Empirical Software Engineering, 6, 231-277, 2001.
"‘ © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Assessing the Changeability of two Object-Oriented
Design Alternatives—a Controlled Experiment

ERIK ARISHOLM*, DAG I. K. SJIOBERG* AND MAGNE JORGENSEN*
erik@simula.no, dag@simula.no, magne@simula.no
Simula Research Laboratory, Oslo Research Park, Gaustadalléen 21, N-0349 Oslo, Norway

Abstract. An important motivation for the object-oriented paradigm is to improve the changeability of
the software, thereby reducing lifetime development costs. This paper describes the results of controlled
experiments assessing the changeability of a given responsibility-driven (RD) design versus an alternative
control-oriented “mainframe” (MF) design. According to Coad and Yourdon’s OO design quality prin-
ciples, the RD design represents a “good” design. The MF design represents a “bad” design. To inves-
tigate which of the designs have better changeability, we conducted two controlled experiments—a pilot
experiment and a main experiment. In both experiments, the subjects were divided in two groups in which
the individuals designed, coded and tested several identical changes on one of the two design alternatives.

The results clearly indicate that the “good”” RD design requires significantly more change effort for the
given set of changes than the alternative “bad”” MF design. This difference in change effort is primarily due
to the difference in effort required to understand how to solve the change tasks. Consequently, reducing
class-level coupling and increasing class cohesion may actually increase the cognitive complexity of a
design. With regards to correctness and learning curve, we found no significant differences between the
two designs. However, we found that structural attributes change less for the RD design than for the MF
design. Thus, the RD design may be less prone to structural deterioration. A challenging issue raised in
this paper is therefore the tradeoff between change effort and structural stability.

Keywords: Changeability, change effort, object-oriented design quality, controlled experiment, res-
ponsibility-driven design.

1. Introduction

Handling change is a fundamental problem in software engineering. Object orien-
tation provides design mechanisms such as encapsulation and inheritance to delegate
functional responsibilities into logically cohesive classes, which in turn may improve
understandability. The same mechanisms may be used to reduce coupling between
the classes, hence reducing the impact of changes. Still, when designing
object-oriented software, designers are faced with tradeoffs between various quality
characteristics, such as changeability, correctness, performance and reusability. For
example, to achieve high performance one may have to take “‘short cuts” that may
lead to more error-prone software. Furthermore, changeability may be compromised

* Also at: Industrial Systems Development, Department of Informatics, University of Oslo, PO Box 1080
Blindern, N-0316 Oslo, Norway

232 ARISHOLM, SJOBERG AND JORGENSEN

by designing reusable, but perhaps overly complex classes or components. Deciding
the “optimal” tradeoffs between such quality characteristics is clearly a difficult task.
Before one can design object-oriented software with these tradeoffs in mind, one
needs to understand how different design solutions affect the various software
qualities. Unfortunately, the current state of practice indicates that the design
of object-oriented software is still more of an art than a science (Briand et al.,
1999b).

The changeability of a software system characterizes the ease of implementing
changes. The motivation for studying changeability is related to our empirical re-
search on evolutionary development of object-oriented software (Arisholm et al.,
1998, 1999). In a former study (Arisholm et al., 1999), we found that as much as 60%
of the coding effort was rework, i.e., changes due to evolving requirements and other
incremental improvements of the software system. Furthermore, the continuous
changes prescribed by evolutionary development may result in early, structural de-
terioration (Lehman and Belady, 1985), which in turn may cause changeability decay
and necessitate costly restructuring efforts (Arisholm and Sjeberg, 2000). Thus, the
design of an open-ended object-oriented structure that easily supports change is
critical. This paper attempts to improve our understanding of the changeability of
object-oriented software by studying the impact of identical changes on two alter-
native designs.

The remainder of this paper is organized as follows. Section 2 describes the design
of the study, including the chosen design alternatives, the change tasks and the
dependent variables. Section 3 describes the results of the pilot experiment used to
formulate the hypotheses. Section 4 describes the results of the main experiment.
Section 5 summarizes the results, discusses validity issues and relates the results to
existing research. Section 6 describes future work.

2. Design of the Study

An important goal of our research is to investigate how design characteristics affect
the changeability of object-oriented software. However, changeability can also be
affected by other characteristics of the software, such as programming style and the
quality of documentation. Thus, to study how design decisions affect changeability,
it is necessary to restrict our study to software systems where only software char-
acteristics directly related to the structural attributes (e.g., coupling, class count) of
the software are varied. In this study, both systems implemented the same func-
tionality and had similar programming style, naming conventions and documenta-
tion. Subjects of similar skill level designed, coded and tested a given set of changes
on one of the two alternative software designs. The study consisted of two experi-
ments:

1. the pilot experiment—to evaluate experimental design and material, and formu-
late the hypotheses, and

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 233

2. the main experiment—to replicate the pilot experiment with different subjects and
test formal hypotheses on a larger scale.

This section describes common aspects of the two experiments (e.g., the coffee ma-
chine design alternatives, experience questionnaire, calibration task, change tasks,
the change task questionnaires and the dependent variables). The results are de-
scribed in Sections 4 and 5, respectively.

2.1. Treatments: The Coffee Machine Design Problem

We wanted to find alternative designs of the same system, in which one alternative
adhered to Coad and Yourdon’s quality design principles (the “good” design) and
one did not (the “bad” design). The coffee machine designs seemed to be good
candidates for the experiment. These designs have been discussed at a workshop on
object-oriented design quality at OOPSLA’97 and are described in two articles in
C/C++ User’s Journal (Cockburn, 1998):

This two-article series presents a problem I use both to teach and test OO design. It
is a simple but rich problem, strong on “‘design,” minimizing language, tool, and
even inheritance concerns. The problem represents a realistic work situation, where
circumstances change regularly. It provides a good touch point for discussions of
even fairly subtle designs in even very large systems... (Cockburn, 1998).

The initial problem statement was as follows:

You and I are contractors who just won a bid to design a custom coffee vending
machine for the employees of Acme Fijet Works to use. Arnold, the owner of Acme
Fijet Works, like the common software designer, eschews standard solutions. He
wants his own, custom design. He is, however, a cheapskate. Arnold tells us he
wants a simple machine. All he wants is a machine that serves coffee for 35 cents,
with or without sugar and creamer. That’s all. He expects us to be able to put this
little machine together quickly and for little cost. We get together and decide there
will be a coin slot and coin return, coin return button, and four other buttons: black,
white, black with sugar, and white with sugar (Cockburn, 1998).

2.1.1. Description of the Design Alternatives

The Main Frame Design

According to (Cockburn, 1998), the type of design that most students come up with
when faced with the problem of designing the given coffee machine software is a
so-called mainframe (MF) design. The MF design, adapted from “Design 3” in
(Cockburn, 1998), consists of seven classes:

234 ARISHOLM, SJOBERG AND JORGENSEN

o CoffeeMachine. Initiates the machine, knows about the hardware components.

e CashBox. Knows amount of money put in; gives change; answers whether a given
amount of credit is available.

e FrontPanel. Captures selection; knows price of selections, and materials needed
for each; asks CashBox if enough money has been put in; knows how to talk to the
dispensers.

e Dispensers (cup, coffee powder, sugar, creamer, water). Knows how to dispense a
fixed amount; knows when it is empty.

e Output. Knows how to display text to the user.
e Input. Knows how to receive command-line input from the user.

e Main. Initializes the program.

The Responsibility-Driven Design

The alternative responsibility-driven (RD) design was a result of a restructuring
effort after the “‘customer” had requested several changes to the coffee machine. For
example, the coffee machine was extended to make bouillon. For this reason, we
thought that the restructured, RD design would be an interesting design alternative
to compare with the initial MF design. The RD design, adapted from “Design 4 in
(Cockburn, 1998), consists of 12 classes:

o CoffeeMachine. Knows how the machine is put together; handles input.

e CashBox. Knows how much credit is available; handles money.

e FrontPanel. Knows products and selection; coordinates payment and drink
making; knows the price of coffee.

¢ ProductRegister. Knows what products are available.

e Product. Knows its recipe.

e Recipe. Tells dispensers to dispense ingredients in sequence.

o DispenserRegister. Acts as a librarian for the dispensers; controls nothing.
¢ Dispenser. Controls dispensing; tracks amount it has left.

e Ingredient. Knows its name only.

e Output. Knows how to display text to the user.

e Input. Knows how to receive command-line input from the user.

e Main. Initializes the program.

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 235

Message sequence charts of the main functional scenario for the two designs were
given to help clarify the flow of messages between the objects of the designs
(Appendix D). The two designs were coded using similar coding style, naming
conventions and amount of comments. Variable names and method names were long
and reasonably descriptive. Two small code fragments from the MF and RD designs
are given in Appendix E.

2.1.2. Comparing the Designs Against Coad and Yourdon’s Quality Principles

According to Coad and Yourdon’s design principles (Coad and Yourdon, 1991a;
Coad and Yourdon, 1991b), a “good” design adheres to (among others) the fol-
lowing guidelines, based on (Briand et al., 1999a):

Coupling. Interaction coupling between classes should be kept low, by decreasing
the number of messages that can be sent and received by an individual object.

Cohesion. A class should carry out one, and only one, function. The attributes and
services should be highly cohesive, i.e., they should all be descriptive of the re-
sponsibility of the class.

Clarity of design. The names in the model should closely correspond to the names
of the concepts being modeled. Second, the responsibilities of a class should be
clearly defined and adhered to. Furthermore, the responsibilities of any class should
be limited in scope.

Keeping objects and classes simple. First, avoid excessive number of attributes in a
class. A class should map to a type of entity in the problem description.

Although these design principles require a certain degree of subjective interpretation
(Briand et al., 1999a), clearly the RD coffee machine design adheres significantly
better to these design principles than does the MF design. The RD design has lower
class-level coupling, more cohesive classes, better clarity of design and simpler
classes. The MF design is assessed as follows:

Although the trajectory of change in the MF approach involves only one object,
people soon become terrified of touching it. Any oversight in the MF object (even a
typo!) means potential damage to many modules, with endless testing and unpre-
dictable bugs. Those readers who have done system maintenance or legacy system
replacement will recognize that almost every large system ends up with such a
module. They will affirm what sort of a nightmare it becomes (Cockburn, 1998).

Furthermore, Cockburn assessed the RD design as follows:

The design we come up with at this point bears no resemblance to our original
design. It is, I am happy to see, robust with respect to change, and it is a much
more reasonable “model of the world.” For the first time, we see the term

236 ARISHOLM, SJOBERG AND JORGENSEN

“product” show up in the design, as well as “recipe” and “ingredient.”’ The
responsibilities are quite evenly distributed. Each component has a single primary
purpose in life; we have avoided piling responsibilities together. The names of the
components match the responsibilities (Cockburn, 1998).

For this experiment, we had to do certain modifications to the designs presented by
Cockburn, so that they delivered the same functionality. Primarily, we removed the
modifications done on the RD design in order to make bouillon, since we thought
this functionality to be a particularly good candidate for a change task. This also
motivated leaving the price of coffee where it was originally—in the front panel class.
However, it would be a simple task to move the price attribute from the front panel
class to the product class in order to provide differentiated pricing (to make bouil-
lon). Otherwise, the main concepts underlying the two designs have been kept as far
as possible. Although the modified RD design may represent a slightly less “pure”
design than the one presented by Cockburn, we believe his assessment is also ap-
plicable to the MF and RD design alternatives.

2.1.3. Structural Attributes of the Design Alternatives

Table 1 shows the values of coupling (OMMIC N, OMMIC L and OMMEC) and
size (MC and CS) for the two designs. The RD design has about 40% lower class-
level coupling to non-library classes (OMMIC N and OMMEC). OMMIC L
quantifies the number of method invocations to library classes, which in this case are
String and Vector. Because the RD design uses vectors to represent products and
dispensers, the class level OMMIC L measure is slightly higher for the RD design
(mean = 1.3) than for the MF design (mean = 1.1). The MF design has larger classes
and fewer methods per class than the RD design.

Table 1. Descriptive statistics of structure and size attributes for the MF and RD designs.

Measure Description Design Median Mean Sum
OMMIC N(c) The number of static method invocations from MF 2 4.7 33
a (client) class ¢ to non-library classes RD 1 2.8 34
OMMIC L(c) The number of static method invocations from MF 0 1.1 8
a (client) class ¢ to library classes RD 0 1.3 16
OMMEC (c) The number of static method invocations to a MF 3 4.7 33
(server) class ¢ RD 2 2.8 34
MC(c) The number of implemented methods in a MF 1 1.6 11
class ¢ RD 2 1.8 22
cS(c) The size (in SLOC) of each class MF 9 11.0 77
Note that the sum corresponds to system size RD 7 8.9 107

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 237

At the system level, however, Table 1 (the “Sum” column) shows that the overall
non-library coupling remains almost unchanged, whereas the coupling to library
classes, the total number of methods and the total system size have increased for the
RD design. Thus, to (1) reduce coupling, (2) increase cohesion, (3) improve the
clarity of the design, and (4) keeping classes simple, the values for some system-level
measures have increased.

2.2. The Mocca Programming Language

We had to make some decisions regarding the choice of programming language. It
should be easy to understand for subjects with some prior experience with common
OO programming languages—to minimize the learning curve. However, the pro-
gramming language should also contain sufficient OO constructs and flexibility to
allow the development of realistic code for the change tasks. Thus, we created a
scaled-down version of Java, called Mocca. Mocca has the same syntax as Java, but
is restricted in several ways:

e It does not contain inheritance mechanisms or constructs for interfaces.
¢ It has no explicit type casting.

It has a globally available (static) INPUT and OUTPUT class.

It contains only the elementary types void, int and boolean.

It contains only two library classes: String and Vector.

A relatively complete documentation of the Mocca language was written in eight
pages. While the restrictions in Mocca may be too limiting as a general purpose,
experimental OO programming language, we believe that Mocca was a reasonable
tradeoff between realism and simplicity for the given change tasks on the coffee
machine designs.

2.3. The Programming Tasks

The programming tasks consisted of one calibration task and three change tasks (c1,
¢2 and ¢3) for the coffee machine. For practical reasons, the changes were coded with
pen and paper. For small designs and change tasks, we believe this may be a better
choice than using a computer to reduce the possibility of errors caused by technical-
and tool-oriented problems. Each task description contained a test case that each
subject used to manually “test” the solution. Of course, this is not a real test, which
would require running the program on a computer. The main purpose of the test was
to motivate the subjects to produce solutions of good quality before starting on
the next change task. Judging from the actual correctness score of the solutions
(Table 6), this strategy seems to have worked quite well.

238 ARISHOLM, SJOBERG AND JORGENSEN

2.4. The Calibration Task

The first programming task to be completed by all subjects was the calibration task.
The calibration task consisted of adding transaction log functionality in an automatic
teller machine, and was not related to the coffee machine designs. Since all subjects
implemented the same change on the same design, the calibration task provided a
common baseline for comparing the programming skill level of the subjects. The
calibration task was almost the same size as the change tasks c1, ¢2 and ¢3 combined.
The size of the calibration task ensured that most aspects of the Mocca programming
language (e.g., class constructors, vectors, strings, input and output) had been exer-
cised, thus reducing the influence of the programming language learning curve.

2.4.1. The Change Tasks

Each change task was coded by the students directly on the coffee machine code
printout for the given design. The change tasks consisted of three changes to the
coffee machine, to be implemented in the given order. The actual change task de-
scriptions are given in Appendix B.

(cl) Implement a coin return button. The actual solution was identical for the RD
and the MF design. In both cases, it involved a modification to the menu
handling routine (to include the “Return Coins”” menu choice) and the addition
of corresponding event handling routine. In addition, the developers had to call
the “ReturnCoins” method in the CashBox class.

(¢2) Make bouillon. Extend the machine with a menu choice and the functionality to
make bouillon in addition to coffee. Bouillon costs more than coffee. The so-
lution involved making a menu choice and event handling routine for bouillon
by modifying the front panel. It also involved making a new dispenser for
bouillon, and checking whether the customer had deposited sufficient funds.

(¢3) Fix a bug: Check whether all ingredients are available for the selected drink. If
one or more dispensers are empty, the user should get an error message and can
try another drink or get his money back. This change task was motivated by a
“bug” found in both of the code listings for the original design alternatives
presented in (Cockburn, 1998). If the machine was empty of a required ingre-
dient (e.g., creamer), the machine would still produce the “drink” using only the
remainder of the ingredients, i.e., the customer would receive black coffee when
asking for white coffee. The solution involved checking whether all required
ingredients were available before making the drink.

For subjects that managed to complete all change tasks within the allocated time, an
“extra assignment’” was given. This change task was included to ensure that none of
the subjects finished before the end of the allocated time of the experiment. We did
not want the subjects to leave early, disturbing the other subjects. Furthermore,

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 239

without change task c4, subjects may have been inclined to use more time on change
task ¢3 than they would otherwise. Change task ¢4 is not included in any subsequent
analysis, since only very few subjects managed to complete the task:

(c4) Add the option “make your own drink,” by selecting among any meaningful
combination of the available ingredients.

2.4.2. The Change Task Questionnaire

After completing each programming task (including the calibration task), the par-
ticipants reported the effort to understand, code and test each task. In addition, the
subjects reported on subjective task difficulty, solution strategy (explorative or sys-
tematic) and confidence in the correctness of their solution. The questionnaire is
given in Appendix C.

2.5. Experimental Design

To ensure accurate and reliable results we had to deal with issues related to the
learning curve and the skill level of the individuals who participated in the experi-
ment. To control for the differences in skill level of the individuals, we considered a
cross-over design where each developer implements the same (or similar) changes on
both design alternatives. However, this experimental design does not control for the
following learning effects:

o Learning the system—if the design alternatives have many similarities, most of the
developer’s initial system comprehension effort will be spent on the first design.

o Learning the changes—if a developer implements the same change on two alter-
native designs, it is likely that the developer will be more efficient during imple-
mentation of the change on the second design.

Thus, we used a design where each developer implements the same change only
once, while still controlling for the differences in individual skill levels by assigning
the developers in two groups by means of randomization and blocking. This is
described further in the following sections.

2.5.1. Design of the Pilot Experiment
The subjects consisted of 12 graduate students and professionals enrolled in a course
in software process improvement taught by one of the authors. The experiment was

divided in three separate, 1-h sessions consisting of:

(Session 1) Experience level assessment and training. During this session, the stu-
dents completed the experience questionnaire (Appendix A). Then, we

240 ARISHOLM, SJOBERG AND JORGENSEN

trained the subjects in Mocca and distributed the programming language
documentation.

(Session 2) Skill level assessment and group assignment. All students implemen-
ted the calibration task and completed a change task questionnaire
(Appendix C). Based on the results of the calibration task, the students
were divided into blocks and then assigned at random (within each
block) into two groups, one for each design alternative.

(Session 3) Coffee machine experiment. The subjects to the first group implemented
the change tasks on the MF design. The subjects assigned to the other
group implemented the change tasks on the RD design.

2.5.2. Design of the Main Experiment

Subjects of the main experiment were mainly undergraduate students in computer
science at University of Oslo. Unlike the pilot experiment, the subjects volunteered
for the experiment and were paid to participate. The experiment took place within
one 3-h session. The subjects were introduced to the experimental procedures and
trained in Mocca during the first hour. During the next 2 h, the subjects first im-
plemented the calibration task and then the change tasks.

With regards to the group assignment, we were unable to use blocking based on
the calibration task because the experiment consisted of only one session. Further-
more, results from the pilot experiment suggested that it was not useful to use the
reported experience level data (Appendix A) to create blocks. Consequently, stu-
dents were assigned at random into two groups of equal size, one for each design
alternative. Some students did not show up for the experiment, while some other
students that had failed to register for the experiment showed up just prior to the
session. They were assigned at random when they arrived. The resulting group as-
signment consisted of 17 subjects on the MF design and 19 subjects on the RD
design. In the unlikely event that the randomization would fail to provide approx-
imately equal groups, we could use the results from the calibration task in subse-
quent analyses to adjust for such differences (Section 5.2.3).

2.6. Dependent Variables

Figure 1 depicts the dependent variables of the study. They are explained further in
the following sections.

2.6.1. Change Effort

Before starting on a task, the subjects wrote down the current time. When the
subjects had completed the task, they reported the total effort (in minutes) to

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 241

Understand (minutes)
Code (minutes)

Test (minutes)

Total Effort (minutes)

Change Effort
Correctness .
Diff(CS)
Learning Curve Diff(MC)
Dependent Diff(OMMIC_N)
Variables Structural Diff(OMMIC_L)
Stability Diff(ChangeSize)

Subj. Change . .
Complexity Solutl_on Difficulty
Solution Confidence
Figure 1. Summary of the dependent variables of the study.

complete the change task. The primary dependent variable of the study was the
combined total effort to complete all change tasks. Furthermore, the total effort was
divided in the effort to

o understand the task (analysis and design of the solution),
e code the solution, and

e “test” the paper solution against the test case.

2.6.2. Correctness

It is possible that one design is more error-prone than another design, resulting in
errors that are not discovered and subsequently corrected by each subject in the
experiment. Furthermore, the reported change effort for the change tasks may
contain lower values for solutions that contain errors. This may bias the change
effort results if one design is more error-prone than the other design. Consequently,
each change task solution was reviewed and given a (subjective) correctness score by
the first author of this paper. Table 2 gives the coding scheme.

2.6.3. Learning Curve

The experiment contains only a small number of change tasks. Thus, the recorded
total change effort for the combined change tasks may fail to reflect trends in change
effort caused by the system learning curve. For example, a given design may be
difficult to change until the developer understands the intricate structural properties
and abstraction mechanisms of the design. However, the subsequent changes may be
easy to implement, hence resulting in a trend towards less change effort compared
with another design.

To perform statistical tests on differences in the learning curve we need to quantify
it such that the measure is normalized and hence comparable for different subjects.

242 ARISHOLM, SIOBERG AND JOGRGENSEN

Table 2. Coding scheme of the correctness measure.

Correctness score Interpretation

Correct solution, passes the test case

Small deviations from the test case description, but no logical errors
Small logical errors that are estimated to be very simple to fix
Some errors that are estimated to take some time to fix

Incomplete solution that are estimated to take a long time to fix
Very incomplete solution

—_— N W A L

We measure the learning curve with respect to the given change tasks as the nor-
malized difference in effort to understand the last change (¢3) versus the first change
(c1) for each subject, for design RD and MF, respectively:

_ Understand(d, c1) — Understand(d, ¢3)
~ Understand(d, ¢1) + Understand(d, ¢3)’

LearningCurve (d) d € {RD,MF}

A larger number indicates a stronger learning effect. The measure is not meaningful
as an absolute measure of the learning curve since change task ¢3 is probably more
difficult to solve than change task ¢1. Thus, in this case one may even get ‘“‘negative”
learning. The measure is only meaningful when comparing the relative difference in
the learning curve on MF versus RD. The measure also assumes that most of the
learning occurs early.

2.6.4. Subjective Change Complexity

We also asked the subject two questions that may reflect the perceived complexity of
each change task:

o Solution difficulty—how difficult did the subjects think it was to solve each change
task (1 = very simple; 6 = very difficult).

o Solution confidence—how confident were the subjects that the solution of a change
task did not contain serious errors (1 = very unsure; 6 = very confident).

2.6.5. Structural Stability

When studying the changeability of an object-oriented design, it may be appropriate
to assess the impact changes have on the design. Consider Lehman and Belady’s
“law of increasing complexity’:

As a large program is continuously changed, its complexity, which reflects
deteriorating structure, increases unless work is done to maintain or reduce it
(Lehman and Belady, 1985).

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 243

Table 3. Summary of structural stability measures.

Definition Detailed explanation

Diff(CS(c)) The difference in average class size before and after a change task
Diff(MC(c)) The difference in average number of implemented methods in a class ¢
DifffOMMIC_N(c)) The difference in the average number of static method invocations for a class ¢
Diff(OMMIC L(c)) to non-library classes (OMMIC_N) and to library classes (OMMIC_L)
ChangeSize SLOC added + deleted + modified for each change task

In general, changes in structural attributes do not necessarily indicate decay; there
could be restructuring or re-engineering going on. However, in the coffee machine
experiment, there is no “restructuring” of the design. The change tasks represent
functional additions (c1 and ¢2) and bug fixes (¢3). Thus, when assessing the change-
ability of design alternatives it may also be appropriate to measure trends in structural
attributes (i.e., structural stability) that may indicate changeability decay (Arisholm
and Sjeberg, 2000). The differences in the average values of the measures before and
after each change (e.g., from change task ¢l to change task ¢2) may be used to assess
whether the structural attributes of one design change faster than an alternative design.

A summary of the structural stability measures is given in Table 3. To measure the
structural change of the solutions, five paper solutions were selected at random for
each of the two design alternatives, for a total of 10 solutions to each of the change
tasks. To ensure accurate structural attribute measures, only solutions with a cor-
rectness score of five or six (i.e., “correct’ solutions) for all three change tasks were
considered. The selected paper solutions were coded into a computer by one of the
authors, and subsequently compiled and tested to ensure that the solutions actually
were correctly implemented. A Java parser was used to collect the measures. In
addition to the change in structural attributes, the size of each change was calculated.
For the ChangeSize measure, we manually counted (based on the paper solutions)
the number of lines of code added, deleted or modified for all solutions that were
correctly implemented.

3. Results of the Pilot Experiment

The goals of the pilot experiment were

e To evaluate and improve the quality of the experimental materials (e.g., ques-
tionnaires, change tasks and programming language). This is described further in
conjunction with analysis of threats (Section 5.2).

e To evaluate the usefulness of different blocking strategies to reduce random errors,
i.e., blocking on the results from the calibration task and blocking based on data
from the experience level questionnaires.

e To formulate hypotheses and to develop meaningful dependent variables through
an exploratory analysis of the preliminary results from the pilot experiment.

244 ARISHOLM, SIOBERG AND JORGENSEN

3.1. Evaluation of Blocking Strategies

The pilot experiment used the correctness score of the calibration task to create
blocks on skill level. An equal number of subjects were assigned at random to each
design (MF and RD) from each block. Unfortunately, only eight of the 12 subjects
attended session 3. This resulted in that the average skill level was slightly higher for
subjects assigned to the RD design, despite the randomized block scheme (Figure 2).
Clearly, the usefulness of blocking may be limited unless one can be sure that the
assigned subjects will attend the experiment.

We also evaluated whether data from the experience level questionnaire could be
used to create blocks for the main experiment. We found no significant correlation
between the experience level data and the results of the calibration task in the pilot
experiment. This suggests that it may be ineffective to use the experience level data to
create a randomized block design.

3.2. Preliminary Assessment of Change Effort for MF and RD

Figure 3 depicts the difference in total effort to change tasks ¢l and ¢2 (most subjects
did not have time to complete ¢3 within the 1-h session of the pilot experiment).
Although subjects assigned to design RD had performed better on the calibration
task in the previous session, they still needed on average 30% more time to complete
change tasks ¢l and ¢2 than the subjects assigned to design MF.

4. Results of the Main Experiment

The explorative analysis of the results from the pilot experiment was used to for-
mulate the hypotheses of the main experiment. According to design principles such
as Coad and Yourdon’s, we would expect that the RD design enables a more efficient
and correct implementation of changes. However, the results of the pilot experiment

Correctness Score, Calibration Task

[]
RD _® Lo ® [)
T T T T T T

®
ME _® [® [®
T T T T T T
1 2 3 4 5 6

Block number (1-6)

® = Subject Assigned but did not show
® = Subject Assigned

Figure 2. Dot-plot of group assignment with the correctness score (1-6) from the calibration task as the
blocking factor.

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 245

Total Change Effort

Design

Figure 3. Box-plot of the total change effort (in minutes) to complete change tasks ¢l and ¢2 for design
MF and RD, respectively. A line is drawn across the box at the median. The box represents the 95%
confidence interval (CI) for the median.

do not support this theory. The theory underlying the formulation of the hypotheses
is that the more fine-grained delegation of responsibilities of the RD design results in
added complexity that more than outweighs its theoretical advantages with regards
to change effort and correctness (HI-H4). However, the improved delegation of
responsibilities of the RD design should result in a more stable design (HS).

Formal Hypotheses
(H1) Change effort: The RD design requires more change effort than the MF design.

(H2) Learning curve: The RD design has a stronger learning effect than the MF
design. We regard H2 as a validity check on H1. If both Hl and H2 are
accepted, it will be difficult to determine whether H1 would have been valid if
we had included even more change tasks.

(H3) Correctness: The solutions for the RD design contain more errors than the MF
design.

(H4) Change complexity: The RD design has higher change complexity than the MF
design.

(HS) Structural stability: The RD design has better structural stability than the MF
design.

The statistical tests will attempt to reject the null hypotheses, which are just the
opposites of HI-HS5. For H1 and H2, a one-sided two-sample z-test (assuming un-
equal variances) on the difference in means was used. Before using the ¢-tests, the
samples were checked for normality using the %? based Kolmogorov—Smirnov nor-
mality test. No significant deviations from the normal distribution were found. For
H3 and H4, the tests were performed using Mood’s median test, which is a robust,

246 ARISHOLM, SJOBERG AND JORGENSEN

non-parametric sign scores test for ordinal scale measures such as the correctness
score and subjective task difficulty. H5 was not tested formally, but was assessed
based on a subjective interpretation of the results.

The more tests are performed on the same dataset, the more likely is it that one
will find significant results occurring by chance. Thus, to make a scientific statement
with a reasonable degree of confidence, the significance level for the hypotheses tests
were initially set to o = 0.1, and subsequently reduced to account for multiplicity
using Holms multiple test procedure (Holm, 1979). Holm has shown that, for K
statistical tests, the adjusted significance level must be set equal to o/(K—i+ 1),
where (i=1,...,K) is the index of each test ordered by the p-value
(p1 < pr <--- < pg). This means that p;, the smallest p-value, must be compared
with a; = /K. The largest p-value px must be compared with agx = «. In our case,
adjusting the significance level using Holms procedure is more appropriate than
using the even more conservative Bonferroni adjustment, i.e., /K, since the Bon-
ferroni adjustment ignores the correlation between tests. A practical discussion of the
power of tests and presetting the level of significance is provided in (Briand et al.,
1999a).

4.1. Change Effort (HI)

Hypothesis H1 is supported (p = 0.0072, two-sample #-test on the difference in mean
total change effort to implement cl, ¢2 and ¢3). On average, the total change effort
on RD was about 20% higher than the total effort on MF (Table 4). Most of the
difference in change effort is due to differences in time to understand how to im-
plement the change tasks (p = 0.0006). There are smaller differences in the coding

Table 4. Summary of change effort (in minutes) for the change tasks c1, ¢2 and ¢3.

Changeability Group N Mean StDev SE H1: u(MF) Holms
indicator Mean < u(RD) a=0.1/(15-1+1)
(p-value)
Total cl+c2 MF 17 26.88 8.28 2.0 0.0004 0.0067
RD 19 38.30 10.20 2.3 (i=1)
Total cl+c2+c3 MF 16 49.20 12.60 3.1 0.0072 0.0083
(H1) RD 18 59.22 9.29 2.2 (i=4)
Understand MF 16 16.03 7.31 1.8 0.0006 0.0071
cl+c24c3 RD 17 26.06 8.88 2.2 (1=2)
Code cl+c2+cd MF 16 27.13 9.26 2.3 0.42 0.0143
RD 15 27.77 7.95 2.1 (1=9)
Test cl+c2+cd MF 16 6.09 4.07 1.0 0.43 0. 0200
RD 14 6.36 3.77 1.0 (1=11)

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 247

Ooc3
mc2
oci

minutes
N
o
L

Figure 4. Average change effort (in minutes) for each change task (cl, ¢2, ¢3) for MF and RD.

and testing effort, but all results are in favor of the MF design. Figure 4 depicts the
average change effort for the change tasks.

Only eight out of 19 subjects assigned to the RD design reported that they com-
pletely finished change task ¢3, whereas 16 out of 17 subjects assigned to the MF
design completed change task ¢3. The analysis of the effort data on the RD design
therefore includes data points for those subjects that almost finished, i.e., some
testing remained but they still reported effort data. All subjects completed the first
two change tasks. When only counting change tasks ¢l and ¢2, the results show more
than 40% difference in change effort (»p = 0.0004). Based on the results of the pilot
experiment, we had estimated that more subjects would have completed all change
tasks within the allocated time.' In retrospect, we should have allocated more time
for the change tasks.

4.2. Learning Curve (H2)

The hypothesis H2 is not supported. The results indicate that there is no significant
difference in the relative learning effect for designs MF and RD (Table 5). The
average values for the effort to understand each change is shown in Figure 5.
The results show that the time to understand each change task on MF is lower than
the time to understand the same tasks on RD. Furthermore, there is no visible
difference in the trend in the learning curve (from cl to ¢3).

Table 5. Two-sample ¢-test on difference in learning curve.

Changeability Group N Mean StDev SE H1: u(RD) Holms
indicator Mean < u(MF) o =0.1/(15-1+1)
Learning curve MF 16 —-0.096 0.354 0.088 p=0.b2 0.0250

(cl, c3) RD 17 —0.103 0.370 0.090 (i=12)

248 ARISHOLM, SJOBERG AND JORGENSEN

12
u @ Understand MF
10
m W Understand RD
@ 8 It
5 *
R
£ 4 * L 3
2
0 T |
1 2 3
Change Task

Figure 5. Trend in the comprehension effort from change task ¢l to change task ¢3.

4.3. Correctness (H3)

Hypothesis H3 is not supported. There is no significant difference in correctness
(Table 6). On average, the solutions had high quality. This suggests that the change
effort results are reliable—they are not confounded by low correctness or differences
in correctness.

4.4. Subjective Change Complexity (H4)

Hypothesis H4 is partially supported. There are no significant differences for change
tasks ¢l and ¢2 (Table 7). For change task ¢3, subjects assigned to the RD design
were less confident about the correctness of the solution. There is some evidence that
subjects assigned to the RD design also thought it was more difficult to solve change
task ¢3 (p = 0.033). However, this result is not significant with respect to Holms
adjusted a-value, which in this case requires a p-value less than 0.0091.

Table 6. Summary of Mood’s median test on correctness on MF and RD.

Change- Popula- Group N Group N< N> ;(2 p-value Holms
ability tion median ou=0.1/
indicator median (15-1+1)
Correctness 6 MF 17 6 4 13 0.04 0.847 0.1000
cl RD 19 6 5 14 (i=15b)
Correctness 4 MF 16 6 6 10 2.29 0.130 0.0111
c2 RD 19 4 12 7 (i="7)
Correctness 5 MF 16 5 9 7 0.32 0.571 0. 0500
c3 RD 9 6 4 5 (i=14)

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 249

Table 7. Summary of Mood’s median tests on subjective task difficulty.

Change- Popula- Group N Group MN< N> ;(2 p-value Holms
ability tion median a=0.1/
indicator median (15—-1i+1)
Subject task 1 MF 17 1 12 5 0.63 0.429 0.0167
difficulty cl RD 19 1 11 8 (1=10)
Subject task 3 MF 17 2 10 7 1.74 0.187 0.0125
difficulty c2 RD 19 3 7 12 (1=8)
Subject task 3 MF 16 2 10 6 4.57 0.033 0.0091
difficulty 3 RD 16 3 4 12 (1=5)
Confidence ¢l b5 MF 17 5 11 6 0.34 0.559 0.0333
RD 19 b5 14 5 (1=13)
Confidence c2 4 MF 17 5 7 10 2.70 0.101 0.0100
RD 19 4 13 6 (i=86)
Confidence c¢3 3 MF 16 4 3 13 15.2 0.000 0.0077
RD 16 3 14 2 (1=3)

Structural Stability

3 1 — oc3
mc2
1.5 4 mct

Avg. Increase
N
Il

N o)
&S EE
O’ ¥ L W@
S & &
OQ OQ O® O‘v

Figure 6. Changes in structural attribute measures of the MF and RD designs after implementing change
task cl, ¢2 and ¢3. The data is based on 10 randomly selected solutions to the change tasks, five for the MF
design and five for the RD design.

4.5. Structural Stability (HS5)

Figure 6 suggests that the structure of the MF design is affected more than the RD
design when subjected to the changes cl, ¢2 and ¢3. In particular, the average class
size (CS) and the average import coupling to non-library classes (OMMIC_N)
change much more for the MF design than for the RD design. The results also
indicate that the RD design requires smaller changes (in SLOC added + delet-

250 ARISHOLM, SJOBERG AND JORGENSEN

35 -
30

25

20 o MF
15 = RD

ChangeSize

10

o [T

ci c2 c3

Change Task

Figure 7. Comparison of the size of each change task for the MF and RD designs.

ed + modified) for the third change task (Figure 7). More interestingly, the changes
in these measures are not reflected by corresponding changes in change effort, cor-
rectness and subjective change complexity. However, a qualitative assessment of the
resulting MF design after changes cl, ¢2 and ¢3 suggests that the FrontPanel class of
the MF design is indeed becoming a ‘“‘maintenance nightmare”, piling up with more
and more responsibilities and high class-level coupling.

4.6. Attempting to Explain the Results

By investigating the delivered solutions and the comments given by the subjects on
the change task questionnaires, we attempt to explain why there is a significant
difference in change effort for the design alternatives.

One difference between the designs is size. The RD design is larger than the MF
design (Table 1). Although size in general may be an important contributor to
complexity, we do not believe that the difference in size is that important for the MF
and RD designs. Both designs are “small”. Furthermore, most of the difference in
size is due to simple initialization code in the RD design (e.g., declaration of iden-
tifiers and construction of the objects). In our opinion, this initialization code is quite
simple compared with the remainder of the RD design.

For change task ¢l (the “return button’), the solution is identical for the two
design alternatives, involving two small changes to the CoffeeMachine class after
determining that the CashBox class already contains a returnCoins method. Still, it
required less effort to understand how to solve ¢1 on the MF design compared with
the effort to understand the same solution for the RD design. With regards to the
RD design, and in particular for change tasks ¢2 and ¢3, we found comments such
as “I keep nesting through the classes, but it is too complicated—I give up”. Although
the MF design has classes with higher coupling, the dynamic depth of the message

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 251

interactions among classes to implement a given functional scenario is signifi-
cantly smaller than for the RD design. Thus, it may be more difficult to perform
a systematic trace of the RD design. The fact that the subjects had access to a
message sequence chart (Appendix D) did not seem to help much. Furthermore,
for change task ¢3, the RD design involved changing four classes whereas only
two classes had to be changed in the MF design. The same change task was also
reported to have higher subjective complexity for the RD design than for the MF
design. Thus, we believe that the number of classes changed and the depth of the
message interactions among classes are important contributors to the complexity of
a design.

These results are supported by existing theory. The first mental representation
programmers build to understand completely new code is a control flow abstraction
of the program (von Mayrhauser et al., 1997). Some developers use a systematic
approach (e.g., line by line) to build the control-flow abstraction. Other developers
used a more opportunistic approach, studying code in an as-needed fashion based on
hypotheses guided by clues in the code (von Mayrhauser et al., 1997). According to
this theory, one may expect an increase in the time required to understand how to
implement a change when the amount of collaboration between objects participating
in the implementation of a functional scenario increases. Furthermore, the effect may
be larger for programmers with a systematic approach.

To assess whether the solution approach affected the change effort for each
change tasks, we performed a one-way analysis of variance using ‘“‘solution ap-
proach” as the explanatory factor with three levels, and the total time for a given
change task (e.g., ¢2) as the response variable. The solution approach was given by
the subjects on the change task questionnaire (Appendix C), and coded as follows
for the analysis.

1. Explorative (‘“trial and error’’): Subject characterized solution approach as 1 or 2.
2. Mixed: Subject characterized solution approach as 3 or 4.

3. Systematic: Subject characterized solution approach as 5 or 6.

The solution approach does not necessarily correspond directly to “opportunistic”
versus ‘‘systematic”’ program understanding using von Mayrhauser’s terminology.
However, it seems plausible that explorative programmers are also more “oppor-
tunistic”’ than the systematic programmers.

For change task c1 there was no difference in the change effort depending on the
solution approach. The change task may be too small to uncover differences in
change effort due to the solution approach. For the larger change task c¢2, the
exploratory programmers were significantly faster than the systematic programmers
on the RD design (Table 8). For change task ¢2, the exploratory programmers were
actually slower than the systematic programmers on the MF design (Table 9), al-
though the difference in change effort is not significant. For change task ¢3, the effect
of solution approach was similar to change task ¢2. However, there were too few

252

ARISHOLM, SJOBERG AND JORGENSEN

Table 8. ANOVA for solution approach on change task ¢2 for the RD design.

Analysis of variance for total ¢2

Source DF S8 MS 7 P
Strategy 2 663.7 331.9 5.59 0.014
Error 16 950. 3 59.4
Total 18 1614.0
Individual 95% CIs For mean based
on pooled StDev
Level N Mean StDev ------- o fommmm - +--——m——-—-
expl. 9 19.111 5.442 (=== *———2)
mixed 8 25.875 9.015 (----- e)
syst. 2 38.500 12.021 - e)
———————— o m -
Pooled StDev = 7.707 20 30 40

Table 9. ANOVA for solution approach on change task ¢2 for the MF design.

Analysis of variance for total c2

Source DF SS MS F P

Strategy 2 99.0 49.5 1.26 0.314

Error 14 551.0 39.4

Total 16 650.0
Individual 95% CIs For mean based on
pooled StDev

Level N Mean StDev - -—------- - - fm—————

expl. 7 18.857 6.594 (-===-==---- R)

mixed 7 14.286 5.851 (=== ——-- Koo oo)

syst. 3 13.333 6.506 (----------———-- Ko)
————————— B it et

Pooled StDev = 6.273 10.0 15.0 20.0

subjects completing the ¢3 task for the RD design to give reliable results. The results
based on change tasks ¢1 and ¢2 can be summarized as follows.

e The solution approach may have a significant impact on the change effort.

o The effect of the solution approach on the change effort depends on the size of the
change and on the design approach. The RD design seems to be better suited for
an explorative solution approach than the MF design.

5. Summary of Results

In the coffee machine study, cohesion was effectively increased by splitting the “MF”’
class, and delegating some of its functional responsibilities to several smaller classes,
resulting in the RD design. The RD design also has significantly lower class-level

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 253

coupling. The RD design adhered better to Coad and Yourdon’s design principles
than the MF design. However, the RD design contained twice as many classes and
slightly more code (in SLOC) compared with the initial, MF design. With respect to
the given change tasks, the results can be summarized as follows:

e The RD design requires significantly (20-50%) more change effort than the al-
ternative MF design.

e The RD design is harder to understand for the “average” programmer than the
MF design, and the learning curve is not better for the RD design than for the MF
design.

e The RD design does not result in fewer errors than the MF design.

e The RD design may have higher structural stability than the MF design.

Although one must be careful when generalizing results based on a single study,
the results indicate that using delegation of responsibilities to reduce class-level
coupling and increase class cohesion may not necessarily improve the changeability
of a design. On the contrary, the resulting structure may contain deeply nested class
interactions, which average programmers may find difficult to understand. Thus,
decreasing coupling and increasing cohesion may increase complexity and the costs
of changes.

The only indicator that shows potential benefits of the RD design is regarding
structural stability. In the RD design, new functionality is divided among the col-
laborating classes. In the MF design, most subjects piled the code onto the already
overloaded “MF” class. However, what are the practical consequences of the po-
tentially increased stability? In our study, the changes in structural attributes are not
reflected by external quality attributes (e.g., increased change effort and decreased
correctness). Thus, when does the added ‘“‘stability” of the RD design justify the
increased complexity and costs of changes? For the coffee machine, it is difficult to
envision a sufficient number of future changes to justify the more complex RD
design. The MF approach works well for the types of changes likely to occur.
Furthermore, we believe that a prerequisite for achieving the potential advantage of
the RD design is that the programmers are confident with the design, and under-
stand the abstract delegations of responsibilities so that they do not break the un-
derlying structure. Our results indicate that this understanding may be difficult to
achieve for the average programmer.

5.1. Comparing the Results with Related Research

The current state of research in object-oriented design quality often concludes, based
on empirical data, that classes with high coupling and/or low cohesion are less error-
prone, easier to maintain, etc. There is a growing body of results indicating that
measures of structural attributes such as coupling, cohesion, inheritance depth, etc.

254 ARISHOLM, SJOBERG AND JORGENSEN

can be reasonably good predictors of development effort and product quality (Basili
et al., 1996; Briand et al., 1999c; Briand et al., 1999d; Chidamber and Kemerer, 1994;
Daly et al., 1996; Li and Henry, 1993). Thus, it seems conceivable that such measures
can be used to compare the changeability of alternative designs. However, for
practical reasons, many of these studies have validated the measures by comparing
different systems or different classes within one system. For example, in (Briand et al.,
1997; Briand et al., 1999a), they investigated whether a “good” design (adhering
to Coad and Yourdon’s design principles) was easier to maintain than a “bad”
design. The results strongly suggest that Coad and Yourdon’s design principles have
a beneficial effect on the maintainability of object-oriented designs. However, as
pointed out by the authors, the designs represented two different systems—a tem-
perature controlling system and an automatic bank teller machine, respectively.
Thus, it is difficult to determine what the practical consequences of the results are.
For example, how can coupling be reduced without increasing other attributes that
also contribute to the complexity of the software? In this paper, we compare alter-
native designs of the same system. While this approach introduces new problems
(e.g., group assignments, how not to bias the designs and the change tasks), it
enables us to assess how different design tradeoffs of the same system actually affect
the overall complexity.

In (Sharble and Cohen, 1993), one of the few experiments comparing alternative
OO technologies was reported. The authors conducted an experiment where they
compared a data-driven and a RD design method. Two systems were developed
based on the same requirement specification—using the data-driven and the RD
design method, respectively. Structural attribute measures of the two systems were
collected and compared. Based on the measured values, the authors suggested that
RD design produced higher quality software than data-driven design, because the
RD method resulted in designs with less coupling and higher cohesion than the data-
driven method. We believe it may be premature to draw such conclusions. Whether
the design measures used in the experiment actually measured ‘“‘quality” was not
empirically validated. In other words, the experiment did not involve any direct
measurement of external quality attributes.

The combined results of (Briand et al., 1997; Briand et al., 1999a; Sharble and
Cohen, 1993) and the results presented in this paper can be summarized as follows:

o A system adhering to Coad and Yourdon’s design quality principles is easier to
maintain than another system not adhering to those principles (Briand et al., 1997,
Briand et al., 1999a).

e RD design may result in lower coupling between classes and higher class cohesion
(Sharble and Cohen, 1993).

e However, a practical concern is how to adhere to design quality principles such as
those proposed by Coad and Yourdon. Reducing coupling and increasing cohe-
sion of the same system may result in changing other aspects of the design that
contribute to an increase in system complexity.

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 255

5.2. Threats to Validity

The external validity of this study depends on, for example, the choice of design
alternatives, the choice of change tasks, and how representative the sample is of the
population. We cannot eliminate these threats within the context of this study. The
ultimate means to improve the validity of the study is by replication, using other
subjects, other design alternatives and other change tasks. The main experiment may
be viewed as a replication of the pilot experiment with different population samples
and group assignments. However, it may be more important to use different design
alternatives and other change tasks. In addition, internal validity may be threatened
by for example skewed group assignments, ambiguous questions and otherwise
unclear experimental materials. This is elaborated in the following sections.

5.2.1. Experimental Materials

Doing pilot experiment effectively results in “throwing away” data, but such an
investment may significantly reduce threats and, hence, improve the validity of the
study. For example, we used the pilot experiment to evaluate and improve the
quality of the experimental materials before the main experiment took place.

Mocca

With regards to the Mocca programming language, the subjects of the pilot exper-
iment reported that Mocca was very easy to learn. Two of the subjects had problems
understanding how to program in Mocca, but they had no previous experience with
object-oriented programming. Furthermore, informal discussions with the subjects
indicate that Mocca did not restrict their choice of solutions for the given change
tasks on the coffee machine designs. Among the subjects of the main experiment, all
subjects had previous experience with Java and similar OO programming languages.

Written Materials

The evaluation of the pilot experiment resulted in important improvements of the
design descriptions and the change task descriptions. Some subjects had misunder-
stood certain aspects of the change task descriptions. Furthermore, one subject had
misunderstood how and where the code was supposed to be written. Although the
process had been explained in detail during session 1 of the pilot experiment, we
discovered that there was a need to be extremely clear and explicit in the written
materials to avoid confusion and misunderstandings.

One problem we found after the main experiment was that one of the messages in
the message sequence chart for the RD design had an incorrect sequence number.
For developers relying on the MSC for understanding the design, this may have
influenced the time to implement the tasks, in particular for task ¢2. Although this

256 ARISHOLM, SJOBERG AND JORGENSEN

threat cannot be ruled out, it is in our opinion very unlikely that this “bug” can
explain the large difference in change effort. In the preliminary results from the
think-aloud follow-up experiment (Section 6), we have found that almost none of
the developers actually used the message sequence charts. Otherwise, we believe that
the written materials of the main experiment were of high quality.

Size and Choice of Design Alternatives and Change Tasks

The coffee machine designs and the changes to them are small. As pointed out in
Section 4.6, the RD design may support “opportunistic”’ programmers better than
the MF design. As the size of the programs increases, memory limitations may
eventually result in that it becomes too difficult to use a systematic approach, even
for the “MF” type of designs. Thus, different results may have been obtained if the
programs were larger. This threat to external validity should be considered in future
experiments.

With regards to internal validity, it is possible that adding more than three change
tasks would have produced different results:

e Adding a fourth change task may have resulted in a total “breakdown’ of the MF
design.

o It is possible that most of the system learning occurred during change task ¢3 for
the RD design, after which subsequent changes would have been simple to un-
derstand.

Pen and Paper

The changes were coded with pen and paper. This represents another important
threat to the external validity. Using a computer one has access to advanced editors,
multiple windows, class browsers, etc. Some subjects preferred an exploratory ap-
proach to changing the program, which may be difficult to do with pen and paper
compared with using a computer. For this experiment, the designs and the change
tasks were small. Furthermore, there was a quite even distribution of subjects
characterizing their solution approach as exploratory for the MF and RD designs
(Section 4.6). Finally, the students are accustomed to working with pen and paper
programs on their written exams. This means that the advantage of using a computer
is probably not that great.

Using a computer would have introduced many new problems regarding training,
learning effects and biases towards certain solution approaches depending on the
available tool functionality. In this particular experiment, it was in our opinion a
better approach to use pen and paper rather than a computer. Still, the only way to
eliminate the resulting threats is to replicate the experiment using computers instead
of pen and paper.

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 257

5.2.2. Subject Selection

One important question regarding external validity is whether the subjects are a
representative sample of the population. The subjects (mostly undergraduate stu-
dents, but also some graduate students and professional developers) of the experi-
ment may not be representative of the ‘“‘general programmer”. Furthermore,
according to Cockburn, the MF design is typical of the initial designs most students
propose. Thus, it is possible that the MF design has an unfair advantage when using
students as experimental subjects. The results may have been quite different if the
subjects were OO design experts. Thus, we cannot rule out that the subject selection
may have biased the results.

Another threat is whether some subjects actually have read Cockburn’s article
series or otherwise knew the details of the designs prior to the experiment. Because of
randomization and the number of subjects involved in the experiment, we believe it is
very unlikely that this have affected the results of the experiment.

5.2.3. Group Assignment

A serious threat to the validity of the results of between-subject experiments is the
group assignment (Briand et al., 1999a). It is difficult to ensure that the skill levels of
the two groups are approximately equal. In our case, we used the results of the
common calibration task as an indicator of the skill level of each subject. The ran-
domized block group assignment in the pilot experiment became skewed towards
higher skills for subjects assigned to the RD design, because some subjects did not
attend the third session of the experiment (Figure 2). Still, the average change effort
for the RD design was significantly higher than for the MF design (Figure 3). Thus,
for the pilot experiment, the uneven group assignment actually strengthens the results.

In the main experiment, we checked the skill level of the two randomized groups
by calculating confidence intervals for the mean effort to implement the common
calibration task:

Calibration 95% CIs for mean (minutes)
Group N Mean StDev R Fommmmmm Fommmmmm ===
MF 17 46.24 14.22 (=== e)
RD 19 50. 37 13.70 (=== —=—- K-)
e — - tmmmm - tmmm - +-==-
40.0 45.0 50.0 55.0

The confidence intervals show that the 17 subjects assigned to the MF design on
average performed slightly better on the calibration task than the 19 subjects as-
signed to the RD design, that is, the opposite of what was the case in the pilot
experiment. The difference in means is not significant, however. We also checked

258 ARISHOLM, SJOBERG AND JORGENSEN

Table 10. Initial and adjusted group assignment cross-tabulated on skill level.

Block (minutes) Initial group Adjusted group
assignment (count) assignment (count)
MF RD MF RD
<49 10 7 7 7
>49 7 12 7 7
Total 17 19 14 14

whether more even group assignments might have produced results that are incon-
sistent with the results of the main experiment. First, we created two blocks based on
the calibration task effort, using the median (49 min) as a boundary. We then
“balanced” the group assignment by randomly removing subjects from the initial
groups such that an equal number of subjects (seven, in our case) remained in each
block for each group (Table 10).

Furthermore, we tested whether the mean calibration task efforts for the adjusted
groups were different, using a two-sided #-test on the difference in means (HI,
Table 11). Finally, we tested whether the mean total effort to implement change tasks
¢l + 2+ ¢3 were lower on the MF design than on the RD design, using a one-sided
t-test on the difference in means (H2). This process was repeated six times (Run 1—-
6).% The results are shown in Table 11. The sub-samples of the initial groups have very
even mean effort to implement the calibration task (p-values from 0.66 to 0.87).
Furthermore, the differences in mean total effort to implement ¢1+ ¢2+ ¢3 are con-
sistent with the results presented in Section 4.1 (p-values from 0.0012 to 0.024). Thus,

Table 11. Adjusted results based on sub-samples of the original group assignment.

Run Group N Effort H1l: Unequal Effort H2: u(MF) < u(RD)?
calibration groups? cl+c2+4+c3

1 MF 14 46.6 p=0.84 47. 4 p=0.0023
RD 14 47.6 59.6

2 MF 14 44.9 p=20.66 49.9 p=0.0087
RD 14 46.7 60.5

3 MF 14 45.3 p=0.86 50.5 p=0.0071
RD 14 46.0 61.3

4 MF 14 44.8 p=0.85 50.9 p=0.024
RD 14 45.6 59.7

5 MF 14 46.6 p=0.66 47.4 p=0.0012
RD 14 45.1 60. 4

6 MF 14 45. 6 p=0.87 47.1 p=0.0024
RD 14 46.2 59.1

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 259

we have no reasons to believe that the group assignment threatens the results of this
study.

6. Future Work

The results of this study seem to contradict commonly accepted design quality
principles, such as those proposed by Coad and Yourdon. The “good” design was
more difficult to change than the ““bad” design. We believe that by reducing coupling
and increasing cohesion one may change other aspects of the design that contribute
to an increase in complexity.

To further explain the results of this experiment, we are in the process of con-
ducting a follow-up experiment with professional programmers in industry where the
subjects “‘think aloud” while trying to understand the change tasks. The comments
and actions made by the subjects are carefully recorded and subsequently analyzed.
The preliminary results from that experiment suggest that instead of creating “hy-
potheses” about how the design works (i.e., a more opportunistic solution ap-
proach), many subjects perform a systematic trace of the functionality related to a
given change task. Thus, the deeply nested interactions among classes to implement a
given functional scenario of the RD design may, to some extent, explain the increase
in change effort compared with the MF design. For this reason, we are also
investigating whether dynamic coupling measures (to measure the scenario depth)
are useful in building predictive models of the changeability of object-oriented
designs.

Acknowledgments

The authors thank the students at the Informatics Department at University of Oslo
who participated in this study. We thank the anonymous reviewers for providing
constructive and very insightful comments. We thank Alistair Cockburn for pro-
viding the example coffee machine source code from which we based our design
alternatives. Finally, we thank Barbara Kitchenham and Lionel Briand for giving
useful feedback on the design and statistical analysis of the experiment. This research
has been funded by the PROFIT research project in Norway.

260 ARISHOLM, SJOBERG AND JORGENSEN

Appendix A: Experience Level Questionnaire

Name:

Total number of credits:

Total number of credits in programming:

Estimate the total number of lines of code you have written in the following programming languages:

Programming 0 0, but knows some <100 <1000 <10000 10000+
language

Java

C++

Simula

SmallTalk

C

Pascal

Other language ()
Other language ()

—_——— — — ——
e e e e e e
—_——— — — ——
e e e e e e

UML/rose [] [1] []
OMT [] [1] []
RD design [] [] []
CRC [] [] []
Role-modeling [] [] []
Structured analysis [1] [] []

and/or structured design

Data-driven design [1 [1] []
Other () [1] [1] []
Other () [] [] []

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 261

Appendix B: Change Tasks
NAME: <THIS FIELD WAS FILLED OUT BY THE AUTHORS BEFORE THE EXPERIMENT >

IMPORTANT:
e THE CODE YOU WILL CHANGE IS ATTACHED AT THE END OF THIS DOCUMENT. DO
YOUR CHANGES DIRECTLY IN THE SOURCE CODE LISTING.

e BEFORE YOU START THE CHANGE TASK, WRITE DOWN THE START TIME IN THE
QUESTIONNAIRE THAT FOLLOWS THIS CHANGE TASK DESCRIPTION.

e WHEN YOU HAVE FINISHED THE CHANGE TASK, YOU COMPLETE THE REMAINDING
QUESTIONS OF THE CHANGE TASK QUESTIONNAIRE, BEFORE YOU START THE NEXT
ASSIGNMENT.

In this experiment you shall implement changes to a “virtual” coffee machine. At the
moment, the machine can make four different types of coffee (black, white, black w/
sugar, white w/sugar). The customer must give textual commands to insert money and
select coffee, and will subsequently receive the “coffee,”” given that he has deposited
sufficient funds and assuming all necessary ingredients are available. At present, coffee
costs five credits. The test run given below shows how the machine works at present:

Example Test Run:
Menu: [=insert S=select Q= quit
I
Amount >
4

CashBox: Depositing 4

You now have 4 credits.
Menu: [=insert S=select Q= quit
S
Select Drink (1 = Black Coffee, 2= Coffee w/Cream, 3 = Coffee w/Sugar, 4 = Coffee
w/Sugar & Cream) >

2
FrontPanel: Insufficient funds
Menu: [=insert S=select Q= quit
|
Amount >
2

CashBox: Depositing 2
You now have 6 credits.
Menu: [=insert S=select Q= quit
S
Select Drink (1 = Black Coffee, 2= Coffee w/Cream, 3 = Coffee w/Sugar, 4 =Coffee
w/Sugar & Cream) >
2
Dispensing cup

262 ARISHOLM, SJOBERG AND JORGENSEN

Dispensing coffee
Dispensing water
Dispensing cream
CashBox: Returning 1

CHANGE TASK 1°

In this assignment, you shall extend the coffee machine with “return button” func-
tionality that returns the deposited funds. The menu choice is called “Return”.

Test Case:

Menu: I=insert S=select R =return Q= quit
I
Amount >
4
CashBox: Depositing 4
You now have 4 credits.

Menu: [=insert S=select R =return Q= quit
R
CashBox: Returning 4

Menu: I=insert S=select R =return Q= quit

CHANGE TASK 2

In this assignment, you shall extend the machine to make bouillon. Bouillon costs
more than coffee. While coffee costs five credits, bouillon costs six credits.
HINT: You must, among others, make a “dispenser” for bouillon powder.

Test Case:

Menu: [=insert S=select R =Return Q= quit
I
Amount >
6
CashBox: Depositing 6
You now have 6 credits.

Menu: [=insert S=select R =Return Q= quit
S
Select Drink (1 = Black Coffee, 2= Coffee w/Cream, 3 = Coffee w/Sugar, 4 = Coffee
w/Sugar & Cream, 5= Bouillon) >
5
Dispensing cup
Dispensing bouillon

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 263

Dispensing water
CashBox: Returning 0
Menu: I=insert S=select R =Return Q= quit

CHANGE TASK 3

Unfortunately, there is a quite serious problem with the coffee machine at present. If
the user chooses for example “coffee with cream”, and the cream dispenser is empty,
the machine gives a small error message, after which it dispenses black coffee
(without cream). If the machine does not contain any more cups, the machine dis-
penses the drink right into the drain. The user will of course get quite irritated over
having to pay for this!

The simplest solution to this problem is that the user receives a message if the
machine is out of a required ingredient of the selected drink. Then, the user is given
the option to choose another drink. The following test case illustrates what should
happen when the machine runs out of cream:

Test Case:

Menu: I =insert S=select R =Return Q=quit
I
Amount >
5
CashBox: Depositing 5
You now have 5 credits.

Menu: I=insert S=select R =Return Q= quit
S
Select Drink (1 = Black Coffee, 2 = Coffee w/Cream, 3 = Coffee w/Sugar, 4 = Coffee
w/Sugar & Cream, 5= Bouillon) >
2
Dispensing cup
Dispensing coffee
Dispensing water
Dispensing cream < after this the machine is out of cream >
CashBox: Returning 0

Menu: [=insert S=select R =Return Q= quit
I
Amount >
5
CashBox: Depositing 5
You now have 5 credits.
Menu: [=insert S=select R =Return Q= quit

264 ARISHOLM, SJOBERG AND JORGENSEN

S
Select Drink (1 = Black Coffee, 2 = Coffee w/Cream, 3 = Coffee w/Sugar, 4 = Coffee
w/Sugar & Cream, 5= Bouillon) >
2
Sorry, no more cream! Select another.

Menu: [=insert S=select R =Return Q= quit

Appendix C: Change Task Questionnaire

Time for start of the change task:

Time for completing the change task (not including answering this
questionnaire):

Effort (in minutes) to solve the change task:
A. Effort to understand how to solve the change task:
B. Effort to code the change task:
C. Effort to evaluate/test the solution (run test-case):

How would you characterize your strategy to solve the task?
Very explorative (1) — Very systematic (6):
(Very explorative = ¢‘trial and error’’)
(Very systematic = ¢ ‘analysis, design, code, test’’)

What is your subjective assessment of your skill level as a pro-
grammer?
Very poor (1) —Very skilled (6):

What is your subjective assessment of the quality of your solu-
tion?
Very poor (1) — Very good (6):

How confident are you that the solution does not contain serious
faults?
Very unsure (1) — Very confident (6):

How difficult did you think the change task was?
Very easy (1) — Very difficult (6):

OTHER COMMENTS:

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES

Appendix D: Message Sequence Charts for the Designs

x

: User

1: "user inserts money"

3: "user selects a drink"

Figure 8. Message sequence chart for the MF design.

CoffeeMachine FrontPanel CashBox Dispenser(s)
2: deposit(int amount)
4: select(int choice, ..)
5: haveYou(int price)
6: dlsp‘ense() F——
\ cup, coffee,
7: dispense() water, etc
8: "user receives drink"
9: deduct(int price)
10: "user receives change"

265

ARISHOLM, SJOBERG AND JORGENSEN

266

"u3Isop (Y Y3 10J 3reyd 2ouanbas oFeSSOIN "G 24131

Lobueyo sanjoal Jesn, gl

S rwe—

(901d jun)ionpep gL

MUUp SaAIgoal Jesn, ||

(Josuadsip 0L —| 0Je ‘Iejem
<] ‘9900 ‘dnd
(waipaibuy)josasuadsiqieb :sjuaipaibuy | 1o} 6 sosuadsip

(")Muugedew g

(~)uugesew :2

(yonpoud suinjal) (9210Y9 jul)xapujwol4ionpoid :9

T

aoud junoAaney g

D —

(" “@010y2 JUI)}09|8S ¥

T

Muup B s109]9s Jasn,, g

(junowe jul)ysodap :g

Keuow spesuj Jasn, :|

B1sibay 1B15ibay
(Syiesuadsiq Jasuadsiq adioeyg 1oNpoig 1onpoig xogysen jpUequoi] || SUIYIBNSEH0D

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES

Appendix E: Code Fragments from the Designs

Table 12. Code fragmnt from the MF design.

267

{

class FrontPanel

// knows price of selection;

// knows ingredients needed for each selection

// asks CashBox how much money was put in

// instructs dispensers

<..snip..>

// constructor method for the FrontPanel class

FrontPanel () {
cupDisp = new Dispenser("cup",

50) ;

waterDisp = new Dispenser("water",

<..snip..>

// user selected a drink. Make drink!

void select(int choice, CashBox cashBox)

{

if (cashBox.haveYou(drinkPrice))

{

// 50 cups

50);

//1 = Black Coffee, 2=Coffee w/Cream, 3

//4 = Coffee w/Sugar & Cream

if (choice == 1)

{
cupDisp.dispense() ;
coffeeDisp.dispense() ;
waterDisp.dispense();

}

<..snip..>

else // cream & sugar

{
cupDisp.dispense() ;
coffeeDisp.dispense();
waterDisp.dispense() ;
sugarDisp.dispense() ;
creamDisp.dispense() ;

}

cashBox.deduct (drinkPrice) ;

}

else

{

Coffee w/Sugar,

Output.print ("\tFrontPanel: Insufficient funds");

268 ARISHOLM, SJOBERG AND JORGENSEN

Table 13. Code fragmnt from the RD design.

class FrontPanel
(
// knows price,
// knows products,
// asks CashBox how much money was put in
// instructs the correct product to make the drink

// instructs CashBox to return change

private int drinkPrice = 5;

void select(int choiceIndex, CashBox cashBox, ProductRegister
productReg, DispenserRegister dispenserReg) ({

if (cashBox.haveYou(drinkPrice))
{
Product product;
product = productReg.productFromIndex (choiceIndex) ;
//1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar,
//4 = Coffee w/Sugar & Cream

product .makeDrink (dispenserReg) ;
//make product using the dispensers

cashBox.deduct (drinkPrice); //deduct price
}

else

{
Output.print ("\tFrontPanel: Insufficient funds\n");

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 269

Appendix F: Raw Data from the Main Experiment

Table 14. Summary measures of change effort.

Subject Design Total Total Understand Code Test Learning
cl+c2 cl+c2+c3 cl+c2+c3 cl+c2+c3 cl+c2+c3 Curve
1 RD 32 56 30 23 3 —0.520000
2 MF 26 48 15 23.5 9.5 0.200000
3 RD 42 58 29 26 3 —-0.090909
4 RD 40 53 36 13 4 0.076923
5 MF 38 63 30 25 8 0. 000000
6 RD 56 * * * * *
7 RD 26 61 12 40 9 0.333333
8 RD 28 42 18 19 5 —0. 333333
9 RD 23 38 23 * * —0. 500000
10 MF 43 79 13 54 12 -0.111111
11 RD 29.5 57.5 20 33.5 4 0.411765
12 RD 31 56 8 38 10 —0. 200000
13 MF 30 56 23 28 5 —0.375000
14 RD 49 64 35 * * 0.200000
15 MF 20 35 17 13 5 —-0.166667
16 RD 39 48 25 21 2 0. 000000
17 MF 21 36 14 18 4 0.111111
18 RD 54 69 34 26 9 0.142857
19 MF 17 42 8 27 7 —0.428571
20 MF 13 36 10 26 0] —0. 250000
21 RD 45 65 35 24 6 —0. 500000
22 MF 24 44 11 22 12 —-0. 666667
23 MF 25 40 11 25 4 0.250000
24 RD 51 67 21 29 * 0.384615
25 MF 24 48 8 34 6 0.000000
26 RD 33.5 61.5 * * * *
27 MF 35 41 9.5 26.5 5 0.846154
28 RD 49 71 39 28 9 0.166667
29 MF 26 52 13 31 8 0. 000000
30 MF 40 65 30 35 0 —0.200000
31 MF 31 61 20 29 12 -0.333333
32 RD 29 64 33 29 2 -0.818182
33 RD 30 70 20 42 8 0. 000000
34 MF 24 41 24 17 0 -0.411765
35 RD 40 65 25 25 15 —-0. 500000

36 MF 20 * * * * *

ARISHOLM, SJOBERG AND JORGENSEN

12 S 9 S’y GG S 02 03 av og
144 9 14 4 14 3T 0¢ 0T 33 63
6T S S 14 S ¢T 0T 03 54 8¢
¢3 e S 4 S g 83 03 0g L3
9T v S S 4 g 14 0¢ LS 93
83 9 9 S 3 a 1 8 (037 g3
03 e e 14 14 L 0¢ ias 18§ 149
144 14 9 S 14 S 0g b 545 ¢3
ST 9 S g 14 e ST L 14 33
g3 9 14 4 3 S 0¢ 03 Gg T3
an g g g e 0T 02 03 0¢ 02
144 9 S 4 % G'3 G 2% GTUT Gg 6T
T g e g g S 0g 14 0¢ 8T
T3 14 S 4 S T 14 9T v LT
0g e v 14 S 0T ov LS L8 9T
8T 9 S e 14 S ST 03 (037 GT
¢3 e v e g S (6)74 0T Gg ian
¢3 S S S S 4 (0)7 02 39 et
83 9 9 e e L 02 0T LS 3T
03 S S e e e 3T 7T 63 T
8T 14 S S S e 0T 0T ¢3 ot
6T 4 1% 4 4 S 0g 0¢ Gg 6
93 v S S g g ST ias e 8
6T 4 14 S 4 S €3 0T 8¢ 4
T3 e 14 14 e 9T ST 63 9§ 9
33 S 14 14 S S 02 14 0§ S
ias e e g'e g 0T 02 3% g9 v
63 9 S 4 14 g 0¢ 83 09 e
LT e e 14 g S s 03 6% g
62 4 4 I 4 S 15 GT Gg T
Ted
Ted Ted ‘Tend Ted Ted Ted TeDd Ted
®Nﬁwwwﬁﬁmg0 Te) Ss8Ul08dad0) 20U8pyuUo) .WQ‘DW %M®P‘®H~+m 1891 2P0 puelsIspun Te30lL PO@.@QSM

270

se) uoneIqIed 9y} 10J BIR("S] IgV[

271

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES

6T e T T e g 03 09 g8 9¢
8T 14 14 14 e g 03 03 374 1
ST 14 9 9 9 0 0T (0174 0g e
6 e 9 g 14 e T ST e ce
ST 4 4 9 g g og 03 1] (4
73 9 g 14 14 g 03 03 37 ¢
Ted
Ted Ted Ted ‘Tend Ted Ted Ted Ted Ted
9z Tg93ury) SS98U308II0) 90ULpPYU0Y Cang £3s4eI198 1897 apon puejlsIspun TB310] 108lqng

‘(panuiuoo) ysey uonNeIqIEd AU} 10] IR "SI VL

Table 16. Data for change task c1.

272

ChangeSize

cl

Correctness

cl

Difficulty

cl

cl

Subj Qual Confidence

cl

Understand Code Test Strategy
cl cl cl

cl

Total
cl

Subject

ARISHOLM, SJOBERG AND JORGENSEN

MM AQAQMNMAQMNOMMMOOAHNOMNMMNMNMMNAQMNMNMMNMNMMNMMMNMMNOMNAQMNANMMM

O O F F O F O O OV OV OV FH OWWWWOVWOFHF O O OWOWFH OO O WO I O F O OO

a4 4414 4 A4+~~~ Q0 40~

15

o]
C\ZONJO@o\<ﬂooOOdOC\I-—!Ooom@OL\Oﬁoﬂ‘pb’)COO\C\IOHOr‘)OOO
A QA — — 4 QN A a A — — — A4 A A A AN A
H QMO OO0 QM TF 0 O>00O0 AN I0OW-0O0O0 HAQMmT 0O

L e B e B B, T T s s s B, IR AV A VAR AV AR AV SR A VIR A VIR A VIR AV AR AV AR AV SO T L ST L O T A I S0 B A B N8

273

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES

* * 14 14 14 4 0 8 < 0T 9¢
9 4 §'3g 3 5 15 S OT g 0g 1%
7T e 3 g ¢ 3 0 L L AN 745
A ¢ e e 4 3 4 ST 0 LT ce
6 9 3 14 ¢ T T 8T 0 6T 3¢
6 9 4 g 4 e g 0T g 03 ¢
G3g 4 T 9 14 S 0 T G 03 0¢
9T 9 3 14 14 3 e 8 e A 63
8 9 14 e e ¢ 14 9T T 0¢ 83
3T 9 e e 4 14 4 3T e LT L3
0T S T G ¢ g * * * 03 93
9T S 3 g S 3 4 et 2 LT 1
LT 9 e e ¢ 4 7T T 8 LS 144
1T 9 T g S e 4 0T e GT 23
ias 9 e g 4 3 g 0T S 03 33
aT 9 e 14 4 e g ST T 1 13
1T I T G S 4 0 14 3 9 03
L e T 9 9 ¢ T g T L 6T
L 14 e 14 S | G 0ot ¢T 83 8T
T 4 T g 9 ¢ T L g et LT
3 e 4 T (4 3 T GT GT 12 9T
1T 9 e 14 e e 3 e g 0T Gt
8 9 e 14 S 4 e T 0T 83 7T
8 4 3 14 4 3 T 0T L 8T eT
an 14 4 g e | 3 9T e T3 3T
14 e T g ¢ ¢ g0 G'g 2 6 1T
L3 9 S g T T e 93 14 ce 0T
9 4 3 4 4 T 3 8 2 et 6
L 4 e g S 3 4 6 6 03 8
8 4 3 g ¢ T 3 14 9 3T L
9 14 4 4 e g°'g 3T S og LY 9
0T 9 3 14 14 e 3 0T 0T 33 g
G e 14 (4 e T e L 0T 03 4
LT 4 e g ¢ 4 3 03 L 63 e
et 9 e 4 S 3 e 8 S 9T 4
3T 4 e 14 e 3 T 7T g 03 T
0) o 20) 0 20 0 g0 e

9ZT1g9o8UBY) SSoUl00II0) L3TNOYIIQ souspyuo) -Tend faqng £JeqeI)g 1S9 9PO) PUBISILSPUN [BIOL 102[qng

"2 ysey aSueyd 10j vy /] 29V

*

NeJ
\p)

*

*

* * * * *
* * e T 3 e g g Gt G3g (1%
M 02 9 3 G 9 g 0 g 3T LT 4%
g 02 9 G ¢ ¢ ¢ G ot 0T ov ee
num * * 4 T 3 3 0 G 0g 1% (4%
~ 63 9 14 14 1% 3 g ST 0T 0¢ T2
M 1T ¢ 3 9 4 9 0 0T Gt Gg 0%
@) 9T 9 14 14 e * e 8T G 93 63
ANn 6 ¢ 1% 14 4 ¢ e 6 0T 32 82
&) 4 T T 14 g g T 6% G0 9 L3
m 9T 9 2 ¢ ¥ T * * * 83 93
/M 144 9 3 4 G T 3 6T e 44 G2
W ias 9 3 4 3 1% * 3T 14 9T 144
T 9G e 3 4 i 3 4 0T 5 GT 23
m eT 9 14 ¢ 4 4 g 0T G 02 32
m x x g ¢ 4 2 0 g GT 03 12
2] 09 e 4 14 4 4 0 8T G 23 02
% 8% g z g g z g o1 g X 6T
* * % e % 4 0 9 6 ST 8T
29 14 3 g 14 ¢ T 0T 4 GT LT
* * * T T T 0 4 G 6 9T
0L 9 e 1% T 3 T L L GT GT
* * 1% * * % * * 0T GT ian
09 4 3 14 14 T 1 3T T 93 o1
0T b4 3 e 4 1% L ST e Gg 3T
8T 9 1% 14 <874 e e 02 G 83 T
32 ¢ G e % * 9 G2 G 9¢ 0T
* * T T T 9 * * ST ST 6
1T b4 % e 3 T I 9 9 ias 2]
9T 9 g I 1% 1% ¢} 83 3 1% L
* * * * * m * * * * @
L9 9 1% e 1% 14 g 0T 0T G3g g
* * * * * % 0] T g1 ¢T 14
* * 14 e i 14 0 14 3T 9T e
GT] 3 14 e 3 9 3T 14 33 3
* 4 14 e 1% 3 T 14 6T 144 T
<+
ﬂ 2o 2o o % 2o ¢o ¢o % ¢o 2o
9ZTge3urY) SSOU308II0) L3TNOUYIIQ souspyuo) -TeNd gqng K393®I3Q 389 ©OpPOD pueisIepun TeIO0L 3o8lqng

"¢2 sy aSueypd 10J vle 9 2IGVL

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 275

Notes

1. It is interesting that the professional programmers and graduate students of the pilot experiment
implemented ¢l and ¢2 significantly faster than the undergraduate students of the main experiment,
eventhough the undergraduate students had more experience with Java. On average, the graduate
students/professionals used about 40% less time than the undergraduate students.

2. There are (12!/7!5!)(10!/7!3!) = 95040 ways to select such balanced sub-samples from the initial group
assignment. We selected only six of these possible samples at random.

3. In the actual handouts, each change task was described on a separate printed page. The subjects were
instructed not to look at the next change task before they had completed the change task questionnaire
for the previous change task.

4. The subjective skill-level question was asked only once, in the calibration change task questionnaire.
The other questions were answered for all change tasks.

References

Arisholm, E., and Sjeberg, D. 1. K. 2000. Towards a framework for empirical assessment of changeability
decay. Journal of Systems and Software 53(10): 3-14.

Arisholm, E., Benestad, H. C., Skandsen, J., and Fredhall, H. 1998. Incorporating rapid user interface
prototyping in object-oriented analysis and design with Genova. Proceedings of NWPER'98 Nordic
Workshop on Programming Environment Research, Sweden, pp. 155-161.

Arisholm, E., Skandsen, J., Sagli, K., and Sjeberg, D. I. K. 1999. Improving an evolutionary development
process—a case study. Proceedings of the EuroSPI'99 (European Software Process Improvement Con-
ference), Pori, Finland, pp. 9.40-9.50.

Basili, V. R., Briand, L. C., and Melo, W. L. 1996. A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10): 751-761.

Briand, L. C., Bunse, C., Daly, J. W., and Differding, C. 1997. An experimental comparison of the
maintainability of object-oriented and structured design documents. Empirical Software Engineering
2(3): 291-312.

Briand, L., Bunse, C., and Daly, J. W. 1999a. A controlled experiment for evaluating quality guidelines on
the maintainability of object-oriented designs. ISERN Technical Report 99-07.

Briand, L. C., Arisholm, E., Counsell, S., Houdek, F., and Thevenod, P. 1999b. Empirical studies of
object-oriented artifacts, methods, and processes: State of the art and future directions. Empirical
Software Engineering 4(4): 387-404.

Briand, L. C., Daly, J. W., Porter, V., and Wust, J. 1999c. A comprehensive empirical validation of
product measures for object-oriented systems. To appear in Journal of Systems and Software. Also
available as ISERN Technical Report 98-07

Briand, L. C., Wust, J., Ikonomovski, S. V., and Lounis, H. 1999d. Investigating quality factors in object-
oriented designs: An industrial case study. 21st International Conference of Software Engineering
(ICSE99), Los Angeles, CA, pp. 345-354.

Chidamber, S. R., and Kemerer, C. F. 1994. A metrics suite for object-oriented design. IEEE Transactions
on Software Engineering 20(6): 476—493.

Coad, P., and Yourdon, E. 1991a. Object-Oriented Analysis. Prentice-Hall.

Coad, P., and Yourdon, E. 1991b. Object-Oriented Design. Prentice-Hall.

Cockburn, A. 1998. The Coffee Machine Design Problem: Part 1 & 2. C/C++ User’s Journal, May/June
1998.

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. 1996. Evaluating inheritance depth on the
maintainability of object-oriented software. Empirical Software Engineering 1(2): 109-132.

Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics
6: 65-70.

276 ARISHOLM, SJOBERG AND JORGENSEN

Lehman, M. M., and Belady, L. A. 1985. Program Evolution: Processes of Software Change. Academic
Press.

Li, W., and Henry, S. 1993. Object-oriented metrics that predict maintainability. Journal of Systems and
Software 23(2): 111-122.

Sharble, R. C., and Cohen, S. S. 1993. The object-oriented brewery: A comparison of two object-oriented
development methods. Software Engineering Notes 18(2): 60-73.

von Mayrhauser, A., Vans, A. M., and Howe, A. E. 1997. Program understanding behaviour during
enhancement of large-scale software. Software Maintenance: Research and Practice 9: 299-327.

Erik Arisholm received a B.Sc. degree in computer science from the University of Oslo in 1988, a M.A.Sc.
degree in electrical engineering from the University of Toronto in 1991, and a Ph.D. degree in computer
science from University of Oslo in 2001. He has seven years industry experience in Canada and Norway as
a Lead Engineer and Design Manager. He is now an Associate Professor in software engineering and a
member of the research group Industrial Systems Development in the Department of Informatics, Uni-
versity of Oslo. He is also a researcher in the Software Engineering group of Simula Research Laboratory.
His research interests include empirical software engineering, software process improvement and object-
oriented methods.

Magne Jorgensen received the Diplom Ingeneur degree in Wirtschaftswissenschaften from the University
of Karlsrube, Germany, in 1988 and the Dr. Scient. degree in informatics from the University of Oslo,
Norway in 1994. He has 10 years industry experience as consultant and manager. He is now an Associate
Professor in software engineering and member of the research group Industrial Systems Development in
the Department of Informatics, University of Oslo. He is also a researcher in the Software Engineering
group of Simula Research Laboratory. His research interests include software process improvement,
experience databases, software estimation and software measurements.

CHANGEABILITY OF OBJECT-ORIENTED DESIGN ALTERNATIVES 277

Dag Sjeberg received an M.Sc. degree in computer science from University of Oslo in 1987 and a Ph.D.
degree in computing science from University of Glasgow in 1993. He has five years industry experience as
consultant and Group Leader. He is now a Professor in software engineering and is the leader of the
research group Industrial System Development in the Department of Informatics, University of Oslo and
Head of the Software Engineering group of Simula Research Laboratory. Among his research interests are
software evolution, software process improvement, programming environments, object-oriented methods
and persistent programming.

