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Abstract. Evolutionary development allows early and frequent adaptations to new 
or changed requirements. However, such unanticipated changes may invalidate 
design documentation and cause structural degradations of the software, which in 
turn may accelerate changeability decay. Our definition of changeability decay 
focuses on the increased effort required to implement changes. We have identified 
three approaches to the assessment of changeability decay: (1) Structure 
measurement, (2) change complexity measurement and (3) benchmarking. Our 
research aims to evaluate and compare these approaches in order to develop an 
empirical assessment framework.  

In this paper we propose a set of change complexity measures (2) and compare 
them with structural attribute measures (1) using detailed process and product data 
collected from a commercial object-oriented development project. The preliminary 
results indicate that the change complexity measures capture some dimensions of 
changeability decay not accounted for with structural attribute measures. However, 
the current findings also suggest that many aspects of changeability decay cannot be 
accounted for by the indirect measures utilized in approach (1) and (2). As an 
alternative approach, we therefore propose using benchmarks (3) where change 
effort can be measured more directly. A research methodology for the development 
of benchmarks and benchmarking procedures are described.  

1 Introduction 

Handling change is one of those fundamental problems in software engineering. 
Evolutionary development has been proposed as an efficient way to deal with risks such 
as new technology and imprecise or changing requirements (Boehm, 1988). The main 
idea is to resolve risks early by incrementally evolving the system towards completion 
instead of relying on the traditional "big-bang" waterfall (Royce, 1970) approach. For this 
reason, the design and maintenance of an "open-ended architecture" is critical for the 
success of evolutionary software engineering processes such as Gilb's EVO (Gilb, 1988), 
HP Evolutionary Fusion (Cotton, 1996), Dynamic Systems Development Method 
(DSDM) and Rational Unified Process (Kruchten and Royce, 1996). While experience 
reports show a great deal of success in the application of evolutionary development (Gilb, 
1988; Zamperoni et al., 1995), the continuous incremental changes supported by 
evolutionary development are believed to result in poor structure (Boehm et al., 1984). In 
our experience, the frequent changes may also lead to inconsistent and outdated 
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requirements specifications and design documentation. These factors are likely causes of 
changeability decay.  
The goals of our research are: 

• to define changeability decay, 
• to develop a framework for assessing changeability decay, 
• to identify factors causing decay, and  
• to develop and evaluate preventive guidelines in the context of evolutionary 

development of object-oriented software.  

This paper focuses on the first two goals. Our definition of changeability decay focuses 
on the difference in effort to implement a given change in two different versions of a 
software system. Three alternative approaches to measuring changeability decay are 
identified: (1) Structure measurement, (2) change complexity measurement and (3) 
benchmarking.  

The motivation for structure measurement (1) is that the (external) changeability 
attribute of the software system is very difficult to quantify directly on real-life 
development projects. This main reason for this difficulty is that a given change is 
implemented only once, and hence there is no real baseline allowing analysis of trends in 
change effort. Thus, it would be advantageous to identify indicators of changeability 
based on measures of the structural attributes of the software system. The changes in the 
measurement values of these attributes over time may then be used as indicators of 
changeability decay.  

The proposed change complexity measurement (2) combines structural attribute 
measures with measures of the actual changes on the software. It attempts to quantify 
some dimensions of "complexity" of the actual changes carried out instead of the 
"complexity" of the overall system structure. We believe that change complexity 
measurement may be a more accurate indicator of changeability decay than structure 
measurement, because, unlike structure measurement, it accounts for how changes 
propagate through the software structure.  

In this paper, the change complexity measures are compared with structural attribute 
measures using detailed process and product data collected from a commercial object-
oriented development project. Our preliminary results indicate that the change 
complexity measures may be more useful indicators of changeability decay than 
structural attribute measures. However, the current findings also suggest that many 
aspects of changeability decay cannot be accounted for by the indirect measures utilized 
in approach (1) and (2).  

Therefore, as an alternative approach, we propose using benchmarks (3) where change 
effort can be measured more directly. Benchmarking can be used to determine the total 
effort to implement a given collection of "benchmark changes" on different versions of a 
software system. Implementing the same changes on different versions of the software 
provides the necessary baseline that ensures that change efforts can be compared. In 
addition to the impact of deteriorating structure, other aspects (e.g. inconsistent 
documentation, the incorporation of new technology) may be reflected in the 
benchmarking results. However, the utilization of benchmarks introduces new 
methodological challenges. A research methodology for the development of benchmarks 
and benchmarking procedures are therefore described.  

Further validation work is required to determine the limitations and usefulness of the 
assessment framework. Since the proposed assessment framework essentially is 
independent of the underlying software engineering process, we believe there may also 
be other interesting applications for this work. 



 

The remainder of this paper is organized as follows. Section 2 provides the definition 
of changeability decay and describes the three approaches to changeability decay 
assessment. Section 3 describes the relationships between the approaches and discusses 
validation issues. Section 4 attempts to empirically evaluate aspects of the assessment 
framework. Finally, Section 5 concludes and describes on-going and future research. 

2 Measurements of Changeability Decay in Object-Oriented 
Software 

A prerequisite for collecting meaningful measures is to have a clear understanding of the 
attributes in the empirical relational system (Zuse, 1991; Fenton, 1994). Consequently, in 
this section we first define changeability decay. We then describe three alternative 
approaches to measuring it. Tradeoffs and relationships between these approaches are 
discussed in Section 3. 

2.1 Changeability Decay 

The changeability of a software system characterizes the ease of implementing changes to 
the system. Intuitively, changeability decay is the decrease in changeability between two 
versions of a software system, more formally: 
 
Definition of Changeability Decay: Apply a given change c to versions v1 and v2 of a 

software system, where v2 is a later version of the software than v1. Let e1 and e2 be 
the total effort to implement c, and the consequential change propagation to preserve 
consistency of the total system, on v1 and v2, respectively. The changeability is 
decayed with respect to c iff e2 > e1. 

 
We emphasize that in this definition, we do not regard the "given change" in isolation, 
but also include the additional work associated with change propagation to ensure that the 
consistency of the system remains at the same level as before the change (Sjøberg et al., 
1997a; Sjøberg et al., 1997b). Included in the consequences are new errors (the ripple 
effect). One study found that more than 50% of all errors were due to previous changes 
(Collofello and Buck, 1987). 

The proposed definition of changeability decay exhibits important differences from 
related work. Our research is primarily related to the early work of Lehman and Belady 
on program evolution (Lehman and Belady, 1985) and the recent Code Decay project 
(Eick et al., 1999) at Bell Labs: 

 
• Lehman & Belady � Law of increasing complexity: As a large program is 

continuously changed, its complexity, which reflects deteriorating structure, 
increases unless work is done to maintain or reduce it. 

• Code Decay Project (Bell Labs) � Code is decayed if it is more difficult to change 
than it should be, as reflected by three key responses: (1) COST of the change, which 
is effectively only the personnel cost for the developers who implement it; (2) 
INTERVAL to complete the change � the calendar/clock time required; and (3) 
QUALITY of the changed software.  

 



 

Like Lehman & Belady's "Law of Increasing Complexity", our definition is concerned 
with "deteriorating structure", but only to the extent to which such deterioration actually 
affects changeability.  

The inherent difficulty of implementing different changes may of course vary 
substantially. For example, the implementation of a simple bug-fix requires significantly 
less effort than to implement a new accounting module in the software system. Thus, 
unlike the definition of "Code Decay", our definition of changeability decay refers 
explicitly to the increase in total effort required to implement the same, given change 
(including the necessary change propagation) in successive versions of the software 
system.  

Like in the Code Decay definition, QUALITY is also reflected in our definition since a 
"change" includes the work required to ensure consistency and reliability. However, we 
feel that INTERVAL is not a good indicator of changeability decay as the time schedule 
may depend on other external factors than the system attribute "changeability". Thus, 
INTERVAL is not reflected in our definition of changeability decay.  

We recognize the importance of providing an operational definition of changeability 
decay as a prerequisite for meaningful measurement. However, the concept of 
changeability decay is not fully understood to the extent that one can claim to know 
exactly how it should be defined and measured. For example, as pointed out in (Eick et 
al., 1999), the actual change effort depends on the ability of the developer implementing 
the change. Thus, changeability decay may be viewed not only as an attribute of the 
software system but also as an attribute of "people". In principle, when we refer to "the 
total effort" in our definition of changeability decay, we could have added "with respect 
to a given developer". However, our goal is to measure the system attribute changeability 
decay in an abstract context where the individual skill level of a given developer is 
measurement noise. Thus, experimental designs and statistical techniques must be used to 
control for the external factors such as the individual skill level of developers. We are in 
the process of conducting several empirical case studies and experiments that may 
provide valuable insight to improve our understanding of the empirical relational system 
and hence � to improve the definition of changeability decay. In the following, we will 
discuss the three approaches to measuring changeability decay according to our current 
understanding of the underlying concepts, and defer other important measurement 
theoretical issues to Section 3. 

2.2 Structure measurement 

It is commonly believed that a deteriorated structure has a significant negative impact on 
changeability. There is a growing body of results indicating that measures of structural 
attributes such as coupling, cohesion, inheritance depth, etc. can be reasonably good 
predictors of development effort and product quality (Li and Henry, 1993; Chidamber 
and Kemerer, 1994; Basili et al., 1996; Harrison et al., 1998; Briand et al., 1999b; Briand 
et al., 1999d). Thus, it is conceivable that such structural attribute measures can be used 
in a prediction model of change effort where increasing values in the model output 
indicate changeability decay.  



 

2.2.1 Selection of Structural Attributes 
 
We have selected a few and relatively simple measures that we believe capture some 
important and intuitive dimensions of an object-oriented structure: "coupling" quantifies 
interclass dependencies; "class size" and "method count" are supposed to indicate the 
amount of functional responsibility of a class. In theory, low coupling and small class 
size may reflect an architecture with good functional responsibility alignment among 
classes, which in turn may affect the changeability of the software system.  

There are several good reasons for using existing structural attribute measures instead 
of inventing new ones (Briand et al., 1999a). We base the structural attribute measures on 
existing measures described in the literature (Briand et al., 1997; Briand et al., 1999b; 
Briand et al., 1999c; Briand et al., 1999d). However, the current state of practice indicates 
that it is premature to select only one type or dimension of coupling (Briand et al., 
1999a). Consequently, we are investigating several dimensions of coupling, in particular 
the static, class level coupling measures defined in (Briand et al., 1997) adapted to C++, 
Java and Visual Basic, as well as dynamic import and export coupling measures for 
SmallTalk systems. Note that the coupling measures in Table 1 (IC and EC) refer to all of 
these import coupling and export coupling measures, respectively.  

It is commonly believed that size is a major contributor of "complexity". We measure 
two dimensions of the overall system size: lines of code and class counts.  

Table 1. Summary of Proposed Structural Attribute Measures 

Name Definition Description 
Class 
Count 

CC Total number of implemented (non-library) classes in the system 

Class Size CS(c) Class size is measured as the number of Source Lines Of Code 
(SLOC) for the class c. 

System 
Size 

 System size is defined as the sum of the class sizes for the total 
number of implemented (non-library) classes in  the system. 

Method 
Count 

MC(c) Method count is defined as the number of implemented methods in a 
class c. A formal definition is provided in (Briand et al., 1999c). 

Import 
Coupling 

IC(c)          The class level import coupling measures defined in (Briand et al., 
1997) adapted to C++, Java and Visual Basic, as well as dynamic 
import coupling measures for SmallTalk.  

Export 
Coupling 

EC(c) 
 

The class level export coupling measures defined in (Briand et al., 
1997) adapted to C++, Java and Visual Basic, as well as dynamic 
export coupling measures for SmallTalk.  
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2.3 Change Complexity Measurement 

The proposed change complexity measurement is a combination of structure 
measurement and measures of the actual changes carried out during the development 
process. It measures properties of the change itself, as well as structural attributes of 
those parts of the software system affected by that change. Thus, it attempts to measure 
some dimensions of "complexity2" of the actual changes carried out instead of the 
"complexity" of the overall system structure. The hypotheses underlying this approach 
are: 

 
• Changes affecting "complex" structural components require more development effort 

than changes affecting "less complex" structural components.  
• Although the overall structural attributes of the software may remain more or less 

constant, the change complexity may still vary substantially.   

Table 2 describes the proposed measures in some detail. The main idea is to consider how 
changes propagate through the various components (i.e. classes) in the software structure. 
For each component affected by a change, the proportion of work carried out on that 
component is recorded. This measurement is called the "change profile" (CP). The 
structural attributes "class size" (CS), "import coupling" (IC), "export coupling" (EC) and 
"method count" (MC) for those components affected by the change are also measured. By 
using the class level change profile as a weighting factor on the four structural attribute 
measures, we obtain the "change complexity measures" CSCP, ICCP, ECCP and MCCP 
for a given change. 

Fig. 1. Change complexity measures for a given change affecting classes A and D. 

Figure 1 depicts a hypothetical change affecting classes A and D and the resulting change 
complexity measures. In this figure, the nodes represent classes and the edges represent 
static method invocations from a client class to a server class. Example values for the 
structural attribute measures (CS, IC, EC and MC) and the change profile (CP) for class A 
and D are provided together with the resulting change complexity measures CSCP, ICCP, 
ECCP and MCCP.  

                                                           
2 According to (Fenton, 1992), "It is counter-productive to insist on equating measures of specific 

(and often important) structural attributes with the poorly understood attribute of complexity". 

IC(A) = 0
EC(A) = 2
MC(A) = 20
CS(A) = 100
CP(A) = 0.2

IC(D) = 2
EC(D) = 1
MC(D) = 10
CS(D)=200
CP(D) = 0.8

Change Span = 2
ICCP = IC(A)*CP(A) + IC(D)*CP(D)  = 0*0.2 + 2*0.8 = 1.6
ECCP = EC(A)*CP(A) + EC(D)*CP(D) = 2*0.2  + 1*0.8 = 1.2
MCCP = MC(A)*CP(A) + MC(D)*CP(D) = 20*0.2 + 10*0.8 = 12
CSCP = CS(A)*CP(A) + CS(D)*CP(D) = 100*0.2 + 200*0.8 = 180

A

B

C

D

E



 

Table 2. Summary of Proposed Change Complexity Measures 
Name Definition Description 
Change Size  The number of source lines of code (SLOC) added to or 

deleted from class c for a given change to the software 
system. 

Change Profile  
 
 

The proportion of the total amount of changes done on 
class c for a given change to the software system. CC is 
the Class Count measure defined in Table 1. 

Change Span  
 

The total number of classes modified in a given change to 
the software system.  
 

Class Size  
Change Profile 

 Average class size weighted by the change profile for a 
given change to the software system. CS is the Class Size 
measure defined in Table 1. 

Import Coupling 
Change Profile 

 
 

Average import coupling weighted by the change profile 
for a given change to the software system. IC is any of the 
Import Coupling measures outlined in Table 1. 

Export Coupling 
Change Profile 

 
 

Average export coupling weighted by the change profile 
for a given change to the software system. EC is any of 
the Export Coupling measures outlined in Table 1. 

Method Count 
Change Profile 

 
 

Average method count weighted by the change profile for 
a given change to the software system. MC is the Method 
Count measure defined in Table 1. 

2.4 Benchmarking 

An intuitively appealing approach for the assessment of changeability decay is 
benchmarking. A given collection of "representative changes" c are implemented on 
different versions of the software v1 and v2. The resulting change efforts e1 and e2, 
respectively, are recorded. Hence, our operational definition of changeability decay is 
reflected in this approach.  

Some related work exists where benchmarking was used to evaluate the efficiency of 
different development tools by implementing the same changes with different tools 
(Jørgensen et al., 1995; Sjøberg et al., 1996). The effort required to implement the 
changes using the different tools was then used as an indicator of tool efficiency. In the 
approach proposed in this paper, the changes, the tools, the developers and the software 
system are fixed; only the software version varies.  

2.4.1 Design of a Benchmarking Procedure 
Performing a benchmark requires a specific benchmarking procedure to ensure accurate 
and reliable results. In our case, one must particularly deal with questions related to the 
learning curve and the skill level of the individuals who perform the benchmark.  
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There are at least two aspects of learning that need to be considered, in particular if the 
benchmark is implemented on different versions of the software system by the same 
developers within a short time period: 

• Learning the system � if the versions of the software system have many similarities, 
most of the development team's initial system comprehension effort will be spent on 
the version first subjected to the benchmark assessment. 

• Learning the changes � if a developer implements the same change on two 
consecutive versions of the software system, it is likely that the developer will be 
more efficient during implementation of the change on the second version. 

To deal with this situation, we suggest an experiment where the developer implements 
the same change only once, while controlling for the differences in individual skill levels, 
as follows: 

Step 1 (skill level assessment). The developers implement a small change on a fictive 
software system. The effort to implement the change is recorded for each developer. 

Step 2 (division in groups). The developers are divided in two groups (g1, g2), such that 
the mean and variance of the change effort data obtained in Step 1 of each group are 
approximately equal.  

Step 3 (benchmarking). All members of group g1 implement the benchmark on version 
v1 of the software system. All members of g2 implement the benchmark on version 
v2. The individual effort required by each developer to implement the benchmark is 
recorded. 

Step 4 (statistical analysis). The changeability of version v2 is decayed with respect to 
version v1 if the mean change effort for group g2 is significantly larger than the 
mean change effort for group g1. Assuming a normal distribution, this test can be 
performed using a two-sample Student's T-test. Otherwise, a non-parametric test 
such as the mean rank Kruskal-Wallis test can be used.       

However, other, simpler experimental designs may be appropriate if one can ignore the 
learning effect � for example, when the time span between performing the benchmark is 
large, or when the software systems are sufficiently different. In those cases, each 
individual developer could implement the same benchmark on versions v1 and v2. This 
design would eliminate the need for the skill level assessment (Step 1), and a paired 
Student's T-test or a paired Wilcoxon test could be used where each observation is the 
difference in individual effort, d = e(v2) � e(v1), for each developer.   

2.4.2 Composition of Benchmarks 
The benchmark results are only valid for the particular collection of changes given by the 
benchmark. Thus, it is important that the changes prescribed by the benchmark are 
representative of typical changes performed on the software product. If benchmarking is 
performed on the same system from which actual change statistics have been collected, 
we can use the change statistics to compose a dedicated benchmark that is representative 
of the actual changes performed on that system. It is obviously a greater, long term, 
challenge to compose more general benchmarks that are representative of changes to 
different software systems in different application domains.  



 

As a means to collect empirical data to develop representative benchmarks for a 
specific system, we have defined a data collection process to ensure that the developers  

1. classify all changes and assign a change ID,  
2. tag each file-level check-in with the correct change ID, and 
3. report process data (change effort, subjective change complexity, number of 

discovered faults, etc.) per change. 

A data reporting tool has been implemented to support this process (Figure 2). The tool 
can also be used to collect actual benchmark results.  

 

Fig. 2. The user interface of the change logger tool 



 

3 Relationships between Changeability Decay Measures 

The goal of our research is to measure changeability decay such that causes of decay can 
be identified and preventive guidelines developed. This section describes the 
relationships between the three approaches (structure measurement, change complexity 
measurement and benchmarking) to the measurement of changeability decay. Figure 3 
depicts some important relationships between the empirical relational system and the 
proposed measurement approaches. These relationships are explained further, according 
to assessment accuracy (Section 3.1) and assessment cost (Section 3.2). 

Fig. 3. Relationships between the empirical relational system and the assessment framework 

3.1 Accuracy of the Measurement Approaches 

We believe that benchmarking is the most accurate way to assess changeability decay. 
Unlike structure measurement and change complexity measurement, benchmarking does 
not rely on an underlying theory relating changeability decay to structural attributes of 
software; it attempts to measure changeability decay directly. Therefore, it may account 
for other factors affecting the changeability of software, such as inconsistent or outdated 
documentation. One requirement for accurate benchmarking results is that benchmark 
changes are representative of typical changes. Otherwise, the results may be biased. 
Selecting such changes is not trivial, however, we believe that the data collection 
procedure described in Section 2.4.2 will provide important insight for the composition of 
benchmarks.  

Our hypothesis is that structure measurement can be used to indicate changeability 
decay. A common belief is that a deteriorated structure has a negative impact on the 
changeability of software. Structure measurement is intended to measure deteriorated 
structure. Increasing values of the structural attribute measures are thus intended to be 
indicators of changeability decay. The accuracy of these indicators depends on to what 
extent structural deterioration, as measured by the structural attribute measures, actually 
affects changeability. 

Change complexity measurement is intended to measure the complexity of 
implementing changes to the software, where "complexity" is reflected by the structural 
attributes of the parts of the system actually being affected by a given change. We believe 
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that change complexity measurement may be a more accurate indicator of changeability 
decay than structure measurement, because, unlike structure measurement, it accounts for 
how changes propagate through the software structure. This hypothesis must of course be 
tested empirically.  

3.1.1 Validation Issues 
Before structure measurement and change complexity measurement can be used as 
indicators of changeability decay, they must be validated. Furthermore, benchmarking 
does not provide much insight into the cause of decay. Increases in benchmark change 
effort may be due to, for example, inconsistent or outdated documentation, or a 
deteriorated structure. Thus, validating structure measurement and change complexity 
measurement using benchmarking results may provide further insight into the cause of 
the observed trend in benchmark change effort.  

The validation can be performed by building, for example, regression models (Draper 
and Smith, 1981). To validate the structural attribute measures with regression, the 
response variable may be the differences in benchmark change effort. The structural 
attribute measures (Table 1) are used (either individually or in combination) as regressor 
variables. For example, using the differences in measurement values from v1 to v2 as 
regressor variables one obtains the following candidate regression model: 

Effortv2,b � Effortv1,b = b0 + b1*(CCv2 � CCv1) + b2*(SSv2 � SSv1) + b3*(AvgMCv2  � 
AvgMCv1) + b4*(AvgICv2  � AvgICv1) + b5*(AvgCSv2  � AvgCSv1) 

The corresponding example regression model for validation of change complexity 
measures (Table 2) is: 

Effortv2,b � Effortv1,b = b0 + b1*(ChangeSpanv2,b � ChangeSpanv1,b) + b2*(CSCPv2,b � 
CSCPv1,b) + b3*(MCCPv2,b  � MCCPv1,b) + b4*(ICCPv2,b  � ICCPv1,b) 
+ b5*(ECCPv2,b  � ECCPv1,b) 

By evaluating the explanatory power of the regression models (using, for example, cross-
validated R-square) one can determine to what extent the regressor variables explain the 
variation in differences in benchmark change effort. Unfortunately, interpreting software 
engineering data with regression models is far from trivial. Hence, alternative modeling 
techniques such as pattern recognition may be more appropriate in some circumstances 
(Briand et al., 1992; Jørgensen, 1995).  

The benchmarking technique also needs to be validated. This involves an investigation 
of experimental errors. Such investigation would involve a meta-level experiment where 
benchmarking is evaluated using different benchmark experiment designs, varying the 
number of subjects, and varying the benchmark composition (e.g., the number, type and 
size of benchmark changes).  

3.2 Cost of the Measurement Approaches 

Benchmarking is by far the most expensive approach, as it requires implementation of 
changes by system developers. Change complexity measurement and structure 
measurement are inexpensive in comparison, since the measures can be collected by 
semi-automatic data-collection tools if the software system has been subject to version 
control. Thus, from a cost perspective, structure measurement and change complexity 
measurement are superior to benchmarking.  



 

4 Empirical Evaluation 

The proposed assessment framework is currently being evaluated in four industrial case 
studies (Ericsson, Numerica-Taskon, Genera and Braathens) in Norway. These case 
studies differ in both size (12 person-months to 100 person-months) and application 
domains (large telecommunication application in Java, CASE-tool development projects 
in SmallTalk, Java and C++, and Web-application in Visual Basic/Java/HTML). Results 
from the development project for the Norwegian airline Braathens are reported below.  

4.1 Description of the Case Study 

The Braathens case study used an evolutionary development process called the Genova 
Process (Arisholm et al., 1998; Arisholm et al., 1999), which is quite similar to the 
Rational Unified Process (Kruchten and Royce, 1996). The development team consisted 
of four developers and an experienced project manager. The experience level of the 
developers varied from 1 year to 5 years. The system being studied implemented an 
automated customer service for Braathens frequent flyer program, "Wings".3 The system 
is a three-tier application consisting of Java/HTML clients, a middle-tier component for 
transaction processing and business logic, and a mainframe database server. The middle-
tier module was implemented as classes in Visual Basic 6 and bundled in ActiveX 
components running on a Microsoft Transaction Server. Data from this module was 
collected based on weekly versions of the software through a 21-week period. After week 
21, the system became operational. Three increments were delivered during these 21 
weeks, at week 5, 10 and 21, respectively. Weekly effort data in person-hours was 
available for different activities (analysis, design, code, test and administration) to 
implement the module and provided the effort data reported in this section. A more 
thorough analysis of the development process is provided in (Arisholm et al., 1999). 

For the IC and EC coupling measures (Table 1), we implemented a parser for one of 
the import coupling measures called OMMIC, and for one export coupling measure called 
OMMEC (adapted from (Briand et al., 1997) to Visual Basic). Unfortunately, we 
encountered a problem with the collection of the export coupling measure for Visual 
Basic. In this particular project, many variables were declared as a generic base class 
"object", and the class constructors were implemented in a way that the actual type of the 
variable could not be determined from static code parsing. This means that the OMMEC 
export coupling measure collected from this module is inaccurate. Hence, data for export 
coupling is not reported in this paper. 

4.2 Results  

Table 3 shows the correlation between class-level Import Coupling (IC), Method Count 
(MC) and Class Size (CS), based on the operational software system from week 21. 
Although the correlation coefficients with CS are high, the variance of IC explained by 
CS is only 57% (R-Sq=0.57). Only 55% of the variance of MC is explained by CS (R-
Sq=0.55). Hence, despite the definite correlation, one cannot claim that IC and MC both 
essentially capture size. In a similar comparison, less correlation (r=0.59) was found 
between the same import coupling measure and a similar size measure (Briand et al., 
1999b). 
                                                           
3 The system can be viewed at http://www.braathens.no. 



 

Table 3. Pearson correlations between important class-level structural attribute measures 

Correlation (p-value) IC CS 
CS 0.760 (0.000)  
MC 0.442 (0.031) 0.742 (0.000) 

 
Figure 4 compares selected change complexity measures (ICCP and MCCP) with the 
corresponding structure measurements (Avg. IC and Avg. MC). The results illustrate that 
more work is often done on classes with higher than average import coupling and higher 
than average message counts. Structure measurement obviously does not reflect the 
variation in weekly "change complexity", as such variation depends on which parts of the 
software structure that happens to be affected by the changes implemented during a given 
week. Hence, change complexity measurement may be useful for assessing trends in 
actual change complexity, whereas structure measurement may be useful for assessing 
trends in the overall structural properties of the software system. 

Fig. 4. Weekly plot of ICCP vs Avg. IC, and MCCP vs Avg. MC (no changes during week 14) 

We still need to validate the structural attribute measures and the change complexity 
measures as indicators of changeability decay. To attempt validating the measures, we 
built regression models where the measures were candidate explanatory variables. A 
"productivity" measure was the response variable in the models. The productivity 
measure was calculated by dividing "change size" (measured in SLOC added + deleted) 
by reported effort data (SLOC added + deleted per person-hour). To obtain accurate 
productivity data, we had to reduce noise in change size caused by irregularities in file 
check-in times. Thus, we accumulated weekly changes until approximately 1000 SLOC 
had been changed (added or deleted). Then, we calculated productivity for the changes 
that occurred within each time span (e.g., from week 1 to week 4, and from week 5 to 
week 6). The resulting data is shown in Table 4. 

In this case study, no statistically significant correlation was found between the 
structural attribute measures and the measured productivity, nor the change complexity 
measures and the measured productivity. The results suggest that, for this project, other 
factors were more important for the variation in the productivity measure than "structure" 
or "change complexity". Indeed, the main risks for the project were the incorporation of 
new and unfamiliar technology.  
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Table 4. Summary of process measures (Effort, Change Size, Productivity), structural attribute 
measures (SS, CC, Avg.IC, Avg.CS, Avg.MC) and change complexity measures (Change Span, 
ICCP, CSCP, MCCP) 

Week # 1�4 5�6 7 8�10 11�12 13�18 19 20�21 
Effort (hours) 209 132 55 120 83 227 65.5 108.5 
Change Size 1057 1086 1150 1018 1473 1187 1556 987 
Productivity 5.1 8.2 20.9 8.5 17.7 5.2 23.8 9.1 
         
SS (System Size) 645 1202 1864 1815 2543 2894 4023 4305 
CC (Class Count) 13 12 12 10 14 15 22 25 
Avg. IC 2.7 3.1 11.3 14.1 14.1 14.0 11.4 10.1 
Avg. CS 50 67 155 182 182 181 183 172 
Avg. MC 6.3 4.8 6.0 6.6 5.9 6.1 6.8 6.2 
         
Change Span 13 12 8 9 13 12 12 15 
ICCP 6.0 7.5 38.9 31.5 39.4 34.2 14.8 23.2 
CSCP 75 133 316 320 307 334 311 268 
MCCP 9.9 6.8 8.7 7.5 7.4 10.5 12.6 10.0 

Although we at present have been unable to validate the measures using regression 
models, we have still found interesting but inconclusive relationships between some of 
the change complexity measures and the productivity measure. Figure 5 shows an 
example of such a relationship. Values of the Import Coupling Change Profile (ICCP) 
and the corresponding structural attribute measure (Avg. IC) are plotted against the 
productivity measure. The resulting plot seems to indicate a positive correlation between 
ICCP and productivity during the main construction phase of the software (from week 1 
to week 19). However, during the last three weeks before system delivery, the 
relationship changes. Interviews with the developers and examination of their time sheets 
reveal that weeks 19 to 21 correspond to the test phase. We have no further qualitative 
explanation of this irregularity. While there is a visible relationship between productivity 
and ICCP, there is no visual relationship between productivity and the import coupling 
measure IC (used in the structure measurement approach). This provides some very 
speculative support for our hypothesis that "change complexity measures" may be better 
indicators of changeability decay than the "structural attribute measures" (Section 3.1). 
Of course, the exploratory nature of this research cannot rule out that this apparent 
relationship between ICCP and productivity are not due to "shutgun correlations" 
(Courtney and Gustafson, 1993).  



 

Fig. 5. Plot of productivity versus ICCP and Avg.IC4 

The preliminary validation should be interpreted with caution because of the difficulties 
associated with the used validation method. The main problem with the validation 
method was the use of SLOC-based "productivity" to measure changeability. For 
example, it is well known that the number of source lines of code used to implement a 
certain function varies widely among individuals with different skill levels. Hence, using 
lines of code to obtain the productivity measure may be inappropriate. An alternative 
measure of change size is function points (Albrecht and Gaffney, 1983; Symons, 1988). 
However, using function points to estimate the size of small changes to software may be 
impractical (Jørgensen, 1995).  

We believe that several of the problems discussed above can be addressed by a 
benchmark approach. If measurements were performed on benchmarks instead of actual 
changes, the validation may have avoided important sources of measurement noise 
caused by: 

• The need to normalize change effort  (resulting in a productivity measure of 
questionable validity � as described in the previous paragraph); the validation model 
could, for example, have used the response variable described in Section 3.1.1. 

• Inaccuracies in reported effort data (since a controlled benchmark experiment may 
allow better report and control of time expenditure). 

• Differences in inherent change difficulty (since benchmarking prescribes the 
implementation of the same, given change � as described in Section 2.4). 

• Differences in individual skill levels of the developers (since the benchmarking 
experimental design may control for individual ability � as described in Section 
2.4.1). 

                                                           
4 Note that the measurement scales on the Y-axis in Figure 5 are different for the different 

measures. The plot only intends to illustrate a co-variation between ICCP and productivity. 

0
5
10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Week#

ICCP

AvgIC

Productivity



 

5 Conclusions and Future Work 

This paper proposed a framework for empirical assessment of changeability decay. We 
defined changeability decay and identified three approaches to empirical assessment. In 
the preliminary case study described in this paper, change complexity measurement was 
empirically evaluated against structure measurement. The results indicate that change 
complexity measurement may account for some dimensions of the changeability of 
object-oriented software not provided with the structure measurement approach. 
However, both approaches are based on the hypothesis that structural attributes of object-
oriented software significantly affect changeability. In this case study, neither structural 
attribute measures nor the proposed measures of "change complexity" seem to explain the 
variation in measured productivity. However, we believe the validation of the measures 
would be more reliable if effort and product data were collected either from logical 
changes (e.g., "implement password encryption for the login screen") or preferably from 
benchmark changes, rather than from weekly changes. Consequently, further 
investigation and development of the approaches are required.  

At present, research is underway to evaluate the approaches through controlled 
experiments as well as case studies in different application domains, system sizes and 
programming languages. The code parsers needed to collect the structural attribute 
measures and the change complexity measures have been implemented for Java and 
SmallTalk. For Java, the parser collects the static import and export coupling measures 
described in (Briand et al., 1997), adapted to Java. Work is in progress to implement a 
similar tool for C++. For SmallTalk, we have implemented dynamic coupling measures 
by intercepting messages sent between objects at run-time since it is not possible to parse 
the SmallTalk programming language to obtain accurate static coupling. At present, the 
dynamic coupling parser is being tested on 10 versions of a CASE tool, which supports 
the OORAM software engineering method (Reenskaug et al., 1995). This SmallTalk 
software system consists of more than 1000 classes.  

We are also doing the final preparations for a benchmarking experiment involving 
graduate students at University of Oslo. The purpose of the benchmarking experiment is 
to  

• evaluate the proposed experimental design (Section 2.4.1), 
• gain practical experience with the composition of benchmarks (Section 2.4.2), and 
• provide a controlled environment for validation of the structural attribute measures 

and the change complexity measures (Section 3.1.1). 

In addition to that experiment, we are continuing the data collection in several industrial 
case studies. In one of them, we analyze changes performed on a medium sized CASE 
tool called Genova (Arisholm et al., 1998). Genova is written in Java and C++, and is 
significantly larger than the Visual Basic system analyzed in Section 4. At present, 
approximately 10 developers are involved in the project. They use the change logger tool 
and the data collection process described in Section 2.4.2. So far, 34 logical changes to 
the Genova CASE tool have been recorded. These changes are then traced in the 
configuration management system (ClearCase) to collect structural attribute measures 
and change complexity measures, which in turn will be validated using the reported 
change effort data.  
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