools 89, 179 dependency matrix 150 
data flow analysis 57 dependency table 148 
data modelling 48, 178 execution 160–161 
database  experiences 154 

programming 66 flexibility 154, 168 
reorganisation 22, 53 implementation 161 

Date (1990) 116 installation 160 
datum 15 menu 149 
Davie and Morrison (1981) 77 ordering 153 
DBPL 77, 89 performance 162 
DBPLXref 89 plan 157 
DDS 62 status information 156 
Dearle (1987) 106, 117 up-to-date information 161 
Dearle (1988) 68, 70 evolution 46 
Dearle et al. (1989) 68 laws of 3 
Dearle et al. (1992) 106, 117 schema (see schema evolution) 

210 



INDEX  

execution 160 impedance mismatch 66 
order 162 implode 85 

experimentation 185 incremental construction 72 
explode 85 insert-program 120–121 
 installation 160 
Farkas et al. (1992) 76, 183 integrity rules 116 
Fegaras and Stemple (1991) 51 intellectual capacity 180, 186 
Fegaras et al. (1989) 51 Interlisp 64 
Feldman (1979) 10, 50, 55 IPSE 63 
Feldman (1991) 180 IRDS 59 
Ferraby (1991) 3, 49 ISO (1990) 59–60 
formal specifications 48  
FORTRAN 57, 116 Jackson (1975) 2, 116 
Fosdick and Osterweil (1976) 57 Jackson (1983) 118 
FUSE 58, 85 Jacobs and Hull (1991) 139 
 Jandrasics (1981) 48 
Galileo 72, 77  
Gandalf 65 Kay (1992) 60 

Keables et al. (1988) 57 Gløersen (1993) 43 
Goldberg (1984) 65 Kim and Chou (1988) 33, 51 
Gopal et al. (1992) 58 kind 80 
granularity 31, 50, 138, 158 King (1967) 58 
Greenwood et al. (1992) 68 King (1969) 58 
grep 25, 89 Kirby (1993) 68, 70, 76–77, 183 
Griswold and Notkin (1992) 49 Kirby (1993) 182 
 Kirby and Dearle (1990) 76–77, 87, 89 

Kirby et al. (1992) 182 Habermann and Notkin (1986) 65 
Hippo language 14 Knuth (1972) 9, 92 
HMS Knuth (1973) 131–132 

execution log 187 Krueger (1992) 4 
system 14  

Holloway (1988a) 59 L-values (see binding) 
Holloway (1988b) 61–62, 179 language designer 91 

Leblang et al. (1985) 56 Holt (1993) 186 
Humphrey (1989) 49 Lehman (1976) 7 
hyper-programming 76, 181–183 Lehman (1978) 48 

button 184 Lehman (1980) 4, 46 
constraints 183 Lehman (1981) 1 
gesture-based 183 Lehman and Belady (1985) 3, 6 
naming 184 Lerner and Habermann (1990) 2, 33, 51 

hyper-references 142, 166, 179, 181 level of detail (see granularity)  
Levin et al. (1992) 57 hyper-world 183 

 Lieberherr and Holland (1989) 51 
IBM (1978) 67, 110 Lientz and Swanson (1981) 3 

Lientz et al. (1978) 1, 3, 6 IBM (1980) 16, 59 
IBM (1990) 59, 62, 176 life cycle 46 
IBM (1991) 62, 176 link 184 (see also hyper-references) 
IBM (1992) 49 Loboz (1989) 92 
identifier 90 Lopes (1993) 84 

information 5  
identity 162 Machiavelli 160 
Imber (1991) 60 Maes (1987) 77 
impact analysis 23 maintenance 4, 118 

211 



INDEX  

adaptive 1 Monk and Sommerville (1993) 51 
Morrison et al. (1989a) 7, 68 corrective 1 
Morrison et al. (1989b) 68 methodology 10, 138 
Morrison et al. (1990) 68, 70, 72 perfective 1 

phase 46 Munro (1993) 76, 127, 131, 181 
proportion 1  

Make 55, 147 Nakagawa and Futatsugi (1991) 48 
makedepend 56 name 80, 90 (see also measurements) 
Makefile 55, 147, 155 information 5 
maps 77, 85, 87 meaning 5 
Marche (1993) 42, 171, 185 occurrence 90 
Marti (1983) 61, 86 naming 162 
Matthes et al. (1992) 89 convention 133–134 
McKenzie and Snodgrass (1990) 51 Napier88 9, 68, 73 
measurements 6, 184–185 browser 87, 89 

Ada 92 language processing technology 77 
APL 92 libraries 141 
constancy 98–99 programming environment 76 
context 98, 190 type system 68 
declaration and use 128 Napier88-in-Napier88 compiler 69, 77, 

 87, 179 environments 110–111, 164, 192, 193 
FORTRAN 92 Nelson (1992) 6 
kind 95, 189 NinN (see Napier88-in-Napier88) 
lines of code 93  

O'Brien et al. (1987) 64 name length 100–101 
Ohori et al. (1989) 160 name use 94 

persistent programming languages 92 Olle and Black (1988) 59 
PL/1 92 Osborn (1989) 51 
procedures 105–106 Osterweil (1987) 49 

context 107 Osterweil and Fosdick (1976) 57 
polymorphic 108–109 Oxford (1961) 5 
specialised 108–109  

program categories 125 P-Pascal 77 
size 92 Panel (1989) 33, 51 
structure fields 104 Parikh and Zvegintsov (1983) 1 
transfer secondary storage 110 Parnas (1972) 2 
type definitions 101–103, 126, 191 Parsys (1993) 57 
usage 96 partial order 131–132 
use-clauses 129 PAS 3 
variant tags 104 Pascal-R 77 

Meekel and Viala (1988) 48 PCTE 60 
mega-programming 3 Penney and Stein (1987) 33, 51 
Members (1990) 73 performance 86 
meta-data 58 trends 186 
meta-database 58 persistence 
methodology 10, 138, 185 (see also  
 maintenance, SPASM) 

independence 67 
orthogonality 67 

programming 115 reachability 68 
system development 115, 118 research 68 

Meyers et al. (1993) 180 Persistent Application System (see PAS) 
Milner (1984) 69 persistent location binding methodology 

 117, 119, 180 mismatch 89 
Mitchell and Plotkin (1985) 68 persistent programming 7, 66 

212 



INDEX  

environments 177, 185 change (see schema evolution)  
persistent store 73, 153, 174 in Napier88 143 
Pfleeger (1987) 1 schema evolution 42, 139, 143, 178 
PLEIADES 180 categories 22 
Polyhedra 14 consequences 33, 36, 38, 52, 144 
polymophism (see procedures) filtering 53 
Predict 62, 85 object-oriented databases 51 
Pressman (1992) 46, 49 quantification 7, 34–35, 43, 171 
procedure problems 40 

change 139, 142, 165 research 51, 54 
closure 69, 70, 75 Schmidt (1977) 77 
higher-order 69, 138 Schmidt and Matthes (1992) 77, 89 
polymorphic 68, 77 (see also 
 measurements) 

Schwanke and Kaiser (1988) 56 
Schwanke and Platoff (1989) 56, 156 

program categories 120, 152, 162 sed 25 
program management 165 Sheard (1990) 51 
program slicing 57 Sheard (1991) 180 
programming  Sheard and Stemple (1989) 180 

Shepard et al. (1992) 49 culture 117 
languages 185 ShTh 84 
process 63, 146, 168 Sjøberg (1991) 6, 21 

programming-in-the-large 3 Sjøberg (1992) 98, 101, 104–105, 129, 164 
project management 49 Sjøberg (1993) 7, 14, 52, 185 

Sjøberg et al. (1993) 7, 9, 79, 85–86, 172 prototyping 2 
PS-algol (1987) 68 Skarra and Zdonik (1987) 2, 33, 51, 53 
Putnam (1982) 1 Smalltalk 65 
 Sockut and Goldberg (1979) 53 
Qin (1993) 76 software  
query dictionary 15, 19, 36 development process 45 
Quong and Linton (1991) 56 evolution (see evolution) 
 life cycle 45, 49, 59, 63, 90 
RCS 55 process modelling 49 
recompilation (see compilation) SoftwareAG (1990) 16, 62, 85–86, 89 
reflection 77 Sommerville (1992) 46 
Repository Manager 59, 62 Sommerville (1993) 64 
repository 59, 62, 176 Sommerville and Morrison (1987) 64, 116 
Reps and Teitelbaum (1989) 65 source code analysers 89 
reuse 4, 87 SPASM 10, 115, 118, 165 
reverse engineering 48 checking 151–152 
Ringad comprehensions 85 constraints 122–124, 136, 180 
ripple effect 4 extensibility 180 
Ritchie et al. (1978) 57 partial order 133 
Rochkind (1975) 55 persistent store 135 
Roddick (1992) 51 violation 154, 167 
Royce (1970) 45 spiral model 45 
Ryder (1979) 48 Spurr (1988) 59 
 SQL 15, 26, 90 
Saal and Weiss (1977) 9, 92 Startup-program 120–121 
scale 3, 44 static program analysis 57 
scanning environments 86 Stemple (1989) 180 

Stemple et al. (1992) 77 SCCS 55 
Schefström (1991) 64 Stoneman report 64 
schema Strachey (1967) 69 

213 



INDEX  

Structure-oriented environments 65 Tichy (1986) 56, 158 
structured programming 116 timestamping 158, 161 
structuring conventions 133 topological sorting 131–132 
stub methodology (see persistent location 
 binding methodology) 

transaction 15 
Trellis programming environment 64 

stubs 119, 129, 153 Tresch and Scholl (1993) 53 
subtyping 54 Trinder (1991) 84–85, 172 
Sun Microsystems (1988a) 25 Tsichritzis and Lochovsky (1982) 43 
Sun Microsystems (1988b) 57 TSIT 79, 161 (see also thesaurus tools: 

 Napier88) support environment 
language independent 63 type 68 
language specific 64 checking 71 

supporting tools 2, 7, 45 (see also thesaurus 
 tools, EnvMake) 

database 69, 159 
definitions 68, 125, 143, 152, 158 

Sutton et al. (1990) 49 dependency 158–159 
Swanson (1976) 1 equivalence 68, 103, 125, 143, 179 
Symantec (1989) 56, 167 evolution 51 (see also schema 

 evolution)  Synthesizer Generator 65 
system catalogue 62 identifier 68 
 system 60, 68, 173, 178 
Tabkha (1991) 92 type-program 120, 159 
Tabkha (1993) 92  
Tarr and Clarke (1993) 180 Uhrowczik (1973) 59 
Teitelman and Masinter (1981) 64 update functions 15 
thesaurus (definition) 5 update-program 120–121 
thesaurus tools usage 80 

comparison 88 use-clauses (see also environments) 
HMS 6, 13, 15 automatic generation 180–181 

implementation 25  
Query_Dictionary relation 19 VAXset 58 
thesaurus interface 20 version management 178 
Thesaurus relation 16 views 22, 36, 53 
Versions_Thesaurus relation 
 20, 31 

visualisation 150, 178 
 

Napier88 9, 80 Waller (1991) 51, 139 
definition 82, 87 waterfall model 45 
entries 83 Webster (1961) 10 
implementation 87 Wegner and Zdonik (1988) 54 
registration 85 Weiser (1982) 57 
thesaurus interface 84 Weiser and Shneiderman (1987) 5 

Wiederhold et al. (1992) 3 thesaurus kernel 177 
thesaurus-based tools 172, 177 WIN 76, 84, 92 

Wolf et al. (1989) 180 update 86 
THINK C 56  
Thompson (1992) 61 Zelkowitz (1978) 1 
Tichy (1985) 55 Zicari (1992) 51
 

214 


	Ch1.doc
	 
	Abstract
	 Acknowledgements
	 Table of Contents
	 List of Figures
	 List of Tables
	Introduction
	1.1 The Problem of Change 
	1.2 Software Maintenance
	1.3 Thesauri as Foundation for Change Management Tools
	1.4 A Thesaurus Tool in an Industrial Environment
	1.4.1 Schema Evolution Measurements

	1.5 Thesaurus-Based Tools in Persistent Environments
	Figure 1.1:  Building and maintaining application systems
	1.5.1 A Persistent Thesaurus Tool
	1.5.2 Models and Methodologies
	1.5.3 EnvMake – Another Thesaurus-Based Supporting Tool

	1.6 Thesis Statement
	1.7 Thesis Structure


	Ch2.doc
	The HMS Thesaurus Tool – An Industrial Experiment
	2.1 Introduction
	2.1.1 The HMS System
	Figure 2.1:  The main components of the HMS system


	2.2 The Thesaurus Tool
	2.2.1 The Meta-Data Relations
	2.2.1.1 The Thesaurus Relation
	Figure 2.2:  The Thesaurus relation
	Table 2.1:  NAME_TYPE distributed by CONTAINER_TYPE and DEFINITION_USE
	Figure 2.3:  Definitions and uses of names distributed by name_type



	2.2.1.2 The Query_Dictionary Relation
	Figure 2.4:  The Query_Dictionary relation

	2.2.1.3 The Versions_Thesaurus Relation
	Figure 2.5:  The Versions_Thesaurus relation


	2.2.2 The Thesaurus Interface
	Figure 2.6:  The thesaurus interface
	2.2.2.1 Name Usage Information
	2.2.2.2 Schema Evolution – Impact Analysis
	2.2.2.3 Consistency Checks
	2.2.2.4 Change History
	Table 2.2:  Excerpt from the Versions_Thesaurus relation


	2.2.3 Implementation
	Figure 2.7:  The thesaurus scripts and programs

	2.2.4 Evaluation
	2.2.4.1 Detecting Inconsistencies
	2.2.4.2 Software Reuse
	2.2.4.3 Performance 
	2.2.4.4 Learning and Understanding
	2.2.4.5 Alternatives to the Tool
	2.2.4.6 Granularity of Container Types
	2.2.4.7 Recording Change
	2.2.4.8 The Tool in an Organisational Context


	2.3 Quantifying Evolution
	2.3.1 Evolution of the HMS Schema
	Table 2.3:  Added and deleted relations and fields in the HMS schema
	Figure 2.8:  Change history of the relations
	Figure 2.9:  Change history of the fields


	2.3.2 Consequences of the Schema Evolution
	Figure 2.10:  Direct and indirect use of relations and fields
	Table 2.4:  Direct use of relations and fields in the query dictionary
	Table 2.5:  Indirect use of fields in Display Language and Hippo code
	Figure 2.11:  Consequences of the December 1991 HMS schema modification
	Table 2.6:  Consequences of the December 1991 HMS schema modification




	2.3.3 Problems of Measuring Evolution
	Figure 2.12:  Extension of the system structure

	2.3.4 Schema Evolution in Different Application Domains

	2.4 Summary


	Ch3.doc
	Software Evolution and Supporting Tools – A Survey
	3.1 Introduction
	3.1.1 The Software Development and Maintenance Process
	Figure 3.1:  The software development and maintenance process
	Figure 3.2:  Concepts in software construction and maintenance
	3.1.1.1 Data Modelling
	3.1.1.2 Formal Specifications
	3.1.1.3 Automatic Documentation
	3.1.1.4 Reverse Engineering

	3.1.2 Change Management – An Aspect of Project Management
	3.1.2.1 Software Process Modelling

	3.1.3 Software Change Management – Focus of this Thesis

	3.2 Schema and Type Evolution
	3.2.1 Consequences on other Parts of Schema
	3.2.2 Consequences on Extensional Data
	3.2.2.1 Conversion
	3.2.2.2 Filtering

	3.2.3 Consequences on Application Programs
	3.2.4 Approaches

	3.3 Software Configuration and Build Management
	3.3.1 Source Code Control – SCCS/RCS
	3.3.2 Build Management
	3.3.2.1 Make
	3.3.2.2 Smart Recompilation

	3.3.3 Other Configuration Management Tools

	3.4 Tools Based on Static Program Analysis
	3.4.1 Compiler Supporters
	3.4.2 Data Flow Analysis
	3.4.3 Cross-Referencers

	3.5 Meta-Databases
	3.5.1 History of Development
	3.5.2 Standards
	Figure 3.3:  The IRDS levels and pairs

	3.5.3 Features of Meta-Data Systems
	3.5.4 Commercially Available Products
	3.5.4.1 System Catalogues
	3.5.4.2 Data Dictionaries
	3.5.4.3 Repositories


	3.6 Support Environments
	Table 3.1:  Categories of support environments
	3.6.1 Language Independent Support Environments
	3.6.2 Language Specific Support Environments
	3.6.2.1 APSE
	3.6.2.2 Other Closed Environments


	3.7 Summary


	Ch4.doc
	Enabling Technology
	4.1 Persistent Programming
	Figure 4.1:  The three mappings of a traditional database system
	Figure 4.2:  The only mapping of a persistent system

	4.2 Napier88
	4.2.1 Types
	4.2.1.1 Type Databases

	4.2.2 Higher-Order Procedures
	4.2.3 Environments
	Figure 4.3:  Operations on environments
	4.2.3.1 Type Checking and Binding 
	4.2.3.2 Separate Compilation
	4.2.3.3 Some Napier88 Programs’ Impact on the Persistent Store
	Figure 4.4:  Part of the store after running Prog1.N and Prog2.N 
	Figure 4.5:  Part of the store after running Prog3.N
	Figure 4.6:  Part of the store after running Prog4.N
	Figure 4.7:  Part of the store after running Prog4.N and Prog2.N
	Figure 4.8:  Part of the store after running Prog6.N



	4.3 The Napier88 Programming Environment
	4.3.1 The Maps Library

	4.4 Napier88 Language Processing Technology
	4.5 Summary


	Ch5.doc
	Chapter 5TSIT – A T
	TSIT – A Thesaurus-Based Software Information Tool 
	5.1 Introduction
	5.2 The Napier88 Thesaurus
	Figure 5.1:  Definition of thesaurus entry
	Figure 5.2:  The program writePerson.N
	Table 5.1:  The corresponding thesaurus entries for the program writePerson.N


	5.3 Querying the Thesaurus
	5.4 Registration and Update
	5.5 Implementation
	Figure 5.3:  Thesaurus definition

	5.6 TSIT versus other Tools
	Table 5.2:  The HMS thesaurus tool versus TSIT

	5.7 Measuring Name and Identifier Usage – A TSIT Experiment
	5.7.1 Scale of Analysis
	Table 5.3:  Lines of code
	Table 5.4:  Name occurrences

	5.7.2 Name Frequencies
	Figure 5.4:  Name frequency
	Table 5.5:  Name use within programs
	Table 5.6:  Number of times a name is declared within a program (percentages)


	5.7.3 Kind
	Table 5.7:  Distribution of kind

	5.7.4 Name Usage and Context
	Figure 5.5:  Name usage – total
	Figure 5.6:  Name usage – by application
	Table 5.8:  Name usage by application
	Table 5.9:  Distribution of context


	5.7.5 Constancy
	Table 5.10:  Constancy distributed by usage
	Figure 5.7:  Proportion of constants in the applications
	Figure 5.8:  A vector program
	    Table 5.11:  Corresponding thesaurus entries



	5.7.6 Name Length
	Figure 5.9:  Distribution of name length
	Table 5.12:  Name length of type and value identifiers


	5.7.7 Use of Type Definitions
	Figure 5.10:  Distribution of use of type definitions
	Table 5.13:  Statistics on the use of type definitions

	5.7.7.1 Use of Structure Fields and Variant Tags
	Table 5.14:  Use of structure fields
	Table 5.15:  Use of variant tags
	Table 5.16:  Kind of structure fields
	Table 5.17:  Kind of variant tags


	5.7.8 Use of Procedures
	Figure 5.11:  Distribution of use of procedures
	5.7.8.1 Consequences of Change to Procedures
	Table 5.18:  Use of procedures

	5.7.8.2 Context of Procedures
	Table 5.19:  Context of procedures

	5.7.8.3 Polymorphic and Specialised Procedures
	Table 5.20:  Use frequency and number of types instantiated
	Table 5.21:  Specialised procedures
	Table 5.22:  Usage and context of specialised procedures


	5.7.9 Measurements Related to Environments
	Table 5.23:  Number of name occurrences related to operations on environments
	5.7.9.1 Changes to Environments
	Table 5.24:  Programs modifying environments
	Table 5.25:  Environments modified by a program
	Table 5.26:  Programs modifying an environment



	5.8 Summary


	Ch6.doc
	Models and Methodologies
	6.1 Introduction
	Figure 6.1:  Relationship between SPASM and the methodology
	6.1.1 Motivation
	6.1.2 Requirements for Models and Methodologies 

	6.2 A Structured Persistent Application System Model – SPASM
	6.2.1 A Persistent Location Binding Methodology
	6.2.2 Program Categories
	6.2.3 Binding Categories
	Figure 6.2:  Binding categories


	6.3 The SPASM Constraints 
	Table 6.1:  The SPASM constraints
	Figure 6.3:  ER diagram of programs, bindings and type definitions

	6.3.1 Program Categories
	Measurements

	6.3.2 Type Definitions
	Measurements
	Table 6.2:  Unused type definitions
	Table 6.3:  Relationship between type identifiers and type names 


	6.3.3 Declaration and Use
	Measurements
	Table 6.4:  Unused value identifiers


	6.3.4 Stub Constraints
	Measurements
	Table 6.5:  Update of procedure variables


	6.3.5 Drop-Clauses
	Measurements

	6.3.6 Order of Insert-Programs and Type-Programs
	Figure 6.4:  A partial order in the set of programs
	Figure 6.5:  Linear sequence after topological sorting
	Measurements


	6.3.7 Structuring and Naming Conventions
	Figure 6.6:  Environment structure in persistent store
	Table 6.6:  File naming conventions
	Measurements


	6.3.8 Persistent Store 

	6.4 Actions to Conform to the SPASM Constraints
	Table 6.7:  Actions to reconform to constraints that have been violated (continues)
	Table 6.7:  Actions to reconform to constraints that have been violated (continued)

	6.5 Future Development of a Maintenance Methodology
	6.5.1 Modifying Procedure Types
	Figure 6.7:  Strategy 1
	Figure 6.8:  Strategy 2
	Figure 6.9:  Strategy 3

	6.5.2 Modifying Directories and Environments
	6.5.3 Modifying Types – Schema Evolution
	Table 6.8:  Impact of adding, renaming or deleting a type definition


	6.6 Summary


	Ch7.doc
	EnvMake – A Persistent Programming Tool
	7.1 Introduction
	Table 7.1:  Parameters of the envMake command

	7.2 Information about Application Structure
	Table 7.2:  Insert-update dependency table
	Table 7.3:  Use-stored dependency table
	Figure 7.1:  The EnvMake menu
	Table 7.4:  Excerpt from a program-environment matrix



	7.3 Supporting the SPASM Model
	7.3.1 Checking the SPASM Constraints
	Program Categories
	Type Definitions
	Declaration and Use 
	Stub Constraints
	Table 7.5:  Insert-update dependency table

	Drop-Clauses
	Ordering of Insert- and Type-Programs
	Structuring and Naming Conventions
	Persistent Store


	7.3.2 Flexibility of EnvMake
	7.3.3 User Experiences

	7.4 Build Management
	7.4.1 Showing Status Information
	Table 7.6:  Compilation and execution plan
	Table 7.7:  Log of compilations and executions

	7.4.2 Compilation
	Figure 7.2:  Type dependencies

	7.4.3 Execution
	7.4.4 Installation

	7.5 Implementation 
	7.5.1 Problems with Ensuring Up-To-Date Information
	7.5.2 Problems of Naming and Identity
	7.5.2.1 Returned Environments
	Figure 7.3:  Environment as result type

	7.5.2.2 Environments in other Data Structures
	Table 7.8:  Declaration of environments 

	7.5.2.3 Aliases to Environments


	7.6 Future Development of EnvMake
	7.7 Summary


	Ch8.doc
	Conclusions and Future Work
	8.1 Summary – Utilisation of Thesauri 
	8.1.1 Quantifying Evolution
	8.1.2 Thesauri in a Strongly Typed Persistent Environment
	Figure 8.1:  Thesaurus-based tools

	8.1.3 Models and Methodologies
	8.1.4 EnvMake
	8.1.4.1 Structure and Dependency Visualisation
	8.1.4.2 Supporting Steps of the Construction and Maintenance Methodology
	8.1.4.3 Checking the SPASM Constraints
	8.1.4.4 Build Management


	8.2 Future Work – Further Utilisation of Thesauri
	Figure 8.2:  More thesaurus-based tools
	8.2.1 Schema Evolution
	8.2.2 Persistent Software Configuration Management
	8.2.3 Extensibility of SPASM
	8.2.4 Automatic Generation of Use-Clauses
	8.2.5 Referencing Environments
	8.2.6 Hyper-Programming
	8.2.7 Further Measurements

	8.3 Finally
	Figure 8.3:  Methodologies and tools as input to a new language
	Table 8.1:  Platform improvements




	Appendix.doc
	Appendix A:         HMS Execution Log
	Appendix B:  TSIT Measurements
	Table B.1:  Frequencies of Kind by Application 
	Table B.2:  Frequencies of Context by Application
	Table B.3:  Use of type definitions in value instantiations
	Table B.4:  Environments accessed per program 
	Table B.5:  Programs per environment 


	Bibliography.doc
	Bibliography

	Index.doc
	Index


