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Abstract—The relationships between coupling and external quality factors of object-oriented software have been studied extensively

for the past few years. For example, several studies have identified clear empirical relationships between class-level coupling and

class fault-proneness. A common way to define and measure coupling is through structural properties and static code analysis.

However, because of polymorphism, dynamic binding, and the common presence of unused (“dead”) code in commercial software, the

resulting coupling measures are imprecise as they do not perfectly reflect the actual coupling taking place among classes at runtime.

For example, when using static analysis to measure coupling, it is difficult and sometimes impossible to determine what actual

methods can be invoked from a client class if those methods are overridden in the subclasses of the server classes. Coupling

measurement has traditionally been performed using static code analysis, because most of the existing work was done on nonobject

oriented code and because dynamic code analysis is more expensive and complex to perform. For modern software systems,

however, this focus on static analysis can be problematic because although dynamic binding existed before the advent of object-

orientation, its usage has increased significantly in the last decade. This paper describes how coupling can be defined and precisely

measured based on dynamic analysis of systems. We refer to this type of coupling as dynamic coupling. An empirical evaluation of the

proposed dynamic coupling measures is reported in which we study the relationship of these measures with the change proneness of

classes. Data from maintenance releases of a large Java system are used for this purpose. Preliminary results suggest that some

dynamic coupling measures are significant indicators of change proneness and that they complement existing coupling measures

based on static analysis.

Index Terms—Coupling measurement, change predictions, quality modeling, maintenance.

�

1 INTRODUCTION

IN the context of object-oriented systems, research related
to quality models has focused mainly on defining

structural metrics (e.g., capturing class coupling) and
investigating their relationships with external quality
attributes (e.g., class fault-proneness) [7]. The ultimate goal
is to develop predictive models that may be used to support
decision making, e.g., decide which classes should undergo
more intensive verification and validation. Regardless of the
structural attribute considered, most metrics have been so
far defined and collected based on a static analysis of the
design or code [7], [10], [12], [13], [15], [16]. They have, on a
number of occasions, proven to be accurate predictors of
external quality attributes, such as fault-proneness [7],
ripple effects after changes [11], [14], and changeability
[1], [14]. However, many of the systems that have been
studied showed little inheritance and, as a result, limited
use of polymorphism and dynamic binding [17].

As the use of object-oriented design and programming
matures in industry, we observe that inheritance and
polymorphism are used more frequently to improve

internal reuse in a system and facilitate maintenance.
Though no formal survey exists on this matter, this is
visible when analyzing the increasing number of open
source projects, application frameworks, and libraries. The
problem is that the static, coupling measures that represent
the core indicators of most reported quality models [7] lose
precision as more intensive use of inheritance and dynamic
binding occurs. This is expected to result in poorer
predictive accuracy of the quality models that utilize static
coupling measurement.

Let us take an example, as illustrated in Fig. 1, to clarify

the issue at hand. Due to inheritance, the class of the object

sending or receiving a message may be different from the

class implementing the corresponding method. For exam-

ple, let object a be an instance of class A, which is inherited

from ancestor A0. Let A0 implement the method mA0. Let object

b be an instance of class B, which is inherited from ancestor

B0. Let B0 implement the method mB0. If object a sends the

message mB0 to object b, the message may have been sent

from the method source mA0 implemented in class A0 and

processed by a method target mB0 implemented in class B0.

Thus, in this example, message passing caused two types of

coupling: 1) object-level coupling between class A and class

B (i.e., coupling between instances of A and B) and 2) class-

level coupling between class A0 and B0. The code may very

well show statements where an object of type A invokes

from mA0 method mB0 on an object of type B. However, to

assume, through static code analysis, that there is class-level

coupling between A and B as a result, is simply inaccurate.

Both types of coupling, at the class and object levels, need to
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be captured accurately to address certain applications and
must be investigated.

We propose a set of coupling measures (referred to as
dynamic coupling measures) that is defined on an analysis of
runtime object interactions. They can be collected through a
dynamic analysis of the code, that is, by executing the code
and saving information regarding the messages that are
being sent among objects at runtime. It is also, a priori,
conceivable that dynamic design models (e.g., interaction
diagrams in the Unified Modeling Language (UML) [5])
could be used to collect such measures.

Existing evidence suggests that dynamic coupling could
be of strong interest. A preliminary empirical study on a
SmallTalk system suggests that there is a significant
relationship between change proneness and dynamic
coupling [1], [2]. Furthermore, according to the results of
a controlled experiment [3], static coupling measures may
sometimes be inadequate when attempting to explain
differences in changeability (e.g., change effort) for object-
oriented designs. A follow-up study indicates that the
actual flow of messages taking place between objects at
runtime is often traced systematically by professional
developers when attempting to understand object-oriented
software [6]. The results thus suggest that dynamic
coupling measures could be of interest as predictors of the
cognitive complexity of object-oriented software. Finally,
dynamic coupling is more precise than static coupling for
systems with dead (unused) code, which is uninteresting in
most situations and can seriously bias analysis.

This paper has two main objectives. First, it formally
defines a set of dynamic coupling measures. Some of them
can be measured in the context of object-oriented designs
whereas others require the dynamic analysis of code.
Second, it validates the measures in two distinct ways:
1) Their mathematical properties are systematically ana-
lyzed and 2) The statistical and practical significance of
using dynamic coupling measures is empirically assessed in
the context of models predicting the change proneness of
Java components.

The remainder of this paper is organized as follows:
Section 2 describes 12 dynamic coupling measures and
highlights the ways in which they differ from static
measures. These dynamic coupling measures differ in
terms of the entities they measure and their scope and
granularity, and are classified accordingly. They are defined
in an informal, intuitive manner but also using a formal
framework based on set theory and first-order logic. The
main reason for the latter is to ensure that the definitions are
precise and unambiguous to allow precise discussions of
the measurement properties and the replication of empirical
studies. Section 3 describes how the dynamic coupling
measures can be collected. Section 4 presents a case study as
a first empirical evaluation of the proposed dynamic
coupling measures. Section 5 describes related research.
Section 6 concludes and outlines future research.

2 DYNAMIC COUPLING MEASUREMENT

We first distinguish different types of dynamic coupling
measures. Then, based on this classification, we provide
both informal and formal definitions, using a working
example to illustrate the fundamental principles. Using a
published axiomatic framework [10], we then discuss the
mathematical properties of the measures we propose. Our
measures were designed to fulfill five properties that we
deem very important for any coupling measure to be well
formed. In order to define measures in a way that is
programming language independent, we refer to a generic
data model defined with a UML class diagram.

2.1 Classifying Coupling Measures

There are different ways to define dynamic coupling, all of
which can be justified, depending on the application context
where such measures are to be used. Three decision criteria
are used to define and classify dynamic coupling measures.

1. Entity of measurement. Since dynamic coupling is
based on dynamic code analysis, coupling may be
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measured for a class or one of its instances. The
entity of measurement may therefore be a class or an
object.

2. Granularity. Orthogonal to the entity of measure-
ment, dynamic coupling measurement can be
aggregated at different levels of granularity. With
respect to dynamic object coupling, measurement can
be performed at the object level, but can also be
aggregated at the class level, i.e., the dynamic
coupling of all instances of a class is aggregated. In
practice, even when measuring object coupling, the
lowest level of granularity is likely to be the class, as
it is difficult to imagine how the coupling measure-
ment of objects could be used. Alternatively, all the
dynamic coupling of objects involved in an execu-
tion scenario can be aggregated. We can also
measure the dynamic object coupling in entire use
cases (i.e., sets of scenarios), sets of use cases, or even
an entire system (all objects of all use cases). In the
case where the entity of measurement is a class, the
aggregation scale is different as we can aggregate
dynamic class coupling across an inheritance hier-
archy, a subsystem, a set of subsystems, or an entire
system. The relationships between various levels of
granularity are formally described in Section 2.2.

3. Scope. Another important source of variation in the
way we can measure dynamic coupling is the scope
of measurement. This determines which objects or
classes, depending on the entity of measurement, are
to be accounted for when measuring dynamic
coupling. For example, we may want, depending
on the application context, to exclude library and
framework classes.

At the object level, we may want to exclude certain use
cases modeling exceptional situations (e.g., error conditions,
usually modeled as extended use cases [5]) or objects that
are instances of library or framework classes. At the very
least, we may want to distinguish the different types of
coupling taking place in these different categories.

The choices we make regarding the entity, granularity,
and scope of measurement depend on how we intend to
apply dynamic coupling. Such choices form a classification
of dynamic couplingmeasures that is summarized in Table 1.

2.2 Definitions

Before defining dynamic coupling measures, we introduce
below the formal framework that will allow us to provide

precise and unambiguous definitions. Not only do such
definitions ensure that the reader understands the measures
precisely, but they are also easily amenable to the analysis
of their properties and facilitate the development of a
dynamic analyzer by providing precise specifications. We
provide a set of generic definitions that are based on the
data model in Fig. 2, which models the type of information
to be collected. Each class and association in the class
diagram corresponds to a set and a mathematical relation,
respectively. The inheritance relationship corresponds to a
set partition. Based on this, we define the measures using
set theory and first order logic.

A few details of the class diagram in Fig. 2 need to be

discussed. Most role names are not shown, to avoid

unnecessary cluttering of the class diagram. When no role

name is provided, the meaning of associations is quite clear

from the source and target classes. For example, methods

are defined in a class, method invocations consist of a caller

method in a source class and a callee method in a target

class. Some of the key attributes are shown. One notable

detail is that the line number where the target method is

invoked is an attribute of a message that serves to uniquely

identify it, as specified by the OCL1 constraint shown in the

class diagram. This is necessary because the same target

method may be invoked in different statements and control

flow paths in the same source method. Messages bearing

those different invocations are considered distinct because

they are considered to provide different contexts of

invocation for the method.

Furthermore, associations with role names caller,

source, and sender should show an {exclusive or}

constraint dependency to associations with role names

callee, target, and receiver, respectively. These

constraints are not shown to avoid cluttering the diagram

but are important as, in our context, distinct methods,

classes, and objects must be involved in the links corre-

sponding to those associations. In other words, in the

context of our coupling measurement, method invocations

are linked to two distinct class instances and two distinct

method instances and messages involve two distinct objects.

As expected, method invocations between classes are

differentiated from messages between objects. A method

name and signature uniquely identifies a method in the

context of a specific class and a method invocation must be

clearly linked to a method. This is why MethInvocation

has associations with both Class and Method.

2.2.1 Sets

The first step is to define the basic sets on which to build
our definitions. These sets are derived from the data model
in Fig. 2.

. C: Set of classes in the system. C can be partitioned
into the subsets of application classes (AC), library
classes (LC), and framework classes (FC). Some of
these subsets may be empty, C ¼ AC [ LC [ FC and
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1. The Object Constraint Language (OCL) [28] is mostly used to specify
constraints on class diagrams, operation pre/postconditions, and class
invariants.

TABLE 1
Dynamic Coupling Classification



AC \ LC \ FC ¼ ;. Distinguishing such subsets may
be important for defining the scope of measurement,
as discussed above.

. O: Set of objects instantiated by the system while
executing all scenarios of all use cases (including
exceptional use cases, e.g., treating error conditions,
which are usually modeled as use cases extending
base use cases).

. M: Set of methods in the system (as identified by
their signature).

. Lines of code are defined on the set of natural
numbers (N).

2.2.2 Relations

We now introduce mathematical relations on the sets that

are fundamental to the definitions of our measures.

. D and A are relations onto Cð� C� CÞ.D is the set of
descendent classes of a class and A is the set of
ancestors of a class.

. ME is the set of possible messages in the system:

ME � O�M�N�O�M. Indicated by the domain

ofME, a message is described by a source object and

method sending the message, a line of code (N), and

a target object and method. Note that the sending of

a message may not only correspond to a method

invocation, but also to the sending of a signal [5].
The message is then asynchronous and on receipt of

the signal, the target object triggers the execution of

the target method. In Java, an active object (with its

own thread of control) would typically have a

run() method reading from a queue of signal

objects and invoke the appropriate method after

reading the next signal in the queue.
. IV is the set of possible method invocations in the

system: IV � M� C�M� C. An invocation is char-
acterized by the invoking class and method and the
class and method being invoked.

. Other binary relations will be used in the text and
their semantics can be easily derived from their
domain and are denoted RDomain. For example,
RMC � M� C refers to methods being defined in
classes, a binary relation from the set of methods to
the set of classes.

2.2.3 Consistency Rule

The relations IV and ME play a fundamental role in all our

measures. In practice, an analysis of sequence diagrams or a

dynamic analysis of the code allows us to construct ME.

From that information, IV must be derived, but this is not

trivial as polymorphism and dynamic binding tend to

complicate the mapping. The consistency rule below

specifies the dependencies between the two relations and

can be used to develop algorithms that derive IV from ME.

ð9ðo1; c1Þ; ðo2; c2Þ 2 ROCÞð9l 2 NÞðo1;m1; l; o2;m2Þ 2 ME )
ð9c3 2 Aðc1Þ [ fc1g; c4 2 Aðc2Þ [ fc2gÞ
ððm1; c3Þ 2 RMC ^ ðð8c5 2 Aðc1Þ � fc3gÞðm1; c5Þ

2 RMC ) c5 2 Aðc3ÞÞÞ ^
ððm2; c4Þ 2 RMCÞ ^ ðð8c6 2 Aðc2Þ � fc4gÞðm2; c6Þ

2 RMC ) c6 2 Aðc4ÞÞÞ ^
ðm1; c3;m2; c4Þ 2 IV:

2.2.4 Working Example

We now use a small working example, as shown in Fig. 3, to

illustrate the definitions above. Though it is assumed that

our measures are collected through static and dynamic

analysis of code, we use UML to describe a fictitious

example, because it is more legible than pseudocode. This

example is designed to illustrate the subtleties arising from

polymorphism and dynamic binding. Other aspects, such as

method signatures, have been intentionally kept simple to

focus on polymorphism and dynamic binding.
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Fig. 2. Class diagram capturing a data model of the dynamic analysis information.



The following sets can be derived from Fig. 3:

C ¼ fc1; c2; c3; c4; c5g
M ¼ fm1;m2;m3g
RMC ¼ fðm1; c1Þ; ðm2; c2Þ; ðm3; c3Þg:

In order to derive other relevant sets and relations, let us
introduce the sequence diagrams in Fig. 4, where each
message is numbered. As our fictitious example is
represented with UML diagrams, objects are referred to
by using the sequence diagram number where they appear
and their own identification number (i.e., SDi:objectid).
Similarly, we denote the line of code of the method
invocation in message tuples as lðSDi:messageidÞ. In the
example, we assume that the line of code of the method
invocations m3ðÞ in messages SD1:1:1, SD1:1:2, and SD1:1:3
are different. Furthermore, since the sequence diagrams do
not specify the sender object, source class and source
method of the method invocations m1ðÞ in messages SD1:1

and SD2:1, the example sets derived below account for only
the four (completely specified) messages SD1:1:1, SD1:1:2,
SD1:1:3, and SD2:1:1:

O ¼ fSD1 : 1; SD1 : 2; SD1 : 3; SD2 : 1; SD2 : 2g
ROC ¼ fðSD1 : 1; c1Þ; ðSD1 : 2; c4Þ; ðSD1 : 3; c5Þ;

ðSD2 : 1; c1Þ; ðSD2 : 2; c2Þg
ME ¼ fðSD1 : 1;m1; lðSD1 : 1:1Þ; SD1 : 2;m3Þ;

ðSD1 : 1;m1; lðSD1 : 1:2Þ; SD1 : 3;m3Þ;
ðSD1 : 1;m1; lðSD1 : 1:3Þ; SD1 : 3;m3Þ;
ðSD2 : 1;m1; lðSD2 : 1:1Þ; SD2 : 2;m2Þ

IV ¼ fðm1; c1;m3; c3Þ; ðm1; c1;m2; c2Þg:

2.2.5 Definitions of Measures

The measures are all defined as cardinalities of specific sets.

They are therefore defined on an absolute scale and are

amenable, as far as measurement theory is concerned, to the

type of regression analysis performed in Section 4. Those

sets are defined below and are given self-explanatory

names, following the notation summarized in Table 2. First,

as mentioned above, we differentiate the cases where the

entity of measurement is the object or the class. Second, as

in previous static coupling frameworks [10], we differentiate

import from export coupling, that is the direction of coupling

for a class or object. For example, we differentiate whether a

method executed on an object calls (imports) or is called by

(exports) another object’s method. Furthermore, orthogonal

to the entity of measurement and direction of coupling

considered, there are at least three different ways in which

the strength of coupling can be measured. First, we provide

definitions for import and export coupling when the entity

of measurement is the object and the granularity level is the

class. Phrases outside and between parentheses capture the

situations for import and export coupling, respectively.

. Dynamic messages. Within a runtime session, it is
possible to count the total number of distinct messages

sent from (received by) one object to (from) other

objects, within the scope considered. That informa-

tion is then aggregated for all the objects of each

class. Two messages are considered to be the same if
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their source and target classes, the method invoked

in the target class, and the statement from which it is

invoked in the source class are the same. The latter
condition reflects the fact that a different context of

invocation is considered to imply a different

message. In a UML sequence diagram, this would

be represented as distinct messages with identical

method invocations but different guard conditions.
. Distinct method invocations. A simpler alternative is to

count the number of distinct methods invoked by

each method in each object (that invoke methods in

each object). Note that this is different from simply
counting method invocations as we count each

distinct method only once. That information is then

aggregated for all the objects of each class.
. Distinct classes. It is also possible to count only the

number of distinct server (client) classes that a

method in a given object uses (is used by). That

information is then aggregated for all the objects of

each class.

If we now look at where the calling and called methods are

defined and implemented, the entity of measurement is the

class and we can provide similar definitions. We then count

the number of distinct messages originating from (trigger-

ing the executions of) methods in the class, the number of

distinct methods invoked by (that invoke) the class

methods, and the number of distinct classes from which

the class is using methods (that uses its methods).
Table 2 shows the formal set definitions of the measures

when the granularity is the class, and the scope is the

system. We provide an intuitive textual explanation only for

the first set: IC OMðcÞ. Other sets can be interpreted in a

similar manner.
IC OMðcÞ: A set containing all tuples (source method,

source class, target method, target class) such that there exists

an object o instantiating c (whose coupling is being

measured) that sends a message to at least one instance of

the target class in order to trigger the execution of the target

method. The corresponding metric is simply the cardinality

of this set. Note that the source class must be different from

the target class (c1 6¼ c2), because we are focusing on

dependencies that contribute to coupling between classes,

not their cohesion (as further discussed in [9], [10]).

Reflexive method invocations are therefore excluded.
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Summary of Dynamic Coupling Measures



2.2.6 Higher Granularities

If we want to measure dynamic coupling at higher levels of
granularity, this can be easily defined by performing the
union of the coupling sets of a set of classes or objects,
depending on the entity of measurement. For example, if
the entity of measurement is the class and the level of
granularity is the subsystem, then for each subsystem SS
there corresponds a subset of classes that it contains,
SC 2 2C, and we can define:

IC CMðSSÞ ¼ [ðall c 2 SCÞIC CMðcÞ:

Similarly, when the entity of measurement is the object:
For each use case UC there corresponds a set of participat-
ing objects SO 2 2O (that are involved in the UC’s sequence
diagram(s)), and we can define:

IC CMðUCÞ ¼ [ðall o 2 SOÞIC CMðoÞ:

Similar definitions can be provided for all levels of
granularity.

2.2.7 Example

Returning to our working example in Figs. 3 and 4, we
provide below all the nonempty coupling sets. When the
entity of measurement as well as the granularity is the class,

we obtain the import and export coupling sets illustrated in

Table 3. When the entity of measurement is the object, and

the granularity is the class, we obtain the coupling sets in

Table 4. The export coupling sets for c1 as well as the

import coupling sets for c2, c3, c4, and c5 are empty.
To gain a better insight into the impact of polymorphism

on coupling, let us change the class diagram in Fig. 3 by

adding a new implementation of method m3() in c5:

RMC ¼ fðm1; c1Þ; ðm3; c3Þ; ðm3; c5Þ; ðm2; c2Þg, while keeping

the sequence diagrams in Fig. 4 unchanged. This results in a

new element in IV :

IV ¼ fðm1; c1;m3; c3Þ; ðm1; c1;m3; c5Þ; ðm1; c1;m2; c2Þg:

The other sets (C, M, O, ROC, and ME) remain unchanged.

When the entity of measurement is the class, the new

method implementation results in significantly changed

import coupling sets for class c1 (see Table 5, where

removed elements are struck through, whereas new

elements are bolded). Adding a new implementation of an

existing method in a subclass has resulted in increased

import coupling for class c1. This is because class c1 now

imports from one additional class (c5), one additional

method (m3() in c5), and one additional distinct method

invocation. However, object import coupling ðIC OxðcÞÞ
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TABLE 4
Example Coupling Sets When the Entity of Measurement is the Object

TABLE 5
Changed Import Coupling Sets after Adding a New Implementation of m3() in c5



remains unchanged, as at the object level, instances of c1

were already importing from c5.
In a similar way, the export coupling of class c3 has

decreased and the export coupling of class c5 has increased

(see Table 6).

2.3 Analysis of Properties

We show here that the five coupling properties presented in

[10] are valid for our dynamic coupling measures. The

motivation is to perform an initial theoretical validation by

demonstrating that our measures have intuitive properties

that can be justified. We use IC OM and IC CM at the

lowest granularity level (object, class) and system level as

examples, but the demonstrations2 below can be performed

in a similar way for all coupling measures, at all levels of

granularity.
Nonnegativity. It is not possible for the dynamic

coupling measures to be negative because they measure

the cardinality of sets, e.g., IC OM returns a set of tuples

ðm; c;m0; c0Þ 2 M� C�M� C.
Null values. At the system level, if S is the set that

includes all the objects that participate in all the use cases of

the system, IC OMðSÞ is empty (and coupling equal to 0) if

and only if the set of messages in S is empty:

ME ¼ ; , IC OMðSÞ ¼ ;:

This is consistent with our intuition as this should be the

only case where we get a null coupling value. Since ME ¼
; , IV ¼ ; (consistency rule), we also have:

ME ¼ ; , IC CMðSÞ ¼ ;:

At the object level, for IC OMðoÞ, we have:

ð8 o 2 O;m 2 M; l 2 N; o0 2 O;m0 2 MÞ
ðo;m; l; o0;m0Þ 62 ME , IC OMðoÞ ¼ ;:

Again, this is intuitive, as we should only obtain a null

value if and only if object o does not participate in any

message as sender or receiver. Similarly, at the class level,

we obtain:

ð8o 2 O; c 2 C; ðo; cÞ 2 RocÞIC OMðoÞ ¼ ;
, IC CMðcÞ ¼ ; ðconsistency ruleÞ:

Monotonicity. If a class c is modified such that at least
one instance o sends/receives more messages, its import/
export coupling can only increase or stay the same, for any
of the coupling measures defined above.

If object o 2 O sends an additional message ðo;m; l; o0;m0Þ
2ME, this cannot reduce the number of pairs ðmethod; classÞ
2 RMC that are part of the sets IC OMðoÞ or IC OMðSÞ. The
same can be said for export coupling if object o 2 O receives
an additional message.

Adding a message to ME may or may not lead to a new
method invocation in IV . But, even if this is the case, the
sets IC CMðcÞ and IC CMðSÞ cannot possibly lose any
elements.

Similar arguments can be provided for all coupling
measures, at all levels of granularity. To conclude, by adding
messages and method invocations in a system, object and
class coupling measures cannot decrease, respectively, thus
complying with the monotonicity property.

Impact of merging classes. Assuming c0 is the result of
merging c1 and c2, thus transforming system S into S0, for
any Coupling measure, we want the following properties to
hold at the class and system levels:

Couplingðc1Þ þ Couplingðc2Þ � Couplingðc0Þ
CouplingðSÞ � CouplingðS0Þ:

Taking IC CD as an example, we can easily show this
property holds: All instances of c1 and c2 in IV ’s tuples are
substituted with c0. If there exist tuples of the type
ðm1; c1;m2; c2Þ in IV , then they are transformed into tuples
of the form ðm1; c

0;m2; c
0Þ. For IC Cx measures, since we

exclude reflexive method invocations because they do not
contribute to coupling (Section 2.2), then tuples of the form
ðm1; c

0;m2; c
0Þ disappear because of the merging. Hence:

jIC CDðc0Þj � jIC CDðc1Þj þ jIC CDðc2Þj:

Similar arguments can be made for all other coupling
measures.

Merging uncoupled classes. Following reasoning simi-
lar to that above, if two classes c1 and c2 do not have any
coupling, this means there is no tuple of the type
ðm1; c1;m2; c2Þ in IV . If we merge them into one class, we
therefore cannot obtain tuples of the type ðm1; c

0;m2; c
0Þ.
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TABLE 6
Changed Export Coupling Sets after Adding a New Implementation of m3() in c5

2. These demonstrations are admittedly rather informal. We adopted a
level of formality that we deemed sufficient to convince the reader these
properties did indeed hold, without making the discussion unnecessarily
terse.



Then, we can conclude IC CD fulfills the following
property:

jIC CDðc0Þj ¼ jIC CDðc1Þj þ jIC CDðc2Þj:

This property also holds for all other coupling measures.
Symmetry between export and import coupling. By

symmetry, for all class level dynamic coupling measures,
we infer that the following property holds:

[ðall c 2 CÞ EC CxðcÞ ¼ [ðall c 2 CÞIC CxðcÞ:

This stems from the fact that for any ðm; c;m0; c0Þ 2 IV,
there is always a l 2 N such that ðm; c; l;m0; c0Þ 2 EC CDðc0Þ
and ðm; c; l;m0; c0Þ 2 IC CDðcÞ. Along the same lines, for
each ðm; c;m0; c0Þ 2 IC CMðcÞ and ðm; c; c0Þ 2 IC CCðcÞ,
there is a corresponding ðm; c;m0; c0Þ 2 EC CMðc0Þ and
ðm; c; c0Þ 2 EC CCðc0Þ, respectively.

Following a similar argument when the entity of
measurement is the object, we obtain:

[ðall o 2 OÞ EC OxðoÞ ¼ [ðall o 2 OÞIC OxðoÞ:

The symmetry property is intuitive because anything
imported by a class or object has to be exported by another
class or object, respectively. This condition applies at all
levels of granularity.

Based on the property analysis above, we can see that
our coupling measures seem to exhibit intuitive properties
that would be expected when measuring coupling. This
constitutes a theoretical validation of the measures. Section 4
focuses on their empirical validation, using project data.

3 COLLECTING DYNAMIC COUPLING DATA

It is crucial to collect dynamic coupling data in a practical
and efficient manner. This section describes two alternative
approaches. The first is based on collecting the coupling
data from executing programs, whereas the second calcu-
lates the measures based on dynamic UML models.

3.1 Tool for Collecting Dynamic Coupling Measures
at Runtime

To collect dynamic coupling data from Java applications,
we developed a tool: JDissect. An overview of the
architecture is depicted in Fig. 5. The tool separates the
collection and analysis of dynamic coupling data into two
phases. In the first phase, data from a running Java program
is gathered and stored. This is accomplished by having the
Java Virtual Machine (JVM) load a library of data collection
routines (libjdissect.so) that are called whenever
specified internal events occur. The interfaces used for

communication between the JVM and the library are called

JVMPI (Java VM Profiling Interface) and JVMDI (Java VM
Debugging Interface). Most of the data is collected from the

profiling interface. The JVMDI is used to obtain the unique

line number from which a method call originates (to obtain

the information needed to calculate the xx xD measures).

During the data collection phase, a user may interactively
tag messages belonging to specific scenarios or use cases

through a separate utility (Scalpel) that communicates

with libjdissect.so through a socket connection. These

tags can subsequently be used to limit the scope of

measurement (e.g., to specific use cases) and, potentially,
to compute measures at higher levels of granularity than the

class (e.g., at the use case aggregation level). During the

data collection process, the library populates a data

structure as specified in Fig. 2. When the application

terminates, the data is stored in a flat file structure (Data).
In the second phase, the data is analyzed. Another

executable (MCalc), sharing a great deal of code with the

library, reads the flat files into a data structure identical to

that used by the library. This structure is analyzed to obtain

the dynamic coupling measures. The analysis tool traverses

the data structure in Fig. 2 and computes the sets specified
in Table 2. A configuration file (Filter.conf) can be used

to limit the scope of measurement, e.g., excluding library or

framework classes. Each measure is then computed simply

by counting the number of elements in each set. Data from

several runtime sessions can be merged by the analysis tool,
such that accumulated dynamic coupling data can be

computed. This merging capability enables the collection

of coupling data for Java systems for which several

concurrent instances of the JVM are used, such as large,

distributed, or component-based systems.
Our coupling tool utilizes interfaces provided by the Java

Virtual Machine to collect the message traces and other
information specified in Fig. 2. Another possible approach

could have been to instrument the system. Instrumentation

can be done either at the source code or byte code level using

tools such as the Java Compiler Compiler (JavaCC) [22] or

the Byte Code Engineering Library (BCEL) [21], respec-
tively. However, utilizing the existing interfaces to the Java

VM provides several benefits over instrumentation. Instru-

menting the code means that we are testing the instrumen-

ted version and not the actual version, which may lead to

different outputs and system states. Since instrumentation
causes a significant effort overhead, if the system is

evolving rapidly, the project manager will also be reluctant

to keep instrumenting the new versions.
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Furthermore, source code instrumentation requires
access to the Java application source code. This might be a
disadvantage in cases where an application uses libraries
for which the source code is not available. Finally,
instrumentation might cause a significant performance
overhead. In contrast to our approach, both source code
and byte code instrumentation require that parts of the data
collection software be written in Java. Subsequently, the
byte code of the data collection software is interpreted by
the Java VM. Since our data collection tool is written in C++
and dynamically linked with the JVM at runtime, there is
probably less performance overhead associated with our
approach than with data collection tools employing
instrumentation. As performance overhead increases, the
behavior of concurrent software is more likely to be affected
by the data collection process and it is important to
minimize the chances of such a problem occurring.

3.2 Using UML Models for Data Collection

So far, we have assumed that dynamic coupling data are
collected through dynamic analysis of the code. It was also
suggested that it might be possible to collect the dynamic
coupling data through analysis of dynamic UML models,
e.g., interaction diagrams. Measuring coupling on early
design artifacts would be of practical importance because
one could use that information for early decision making.
For example, assuming that the necessary UML diagrams
are available for a given design, one could derive test cases
[8] and compute the dynamic coupling associated with each
of the test cases (use case scenarios) based on the UML
diagrams. For example, test cases with high coupling could
be exercised first, as they would be expected to uncover
more faults and, therefore, the test plan would provide an
order in which to run test cases based on dynamic coupling
information.

When measuring dynamic coupling based on UML
models, the main problem lies with interaction diagrams.
If we resort to UML diagrams for dynamic coupling
measurement, we have to find a substitute for the line of
code where the invocation is located to distinguish
messages (in ME) and compute xx xD measures. A natural
substitute is the guard or path condition (which must be
true for a message to be sent), which corresponds to
different contexts of invocations. An identical method on
two messages with two distinct guard conditions must
correspond to different invocation statements in the code.
However, one guard condition on a message does not have
to correspond to one invocation statement in the code. For
example, one may have a guard of the form [A or B] that
triggers the invocation of m(), and the corresponding code
may show two distinct invocations statements for m(), each
of them being in the body of an if statement with conditions
A and B, respectively.

What this implies is that if xx xD measures are collected
from UML interaction diagrams, coupling will tend to be
underestimated, because distinct elements of ME will not
be distinguishable using UML interaction diagrams. How-
ever, the question is whether, in practice, this makes any
significant difference. The advantages of using dynamic
coupling measures on early UML artifacts may outweigh
the drawbacks that are due to their lower precision.

Furthermore, xx xC and xx xM measures are not affected
by the use of UML interaction diagrams. If empirical
investigation finds these latter measures to be strongly
correlated with xx xD, it is doubtful the data collection
inaccuracy discussed above will have any practical effect.

4 CASE STUDY

This section presents the results of a case study whose
objectives are to provide a first empirical validation of the
dynamic coupling measures presented above. The first
subsection explains in more detail our objectives, the study
settings, and the methodology we follow. In subsequent
sections quantitative results are presented and interpreted.

4.1 Objectives and Methodology

We selected an open-source software system called
Velocity to evaluate the dynamic coupling measures.
Velocity is part of the Apache Jakarta Project [21]. Velocity
can be used to generate web pages, SQL, PostScript, and
other outputs from template documents. It can be used
either as a standalone utility or as an integrated component
of other systems. A total of 17 consecutive versions
(versions 1.0b1 to version 1.3.1) of Velocity were available
for analysis. The versions were released within a time span
of approximately two years. The versions used in the actual
analysis were four subsequent subreleases (called “release
candidates” in Velocity) within one major release of the
Velocity system (version 1.2). The first subrelease, 1.2rc1,
consists of 17,210 source lines of code (SLOC) in 136 core
application classes (after removing “dead” code and classes
related to test cases, as described further in Section 4.2) in
addition to 408 library classes. There were 65 inheritance
relationships and 149 instances of method overriding in the
first release candidate, thus showing substantial use of
polymorphism and dynamic binding. Further descriptive
statistics of the classes are provided in [4].

Several types of data were collected from the system.
First, change data (i.e., using a class-level source code diff)
was collected for each application class. Based on the
change data, the amount of change (in SLOC added and
deleted) of each class within a given set of consecutive
versions was computed. Second, to collect the dynamic
coupling measures, test cases provided with the Velocity
source code were used to exercise each version of the
system. Each test case was executed while the JDissect
dynamic coupling tracer tool (Section 3.1) computed the
dynamic coupling measures. Third, size and a comprehen-
sive set of static coupling measures (a complete list is
provided in [4]) were collected using a static code analysis
tool. The scope of measurement was the application classes
(AC) of Velocity. Thus, coupling to/from library and
framework classes were not included (for further details,
see Section 2.1).

A first objective of the case study was to determine
whether the dynamic coupling measures capture additional
dimensions of coupling when compared with static
coupling measures. A subsequent, more ambitious objective
was to investigate whether dynamic coupling measures are
significant indicators of a useful, external quality attribute
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and are complementary to existing static measures in
explaining its variance.

Following the methodology described in [7], we first
analyzed the descriptive statistics of the dynamic coupling
measures. The motivation was to determine whether they
show enough variance and whether some of the properties
we expected were visible in the data. The next step was to
perform a principal component analysis (PCA), the goal of
which was to identify what structural dimensions are
captured by the dynamic coupling measures and whether
these dimensions are at least partly distinct from static
coupling measures. It is usual for software product
measures to show strong correlations and for apparently
different measures to capture similar structural properties.
PCA also helps to interpret what measures actually capture
and determine whether all measures are necessary for the
purpose at hand. In our case, recall that we want to
determine whether all xx xC, xx xM, and xx xD measures
are necessary, that is, to what extent they are redundant.
Due to size constraints, results from the above analyses are
only summarized in this paper and fully reported in [4].

In order to investigate their usefulness as quality
indicators, we investigate whether dynamic coupling
measures are statistically related to change proneness, that
is, the extent of change across the versions of the system we
used as a case study. To do so, we analyzed the changes
(lines of code added and deleted) across the four sub-
releases of Velocity 1.2. Our goal was to ensure we would
only consider correction changes as requirements changes
are not driven by design characteristics but mainly by
external factors. Subreleases in a major release include only
correction changes3 and we were therefore able to factor out
requirements changes and obtain more accurate analysis
results regarding the impact of coupling on change
proneness.

The dependent variable (Change) in this study is the total
amount of change (source lines of code added and deleted)
that has affected each of the 136 application classes
participating in the test case executions across the four
subreleases of Velocity 1.2. Since none of these classes were
added or deleted during the making of the successive
releases, the variable Change is a measure of the change
proneness of these classes. In this case study context, this
can be more precisely defined as their tendency to undergo
correction changes. Other possible dependent variables
could have been selected, such as the number of changes,
but we wanted our dependent variable to somehow reflect
the extent of changes as well as their frequency.

The above analysis assumes that there is a cause-effect
relationship between coupling and change proneness,
something which is intuitive because classes that strongly
depend on or provide services to other classes are more
likely to change, through ripple effects, as a result of
changes in the system [11]. Predicting the change proneness
of a class (i.e., its volatility) can be used to aid design
refactoring (e.g., removing “hot-spots”), choosing among
design alternatives or assessing changeability decay [1].

One important issue is that not only do we want our
measures to relate to change proneness in a statistically
significant way, but we want the effect to be additional or
complementary to that of static coupling measures and class
size [7], [19]. If some of the dynamic coupling measures
remain statistically significant covariates when the static
coupling measures and size measures are included as
candidate covariates, this subset of dynamic coupling
measures is deemed to significantly contribute to change
proneness. We consider this to be empirical evidence of the
causal effect between dynamic coupling and change
proneness, of their practical usefulness and, hence, we
consider it to provide an initial empirical validation of the
dynamic coupling measures. More details are provided in
Section 4.4.

4.2 Code Coverage

One practical drawback of using dynamic analysis is that
one has to ensure that the code is sufficiently exercised to
reflect in a complete manner the interactions that can take
place between objects. To obtain accurate dynamic coupling
data, the complete set of test cases provided with Velocity
were used to exercise the system. Though this test suite was
supposed to be complete, as it is used for regression test
purposes, we used a code coverage tool and discovered that
only about 70 percent of the methods were covered by the
test cases. A closer inspection of the code revealed that a
primary reason for this apparent low coverage was that
34 classes contained “dead” code. In addition, there were
many occurrences of alternative constructors and error
checking code that were never called. Fortunately, such
code does not contribute to coupling. After removing the
dead code and filtering out alternative constructors and
error checking code, the test cases covered approximately
90 percent of the methods that might contribute to coupling
among the application classes in Velocity. Consequently,
the code coverage seems to be sufficient to obtain fairly
accurate dynamic coupling measures for the 136 “live”
application classes of Velocity 1.2.

4.3 Preliminary Analysis Summary

This subsection summarizes the main results from a
number of standard, preliminary data analyses that are
reported in [4].

4.3.1 Variability

We first computed descriptive statistics for coupling and
class size measures based on the first sub-release of the
studied release (1.2) of Velocity. One notable result is that
the mean values for dynamic import coupling measures
(e.g., IC OC) are always equal to the mean values of their
corresponding dynamic export coupling measure (e.g.,
EC OC). This confirms the symmetry property discussed
in Section 2.3. For most measures, there are large
differences between the lower 25th percentile, the median,
and the 75th percentile, thus showing strong variations in
import and export coupling across classes. Many of the
measures show a large standard deviation and mean
values that are larger than the median values, with a
distribution skewed towards larger values. Two of the
static coupling measures show (almost) no variation and
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are not considered in the remainder of the analysis [4].

These measures are related to direct access of public

attributes by methods in other classes, which is considered

poor practice.

4.3.2 Principal Component Analysis (PCA)

PCA [18] was then used to analyze the covariance structure

of the measures and determine the underlying dimensions

they capture. Detailed results, provided in [4], show that

coupling is divided along four dimensions: IC Ox, IC Cx,

EC Ox, and EC Cx. Thus, all xx xC, xx xM, and xx xD

measures belong to identical components when they have

identical scope, granularity and entity of measurement,

therefore capturing similar properties. This implies that it

may be unnecessary to collect all of these measures and, in

particular, the xx xD measures that cannot be collected on

UML diagrams and which require expensive dynamic code

analysis [4] may not be needed. It is interesting to note that

this confirms the PCA results4 in an earlier case study on a

Smalltalk system [2].
Overall, the PCA analysis indicates that our dynamic

coupling measures (especially when the entity of measure-

ment is the object) are not redundant with existing static

coupling and size measures.

4.3.3 Dynamic Coupling as an Explanatory Variable of

Change Proneness

The next step was to analyze the extent to which each of the

dynamic coupling measures are related to our dependent

variable, change proneness (see Section 4.1). However, since

the size (SLOC) of a class is an obvious explanatory variable

of Change (SLOC added+deleted), it may be more insightful

to determine whether a coupling measure is related to

change proneness independently of class size. We therefore

tested whether the dynamic coupling measures are sig-

nificant additional explanatory variables, over and above

what has already been accounted for by size. To achieve

this, we systematically performed a multiple linear regres-

sion involving class size (SLOC) and each of the dynamic

coupling measures and then determined whether the

regression coefficient for the coupling measure was

statistically significant. Details are reported in [4] and can

be summarized as follows: There is strong support for the

hypotheses that all dynamic export coupling measures are

clearly related to change proneness, in addition to what can

be explained by size. On the other hand, dynamic import

coupling measures do not seem to explain additional

variation in change proneness, compared to size alone.

Once again, this confirms the results obtained in an earlier

case study on a Smalltalk system [2]. The following section

evaluates the extent to which the dynamic coupling

measures are useful predictors when building the best

possible models by using size, static coupling, and dynamic

coupling measures as possible model covariates.

4.4 Prediction Model of Change Proneness

4.4.1 Model Variables

Throughout this section, the dependent variable is change
proneness (see Section 4.1). The independent variables
include the size and static coupling measures and our
proposed 12 dynamic coupling measures. A complete list of
candidate measures is available in [4], and the subset of
measures selected in our prediction models are defined in
Table 9. Ordinary Least-Squares regression (including
outlier analysis) was used to analyze and model the
relationship between the independent and dependent
variables; that is, between the size/coupling measures of
the first subrelease and the amount of changes in the
subsequent subreleases. In order to select covariates in our
regression model, we use a mixed selection heuristic [20] so
as to allow variables to enter, but also to leave, the model
when below/above a significance threshold. Though other
procedures have been tried (e.g., backward procedure
based on variables with highest loadings in principal
components), the one we report here yielded models with
significantly higher fit.

4.4.2 Rationale for Model Building

Recall that the objective of this regression analysis is to
determine whether dynamic coupling measures help to
explain additional variation in change proneness, compared
to class size (CS) and static coupling alone (see Section 4.1).
In other words, we want to determine whether these
measures help to obtain a better model fit and, therefore, an
improved predictive model. To achieve this objective we
proceeded in two steps. First, we analyzed the relationship
between Change and CS + Static coupling measures in order to
generate a multivariate regression model that would serve
as a baseline of comparison. We then continued by
performing multivariate regression, using as candidate
covariates all size, static coupling, and dynamic coupling
measures. If the goodness of fit of the latter model turns out
to be significantly better than the former model we would
then be able to conclude that dynamic coupling measures
are useful, additional explanatory variables of change
proneness.

4.4.3 Discussion of Modeling Results

The first multivariate model we obtained when using size
and static coupling measures as candidate covariates is
presented in Table 7. After removing one outlier that is
clearly overinfluential on the regression results (with an
extremely large Change value), we obtained a model with
three size measures and nine static coupling measures for
covariates5 (for 135 observations). Around 79 percent of the
variance in the data set is explained by size and static
coupling measures and we obtained an adjusted R2 of 0.77
(i.e., adjusted for the number of covariates [20]). We do not
attempt to discuss the regression coefficients, because such
models are inherently difficult to interpret since it is
common to see some degree of correlation and interaction
between covariates [7]. Smaller, less accurate models (e.g.,
where covariates are selected based on principal compo-
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nents) would have been easier to interpret but recall that
our goal was to demonstrate the usefulness of dynamic
coupling measures as predictors of change proneness.
Furthermore, analysis results provided in [4] show that,
when significant, the relationships are in the expected
direction for our dynamic coupling measures.

When including, in the set of candidate covariates, the
dynamic coupling measures, we obtain a very different
model (Table 8). Four dynamic coupling measures (high-
lighted in italics), as well as nine static coupling measures
and four size measures, were included as covariates in the
model (we retained, as for the other model, all covariates
with p-values below 0.1). The model explains 87 percent of
the variance in the data set and shows an adjusted R2 of
0.85. Therefore, even when accounting for the difference in
number of covariates, the coefficient of determination (R2)
increased by 8 percent or 35 percent of the unexplained
variance (from 0.77 to 0.85) when using dynamic coupling
measures as candidate covariates. This is an indication that
some of the dynamic coupling measures are complemen-
tary indicators to static coupling and size measures as far as
change proneness is concerned.

It is also interesting to note that three out of the four
dynamic coupling measures capture export coupling. One
import coupling measure is nevertheless selected, but is
clearly less significant. One explanation is that, from the
detailed PCA results reported in [4], we can see that class-
level dynamic coupling measure tend to be more correlated
to size and static coupling and, similarly, dynamic export
coupling measures tend to be less correlated to size
measures than their import counterpart. A likely reason is
that it is easy to imagine small classes providing services to
many other methods and, therefore, having a large export
coupling. Large import coupling classes though, are more
likely to be large because they use many features from other
classes.

Results in our earlier study on a Smalltalk system [2] also
showed that dynamic export coupling is a stronger indicator
of change proneness. Though the context, programming
language, and application domain were different, the result

obtained in the two studies are consistent, thus suggesting
our results can be generalized to a large proportion of
systems.

5 RELATED WORK

A large body of work exists on the static measurement of
cohesion and coupling, both for procedural [25] and object-
oriented systems [15], [24]. In particular, a number of
people have used static coupling measurement to assess the
maintainability of object-oriented systems [23], [27].

In a number of occasions, those measures have shown to

be useful predictors of certain quality attributes such as

fault-proneness or change (see survey of empirical results in

[7]). For further details on the measures themselves, we

refer the reader to surveys that have been published in [8]

and [9] where most existing measures and their properties

are discussed in detail.

The general idea of using dynamic analysis of programs

to assess software quality is not new. For example, Sneed

and Merey [26] have shown how it could be used to check

assertions and monitor the behavior of modules in

procedural software. More specifically, dynamic object-

oriented coupling measures were first proposed in [29]. The

authors proposed two object-level dynamic coupling

measures, Export Object Coupling (EOC) and Import Object

Coupling (IOC), based on executable Real-Time Object

Oriented Modeling (ROOM) design models. The design

model used to collect the coupling measures is a special

kind of sequence diagram that allows execution simulation.
IOC and EOC count the number of messages sent

between two distinct objects oi and oj in a given ROOM
sequence diagram x, divided by the total number of
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Regression Model Using Size and Static Coupling

as Candidate Covariates
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messages in x. Thus, the result is a percentage that

reflects the “intensity” of the interaction of two objects

related to the total amount of object interaction in x. For

example, in a simple scenario x1 where o1 sends two

messages (m1 and m2) to o2 and o2 sends one message

(m3) to o1, then IOCx1ðo1; o2Þ ¼ 100�2=3 ¼ 66 percent and

IOCx1ðo2; o1Þ ¼ 100�1=3 ¼ 33 percent. Based on these basic

measures, the authors also derive measures at the system

level using the probability of executing each sequence

diagram as a weighting factor. In a different paper, a

methodology for architecture-level risk assessment based

on the dynamic measures is proposed [30].
There are several important differences between the

measures presented in [29] and the coupling measures

described in this paper:

. The dynamic coupling measures in [29] do not
adhere to the coupling properties described in the
axiomatic framework described in [10]. This is not
necessarily a problem in the application context of
that particular piece of work, but it would very likely
be a problem in many other situations (see [10] for a
detailed discussion).

. The measures described in this paper differentiate
between many different dimensions of coupling, in
addition to import and export coupling. Most
importantly, we account for inheritance and poly-
morphism by distinguishing between dynamic class-
level and object-level measures. In our opinion, the
ability to measure coupling precisely for systems
with inheritance and dynamic binding represents
one of the primary advantages of dynamic coupling
over static coupling. This is supported by the results
presented in the previous section.

. Our measures are collected from analyzing message
traces from system executions (Section 3.1) or from
UML diagrams (Section 3.2). The dynamic coupling
measures in [29] are collected from ROOM models.

Another important addition over [29] is that we perform an
empirical validation of our dynamic coupling measures by
showing they are complementary to simple size measures
and static coupling measures. Furthermore, the relationship
of all these measures to an external quality indicator
(change proneness) is investigated.

The measures proposed and validated in this paper are
based on an initial study described in [2]. Initially, the
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Definition of Size and Static Coupling Measures

A complete list of measures and appropriate references are provided in [4].



dynamic coupling measures were described informally, and
an initial validation was performed on a SmallTalk system.
In this paper, this research has been extended in several
important ways. The dynamic coupling measures have been
defined formally and precisely in an operational form. As
part of this process, we discovered that some of the
measures proposed in [2] did not fully adhere to the
coupling properties described in [10]. The measures
proposed in this paper are shown to be theoretically valid,
at least based on a widely referenced axiomatic framework.
The empirical validation in this paper is also considerably
more comprehensive than in [2]. Furthermore, the dynamic
coupling measures are compared with size and static
coupling measures. Such a comparison was not possible
for the SmallTalk system investigated in [2] because static
measures could not be collected. This paper clearly
confirms the initial empirical evaluation described in [2];
both in terms of Principal Component Analysis and
evaluation of the dynamic coupling measures as predictors
of change proneness. Thus, the two studies provide a strong
body of evidence that the proposed dynamic coupling
measures (especially export coupling) are useful indicators
of change proneness and capture different properties than
do static coupling measures. Results were found to be very
similar (despite some differences in measurement) across
two separate application domains (commercial CASE tool
and open-source web software, respectively) and program-
ming languages (SmallTalk and Java, respectively).

6 CONCLUSIONS

The contribution of this paper can be summarized as

follows. First, we provide formal, operational definitions of

dynamic coupling measures for object-oriented systems.

The motivation for those measures is to complement

existing measures that are based on static analysis by

actually measuring coupling at runtime in the hope of

obtaining better decision and prediction models because we

account precisely for inheritance, polymorphism and

dynamic binding. Second, we describe a tool whose

objective is to show how to collect such measures for Java

systems effectively and, finally, yet importantly, we per-

form a thorough empirical investigation using open source

software. The objective was three-fold: 1) Demonstrate that

dynamic coupling measures are not redundant with static

coupling measures, 2) Show that dynamic coupling mea-

sures capture different properties than simple size effects,

and 3) Investigate whether dynamic coupling measures are

useful predictors of change proneness. Admittedly, many

other applications of dynamic coupling measures can be

envisaged. However, investigating change proneness was

used here to gather initial but tangible evidence of the

practical interest of such measures.
Our results show that dynamic coupling measures

indeed capture different properties than static coupling
measures, though some degree of correlation is visible, as
expected. Dynamic export coupling measures were shown
to be significantly related to change proneness, in addition
to that which can be explained by size effects alone. Last,
some of the dynamic coupling measures, especially the

export coupling measures (EC_OC, EC_OM, EC_OD),
appear to be significant (p-value = 0.0001), complementary
indicators of change proneness when combined with both
size and static coupling measures. The model including
dynamic coupling measures yields a R2 of 0.85, suggesting
that a large percentage of variance in code change can be
explained by the model. Some of these results confirm those
obtained on an earlier study [2] of a SmallTalk system.
Though no comparison with static coupling and size
measures could be performed in this earlier study, those
combined results constitute evidence that dynamic export
coupling measures are significant indicators of change
proneness.

The results above should be qualified in a number of
ways. With respect to external validity, the system we used
as a case study may use much more polymorphism and
dynamic binding than most systems, thus making dynamic
coupling of particular importance. In terms of internal
validity, it is clear coupling is only one of the factors
affecting change proneness. This is particularly true for
requirements changes and recall that our study only
considered correction changes. To build complete change
proneness models, many other factors would have to be
considered. But, this is out of the scope of this paper as the
purpose of analyzing change proneness was only to provide
an empirical validation of our dynamic coupling measures.
Another practical limitation is that using dynamic coupling
requires extensive test suites to exercise the system. Such
test suites may not be readily available.

Future work will include investigating other applications
of dynamic coupling measures (e.g., test case prioritization),
and the cost-benefit analysis of using change proneness
models such as the ones presented in the current work.
These models may be used for various purposes, such as
focusing supporting documentation on those parts of a
system that are more likely to undergo change, or making
use of design patterns to better anticipate change. Note that
such applications may also be relevant in procedural
software making use of dynamic binding.

Furthermore, a number of other applications of dynamic
coupling measurement should be investigated. A side effect
of the work presented in this paper is that the JDissect tool
can be used to discover dead code, assuming that test data
representative of the operational profile of the system is
available. Similarly, the tool can be used to determine
exactly which objects, classes, and methods are involved in
a given functional component (e.g., a use case) of a system.
Such functionality could be useful for maintainers to
achieve an initial understanding of (complex parts of) a
system.
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