
Evaluating the Effect of a Delegated versus
Centralized Control Style on the Maintainability

of Object-Oriented Software
Erik Arisholm, Member, IEEE, and Dag I.K. Sjøberg, Member, IEEE

Abstract—A fundamental question in object-oriented design is how to design maintainable software. According to expert opinion, a

delegated control style, typically a result of responsibility-driven design, represents object-oriented design at its best, whereas a

centralized control style is reminiscent of a procedural solution, or a “bad” object-oriented design. This paper presents a controlled

experiment that investigates these claims empirically. A total of 99 junior, intermediate, and senior professional consultants from

several international consultancy companies were hired for one day to participate in the experiment. To compare differences between

(categories of) professionals and students, 59 students also participated. The subjects used professional Java tools to perform several

change tasks on two alternative Java designs that had a centralized and delegated control style, respectively. The results show that the

most skilled developers, in particular, the senior consultants, require less time to maintain software with a delegated control style than

with a centralized control style. However, more novice developers, in particular, the undergraduate students and junior consultants,

have serious problems understanding a delegated control style, and perform far better with a centralized control style. Thus, the

maintainability of object-oriented software depends, to a large extent, on the skill of the developers who are going to maintain it. These

results may have serious implications for object-oriented development in an industrial context: Having senior consultants design

object-oriented systems may eventually pose difficulties unless they make an effort to keep the designs simple, as the cognitive

complexity of “expert” designs might be unmanageable for less skilled maintainers.

Index Terms—Design principles, responsibility delegation, control styles, object-oriented design, object-oriented programming,

software maintainability, controlled experiment.

�

1 INTRODUCTION

A fundamental problem in software engineering is to
construct software that is easy to change. Supporting

change is one of the claimed benefits of object-oriented
software development.

The principal mechanism used to design object-oriented
software is the class, which enables the encapsulation of
attributes and methods into logically cohesive abstractions
of the world. Assigning responsibilities and collaborations
among classes can be performed in many ways. In a
delegated control style, a well-defined set of responsibilities
are distributed among a number of classes [31]. The classes
play specific roles and occupy well-known positions in the
application architecture [32], [33]. Alternatively, in a
centralized control style, a few large “control classes”
coordinate a set of simple classes [31]. According to
object-oriented design experts, a delegated control style is
easier to understand and change than is a centralized
control style [4], [15], [31], [32], [33].

One of the major goals of a responsibility-driven design
method is to support the development of a delegated
control style [31], [32], [33]; that is, the design of a delegated
control style is one of its prescribed principles. The

empirical study in [25] confirms that a responsibility-driven

design process may result in a delegated control style. That

study also suggests that a data-driven design approach

(adapted from structured design to the object-oriented

paradigm) results in a centralized control style because one

controller class is assigned the responsibility of implement-

ing the business logic of the application, using data from

simple “data objects.”
In a use-case driven design method, as advocated in

most recent UML textbooks, one of the commonly pre-

scribed principles is to assign one (central) control class to

coordinate the sequence of events described by each use-

case [17], [18]. However, a question not explicitly discussed

in the UML textbooks is how much responsibility the control

class should have in the design of maintainable software. At

one extreme, the control class might only be responsible for

initiating the use-case and communicating with boundary

(interface) classes, while the real work is delegated to entity

(business) classes, which in turn collaborate to implement

the business logic and flow of events of the use-case. In this

case, use-case driven design would resemble responsibility-

driven design, with a delegated control style. At the other

extreme, the control class might implement the actual

business logic and flow of events of a use-case, in which

case the entity classes function only as simple data

structures with “get” and “set” methods. In this case, use-

case driven design would resemble data-driven design,

with a centralized control style.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 521

. The authors are with the Simula Research Laboratory, PO Box 134, N-1325
Lysaker, Norway. E-mail: {erika, dagsj}@simula.no.

Manuscript received 10 Sept. 2003; revised 20 Feb. 2004; accepted 3 May
2004.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0140-0903.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

To compare the maintainability of the two control styles,
the authors of this paper previously conducted a controlled
experiment [2]. For the given sample of 36 undergraduate
students, the delegated control style design required
significantly more effort to implement the given set of
changes than did the alternative centralized control style
design. This difference in change effort was primarily due
to the difference in the effort required to understand how to
perform the change tasks.

It is evident that the expert recommendations and the
results of our previous experiment run counter to each
other. It might be that a delegated control style provides
better software maintainability for an expert, while a
centralized control style might be better for novices.
Novices may struggle to understand how the objects in a
delegated control style actually collaborate to fulfil the
larger goals of an application. Differences in “complexity”
of object-oriented designs may be explained by the
cognitive models of the developers [26]. Thus, the degree
of maintainability of a software application depends not
only on attributes of the software artifact itself, but also on
certain cognitive attributes of the particular developer
whose task it is to maintain it. This factor seems to be
underestimated by the object-oriented experts; neither is it
investigated in most controlled experiments evaluating
object-oriented technologies. Consequently, the main re-
search question we attempt to answer in this paper is the
following: For the target population of junior, intermediate,
and senior software consultants with different levels of
education and work experience, which of the two afore-
mentioned control styles is easier to maintain?

We conducted an experiment with a sample of 99 Java
consultants from eight consultancy companies, including
the major, partly international, companies Cap Gemini
Ernst & Young, Ementor, Accenture, TietoEnator, and
Software Innovation. To compare differences between
(categories of) professionals and students, 59 students also
participated. The treatments were the same two alternative
designs given in the previous pen-and-paper student
experiment [2]. The experimental subjects were assigned
to the two treatments using a between-subjects randomized
block design.

To increase the realism of the experiment [16], [24], [29],
the subjects used their usual Java development tool instead
of pen and paper. The professionals were located in their
usual work offices during the experiment, the students in
their usual computer lab. The subjects used the Simula
Experiment Support Environment [3] to receive the experi-
mental materials, answer questionnaires, and upload task

solutions. Each subject spent about one work day on the
experiment. As in ordinary programming projects, the
companies of the consultants were paid to participate. The
students received individual payment.

The remainder of this paper is organized as follows:
Section 2 outlines fundamental design principles of object-
oriented software. Section 3 describes existing empirical
research that evaluates object-oriented design principles.
Section 4 describes the design of the controlled experiment.
Section 5 presents the results. Section 6 discusses threats to
validity. Section 7 concludes.

2 DELEGATED VERSUS CENTRALIZED CONTROL IN

OBJECT-ORIENTED DESIGNS

This section describes the concepts underlying the object of
study, that is, the two control styles evaluated in the
experiment. The two control styles are each illustrated by
one example design, which examples are also the design
alternatives used as treatments in our experiment.

2.1 Relationships between Design Properties,
Principles, and Methods

To clarify the concepts studied in this paper, we distinguish
between design properties, design principles, and design
methods. Object-oriented design properties characterize the
resulting design. Examples are coupling [8] and cohesion [7].
Object-oriented design principles prescribe “good” values
of the design properties. Examples are low coupling and high
cohesion, as advocated in [14], [22]. Object-oriented design
methods prescribe a sequence of activities for creating
design models of object-oriented software systems.1 Exam-
ples are responsibility-driven design [32], data-driven
design [25], [27], [30], and use-case driven design [17],
[18]. Ideally, design methods should support a set of
(empirically validated) design principles.

2.2 Delegated versus Centralized Control Style

The control styles studied in this paper are depicted in
Fig. 1. According to the terminology defined in [31],
delegated and centralized control styles embody two
radically different principles for assigning responsibilities
and collaborations among classes. Wirfs-Brock [31] de-
scribed a delegated control style as follows:

522 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

1. The existing literature provides no clear distinction between object-
oriented analysis and object-oriented design. Consequently, the process we
define as object-oriented design may include activities that also might be
referred to as object-oriented analysis. However, in this paper, such a
distinction is not important.

Fig. 1. Delegated versus centralized control style.

A delegated control style ideally has clusters of well defined
responsibilities distributed among a number of objects.
Objects in a delegated control architecture tend to coordinate
rather than dominate. Tasks may be initiated by a
coordinator, but the real work is performed by others. These
worker objects tend to both ‘know’ and ‘do’ things. They
may even be smart enough to determine what they need to
know, rather than being plugged with values via external
control. To me, a delegated control architecture feels like
object design at its best...

In contrast, a centralized control style typically consists of a

central object (Fig. 1), which is responsible for the initiation

and coordination of all tasks [31]:

A centralized control style is characterized by single points
of control interacting with many simple objects. The
intelligent object typically serves as the main point of
control, while others it uses behave much like traditional
data structures. To me, centralized control feels like a
”procedural solution” cloaked in objects...

2.3 Example—The Coffee-Machine Design Problem

This section illustrates the two control styles, using two

alternative example designs of the coffee-machine design

problem. These designs were discussed at a workshop on

object-oriented design quality at OOPSLA ’97 [19] and are

described in two articles in the C/C++ User’s Journal [15]:

This two-article series presents a problem I use both to teach
and test OO design. It is a simple but rich problem, strong on
“design,” minimizing language, tool, and even inheritance
concerns. The problem represents a realistic work situation,
where circumstances change regularly. It provides a good
touch point for discussions of even fairly subtle designs in
even very large systems...

The initial problem stated by Cockburn [15] was as follows:

You and I are contractors who just won a bid to design a
custom coffee vending machine for the employees of Acme
Fijet Works to use. Arnold, the owner of Acme Fijet Works,
like the common software designer, eschews standard
solutions. He wants his own, custom design. He is, however,
a cheapskate. Arnold tells us he wants a simple machine. All
he wants is a machine that serves coffee for 35 cents, with or
without sugar and creamer. That’s all. He expects us to be
able to put this little machine together quickly and for little
cost. We get together and decide there will be a coin slot and
coin return, coin return button, and four other buttons:
black, white, black with sugar, and white with sugar.

The two alternative designs discussed in [15] are, we
believe, good examples of a centralized and a delegated
control style, respectively. Table 1 shows the classes and
their assigned responsibilities for the two alternative de-
signs. The first design, referred to as the Centralized
Control (CC) design in this paper (denoted “Mainframe
design” in [15]), consists of seven classes. The second
design, referred to as the Delegated Control (DC) design in
this paper (denoted “Responsibility-Driven Design” in
[15]), consists of 12 classes.

In both designs, the FrontPanel class acts as a “control
class” for the use-case “Make Drink.” However, the number
and type of responsibilities assigned to the FrontPanel class
are different in the two designs. In the CC design, the
FrontPanel is responsible for most tasks: it knows the user
selection, the price of each type of coffee and how each type
of coffee is made. To make a specific type of coffee, the
FrontPanel calls the dispense method of various Dispenser
objects in an if-then-else structure. In the DC design, the

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 523

TABLE 1
Overview of the Two Design Alternatives

FrontPanel just initiates the use case, and delegates the
control of how a given type of coffee is made to a Product,
which knows its price and Recipe. In turn, the Recipe is
responsible for knowing the Ingredients of which a product
consists, but has no knowledge about pricing.

Cockburn [15] assessed the CC design as follows:

Although the trajectory of change in the mainframe
approach involves only one object, people soon become
terrified of touching it. Any oversight in the mainframe
object (even a typo!) means potential damage to many
modules, with endless testing and unpredictable bugs.
Those readers who have done system maintenance or legacy
system replacement will recognize that almost every large
system ends up with such a module. They will affirm what
sort of a nightmare it becomes.

Furthermore, Cockburn [15] assessed the DC design as
follows:

The design we come up with at this point bears no
resemblance to our original design. It is, I am happy to
see, robust with respect to change, and it is a much more
reasonable ”model of the world.” For the first time, we
see the term ”product” show up in the design, as well as
”recipe” and ”ingredient.” The responsibilities are quite
evenly distributed. Each component has a single primary
purpose in life; we have avoided piling responsibilities
together. The names of the components match the
responsibilities.

Thus, the DC design has a distinctly delegated control style,
whereas the CC design has a distinctly centralized control
style. According to Cockburn [15], most novices (students)
come up with the CC type of design. However, most
experts would probably agree that the DC design is, as
Cockburn argues, a more maintainable solution to the
coffee-machine design problem.

3 RELATED EMPIRICAL STUDIES

In one of the few field experiments comparing alternative
object-oriented technologies, a data-driven and a responsi-
bility-driven design method were compared [25]. Two
systems were developed based on the same requirements
specification; using the data-driven and the responsibility-
driven design method, respectively. The results suggest that
the responsibility-driven design method results in a
delegated control style, whereas the data-driven design
method results in a centralized control style. Structural
attribute measures (defined in [12]) of the two systems were
also collected and compared. Based on the measured
values, the authors suggested that use of the responsibil-
ity-driven design method resulted in higher quality soft-
ware than did use of the data-driven design method
because the responsibility-driven software system had less
coupling and higher cohesion than did the data-driven
software system. We believe it may be premature to draw
such conclusions. Whether the design measures used in the
experiment actually measured “quality” was not evaluated
by means of direct measurement of external quality
attributes.

Nevertheless, there is a growing body of results that
indicates that class-level measures of structural attributes,
such as coupling and cohesion, can be reasonably good
predictors of product quality (see survey in [5]), which

supports the conclusions in [25]. However, most of these
metrics validation studies have been case studies and, so,
there is a lack of control that limits our ability to draw
conclusions regarding cause-effect relationships [20], [21].
One notable exception was a controlled experiment that
investigated whether a “good” design (adhering to Coad
and Yourdon’s design principles [14]) was easier to
maintain than was a “bad” design [6], [9]. The results
suggest that reducing coupling and increasing cohesion (as
suggested in Coad and Yourdon’s design principles)
improve the maintainability of object-oriented design
documents. However, as pointed out by the authors, the
results should be considered preliminary, primarily be-
cause the subjects were students with little programming
experience.

A controlled experiment to assess the changeability (i.e.,
change effort and correctness) of the example coffee-
machine designs described in Section 2.3 is reported in
[2]. Thirty-seven undergraduate students were divided into
two groups in which the individuals designed, coded, and
tested several identical changes to one of the two design
alternatives. The subjects solved the change tasks using pen
and paper. Given the argumentation described in Section 2,
the results were surprising in that they clearly indicated
that the delegated control design requires significantly
more change effort for the given set of changes than does
the alternative centralized control design. This difference in
change effort was primarily due to the difference in effort
required to understand how to perform the change tasks.
Consequently, designs with a delegated control style may
have higher cognitive complexity than have designs using a
centralized control style. No significant differences between
the two designs were found with respect to correctness.

In summary, more empirical studies are needed to
evaluate principles of design quality in object-oriented
software development. The control style of object-oriented
design represents one such fundamental design principle
that needs to be studied empirically. Related empirical
studies provide no convincing answers as to how the
control style of object-oriented design affects maintainabil-
ity. The field experiment reported in [25] lacks validation
against external quality indicators. The results of the
experiments in [2], [6] contain apparent contradictions.
Furthermore, both experiments used students as subjects
solving pen-and-paper exercises. A major criticism of such
experiments is their lack of realism [16], [24], which
potentially limits our ability to generalize the findings to
the population about which we wish to make claims, that is,
professional programmers solving real programming tasks
using professional tools in a realistic development environ-
ment. An empirical study reported in [26] reveals sub-
stantial differences in how novices, intermediates, and
experts perceive the difficulties of object-oriented develop-
ment. These results are confirmed by a controlled experi-
ment in which, among other things, a strong interaction
between the expertise of the subjects and type of task was
identified during object-oriented program comprehension
[10]. Consequently, the results of the existing empirical
studies are difficult to generalize to the target population of
professional developers.

524 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

4 DESIGN OF EXPERIMENT

The conducted experiment was a replication of the initial

pen-and-paper student experiment reported in [2]. The

motivation for replicating a study is to establish an

increasing range of conditions under which the findings

hold, and predictable exceptions [23]. A series of replica-

tions might enable the exploratory and evolutionary

creation of a theory to explain the observed effects on the

object of study. In this experiment, the following three

controlled factors were modified, compared with the initial

experiment:

. More representative sample of the population—The
target population of this experiment was profes-
sional Java consultants. To obtain a more represen-
tative sample of this population, we hired 99 junior,
intermediate, and senior Java consultants from eight
software consultancy companies. To compare differ-
ences between (categories of) professionals and
students, 59 undergraduate and graduate students
also participated. Descriptive statistics of the educa-
tion and experience of the sample population are
given in [1].

. More realistic tools—Professional developers use
professional programming environments. Hence,
traditional pen-and-paper-based exercises are hardly
realistic. In this experiment, each subject used a Java
development tool of their own choice, e.g., JBuilder,
Forte, Visual Age, Visual J++, and Visual Café.

. More realistic experiment environment—The classroom
environment of the previous experiment was re-
placed by the offices in which each developer would
normally work. Thus, they had access to printers,
libraries, coffee, etc., as in any other project they
might be working on. The students were located in
one of their usual computer labs.

4.1 Hypotheses

In this section, the hypotheses of the experiment are

presented informally. The hypotheses reflect the expecta-

tion that there is an interaction between the programming

experience and the control style of an object-oriented

design. We expect experienced developers to have the

necessary skills to benefit from “pure” object-oriented

design principles, as reflected in a delegated control style.

Based on the results of the previous experiment [2], we

expect novice developers to have difficulties understanding

a delegated control style and, thus, to perform better with a

centralized control style. There are two levels of hypothesis:

one that compares the control styles for all subjects and

another that compares the relative differences between the

developer categories. The null-hypotheses of the experi-

ment are as follows:

. H01—The Effect of Control Style on Change Effort.
The time spent on performing change tasks on the
DC design and CC design is equal.

. H02—The Effect of Control Style on Change Effort
for Different Developer Categories. The difference
between the time spent on performing change tasks

on the DC design and CC design is equal for the five
categories of developer.

. H03—The Effect of Control Style on Correctness.
The number of correct solutions for change tasks on
the DC design and CC design is equal.

. H04—The Effect of Control Style on Correctness for
Different Developer Categories. The difference
between the number of correct solutions for change
tasks on the DC design and CC design is equal for
the five categories of developer.

In Section 4.5, the variables of the study are explained in
more detail, and H01, H02, H03, and H04 are reformulated,
the first two in terms of a GLM model, the second two in
terms of a logistic regression model.

4.2 Design Alternatives Implemented in Java

The coffee-machine design alternatives described in
Section 2.3 were used as treatments in the experiment.
The two designs were coded using similar coding styles,
naming conventions, and amount of comments. Names of
identifiers (e.g., variables and methods) were long and
reasonably descriptive. UML sequence diagrams of the
main scenario for the two designs were given to help clarify
the designs. The sequence diagrams are provided in [1].

4.3 Programming Tasks

The programming tasks of the experiment consisted of six
change tasks: a training task, a pretest task, and four
(incremental) coffee machine tasks (c1� c4). To support the
logistics of the experiment, the subjects used the Web-based
Simula Experiment Support Environment (SESE) [3] to
answer an experience questionnaire, download code and
documents, upload task solutions, and answer task ques-
tionnaires. The experience questionnaire, detailed task
descriptions, and change task questionnaire are provided
in [1]. Each task consisted of the following steps:

1. Download and unpack a compressed directory
containing the Java code to be modified. This step
was performed only prior to task c1 for the coffee-
machine design change tasks (c1� c4) since these
change tasks were based on the solution of the
previous task.

2. Download task descriptions. Each task description
contained a test case that each subject used to test the
solution.

3. Solve the programming task using the chosen
development tool.

4. Pack the modified Java code and upload it to SESE.
5. Complete a task questionnaire.

4.3.1 Training Task

For the training task, all the subjects were asked to change a
small program so that it could read numbers from the
keyboard and print them out in reverse order. The purpose
of this task was to familiarize the subjects with the steps
outlined above.

4.3.2 Pretest Task

For the pretest task, all the subjects implemented the same
change on the same design. The change consisted of adding

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 525

transaction log functionality in a bank teller machine, and
was not related to the coffee-machine designs. The purpose
of this task was to provide a common baseline for
comparing the programming skill level of the subjects.
The pretest task had almost the same size and complexity as
the subsequent change tasks c1, c2, and c3 combined.

4.3.3 Coffee-Machine Tasks

The change tasks consisted of four incremental changes to
the coffee-machine:

. c1. Implement a coin return-button.

. c2. Introduce bouillon as a new drink choice.

. c3. Check whether all ingredients are available for
the selected drink.

. c4. Make one’s own drink by selecting from the
available ingredients.

4.4 Group Assignment

A randomized block experimental design was used; each
subject was assigned to one of two groups by means of
randomization and blocking. The two groups were CC (in
which the subjects were assigned to the CC design) and DC
(in which the subjects were assigned to the DC design). The
blocks were “undergraduate student,” “graduate student,”
“junior consultant,” “intermediate consultant,” and “senior
consultant.” Table 2 shows the distribution of the categories
of subject in the different groups.

4.5 Execution and Practical Considerations

To recruit the professional developers, several companies
were contacted through their formal sales channels. A
contract for payment and a time schedule were then agreed
upon. The companies were paid normal consultancy fees
for the time spent on the experiment by the consultants (five
to eight hours each). Seniors were paid more than
intermediates, who, in turn, were paid more than juniors.
A project manager in each company selected the subjects
from the company’s pool of consultants.

To recruit the students, graduate and undergraduate
students in the Department of Informatics at University of
Oslo were contacted through e-mail. The students were
paid a fixed amount for participating.

The experiment was conducted in 12 separate sessions
on separate days (one or more sessions in each of the nine
companies and one session for the students). All the
subjects in a given session were colocated at the same
company site. The subjects could only take breaks or make
telephone calls between change tasks. During each session,

one or several researchers were present on the site at all
times, to ensure that the subjects followed our requests and
to assist them in case of technical problems.

We wanted the subjects to perform the tasks with
satisfactory quality in as short a time as possible, because
most software engineering jobs induce a relatively high
pressure on tasks to be performed. However, if the time
pressure placed on the participatory subjects is too high, the
quality of the task solution may be reduced to the point
where it becomes meaningless to use the corresponding
task times in subsequent statistical analyses. The challenge
is therefore to place realistic time pressure on the subjects.
The best way to deal with this challenge depends to some
extent on the size, duration, and location of an experiment
[28]. In this experiment, we used the following strategy:

. Instead of offering an hourly rate, we offered a
“fixed” honorarium based on an estimation that the
work would take five hours to complete. We told the
subjects that they would be paid for those five hours
independently of the time they would actually need.
Hence, those subjects who finished early (e.g., in two
hours) were still paid for five hours. We employed
this strategy to encourage the subjects to finish as
quickly as possible and to discourage them from
working slowly in order to receive higher payment.
However, in practice, once the five hours had passed,
we told those subjects who had not finished that they
would be paid for additional hours if they completed
their tasks. The students received a fixed payment
equivalent to eight hours salary as a teaching
assistant, regardless of the actual time spent.

. The subjects were allowed to leave when they
finished. Those who did not finish had to leave
after eight hours.

. The subjects were informed that they were not all
given the same tasks to reduce the chances that they
would, for competitive reasons, prioritize speed over
quality.

. The last task (c4) was not included in the analysis
because, in our experience, the final change task in
an experiment needs special attention as a result of
potential “ceiling effects.” If the last task is included
in the analyses, it is difficult to discriminate between
the performance of the subjects regarding effort and
correctness. Subjects who work fast may spend more
time on the last task than they would otherwise.
Similarly, subjects who work slowly may have
insufficient time to perform the last task correctly.

526 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

TABLE 2
Subject Assignment to Treatments Using a Randomized Block Design

Consequently, the final change task in this experi-
ment was not included in the analysis. Thus, the
analysis of effort is not threatened by whether the
subjects actually managed to complete the last task,
while at the same time the presence of the large task
helped to put time pressure on the subjects during
the experiment. Pilot experiments were conducted to
ensure that it would be very likely that all subjects
would complete tasks c1� c3 within a time span of a
maximum of eight hours. As shown in Section 5,
only two out of 158 subjects did not complete all the
tasks.

We (the researchers) and the subjects signed a confiden-
tiality agreement stating that we guaranteed that all the
information about the subjects’ performance should be kept
strictly confidential. In particular, no information would be
given to the company or to the individuals themselves
about their own performance. The subjects guaranteed that
they would not share information about the experiment
with their colleagues, either during or after the experiment.

4.6 Analysis Model

To test the hypotheses, a regression-based approach was
used on the unbalanced experiment design. The variables in
the models are described below.

4.6.1 Dependent Variables

. Log(Effort)—the total effort in Log(minutes) to
complete the change tasks. Before starting on a task,
the subjects wrote down the current time. When the
subjects had completed the task, they reported the
total effort (in minutes) for that task. The first author
of this paper double-checked the reported times
using time stamps reported by the SESE tool. The
variable Effort was the combined total effort to
complete the change tasks. Thus, nonproductive
time between tasks was not included. A log-
transformation of the effort data gave an almost
perfect normal distribution.

. Correctness—a binary correctness score with value 1
if all the change tasks were correctly implemented,
and 0 if at least one of these tasks contained serious
logical errors.

Each change task solution was reviewed by an indepen-
dent consultant with a PhD in computer science who
lectures on testing at the University of Oslo. He was not
informed about the hypotheses of the experiment. To
perform the correctness analysis, he first developed a tool
that automatically unpacked and built the source code
corresponding to each task solution (uploaded to SESE by
the subjects). In total, this corresponds to almost 1,000 dif-
ferent Java programs. Then, each solution was tested using
a regression test script. For each test run, the difference
between the expected output of the test case (this test output
was given to the subjects as part of the task specifications)
and the actual output generated by each program was
computed. The tool also showed the complete source code
as well as the source code differences between each version
of the program delivered by each subject, to identify exactly
how they had changed the program to solve the change

task. To perform the final grading of the task solutions, a
Web-based grading tool was developed that enabled the
consultant to view the source code, the source code
difference, the test case output, and the test case difference.
He gave the score correct if there were no, or only cosmetic,
differences in the test case output, and no serious logical
errors were revealed by manual inspection of the source
code; otherwise, he gave the score incorrect. The consultant
performed this analysis twice to avoid inconsistencies in the
way he had graded the task solutions. Completing this
work took approximately 200 hours.

4.6.2 Controlled Factors

. Design—the main treatments of the experiment, that
is, the factors DC and CC.

. Block—the developer categories used as blocking
factors in the experiment, that is, the factors Under-
graduate, Graduate, Junior, Intermediate, and Se-
nior. For the professional consultants, a project
manager from each company chose consultants from
the categories “junior,” “intermediate,” and “senior”
according to how they usually would categorize
(and price) their consultants. Potential threats
caused by this categorization are discussed further
in Section 6.1.

4.6.3 Covariates

. Log(Pre_Dur)—the (log-transformed) effort in min-
utes to complete the pretest task. The individual
results of the pretest can be used as a covariate in the
models to reduce the error variance caused by
individual skill differences.

4.6.4 Model Specifications

For the hypotheses regarding effort, a generalized linear
model (GLM) approach was used to perform a combination
of analysis of variance (ANOVA), analysis of covariance
(ACOVA), and regression analysis [13]. For the hypotheses
regarding correctness, a logistic regression model was fitted
using the same (GLM) model terms as for effort, that is,
including dummy (or indicator) variables for each factor
level and combinations of factor levels [13].

The models are specified in Table 3. Given that the
underlying assumptions of the model are not violated, the
presence of a significant model term corresponds to
rejecting the related null-hypothesis. Model 1 was used to
test hypotheses H01 and H02. Model 2 was used to test
hypotheses H03 and H04. In addition, model 3 was
included to test the hypothesis on effort restricted to
those subjects with correct solutions. Thus, model 3
represents an alternative way to assess the effect of the
design alternatives on change effort. Since the subjects
with correct solutions no longer represent a random
sample, the covariate Log(Pre_Dur) was included to adjust
for skill differences between the groups. Furthermore,
since the covariate is confounded with Block, it is no
longer meaningful to include Block in model 3.

The final specification of the models must take place
after the actual analyses because the validity of the

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 527

underlying model assumptions must be checked against the

actual data. For example, we determined that a log-

transformation of effort was necessary to obtain models

with normally distributed residuals, which is an important

assumption of GLM. Furthermore, the inclusion of insig-

nificant interaction terms may affect the validity of the

coefficients and p-values (and the resulting interpretation)

of other model terms. Insignificant interaction terms are

therefore candidates for removal from the model. Whether

insignificant terms should actually be removed depends on

whether the reduced model fits the data better than the

complete model. This is explained further in Section 5.

5 RESULTS

This section describes the results of the experiment. In

Section 5.1, descriptive statistics of the data are provided

to illustrate the size and direction of the effects of the

experimental conditions. In Section 5.2, the hypotheses

outlined in Section 4.1 are tested formally using the

statistical models described in Section 4.6. Finally, in

Section 5.3, we draw some general conclusions by

interpreting both the descriptive statistics and the results
from the formal hypothesis tests.

5.1 Descriptive Statistics

Table 4 shows the descriptive statistics related to the main
hypotheses of the experiment. Two of the 158 subjects in the
experiment did not complete all the tasks, as indicated by
column N�. The columns Mean to Max show the descriptive
statistics of the change effort (in minutes to solve change
tasks c1 + c2 + c3). The column Correct shows the percentage
of the subjects that delivered correct solutions for all three
tasks. The Total row shows that the mean time required to
perform the tasks was 91 minutes for both the CC and
DC design. Furthermore, 69 percent of the subjects
delivered correct solutions on the CC design, but only
50 percent did on the DC design.

However, there are quite large differences between the
different categories of developer, especially when comparing
undergraduate and junior developers with graduate stu-
dents and senior professionals. The apparent interaction
between developer category and design alternative is
illustrated in Fig. 2. For example, the undergraduate
students spent on average about 30 percent less time on

528 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

TABLE 3
Model Specifications

TABLE 4
Descriptive Statistics of Change Effort (in Minutes) and Correctness (in Percent)

the CC design than on the DC design (79 minutes versus

108 minutes). They were also much more likely to produce

correct solutions on the CC design than on the DC design

(62 percent versus 29 percent). This indicates that, for

undergraduate students, the CC design is easier to change

than is the DC design. This picture is reversed when

considering the seniors: they spent on average about

30 percent more time on the CC design than on the

DC design (103 minutes versus 71 minutes). For the seniors,

there is no difference in correctness for the two design

alternatives (76 percent for the CC design versus 74 percent

for the DC design). This indicates that, for senior devel-

opers, the DC design is easier to change than is the

CC design. The graduate students, juniors, and intermedi-

ates seem to benefit from using the CC design when

considering both change effort and correctness, although

the differences between the control styles are much smaller

than for the undergraduate students and seniors.

5.2 Hypothesis Tests

The results of testing the hypotheses on change effort are

shown in Table 5. Residual analyses of the model indicate

that the assumptions of the GLM model are not violated

(further details are provided in [1]).
There is insufficient evidence to reject the null-hypoth-

esis H01, that is, we cannot conclude that there is a

difference in change effort between the two design

alternatives (Design, p = 0.964). By contrast, the results

identify significant differences in change effort for the five

developer categories (Block, p = 0.001). A posthoc Tukey’s

pairwise comparison of differences in the mean of the

developer categories show that, overall, the graduate

students were faster than juniors (p = 0.0027) and

intermediates (p = 0.0034). There were no significant

differences between any other pair of categories.
Regarding the hypotheses about the interaction between

design and developer category, H02, there is insufficient

support for rejecting the null-hypothesis (Design*Block,

p = 0.133). In light of the descriptive statistics, this was

somewhat surprising because the relative difference in

change effort between the design alternatives is still

considerable for some categories of developer and in

opposite directions. Since we did not have a clear hypoth-

esis about how much experience would be required to

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 529

Fig. 2. Interaction plots of mean effort and correctness.

TABLE 5
GLM Model (Model 1) for Log(Effort) (Hypotheses H01 and H02)

benefit from the DC design, the analysis model including all
developer categories in the interaction term is quite
conservative. Only large interaction effects between several
of the categories would result in a significant model term.
Consequently, we performed a posthoc analysis based on
model 1, but included only two developer categories:
subjects with “high experience,” which included the seniors
and intermediates, and subjects with “low experience,”
which included the undergraduates, graduates, and juniors.
In this case, the interaction term was significant (p = 0.028).
We emphasize that this is an exploratory analysis because
the experience level was not set a priori, but was instead set
on the basis of the actual data.

The results of testing the hypotheses on correctness are
shown in Table 6. The results clearly show that the subjects
are much less likely to produce correct solutions on the
DC design than on the CC design (Design, odds-ratio = 0.40,
p = 0.009), all other conditions being equal. The null-
hypothesis H03 is rejected. Furthermore, graduate students
and seniors are much more likely to produce correct
solutions (odds-ratios 3.42 and 4.03, respectively) than are
the other developer categories. The interaction term
Design*Block was removed from the logistic regression
model because the coefficients were far from significant
and reduced the goodness of fit. Hence, there is insufficient
statistical evidence to reject H04. We cannot conclude that
the CC design improves correctness for only some categories
of developers. On the basis of the evidence collected, it
improves correctness for all the categories. The goodness-
of-fit tests for the model in Table 6 show a high correlation
between the observations and the model estimates. Thus,
the underlying model assumptions of logistic regression are
not violated.

Finally, Table 7 shows the results of the analysis of
covariance model on Log(Effort) for the subjects who

managed to produce correct solutions. The results show
that the change effort is much less for the DC design than
for the CC design (Design, p = 0.003). Thus, those subjects
who actually manage to understand the DC design
sufficiently well to produce correct solutions also use less
time than those who produce correct solutions on the
CC design. As can be seen from the descriptive statistics
(Table 4) and from the logistic regression model of
correctness (Table 6), these subjects are overrepresented
by senior consultants and graduate students. Residual
analyses of the model indicate that the assumptions of the
GLM model are not violated. See details in [1].

5.3 Summary of Results

This section summarizes the results by considering both the
descriptive statistics (which describe the results of the
specific sample population) and the hypotheses tests (which
indicate the extent to which the results can be generalized to
the target population) with regard to both effort and
correctness.

Based on the formal hypothesis tests, the results suggest
that there is no difference in change effort between the two
designs when considering all subjects, regardless of
whether they produced correct solutions or not (model 1).
The descriptive statistics indicate large relative differences
between two specific categories of developer (undergradu-
ate student versus senior consultant), but there is insuffi-
cient support for an interaction effect between the design
alternatives and the given developer categories with regard
to effort (p = 0.133). However, a posthoc analysis conducted
on the basis of the actual data still suggests that there is an
interaction effect between a more coarse-grained variable
”experience” and change effort (p = 0.028).

All developer categories are more likely to produce
correct solutions on the CC design than on the DC design

530 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

TABLE 6
Logistic Regression Model (Model 2) for Correctness (Hypotheses H03 and H04)

(model 2). There is no support for an interaction effect
between design alternatives and the developer category
with regard to correctness. However, the effect size of
design on correctness is very large for the undergraduate
students and junior developers, who clearly have serious
difficulty in producing correct solutions on the DC design,
whereas the effect size of design is negligible for the seniors.

When only considering those subjects who managed to
produce correct solutions (probably the most skilled
subjects because the subjects with correct solutions also
used, on average, considerably less time than did subjects
with incorrect solutions), the DC design seems to require
less effort than does the CC design (model 3).

In summary, when considering both effort and correct-
ness in combination, the results suggest the following
conclusions. Only senior consultants seem to have the
necessary skills to benefit from the DC design. The graduate
students also perform well on the DC design, but they
perform even better on the CC design. The CC design
favors the less skilled developers, overrepresented by
undergraduate students and junior developers. There are
no clear indications in either direction for the intermediate
developers.

6 THREATS TO VALIDITY

This paper reports an experiment with a high degree of
realism compared with previously reported controlled
experiments within software engineering. Our goal was to
obtain results that could be generalized to the target
population of professional Java consultants solving real
programming tasks with professional development tools in
a realistic work setting. This is an ambitious goal, however.
For example, there is a trade off between ensuring realism
(to reduce threats to external validity) and ensuring control
(to reduce threats to internal validity). This section discusses
what we consider to be the most important threats to the
validity of this experiment.

6.1 Construct Validity

The construct validity concerns whether the independent
and dependent variables accurately measure the concepts
we intend to study.

6.1.1 Classification of the Control Styles

An important threat to the construct validity in this
experiment is the extent to which the actual design

alternatives that were used as treatments (“delegated”

versus “centralized” control styles) are representative of

the concept studied. There is no operational definition to

classify precisely the control style of object-oriented soft-

ware; a certain degree of subjective interpretation is

required. Furthermore, when considering the extremes,

the abstract concepts of a centralized and delegated control

style might not even be representative of realistic software

designs. Still, some software systems might be “more

centralized than” or “more delegated than” others.
Based on expert opinions in [15] and our own assessment

of the designs, it is quite obvious that the DC design has a

more delegated control style than the CC design. However,

it is certainly possible to design a coffee-machine with an

even more centralized control style than the CC design (e.g.,

a design consisting of only one control class and no entity

classes whatsoever), or a more delegated control style than
the DC design. We chose to use, as treatments, example

designs developed by others [15]. We believe these

treatments constitute a reasonable trade off between being

clear representatives of the two control styles, and being

realistic and unbiased software design alternatives.

6.1.2 Classification of Developers

Someone who is considered as (say) an intermediate

consultant in one company might be considered (say) a

senior in another company. Thus, the categories are not

necessarily representative of the categories used in every

consultancy company. A replication in other companies

might therefore produce different results with respect to

how the variable Block affects change effort and correctness.

However, as seen from the results, the Block factor

representing the categories is a significant explanatory

variable of change effort and correctness, and, as expected,

senior consultants provided better solutions in a shorter
time than did juniors and undergraduate students. Thus,

for the purpose of discriminating between the program-

ming skill and experience of the developers, the classifica-

tion was sufficiently accurate.

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 531

TABLE 7
Change Effort for Subjects with Correct Solutions

6.1.3 Measuring Change Effort

The effort measure was affected by noise and disturbances.
Some subjects (in particular the professionals) might have
been more disturbed or have taken longer breaks than did
others. For example, senior consultants are likely to receive
more telephone calls because they typically have a central
role in the projects in which they would normally
participate. To address this possible threat, we instructed
the consultants not to answer telephone calls or talk to
colleagues during the experiment. The subjects were also
instructed to take their lunch break only between two change
tasks. At least one of the authors of this paper was present
at the company site during all experiment sessions and
observed that these requests were followed to a large extent.
The monitoring functionality of SESE [3] also enabled us to
monitor the progress of each subject at all times, and follow
up if we observed little activity. Similar measures were
applied during the student experiment session.

6.1.4 Measuring Correctness

The dependent variable Correct was binary, and indicated
whether the subjects produced functionally correct solu-
tions on all the change tasks, thus producing a working
final program. As described in Section 4.6, a significant
amount of effort was spent on ensuring that the correctness
scores were valid. More complex measures to identify the
number of programming faults or the severity of program-
ming faults were also considered. However, such measures
would necessarily be more subjective and, hence, more
difficult to use in future replications than the adopted
“correct”/“not correct” score.

6.1.5 Effort and Correctness as Indicators of

Maintainability

An important issue is whether one of the designs, after
being subject to the changes, would be more “maintain-
able,” or, in general, have higher “quality” than the other
design, for certain categories of developer. We believe that
the effort spent when performing the changes, and the
achieved correctness, represent two important indicators of
the maintainability of the two control styles. However, due
to the limited number and duration of tasks, they only
indicate short-term maintainability. For example, the results
reported in [2] suggest that the change tasks on the
CC design result in higher coupling and require more lines
of code to be changed than do the change tasks on the
DC design. As argued in [2], these internal attributes
indicate that the DC design might be more structurally
stable in the long run, but we will still not really know what
the consequences would be regarding the actual costs of
maintaining the software, unless new experiments are
performed. Thus, this is a threat to construct validity that
also has consequences for the external validity of this
experiment.

6.2 Internal Validity

The internal validity of an experiment is the degree to

which conclusions can be drawn about the causal effect of

the controlled factors on the experimental outcome.

6.2.1 Differences in Settings between Developer

Categories

To improve external validity, the setting of the experiment

should be as realistic as possible [28], [29]. Thus, the

students in this experiment were situated in a computer lab;

the professional consultants in a normal work environment.

Furthermore, each developer was permitted to use a Java

development environment of their own choice. Most of the

students used Emacs and Javac, whereas the professionals

used a variety of professional integrated development

environments. Finally, there were differences in payment

between students and professionals. We cannot rule out the

possibility that these differences in settings are confounding

factors regarding a direct comparison of the performance of

students versus professionals.

However, the primary goal of this experiment was to

compare relative differences of the effect the two control

styles, for which all categories of student and professional

developer were evenly distributed across the two design

alternatives. Furthermore, there were no differences in

setting within each developer category. Hence, these

differences in setting were not included as additional

covariates in the models described in Section 4.6. For

example, although the students and professionals used

different tools, the distribution of tools was quite even

across the two design alternatives and within each devel-

oper category. In this particular case, we also checked the

extent to which the chosen development tool affected the

performance of the subjects, by including DevelopmentTool

as a covariate in the models described in Section 4.6. The

term was not a significant explanatory variable for effort

(p = 0.437) or correctness (p = 0.347). Another possibility

would have been to use only one specific tool to completely

eliminate variations due to different tools as a possible

confounding factor. However, that would introduce other

threats, related, for example, to tool learning effects.
In summary, we believe it is unlikely that the main

results described in this paper; that is, the relative
comparison of the effect of the two design alternatives for
different categories of developer are threatened by differ-
ences in setting.

6.3 External Validity

The question of external validity concerns “[the] popula-
tions, settings, treatment variables, and measurement
variables [to which] this effect [can] be generalized” [11].

6.3.1 Scope of Systems and Tasks

Clearly, the two alternative designs in this experiment were
very small compared with “typical” object-oriented soft-
ware systems. Furthermore, the change tasks were also
relatively small in size and duration. However, the change
task questionnaires received from the participants after they
had completed the change tasks indicate that the complexity
of the tasks was quite high. Nevertheless, we cannot rule
out the possibility that the observed effects would be
different if the systems and tasks had been larger.

The scope of this study is limited to situations in which
the maintainers have no prior knowledge of a system. It is

532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

possible that the results do not apply to situations in which
the maintainers are also the original designers. As also
discussed in Section 6.1, a related issue is whether the short-
term effects observed in this experiment are representative
of long-term maintenance. It is possible that the effects we
observed are due principally to the higher cognitive
complexity of a delegated control style, and that even less
skilled maintainers will eventually pass the learning curve
of a delegated control style to the extent that they can
benefit from it.

6.3.2 Fatiguing Effects

Despite our effort to ensure realism, the experiment is still
not completely representative of a “normal day at the
office.” In a normal work situation, one might be able to
take longer breaks and in general be less stressed and tired
than in an experimental setting. We cannot rule out the
possibility that such fatiguing effects might introduce a bias
for one of the control styles.

6.3.3 Representativeness of Sample

An important question for this experiment is whether the

professional subjects were representative of “professional

Java consultants.” Our sample included consultants from

major international software consultancy companies. A

project manager was hired from each company to, among

other things, select a representative sample of their

consultants for the categories “junior,” “intermediate,”

and “senior.” The selection process corresponded to how

the companies would usually categorize and price con-

sultants. Hence, in addition to experience and competence,

availability was also one of the selection criteria. Thus, it

could be the case that the “best” professionals were

underrepresented in our sample since it is possible that

they had already been hired by other companies. Fortu-

nately, we observed that, on many occasions, the project

managers took busy consultants off their current projects to

participate in the experiment.

7 CONCLUSIONS

The degree of maintainability of a software application

depends not only on attributes of the software itself, but

also on certain cognitive attributes of the particular

developer whose task it is to maintain it. This aspect seems

to be underestimated by expert designers. Most experi-

enced software designers would probably agree that a

delegated control style is more “elegant” and a better object-

oriented representation of the problem to be solved, than is

a centralized control style. However, care should be taken

to ensure that future maintainers of the software are able to

understand this (apparently) elegant design. If the cognitive

complexity of a design is beyond the skills of future

maintainers, they will spend more time, and probably

introduce more faults, than they would with a (for them)

simpler but less “elegant” object-oriented design.
Assuming that it is not only highly skilled experts who

are going to maintain an object-oriented system, a viable
conclusion from the controlled experiment reported in

this paper is that a design with a centralized control style
may be more maintainable than is a design with a
delegated control style. These results are also relevant
with regard to a use-case driven design method, which
may support both control styles: It is mainly a question of
how much responsibility is assigned to the control class
of each use case.

Although an important goal of this experiment was to
ensure realism, by using a large sample of professional
developers as subjects who are instructed to solve program-
ming tasks with professional development tools in a normal
office environment, there are several threats to the validity
of the results that should be addressed in future replica-
tions. Increasing the realism (and, thereby, external validity)
reduced the amount of control, which introduced threats to
internal validity. For example, we allowed the developers to
use a development tool of their own choice. Another
possibility would have been to use only one specific tool
to eliminate variations due to different tools as a possible
confounding factor. However, that would introduce other
threats, related, for example, to tool learning effects. Thus,
we believe that this reduction in control is a small price to
pay considering that the improved realism of this experi-
ment allows us to generalize the results beyond that which
would be possible in a more controlled laboratory setting
with students solving pen-and-paper tasks. Still, whether
the results of this experiment generalize to realistically
sized systems and tasks is an open question. Consequently,
the most important means to improve the external validity
of the experiment is to increase the size of the systems and
the tasks. Furthermore, the results might be different in
situations where less skilled maintainers successfully per-
form a sufficient number of tasks to pass the learning curve
of a delegated control style.

The results of this experiment are surprising in a
further way. For the given tasks, the graduate students
performed very well, and outperformed junior and
intermediate consultants. One reason could be that the
project managers selected low-skilled consultants for the
experiment. However, contrary to this, the project
managers confirmed that they also included their best
people, and on many occasions took them off their
current projects to participate in the experiment. A more
likely reason is that graduate students because of the
stringent selection process for admission to Masters
programs, are better than relatively inexperienced profes-
sionals. Another possibility is that formal training in
object-oriented programming is more important than
work experience. Both hypotheses are, to some extent,
supported by the descriptive statistics presented in [1]:
The seniors are more likely to have completed graduate
studies than are the juniors and intermediates. Both the
seniors and graduate students have more credits in
computer science courses than have the undergraduate
students, juniors, and intermediate consultants. In future
studies, we will attempt to explore these complex
interactions among the underlying characteristics (such
as programming experience in specific languages, work
experience, and education) to better explain the observed
variations in programmer performance.

ARISHOLM AND SJØBERG: EVALUATING THE EFFECT OF A DELEGATED VERSUS CENTRALIZED CONTROL STYLE ON THE... 533

ACKNOWLEDGMENTS

The authors thank Lionel Briand, Magne Jørgensen, Vigdis

By Kampenes, Ray Welland, Chris Wright, and the

anonymous reviewers for their valuable contributions to

this paper. They thank KompetanseWeb for their excellent

support on the SESE tool. Gunnar Carelius provided

valuable support during the preparation and quality

assurance of the experimental materials in SESE. Are

Magnus Bruaset did an outstanding job on the testing and

qualitative assessment of the Java solutions delivered by the

subjects. They thank the students at the University of Oslo

for their participation, and the staff in the Department of

Informatics at the same university for their technical

support. Finally, this paper would not have been possible

without the consultants and project managers who partici-

pated from the following companies: Accenture, Cap

Gemini Ernst & Young, Ementa, Ementor, Genera, Object-

net, Software Innovation, Software Innovation Technology,

and TietoEnator.

REFERENCES

[1] E. Arisholm and D.I.K. Sjøberg, “A Controlled Experiment with
Professionals to Evaluate the Effect of a Delegated versus
Centralized Control Style on the Maintainability of Object-
Oriented Software,” Technical Report 2003-6, Simula Research
Laboratory, http://www.simula.no/erika, 2003.

[2] E. Arisholm, D.I.K. Sjøberg, and M. Jørgensen, “Assessing the
Changeability of Two Object-Oriented Design Alternatives—A
Controlled Experiment,” Empirical Software Eng., vol. 6, no. 3,
pp. 231-277, 2001.

[3] E. Arisholm, D.I.K. Sjøberg, G.J. Carelius, and Y. Lindsjørn, “A
Web-Based Support Environment for Software Engineering
Experiments,” Nordic J. Computing, vol. 9, no. 4, pp. 231-247, 2002.

[4] K. Beck and W. Cunningham, “A Laboratory for Teaching Object-
Oriented Thinking,” SIGPLAN Notices, vol. 24, no. 10, pp. 1-6,
1989.

[5] L.C. Briand and J. Wust, “Empirical Studies of Quality Models in
Object-Oriented Systems,” Advances in Computers, vol. 59, pp. 97-
166, 2002.

[6] L.C. Briand, C. Bunse, and J.W. Daly, “A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs,” IEEE Trans. Software Eng., vol. 27,
no. 6, pp. 513-530, 2001.

[7] L.C. Briand, J.W. Daly, and J. Wust, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,” Empirical
Software Eng., vol. 3, no. 1, pp. 65-117, 1998.

[8] L.C. Briand, J.W. Daly, and J. Wust, “A Unified FrameWork for
Coupling Measurement in Object-Oriented Systems,” IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91-121, 1999.

[9] L.C. Briand, C. Bunse, J.W. Daly, and C. Differding, “An
Experimental Comparison of the Maintainability of Object-
Oriented and Structured Design Documents,” Empirical Software
Eng., vol. 2, no. 3, pp. 291-312, 1997.

[10] J.-M. Burkhardt, F. Detienne, and S. Wiedenbeck, “Object-
Oriented Program Comprehension: Effect of Expertice, Task and
Phase,” Empirical Software Eng., vol. 7, no. 2, pp. 115-156, 2002.

[11] D.T. Campell and J.C. Stanley, Experimental and Quasi-Experimental
Designs for Research. Rand McNally and Company, 1963.

[12] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, 1994.

[13] R. Christensen, Analysis of Variance, Design and Regression. Chap-
man & Hall/CRC Press, 1998.

[14] P. Coad and E. Yourdon, Object-Oriented Design, first ed. Prentice-
Hall, 1991.

[15] A. Cockburn, “The Coffee Machine Design Problem: Part 1 & 2,”
C/C++ User’s J., May/June 1998

[16] R.L. Glass, “The Software Research Crisis,” IEEE Software, vol. 11,
no. 6, pp. 42-47, 1994.

[17] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley, 1999.

[18] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering. Addison-Wesley, 1992.

[19] R.K. Keller, A. Cockburn, and R. Schauer, “Object-Oriented
Design Quality: Report on OOPSLA ’97 Workshop #12,” Proc.
OOPSLA ’97 Workshop Object-Oriented Design Quality, http://
www.iro.umontreal.ca/keller/Workshops/OOPSLA97, 1997.

[20] B. Kitchenham, L. Pickard, and S.L. Pfleeger, “Case Studies for
Method and Tool Evaluation,” IEEE Software, vol. 12, no. 4, pp. 52-
62, 1995.

[21] B.A. Kitchenham, “Evaluating Software Engineering Methods and
Tools. Part 1: The Evaluation Context and Evaluation Methods,”
ACM Software Eng. Notes, vol. 21, no. 1, pp. 11-15, 1996.

[22] K.J. Lieberherr and I.M. Holland, “Assuring Good Style for Object-
Oriented Programs,” IEEE Software, vol. 6, no. 5, pp. 38-48, 1989.

[23] R.M. Lindsay and A.S.C. Ehrenberg, “The Design of Replicated
Studies,” The Am. Statistician, vol. 47, no. 3, pp. 217-228, 1993.

[24] C. Potts, “Software Engineering Research Revisited,” IEEE Soft-
ware, vol. 10, no. 5, pp. 19-28, 1993.

[25] R.C. Sharble and S.S. Cohen, “The Object-Oriented Brewery: A
Comparison of Two Object-Oriented Development Methods,”
Software Eng. Notes, vol. 18, no. 2, pp. 60-73, 1993.

[26] S.D. Sheetz, “Identifying the Difficulties of Object-Oriented Devel-
opment,” J. Systems and Software, vol. 64, no. 1, pp. 23-36, 2002.

[27] S. Shlaer and S. Mellor, Object-Oriented Systems Analysis: Modeling
the World in Data. Yourdon Press, 1988.

[28] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A.
Karahasanovic, and M. Vokác, “Challenges and Recommendations
when Increasing the Realism of Controlled Software Engineering
Experiments,” Empirical Methods and Studies in Software Eng.
(ESERNET 2001-2002), R. Conradi and A.I. Wang, eds., 2003.

[29] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A.
Karahasanovic, E. Koren, and M. Vokác, “Conducting Realistic
Experiments in Software Engineering,” Proc. First Int’l Symp.
Empirical Software Eng. (ISESE ’2002), pp. 17-26, Oct. 2002.

[30] S. Tockey, B. Hoza, and S. Cohen, “Object-Oriented Analysis:
Building on the Structured Techniques,” Proc. Software Improve-
ment Conf., 1990.

[31] R.J. Wirfs-Brock, “Characterizing your Application’s Control
Style,” Report on Object Analysis and Design, vol. 1, no. 3, 1994.

[32] R.J. Wirfs-Brock and B. Wilkerson, “Object-Oriented Design: A
Responsibility Driven Approach,” SIGPLANNotices, vol. 24, no. 10,
pp. 71-75, 1989.

[33] R.J. Wirfs-Brock, B. Wilkerson, and R. Wiener, Designing Object-
Oriented Software. Prentice-Hall, 1990.

Erik Arisholm received the MSc degree in
electrical engineering from the University of
Toronto and the PhD degree in computer
science from the University of Oslo. He has
seven years industry experience in Canada and
Norway as a lead engineer and design manager.
He is now a researcher in the Department of
Software Engineering at the Simula Research
Laboratory and an associate professor in the
Department of Informatics at the University of

Oslo. His main research interests are object-oriented design principles
and methods, static and dynamic metrics for object-oriented systems,
and methods and tools for conducting controlled experiments in software
engineering. He is a member of the IEEE and IEEE Computer Society.

Dag I.K. Sjøberg received the MSc degree in
computer science from the University of Oslo in
1987 and PhD degree in computing science
from the University of Glasgow in 1993. He has
five years industry experience as consultant and
group leader. He is now the research manager
of the Department of Software Engineering at
the Simula Research Laboratory and a professor
of software engineering in the Department of
Informatics at the University of Oslo. Among his

research interests are research methods in empirical software engineer-
ing, software process improvement, software effort estimation and
object-oriented analysis, and design. He is a member of the IEEE and
IEEE Computer Society.

534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

