
Nordic Journal of Computing 9(2002), 231–247.

A WEB-BASED SUPPORT ENVIRONMENT FOR
SOFTWARE ENGINEERING EXPERIMENTS

ERIK ARISHOLM DAG I. K. SJØBERG
GUNNAR J. CARELIUS

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
�������������	���
��������
����

YNGVE LINDSJØRN
KompetanseWeb AS

Tullinsgate 6, NO-0166 Oslo, Norway
���������������������

Abstract. The software engineering communities frequently propose new software engi-
neering technologies, such as new development techniques, programming languages and
tools, without rigorous scientific evaluation. One way to evaluate software engineering
technologies is through controlled experiments where the effects of the technology can be
isolated from confounding factors, i.e., establishing cause-effect relationships. For practi-
cal and financial reasons, however, such experiments are often quite unrealistic, typically
involving students in a class-room environment solving small pen-and-paper tasks. A com-
mon criticism of the results of the experiments is their lack of external validity, i.e., that the
results are not valid outside the experimental conditions. To increase the external validity
of the experimental results, the experiments need to be more realistic. The realism can be
increased using professional developers as subjects who conduct larger experimental tasks
in their normal work environment. However, the logistics involved in running such experi-
ments are tremendous. More specifically, the experimental materials (e.g., questionnaires,
task descriptions, code and tools) must be distributed to each programmer, the progress
of the experiment needs to be controlled and monitored, and the results of the experiment
need to be collected and analyzed. To support this logistics for large-scale, controlled ex-
periments, we have developed a web-based experiment support environment called SESE.
This paper describes SESE, its development and the experiences from using it to conduct
a large controlled experiment in industry.

CR Classification:

Key words:

1. Introduction

There is an increasing understanding in the software engineering community that
empirical studies are needed to develop or improve processes, methods and tools
for software development and maintenance [Basiliet al.1986, Basili 1993, Rom-
bachet al. 1993, Basili 1996, Tichy 1998, Zelkowitz and Wallace 1998]. The
classical method for identifying cause-effect relationships is to conduct controlled
experiments where only a few variables vary. Controlled experiments in software

Received August, 2002; accepted October, 2002.

232 ARISHOLM ET AL.

engineering often involve students solving small pen and paper tasks in a classroom
setting. A major criticism of such experiments is their lack of realism [Potts 1993,
Glass 1994], which may deter technology transfer from the research community
to industry. The experiments would be more realistic if it is run on real tasks, on
real systems, with software professionals who are representative of the target pop-
ulation of the technology, using their usual development technology in their usual
working environment [Sjøberget al.2002].

For example, in an object-oriented design experiment conducted by some of the
authors, a total of 190 subjects participated. Among the subjects, 130 were pro-
fessional Java developers from nine different consultancy companies; 60 subjects
were students. The experiment took place during a two-month period and was or-
ganized as 12 separate one-day sessions (each individual participated in only one
of the sessions). During the one-day session, each subject had to solve six Java pro-
gramming tasks on their computer using their usual Java development tool. While
this experiment was of larger scale and in many ways more realistic than most
software engineering experiments, it posed new challenges:

Æ The experimental material (e.g., questionnaires, task descriptions, code and
tools) had to be distributed to each subject in a timely fashion.

Æ The experimental design was such that not all the material could be dis-
tributed at once. Furthermore, once a subject had solved a task, the solution
had to be collected immediately.

Æ Because each (professional) developer was sitting at his or her usual office
location while participating in the experiment, it was crucial to monitor the
progress of each individual.

Æ The results (e.g., answers to questionnaires and Java program solutions) had
to be stored for future analyses.

The logistics involved in running experiments such as the one exemplified above
motivated the need for a tool that could automate some of that logistics. Con-
sequently, we developed the web-based Simula Experiment Support Environment
(SESE) in collaboration with an external development company. SESE allows us
to define experiments, including all the detailed questionnaires, task descriptions
and necessary code, assign subjects to a given experiment session, run and monitor
each experiment session and collect the results from each subject for analyses.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the activities and logistical challenges of conducting realistic experiments. Sec-
tion 3 motivates and describes the SESE development project. Section 4 presents
the functionality and architecture of SESE. Section 5 describes the experiences
from using SESE. Section 6 concludes.

2. Logistics of conducting software engineering experiments

Our research group aims to make software engineering experiments resemble real
world situations and thus possibly generalize the results to industrial practice. An
experiment is realistic if the situation presented to the subjects is realistic and the

A WEB-BASED SUPPORT ENVIRONMENT 233

subjects react to the situation in the same way as they would do in their usual
work environment. In particular, it is a challenge to achieve realism regarding ex-
perimental tasks, subjects and environment [Harrison 2000]. Conducting realistic
experiments requires good management of the necessary activities. A typical ex-
perimental procedure is as follows.
Step 1:Define experiment: Design a new experiment with the required

Æ questionnaires to collect background information (name, affiliation, ad-
dress, email address, bank account if the subjects are paid individually,
education, work experience, etc.),

Æ PC and tool environment,
Æ task descriptions, and
Æ files to be down-loaded, etc.

Step 2:Define, gather and assign subjects: Define the kind and number of sub-
jects that should take part in the experiment, and recruit them. Typically,
a controlled experiment consists of two or more alternative experimental
treatments. The appropriate treatment should be assigned to the respective
groups.

Step 3:Each subject runs the experiment: Distribute the questionnaires and other
relevant documents defined under step 1 to the subjects and ensure that they
start the experiment. In many experiments, we need timestamps of when a
subject starts read a task description and when the task solution is finished.

Step 4:Monitor experiment: To ensure that the subjects perform correctly and that
the appropriate data is collected, the researcher will monitor the progress of
each subject.

Step 5:Collect results: When a subject has finished the tasks, his or her results
are collected and stored in a safe place. When all the subjects have finished,
the researcher can start the analysis.

The experience from the controlled experiments within our research group, which
have involved a total of about 750 students and 300 professionals as subjects1,
is that the logistics around the experiments are work intensive and error prone.
General information and specific task documents must be printed and distributed,
personal information (bank account, etc.) and background information must be
collected, all solution documents must be collected and then punched into an elec-
tronic form, etc. This may in turn lead to typing errors, lost data [Briandet al.
2001], etc.

3. Developing an experiment support environment

To address the problems described in the previous section, we developed the web-
based Simula Experiment Support Environment (SESE). This section describes
related work, our collaboration with a software company in developing SESE and
our strategy for its further development.

1 Information about most of these experiments can be found at������������������	
�����
��������	�����	
���	��

234 ARISHOLM ET AL.

3.1 Related tools

We realized that if we were to scale up our experiments and particularly run exper-
iments with professionals in industry using professional development tools, that is,
make our experiments more realistic, we would need a tool that could (amongst
others) provide the following functionality:

Æ Real-time monitoring of the experiment: The researcher must be able to
monitor the experiment progress, e.g., to view the current status and pre-
liminary answers given by each subject. In this way, technical problems,
misunderstandings or other issues related to the experiment conduct can be
resolved quickly.

Æ Flexible definition of questions and measurement scales: The tool must sup-
port the definition of legal values, default values, required and optional fields,
text fields, date/time fields, numeric fields and multiple choice fields. To en-
sure consistency within an experiment and between experiments, it should
be possible to base a new questionnaire on a questionnaire “template”.

Æ Automatic recovery of experiment sessions: If a subject experiences tech-
nical problems, e.g., a network failure that terminates the connection to the
experiment environment, the subject must be able to continue the experiment
from the point of which it was interrupted without loss of data.

Æ Automatic backup of experimental data: The data must be stored on a central
server enabling reliable backup-routines.

Æ Multi-platform support for download and upload of experimental materials
and task solutions: The tool must enable reliable download and upload of
large files, supporting the various web browsers and, to some extent, utilizing
operating system specific functionality for searching, naming and storing
files.

We searched for suitable tools and found several web tools developed to support
surveys, most of them designed by psychologists (e-Experiment2, PsychExperi-
ments3, Survey Pro 34, S-Ware WWW Survey Assistant5, Wextor6). Those tools
basically distribute questionnaires to the respondents who fill them in online. Then
the results are stored in a local database or are sent via emails to the researchers.

More specifically, an overview of how the abovementioned tools support our
requirements is given in Table I. Note that the table does not represent a compre-
hensive evaluation of these tools. Some of them have advanced features that are not
supported in SESE, for example, functionality for automated random assignment
of subjects to questionnaires and for defining hierarchical questionnaires where the
next given question depends on the answer of the previous question.

Another category of related work is supporting tools for distance learning. Such
tools allow teachers to organize exam sessions and students to consult the results of

2 �������������	�������������� ���	�������
3 ���������������		�����	������	�
4 �����������������	�����	�	������
5 �����������	���������������� ��	���������������
6 ��������������	�����������������������������

A WEB-BASED SUPPORT ENVIRONMENT 235

TABLE I: Overview of how existing tools support our most important requirements.

Real-time
monitoring of the
experiment

Flexibility of
defining new
kinds of
questions and
measurement
scales

Automatic
recovery of
experiment
sessions

Automatic backup
of experiment data

Multi-
platform
support for
download
and upload

e-Experiment No Yes No No (Data sent by
Email)

No

PsychExperiments No Yes No Yes (Data collected
in SQL-server)

No

Survey Pro-3 No Yes Partial (duplicate
cleanup)

Yes (Data collected
in SQL-server)

No

S-Ware WWW Survey Assistant No Yes Partial (resubmit
control)

Yes (Data file on
web-server)

No

Wextor No No Partial (resubmit
control)

No No

their tests by a web interface [Bagnoliet al.2002]. A more general description of
web-based teaching activities can be found in [Hansen and Salter 2001]. The dis-
tance learning category of tools, although not specifically designed for supporting
controlled experiments, could probably have been used as a basis for developing
SESE. The fact that we based the development of SESE on a different platform is
mainly a result of practical and strategic considerations, as explained in the follow-
ing sections.

3.2 Collaboration with a software company

When conducting experiments where up to (so far) 130 professionals take part in
the same experiment, the quality of a support tool must be better than what can
be expected from prototype research tools. Implementing a tool with the needed
functional and nonfunctional requirements is obviously very time-consuming and
difficult. Furthermore, a tool needs to be maintained, backup routines need to be
in place, it must be reliable, etc. Consequently, we initiated collaboration with a
software company that develops solutions for human resource management, Kom-
petanseWeb AS, to develop SESE.

SESE is built on top of KompetanseWeb’s standard commercial product, which
is used by several large Norwegian organizations. SESE was (and still is) de-
veloped through close contact between Simula Research Laboratory (SRL) and
KompetanseWeb. The development of the extra functionality required in SESE
compared with the standard commercial system is paid by SRL.

Another concern is the ownership of SESE. We ended up with an agreement
where SRL is allowed unlimited use and support of SESE (including the necessary
human resource management technology). In return, KompetanseWeb is allowed
to resell the SESE-module to other companies and research institutes. That is, SRL
gets the basic human resource management technology for free; KompetanseWeb
gets the SESE-module for free. In the contract between SRL and KompetanseWeb
are also agreements to ensure that SRL still can use SESE if KompetanseWeb for
various reasons cannot support SESE, e.g., if KompetanseWeb is merged into an-
other company or goes bankrupt.

236 ARISHOLM ET AL.

3.3 Experiment-driven development

Like any sophisticated tool that is actively used, SESE will never be “finished”.
We continuously suggest improvements and discover new possibilities. The re-
quirements are driven by the actual experiments where SESE is used.

The development project used the OO design experiment (Section 5) as a proof
of concept milestone: the first version of SESE had to support the functionality
required to conduct that particular experiment. After that experiment, SESE was
further improved to support the needs of two other experiments, one on Design Pat-
terns, which was run during a three day period in May 2002 with 44 professionals,
and another one on UML with 60 students using a commercial UML tool, which
was run during half a day in November 2002. Further experiments on use cases,
estimation and other software engineering issues are planned, which in turn will
lead to other sets of requirements to SESE.

4. Simula experiment support environment

This section gives an overview of the functionality and technical architecture of
SESE.

4.1 Functionality

The following sections elaborate on how SESE provides (partial) support for the
five steps of a typical experimental procedure, as described in Section 2. Detailed
descriptions and screenshots are provided to illustrate how such a tool can be built.

4.1.1 Step 1 – Define experiment

An experiment consists of a sequence of questions presented in a browser window.
In theQuestion registration window (Fig. 1), each browser window is defined as a
numberedPage, for example (9). On a page, questions are numbered in a hierarchi-
cal tree, for example (9.1) and (9.2.1). Questions on a certain level can be grouped
as in (9.2). Each page/group/question may have a Norwegian(Norsk) and English
(Engelsk) version. A question has a certainAnswer type. For the typesCombo Box,
Check Boxes, andOption Buttons, Text Labels are assigned to the question. For the
Date/Time type, a date/time format is selected (yy, mm, dd, hh, mm, ss). A ques-
tion can be indicated asRequired. When right-clicking on a page/group/question,
SESE displays a menu related to the selected line:Edit, Cut, Copy, Move (Up or
Down). New (New Page, New Group or New Question) is selected to insert a new
page/group/question below the selected line. The left side of the window previews
the selected page/group/question.

4.1.2 Step 2 – Define, gather and assign subjects

SESE only supports assigning subjects to experimental treatments. Defining and
recruiting subjects are still completely manual operations. Once the subjects have

A WEB-BASED SUPPORT ENVIRONMENT 237

Fig. 1: Question registration window.

been recruited, they are assigned to an experiment in theAdd users to experiment
window (Fig. 2). First, the subjects are found with the search function. A search is
done within a selected department or inAll departments. With the arrows buttons
(�� and��) subjects can be moved in and out of theUsers selected for the exper-
iment list to the right. The Set start date button is used to prevent selected subjects
from accessing the experiment before a certain date. Pressing theSend mail but-
ton, predefined e-mails containing, amongst others, user name and password are
sent to the subjects. The e-mails are generated using a simple ASCII-based email
template.

4.1.3 Step 3 – Each subject runs the experiment

The general procedure for running an experiment with SESE is as follows:

1. The subject opens the SESE login window with a web browser and logs onto
SESE with the username and password provided by SESE.

2. The subject registers required personal information.

3. The subject starts the experiment that he or she has been assigned to.

4. The subject answers the questions and solves the tasks presented in the
browser window.

238 ARISHOLM ET AL.

Fig. 2: Add users to experiment window.

If the experiment is interrupted (deliberately by the subject or due to technical prob-
lems), the subject will automatically return to the last uncompleted window when
the experiment is restarted. At present, SESE enforces the following experimental
rules:

Æ The subject cannot go back to edit answers in a previous window.

Æ Questions marked with red asterisks (*****) must be answered by the sub-
ject.

Æ An experiment cannot be repeated by the subject once the experiment is
completed.

We will illustrate how an experiment is conducted in SESE using one change task
of the experiment described in Section 5. The change task proceeds as follows. The
subject is asked to download the zipped source code for a program and to unzip the
file (Fig. 3). Then the subject must download a PDF-file containing a detailed
description of the task to be solved (Fig. 4). The start time, time finished and
time used on the different activities of the task must be entered into the appropriate
fields. The subject is then asked to zip the subdirectory containing the solution files
for the solved task and to upload the zip-file (Fig. 5). Finally, the subject fills in a
post-mortem questionnaire related to the change task.

A WEB-BASED SUPPORT ENVIRONMENT 239

Fig. 3: Question 8, Task 1 – Part 1.

4.1.4 Step 4 – Monitor experiment

The researcher can monitor experiments in real time in theUser status window
(Fig. 6). TheStatus column displays the experiment status of each subject (Unan-
swered, Started or Finished). The start time forFinished andStarted experiments
is found in theStart time column. The total time used onFinished experiments is
displayed in theTime used column.

For a Started experiment, the number and name of the last page that was an-
swered by the subject are shown in theLast page answered column. The researcher
can view the answers given by a subject by clicking on the name of the subject in
theName column.

4.1.5 Step 5 – Collect results

The results of an experiment can be presented graphically. More importantly, all
the raw data for a certain experiment may also be downloaded for further analyses.
The questionnaire data are downloaded as a Microsoft Access 2000 database. The
task solution files are downloaded as a compressed directory structure identifying
each solution file by an experiment-ID, person-ID and task-ID.

4.2 Technical architecture

SESE is deployed on an n-tier client/server architecture, built on Microsoft COM
technology (Fig. 7). The SESE application layer runs on one computer and the

240 ARISHOLM ET AL.

Fig. 4: Question 9, Task 1 – Part 2.

database on another. Users communicate with the application through a standard
web-browser (e.g., Netscape and Internet Explorer).

The web pages are built using HTML, CSS (Cascading Style Sheets) and Java-
script, and are presented with Microsoft ASP (Active Server Pages). The appli-
cation/business layer is implemented in Java and contains an object model with
methods supporting the operations of the software. The Data Access layer contains
classes and methods supporting O/R mapping (Object Read/Write in a standard re-
lational database). The interface with the business layer supports COM+. This
layer uses Microsoft’s data access technology ADO (ActiveX Data Object). The
persistent layer uses an MS SQL-server. The communication with the database is
managed by a COM+ component where transactions are initiated by MTS (Mi-
crosoft Transaction Server). Scalability in the application layer is configured in
COM+ using Load balancing and Object pooling.

A WEB-BASED SUPPORT ENVIRONMENT 241

Fig. 5: Question 10, Task 1 – Part 3.

4.2.1 Security

SESE is generally accessible on the Internet. The user ID is verified when the
user logs onto the system. Access rights depend on the role of the user. All traffic
between the web server and the client may be encrypted using standard SSL with
HTTPS. Hence, the data is protected by a firewall, i.e., no other services apart from
HTTP (HTTPS) may be accessed from outside.

SESE uses “form-based” authentication. The user fills in username and password
in a HTML Form, which is sent to the server with “HTTP Post”. If HTTPS is used,
the data is encrypted. The user name and password are verified against separate
tables.

Fig. 6: Monitoring the experiment.

242 ARISHOLM ET AL.

Fig. 7: The SESE client/server architecture.

4.2.2 Sessions

The Internet Information Server (IIS) assigns each user a session object. The ses-
sion object is deleted either when the user logs off, or after five hours of inactivity.
This timeout length is relatively long to support large tasks. The session object
stores information such as the user ID and experiment status of each subject in a
cache.

4.2.3 Roles

The application applies the notion of roles. All users are assigned one or more
roles. All links into the system are assigned a list of roles, stating which users have
access to the link. The menus are a collection of links, and will therefore vary
according to role of the user who is logged onto the system.

5. Evaluation of SESE

This section describes the experiences of using SESE to conduct a large con-
trolled experiment evaluating how object-oriented design principles may affect
changeability. The experiment was a replication of an earlier pen-and-paper ex-
periment using 40 students as subjects [Arisholmet al.2001]. A common critique
of pen-and-paper experiments with students is that the results are not valid outside
the rather unrealistic experimental conditions; in real development projects, the
programmers are professionals, using real development tools in a more familiar

A WEB-BASED SUPPORT ENVIRONMENT 243

environment. In the replicated experiment with SESE, the goal was to assess
whether the external validity of the results would be affected by using

Æ professional developers instead of (in addition to) students,
Æ professional development tools and real Java code instead of pen-and-paper

exercises, and

Æ normal work environments (offices or office landscapes) instead of class-
room settings.

The remainder of this section focuses on how SESE supported the logistics of
conducting the replicated experiment.

5.1 Conducting the replicated experiment using SESE

The experimental materials (e.g., skill level questionnaires, task descriptions, post-
mortem questionnaires and Java code) were defined in SESE. In total, 190 subjects
participated. Among the subjects, 130 were professional Java developers from
nine different consultancy companies. The remaining 60 subjects were students
from the University of Oslo. All subjects were paid to participate.

The experiment took place during a two-month period and was organized as 12
separate one-day sessions. The 60 students participated in one common experi-
ment session at a computer terminal facility at the University of Oslo. For the
experiment sessions involving professional developers, a local project manager (in
each company) was assigned to the “experiment project”. He or she ensured that
the subjects assigned to a given experiment session actually attended, that PCs and
office spaces were available, that meeting rooms had been booked, etc. The project
manager also prepared a list of the names and email addresses of each subject that
was assigned to a given experiment session. When we received the list from the
project manager, the subjects were given a user-id and password in SESE and as-
signed to one of the two design alternatives. Randomization and blocking were
used to avoid uneven group assignments. Then, SESE sent an email to the subjects
informing them about their user name, password, how to log on to SESE, and the
time of the experiment. Each experiment session started with a short introduction
meeting, where the procedure of the experiment was explained to the subjects by
the first author. After the meeting, the developers proceeded to their usual office or
workstation, logged on to SESE and started the experiment. For all of the experi-
ment sessions, at least one researcher was present.

During the one-day session, each subject had to solve six Java programming
tasks on their computer using their usual Java development tool. Most subjects
spent somewhere between 5 to 8 hours to complete the experiment. Further details
of the tasks and the design alternatives are explained in [Arisholmet al. 2001,
Arisholm and Sjøberg 2002].

5.2 Lessons learned

This section summarizes what we perceive as the most important experiences and
the consequential guidelines for conducting large-scale, controlled experiments
with SESE.

244 ARISHOLM ET AL.

5.2.1 Administrative task

Important infrastructure needs to be in place to conduct administrative tasks. De-
pending on the number of subjects that take part in an experimental session, one or
more researchers must be physically present during the whole session to assist in
problems or answer questions that relate to both the particular tasks and the exper-
imental support environment. The presence of a researcher also helps ensure that
the subjects focus on the actual experiment without external interruptions, or that
interruptions are organized in a satisfactory way (lunch breaks, etc.).

The company should use a technical support person to ensure that the PCs have
been configured with the required tools and network connections. This is particu-
larly important for those cases where the programmers did not use their “own” PC
for running the experiment.

5.2.2 Monitoring

SESE’s monitoring functionality was an important and useful tool to assess the
progress of each subject during the experiment. However, we would have liked
more detailed information about what the subjects were thinking and doing during
the experiments, that is, more qualitative information about the individual pro-
cesses that led to the recorded results. Consequently, we are currently implement-
ing a “write-aloud” screen [Karahasanovicet al.2001], which is a pop-up dialogue
asking the subjects to write down what they have been doing since they started
on the current task (or since the screen popped up last time) and, in general, give
their viewpoints on the experimental situation. The research goal is to get more
information that explains the results, in particular unexpected results. The screen
can also be used to remind the subjects to follow the procedures of the experiment.
The frequency of the pop-up screen can be based on given time intervals or it can
be event-driven (e.g., “no user activity for the past 10 minutes”). The leading text
of the screen and the pop-up time interval may vary from task to task within the
same experiment.

To get even more understanding of the actual behavior of the subjects, we also
plan to include logging functionality for window operations, keystrokes, mouse
operations and movements logged with timestamps [Karahasanovicet al.2001].

5.2.3 Importance of including a training task

In our experience, professional developers constitute a more heterogeneous group
than students. Our results suggest that the variation in skills amongst profession-
als is considerably larger than within a group of second or third-year students.
Furthermore, conducting experiments with real development tools instead of pen-
and-paper poses additional technical challenges. Consequently, our experiences
suggest that, when using SESE to conduct experiments with professionals using
realistic development environments, it is crucial to have a training task as a first
exercise before initiating the “real” experimental tasks.

A WEB-BASED SUPPORT ENVIRONMENT 245

During the training task, the subjects familiarized themselves with the experi-
mental procedure (e.g., answering questionnaires, downloading task descriptions
and code from SESE, uploading task solutions to SESE, using Acrobat Reader
to read task descriptions, using PkZip to uncompress and compress Java code, and
coding and compiling the source code). Furthermore, most technical or user-related
problems (e.g., having the wrong version of JDK, having an expired license of
JBuilder, having an outdated version of Acrobat Reader or incorrect use of PkZip)
were resolved before they could have a negative impact on the reliability of the re-
sults of the experiment. Most of the technical and user-related problems occurred
during the training exercise. In the rare cases where technical or user-related prob-
lems occurred after the training task was completed, they were mostly of simple
nature and resolved quickly.

5.2.4 Personal interruptions

The professional developers were located in their usual work offices while run-
ning the experiment. Consequently, using SESE to support the logistics of such
geographically distributed experiments enabled us to increase the realism. How-
ever, this increase in realism means that each subject potentially can be interrupted
(phone calls, lunch break, etc.). Such interruptions should of course be kept to
a minimum to ensure reliable results. To reduce the negative impact of such in-
terruptions, we requested the subjects to limit interruptions to timesbetween each
change task and explained to them that such interruptions otherwise could threaten
the validity of the results of the experiment. We observed that the vast majority of
the subjects respected this request as far as practically possible. In cases where in-
terruptions were unavoidable, the subjects used a special “comment” field in SESE
to inform us about the nature and time span of the interruption. In summary, based
on our experiences from this experiment, we believe that it is possible to ensure
that personal interruptions will be kept below the level in which the results of the
experiment would be threatened.

5.2.5 Firewalls and virus scanners

Before the experiment, we were worried about whether network security software
such as firewalls and virus scanning software would prevent the subjects from
downloading and uploading tasks and questionnaires. This turned out to be no
problem except for one case, in which a company had a firewall that refused to
accept zip-files from external web-sites. However, this issue was resolved during
the training exercise so it did not impact the results of the experiment.

5.2.6 Response times, network traffic and server load

Clearly, slow response times or interruptions caused by too high network traffic
or SESE server load could threaten the results of the experiment. In particular, it
could make the subjects frustrated, which in turn could affect their performance.

246 ARISHOLM ET AL.

Fortunately, with one notable exception discussed below, we did not experience
problems related to increased network traffic or SESE server load during the ex-
periment sessions. For the OO design experiment, the change tasks and code were
quite small (resulting in a total of approximately 1MB to be downloaded and up-
loaded per subject). For the sessions in industry, this load caused no problems
regarding the response times of SESE. To reduce the risks of network and server-
related problems at the SESE server site, we had a technical administrator from
KompetanseWeb on call during all the experiment sessions.

For the student experiment session, consisting of 60 students starting the exper-
iment at the same time, wedid experience a serious server problem: As the 60
students logged onto SESE and started the experiment, the server crashed. For-
tunately, the administrator at KompetanseWeb managed to get the server up-and-
running after a few minutes. No data was lost (SESE remembers the state of the
experiment for each subject), and the remainder of the experiment was conducted
as planned. This incidence points out that SESE introduces new risks of a technical
nature. Consequently, it may be necessary to have a technical administrator on call
at all times to deal with such issues.

6. Conclusions

This paper motivated the need for tool support to run realistic controlled experi-
ments to empirically evaluate software engineering technologies. Realism can, for
example, be increased using professionals in addition to students, real develop-
ment tools instead of pen-and-paper, larger tasks and a typical work environment
instead of a classroom. The logistics of running realistic experiments are much
more complex than for simple pen-and-paper student experiments.

This paper gave an overview of the functionality and technical architecture of
an experiment support tool, SESE. This tool was developed and evaluated in con-
junction with a large OO design experiment. Running such large experiments in-
troduces new organizational and technical challenges and risks. If these issues are
dealt with properly, our experiences suggest that SESE is an invaluable tool. In
fact, without SESE, we believe it would have been infeasible to conduct the OO
design experiment.

Several new software engineering experiments are underway in which researchers
in our group will use SESE as a backbone experiment support environment. SESE
is continually being improved based on the experiences from the OO design exper-
iment and on the requirements of new planned experiments.

Acknowledgements

We are grateful to the students at University of Oslo and the developers from Ac-
centure, Cap Gemini Ernst & Young, Ementa, Ementor, Genera, Software Inno-
vation, Software Innovation Technology and Tietoenator who participated in the
design experiment. We thank the anonymous referees for their very construc-
tive comments. We also thank Dag M. Solvoll, Wiggo Bowitz, Kirsten Ribu and

A WEB-BASED SUPPORT ENVIRONMENT 247

Amela Karahasanovic for their contributions to this paper. This research is par-
tially funded by The Research Council of Norway through the research project
INCO (Incremental and component-based software development, project number
140398/431).

References

ARISHOLM, E. AND SJØBERG, D. I. K. 2002. A Controlled Experiment in Industry to Evaluate
the Effect of Responsibility-Driven Design Principles on Software Changeability for Different
Categories of Professionals (in preparation).

ARISHOLM, E., SJØBERG, D. I. K., AND JØRGENSEN, M. 2001. Assessing the Changeability
of two Object-Oriented Design Alternatives - a Controlled Experiment.Empirical Software
Engineering 6, 3, 231–277.

BAGNOLI, F., FRANCI, F., AND STERBINI, A. 2002. WebTeach: an Integrated Web-based Cooper-
ative Environment for Distance Teaching. InProceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering (SEKE’02), July 15-19, 2002, Ischia,
Italy. ACM, 519–520.

BASILI , V. R. 1996. The Role of Experimentation in Software Engineering: Past, Current, and
Future. InProceedings of the 18th International Conference on Software Engineering (ICSE),
Berlin, Germany, March 25-29, 1996. IEEE Computer Society, 442–449.

BASILI , V. R. 1993. The Experimental Paradigm in Software Engineering. InExperimental Soft-
ware Engineering Issues: Critical Assessment and Future Directives, Rombach, H. D., Basili,
V. R., and Selby, R., Editors. Proceedings of Dagstuhl-Workshop, September 1992. Volume
706 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, 3–12.

BASILI , V. R., ROMBACH, D., AND HUTCHENS, D. 1986. Experimentation in Software Engineer-
ing. IEEE Transactions on Software Engineering 12, 7, 733–743.

BRIAND, L. C., BUNSE, C., AND DALY, J. W. 2001. A Controlled Experiment for Evaluating
Quality Guidelines on the Maintainability of Object-Oriented Designs.IEEE Transactions on
Software Engineering 27, 6, 513–530.

GLASS, R. L. 1994. The Software-Research Crisis.IEEE Software 11, 6, 42–47.
HANSEN, S. AND SALTER, G. 2001. The Adoption and Diffusion of Web Technologies into Main-

stream Teaching.Journal of Interactive Learning Research 12, 2/3, 281–299.
HARRISON, W. 2000. N = 1: An Alternative for Software Engineering Research?, Beg, Borrow,

or Steal: Using Multidisciplinary Approaches in Empirical Software Engineering Research.
Workshop, 5 June, 2000 at 22nd International Conference on Software Engineering (ICSE),
Limerick, Ireland, 2000.

KARAHASANOVIC, A., SJØBERG, D., AND JØRGENSEN, M. 2001. Data Collection in Software
Engineering Experiments. InManaging Information Technology in a Global Economy, Infor-
mation Resources Management Association International Conference IRMA 2001, Software
Engineering Track, Toronto, Ontario Canada, May 20-23, 2001. Idea Group Publishing, 1027–
1028.

POTTS, C. 1993. Software-Engineering Research Revisited.IEEE Software 10, 5, 19–28.
ROMBACH, H. D., BASILI , V. R., AND SELBY, R., EDITORS. 1993. Experimental Software

Engineering Issues: Critical Assessment and Future Directions. Proceedings of Dagstuhl-
Workshop, September 1992. Volume 706 ofLecture Notes in Computer Science. Springer-
Verlag, Berlin.

SJØBERG, D. I. K., ANDA, B., ARISHOLM, E., DYB Å, T., JØRGENSEN, M., KARAHASANOVIC,
A., KOREN, E. F., AND VOKAC, M. 2002. Conducting Realistic Experiments in Software
Engineering. InProceedings of the First International Symposium on Empirical Software En-
gineering (ISESE’2002), Nara, Japan, October 3-4, 2002. IEEE Computer Society, 17–26.

TICHY, W. F. 1998. Should Computer Scientists Experiment More? 16 Reasons to Avoid Experi-
mentation.IEEE Computer 31, 5, 32–40.

ZELKOWITZ, M. V. AND WALLACE , D. R. 1998. Experimental Models for Validating Technology.
IEEE Computer 31, 5, 23–31.

