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Abstract 
This paper provides an extensive review of studies related to expert estimation of software development 

effort. The main goal and contribution of the review is to support the research on expert estimation, e.g., to ease 
other researcher’s search for relevant expert estimation studies. In addition, we provide software practitioners 
with useful estimation guidelines, based on the research-based knowledge of expert estimation processes. The 
review results suggest that expert estimation is the most frequently applied estimation strategy for software 
projects, that there is no substantial evidence in favour of use of estimation models, and that there are situations 
where we can expect expert estimates to be more accurate than formal estimation models. The following twelve 
expert estimation “best practice” guidelines are evaluated through the review: 1) Evaluate estimation accuracy, 
but avoid high evaluation pressure, 2) Avoid conflicting estimation goals, 3) Ask the estimators to justify and 
criticize their estimates, 4) Avoid irrelevant and unreliable estimation information, 5) Use documented data 
from previous development tasks, 6) Find estimation experts with relevant domain background and good 
estimation records, 7) Estimate top-down and bottom-up, independently of each other, 8) Use estimation 
checklists, 9) Combine estimates from different experts and estimation strategies, 10) Assess the uncertainty of 
the estimate, 11) Provide feedback on estimation accuracy and development task relations, and, 12) Provide 
estimation training opportunities. We found supporting evidence for all twelve estimation principles, and 
provide suggestions on how to implement them in software organizations. 
 
Keywords: Software development, effort estimation, expert judgment, project planning 
 

1 Introduction 

Intuition and judgment – at least good judgment – are simply analyses frozen into habit and into the 
capacity for rapid response through recognition. Every manager needs to be able to analyze problems 
systematically (and with the aid of the modern arsenal of analytical tools provided by management science and 
operations research). Every manager needs also to be able to respond to situations rapidly, a skill that requires 
the cultivation of intuition and judgment over many years of experience and training. (Simon 1987) 

 
In this paper we summarize empirical results related to expert estimation of software development effort. 

The primary goal and contribution of the paper is to support the research on software development expert 
estimation through an extensive review of relevant papers, a brief description of the main results of these papers, 
and the use of these results to validate important expert estimation guidelines. Although primarily aimed at other 
researchers, we believe that most of the paper, in particular the validated guidelines, are useful for software 
practitioners, as well. 

We apply a broad definition of expert estimation, i.e., we include estimation strategies in the interval from 
unaided intuition (“gut feeling”) to expert judgment supported by historical data, process guidelines and 
checklists (“structured estimation”). Our main criteria to categorize an estimation strategy as expert estimation is 
that the estimation work is conducted by a person recognized as an expert on the task, and that a significant part 
of the estimation process is based on a non-explicit and non-recoverable reasoning process, i.e., “intuition”. 
Most estimation processes have both intuitive and explicit reasoning elements, as reported in the business 
forecasting study described in (Blattberg and Hoch 1990). In fact, even formal software development estimation 
models may require expert estimates of important input parameters (Pengelly 1995), i.e., require non-explicit 
and non-recoverable reasoning. Estimation strategies where a formal model is at the core of the estimation 
process are, however, not the topic of this paper. 

There are relatively few studies discussing software development effort expert estimation. For example, a 
search for estimation papers in the journals IEEE Transactions on Software Engineering, Journal of Systems and 
Software, Journal of Information and Software Technology, and Journal of Empirical Software Engineering 
resulted in exactly 100 papers on software effort or size estimation1. Of these, only 17 (17%) include analyses or 
discussions of expert estimation; (Kusters 1990; Taff, Borchering et al. 1991; van Genuchten and Koolen 1991; 

                                                            
1 Search conduced March 2002. 
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Betteridge 1992; Goodman 1992; Abdel-Hamid, Sengupta et al. 1993; Londeix 1995; Hughes 1996b; Höst and 
Wohlin 1997; Lederer and Prasad 1998; Ohlsson, Wohlin et al. 1998; Chulani, Boehm et al. 1999; Myrtveit and 
Stensrud 1999; Verner, Overmyer et al. 1999; Walkerden and Jeffery 1999; Mizuno, Kikuno et al. 2000; 
Jørgensen and Sjøberg 2001a). Similarly, while there have been several surveys of software development effort 
estimation models, e.g., (Mohanty 1981; Boehm 1984; Hihn and Habib-Agahi 1991b; Fairley 1992; Heemstra 
1992; Walkerden and Jeffery 1997; Boehm and Sullivan 1999; Boehm, Abts et al. 2000; Briand and Wieczorek 
2002), we found only one survey on expert estimation research results (Hughes 1996a). Fortunately, there are 
many relevant studies on expert estimation in other domains, e.g., medicine, business, psychology, and project 
management. To evaluate, understand, and extend the software development expert estimation results, we 
therefore try to transfer selected expert estimation research results from other domains. 

We have structured the large amount of empirical results around a discussion and empirical validation of 
twelve “best practice” expert estimation principles. The selection of those principles was based on three sources: 
(1) What we have observed as best expert estimation practice in industrial software development projects, (2) 
The list of 139 forecasting principles described in (Armstrong 2001d), and, (3) The nine software estimation 
principles described in (Lederer and Prasad 1992). The selected twelve estimation principles do, of course, not 
cover all aspects of software development effort expert estimation. They provide, however, a set of principles 
that we believe are essential for successful expert estimation. Table 1 describes the topics and main result of 
each section of this paper. 

 
Table 1: Contents of Paper 

Section Description of Topic Main Results 
2 Frequency of use of 

expert estimation. 
Expert estimation is the dominant strategy when estimating software 
development effort. 

3 Performance of expert 
estimation in comparison 
with estimation models. 

The design of the empirical studies comparing expert and model-based 
software development effort estimate seems to have had a strong impact 
on the results. It is not possible to conclude that expert estimation or 
estimation model, in general, are more accurate. However, expert 
estimates seems to be more accurate when there are important domain 
knowledge not included in the estimation models, when the estimation 
uncertainty is high as a result of environmental changes not included in 
the model, or when simple estimation strategies lead to relatively 
accurate estimates. 

4 Reduce situational and 
human biases. 

Empirical validation of the expert estimation principles:  
1. Evaluate estimation accuracy, but avoid high evaluation pressure. 
2. Avoid conflicting estimation goals. 
3. Ask estimators to justify and criticize their estimates. 
4. Avoid irrelevant and unreliable estimation information. 
5. Use documented data from previous development tasks. 
6. Find estimation experts with relevant domain background and good 

estimation records. 
5 Support the estimation 

process. 
7. Estimate top-down and bottom-up, independently of each other. 
8. Use estimation checklists. 
9. Combine estimates from different experts and estimation strategies. 
10. Assess the uncertainty of the estimate. 

6 Provide feedback and 
training opportunities. 

11. Provide feedback on estimation accuracy and task relations. 
12. Provide estimation training opportunities. 

7 Conclusions and further 
research. 

All 12 principles are based on empirical evidence. There is, however, 
still a need for more knowledge about how to apply them in various 
software estimation situations. 

2 Frequency of Use of Expert Estimation 

Published surveys on estimation practice suggest that expert estimation is the dominant strategy when 
estimating software development effort. For example, the study of software development estimation practice at 
Jet Propulsion Laboratory reported in (Hihn and Habib-Agahi 1991a) found that 83% of the estimators used 
“informal analogy” as their primary estimation techniques, 4% “formal analogy” (defined as expert judgment 
based on documented projects), 6% “rules of thumb”, and 7% “models”. The investigation of Dutch companies 
described in (Heemstra and Kusters 1991) conclude that 62%, of the organizations that produced software 
development estimates, based the estimates on “intuition and experience” and only 16% on “formalized 
estimation models”. Similarly, a survey conducted in New Zealand (Paynter 1996) reports that 86% of the 
responding software development organizations applied “expert estimation” and only 26% applied “automated 
or manual models” (an organization could apply more than one method). A study of the information systems 
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development department of a large international financial company (Hill, Thomas et al. 2000) found that no 
formal software estimation model was used.  Jørgensen (1997) reports that 84% of the estimates of software 
development projects conducted in a large Telecom company were based on expert judgment, and Kitchenham 
et al. (2002) report that 72% of the project estimates of a software development company were based on “expert 
judgment”. In fact, we were not able to find any study reporting that most estimates were based on formal 
estimation models. The estimation strategy categories and definitions are probably not the same in the different 
studies, but there is nevertheless strong evidence to support the claim that expert estimation is more frequently 
applied than model-based estimation. This strong reliance on expert estimation is not unusual. Similar findings 
are reported in, for example, business forecasting, see (Remus, O'Connor et al. 1995; Winklhofer, 
Diamantopoulos et al. 1996).  

There may be many reasons for the reported low use of formal software development effort estimation 
models, e.g., that software organizations feel uncomfortable using models they do not fully understand. Another 
valid reason is that, as suggested in our survey in Section 3, we lack substantial evidence that the use of formal 
models lead to more accurate estimates compared with expert estimation. The strong reliance on the relatively 
simple and flexible method of expert estimation is therefore a choice in accordance with the method selection 
principle described in “Principles of Forecasting” (Armstrong 2001c, p. 374-375): “Select simple methods 
unless substantial evidence exists that complexity helps. … One of the most enduring and useful conclusions 
from research on forecasting is that simple methods are generally as accurate as complex methods.” However, 
even if we had substantial evidence that the formal models led to, on average, more accurate estimates, this may 
not be sufficient for widespread use. Todd and Benbasat (2000), studying people’s strategies when conducting 
decisions based on personal preferences, found that a decision strategy also must be easier to apply, i.e., demand 
less mental effort, than the alternative (default) decision strategy to achieve acceptance by the estimators. 
Similarly, Ayton (1998) summarizes studies from many domains where experts were resistant to replace their 
judgments with simple, more accurate decision rules. 

3 Performance of Expert Estimation in Comparison with Estimation 
Models 

We found fifteen different empirical software studies comparing expert estimates with estimates based on 
formal estimation models. Table 2 briefly describes the designs, the results and the, from our viewpoint, 
limitations of the studies in a chronological sequence. We do not report the statistical significance of the 
differences in estimation accuracy, because most studies do not report them, and because a meaningful 
interpretation of significance level requires that: 1) A population (of projects, experts, and estimation situations) 
is defined, and, 2) A random sample is selected from that population. None of the reported studies define the 
population, or apply random samples. The samples of projects, experts and estimation situations are better 
described as “convenience samples”. We use the term “expert” (alternatively, “software professional” or 
“project leader”) in the description of the estimators, even when it is not clear whether the estimation situation, 
e.g., experimental estimation task, enables the expert to apply his/her expertise. Consequently, experts may in 
some of the studies be better interpreted as novices, even when the participants are software professionals and 
not students. 
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Table 2: Software Studies on Expert Estimation of Effort 
Nr References Designs of Studies Results and Limitations 
1 (Kusters, 

Genuchten et al. 
1990) 

Experimental comparison of the estimation accuracy of 14 
project leaders with that of estimation models (BYL and 
Estimacs) on 1 finished software project. 

The project leaders’ estimates were, on average, more accurate than the estimation 
model. Limitations: 1) The experimental setting, 2) The estimation models were not 
calibrated to the organization. 

2 (Vicinanza, 
Mukhopadhyay 
et al. 1991) 

Experimental comparison of the estimation accuracy of 5 
software professionals with that of estimation models 
(function points and COCOMO) on 10 finished software 
projects.  

The software professionals had the most and least accurate estimates, and were, on 
average, more accurate than the models. Limitation: 1) The experimental setting. 2) The 
project information was tailored to the estimation models, e.g., no requirement 
specification was available, and 3) The estimation models were not calibrated to the 
organization. 

3 (Heemstra and 
Kusters 1991) 

Questionnaire based survey of 597 Dutch companies.  The organizations applying function points-based estimation models had the same 
estimation accuracy as those not applying function points (mainly estimates based on 
“intuition and experience”) on small and medium large projects, and lower accuracy on 
large projects. The use of function points reduced the proportion of very large (>100%) 
effort overruns. Limitations: 1) The questionnaire data may have a low quality2, 2) The 
relationship is not necessarily causal, e.g., the organizations applying estimation models 
may be different to other organizations. 3) Response rate not reported. 

4 (Lederer and 
Prasad 1992), 
(Lederer and 
Prasad 1993),  
(Lederer and 
Prasad 1998), 
(Lederer and 
Prasad 2000) 
(reporting the 
same study) 

Questionnaires based survey of 112 software organizations. 
 

The algorithmic effort estimation models did not lead to higher accuracy compared with 
“intuition, guessing, and personal memory”. Limitations: 1) The questionnaire data may 
have a low quality, 2) The relationship is not necessarily causal, e.g., the organizations 
applying estimation models may be different to other organizations. 3) Response rate of 
only 29%, i.e., potential biases due to differences between the organizations that 
answered and those that did not. 

5 (Mukhopadhyay, 
Vicinanza et al. 
1992) 

Experimental comparison of the estimation accuracy of 1 
expert with that of estimation models (case-based reasoning 
model based on previous estimation strategy of the expert, 
function points, and COCOMO) on 5 finished software 
projects. 

The expert’s estimates were the most accurate, but not much better than the case-based 
reasoning estimation model. The algorithmic estimation models (COCOMO and function 
points) were the least accurate. Limitations: 1) The experimental setting, 2) The 
algorithmic estimation models were not calibrated to the organization, 3) Only one 
expert. 

6 (Atkinson and 
Shepperd 1994) 

Experimental comparison of the estimation accuracy of 
experts (students?) with that of estimation models (analogy 
and function points) on 21 finished projects. 

One of the analogy-based estimation models provided the most accurate estimates, then 
the expert judgments, then the two other analogy based models, and finally, the function 
point based estimation model. Limitations: 1) The experimental setting, 2) Missing 
information about the expert estimators and the models3. 

7 (Pengelly 1995) Experimental comparison of the estimation accuracy of 
experts (activity-based estimates) with that of estimation 
models (Doty, COCOMO, function point, and Putnam 
SLIM) on 1 finished project. 

The expert estimates were the most accurate. Limitations: 1) The experimental setting, 2) 
The estimation models were not calibrated to the organization, 3) Only one project was 
estimated. 

8 (Jørgensen 1997) Observation of 26 industrial projects, where 5 applied the The function point based estimates were more accurate, mainly due to avoidance of very 
                                                            

2 We include this comment on both studies applying questionnaires, because questionnaire studies typically have limited control over the quality of their data, see (Jørgensen 1995). 
3 We were only able to locate a preliminary version of this paper (from one of the authors). It is possible that the final version provides more information about the expert estimation process. 
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function point estimation model, and 21 were based on 
expert estimates (bottom-up-based estimates). 

large effort overruns. Limitations: 1) Most projects applying the function point model did 
also provided a bottom-up expert judgment-based effort estimate and combined these 
two estimates, 2) The relationship is not necessarily causal, e.g., the projects applying an 
estimation model may be different from the other projects. 

9 (Niessink and 
van Vliet 1997) 

Observations of 140 change tasks of an industrial software 
system. Comparison of the original expert estimates with 
estimates from formal estimation models (function points 
and analogy). 

The analogy based-model had the most accurate estimates. The expert estimates were 
more accurate than the function point estimates. Limitations: 1) The expert estimates 
could impact the actual effort, the formal models could not, 2) The formal models used 
the whole data set as learning set (expect the task to be estimated), the expert estimates 
had only the previous tasks. 

10 (Ohlsson, 
Wohlin et al. 
1998) 

Observation of 14 student software projects developing the 
same software. 

The projects applying data from the experience database had no more accurate estimates 
than those which did not use the experience database. Estimation models based on 
previous projects with same requirement specification (analogy-based models) did not 
improve the accuracy. Limitations: 1) The competence level of the estimators (students), 
2) The artificial context of student projects, e.g., not real customer. 

11 (Walkerden and 
Jeffery 1999) 

Experimental comparison of the estimation accuracy of 25 
students with that of estimation models (analogy and 
regression based models) on 19 projects. 

The experts’ estimates had the same accuracy as the best analogy based model and better 
than the regression-based and the other analogy-based models. Estimates based on expert 
selected analogies, with a linear size adjustment, provided the most accurate effort 
estimates. Limitations: 1) The experimental setting, 2) The competence level of the 
estimators (students), 3) The project information was tailored to the estimation models, 
e.g., no requirement specification was available. 

12 (Myrtveit and 
Stensrud 1999) 

 

Experimental comparison of the estimation accuracy of 68 
software professionals with that of a combination of expert 
estimates and models (analogy and regression), and models 
alone on 48 COTS projects (each participant estimated 1 
project). 

The models had the same or better accuracy than the combination of model and expert, 
and better accuracy than the unaided expert. Limitations: 1) The experimental setting, 2) 
The project information was tailored to the estimation models, e.g., no requirement 
specification was available. 

13 (Bowden, 
Hargreaves et al. 
2000) 

Experimental comparison of students’ ability to find 
“objects” as input to an estimation model in comparison 
with an expert system. 

There was no difference in performance. Limitations: 1) The experimental setting, 2) 
The competence level of the estimators (students), 3) Study of input to effort estimation 
models, not effort estimation. 

14 (Jørgensen and 
Sjøberg 2002b) 

Observation of experts’ ability to predict uncertainty of 
effort usage (risk of unexpected software maintenance 
problems) in comparison with a simple regression-based 
estimation model. Study based on interviews with 54 
software maintainer before start and after completion of 
maintenance tasks. 

The simple regression model predicted maintenance problems better than software 
maintainers with long experience. Limitations: 1) Assessment of effort estimation 
uncertainty, not effort estimation. 

15 (Kitchenham, 
Pfleeger et al. 
2002) 

Observations of 145 maintenance tasks in a software 
development organization. Comparison of expert estimates 
with estimates based on the average of two estimation 
methods, e.g., the average of an expert estimates and a 
formal model-based estimate. The actual projects estimates 
were also compared with the estimates from estimation 
models (variants of a regression + function point-based 
model) based on the observed maintenance tasks. 

There was no difference in estimation accuracy between the average-combined and the 
purely expert-based estimates. The expert estimates were more accurate than the model-
based estimates. Limitations: 1) The relationship is not necessarily causal, e.g., the 
project combining estimation methods may be more complex than the other projects. 2) 
The expert estimates could impact the actual effort, the formal models could not4. 

                                                            
4 The authors conclude that the estimates did not impact the actual effort. 
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The results of the studies in Table 2 are not conclusive. Of the fifteen studies, we categorize five to be in 
favour of expert estimation (Studies 1, 2, 5, 7, and 15), five to find no difference (Studies 3, 4, 10, 11, and 13), 
and five to be in favour of model-based estimation (Studies 6, 8, 9, 12, and 14). 

Interesting dimensions of the studies are realism (experiment versus observation), calibration of models 
(calibrated to an organization or not), and level of expertise of the estimator (students versus professionals). A 
division of the studies into categories based on these dimensions suggests that the design of the empirical studies 
has a strong impact on the result. All experiments applying estimation models not calibrated to the estimation 
environment (Studies 1, 2, 5 and 7) showed that the expert estimates were the most accurate. On the other hand, 
all experiments applying calibrated estimation models (Studies 10, 11, 12 and 13) showed a similar or better 
performance of the models. The higher accuracy of the experts in the first experimental situation can be 
explained by the estimation models’ lack of inclusion of organization and domain specific knowledge5. The 
similar or better accuracy of the models in the second experimental situation can be explained by the lack of 
domain-specific knowledge of the experts, i.e., in Studies 10, 11 and 13 the estimators were students, and in 
Study 12 the estimation information seems to have been at a, for the software professional, unfamiliar format. 

Three of the studies (Studies 8, 9, and 14) where the model-based estimates were calibrated, and both expert 
and model estimates were applied by software projects, i.e., the five observational studies (Studies 3, 4, 8, 9, and 
14), show results in favour of model-based estimation. The remaining two studies of that category (Studies 3, 
and 4), report similar accuracy of the models and the experts. A possible explanation for the similar or higher 
accuracy of model-based estimates of the observational studies is that the real-world model-based estimates 
frequently were “expert adjusted model estimates”, i.e., a combination of model and expert. The model-based 
estimates of Study 8, for example, seem to be of that type. A typical “expert adjusted model estimation”-process 
may be to present the output from the model to the experts. Then, the domain experts adjust the effort estimate 
according to what she/he believes is a more correct estimate. If this is the typical model-based estimation 
process, then the reported findings indicate that a combination of estimation model and expert judgment is better 
than pure expert estimates. More studies are needed to examine this possibility. 

The above fifteen studies are not conclusive, other than that there is no substantial evidence in favour of 
either model or expert-based estimates. In particular, we believe that there is a need for comparative studies 
including a description of the actual estimation models and actual expert estimation processes in real software 
effort estimation situations. 

None of the studies in Table 2 were designed for the purpose of examining when we can expect expert 
estimation to have the same or better estimation accuracy compared with estimation models. This is however the 
main question. Clearly, there exist situations were the use of formal estimation models leads to more accurate 
estimates, and situations where expert estimation results in higher accuracy, e.g., the two types of experimental 
situations described earlier. To increase the understanding of when we can expect expert estimates to have an 
acceptable accuracy in comparison with formal estimation models, we have tried to derive major findings from 
relevant human judgment studies, e.g., time estimation studies, and describe the consistence between these 
findings and the software-related results. This turned out to be a difficult task, and the summary of the studies 
described in Table 3 should be interpreted carefully, e.g., some of the findings are rather vaguely formulated, 
and other researchers may interpret the results from the same studies differently. 

                                                            
5 There is an on-going discussion on the importance of calibrating an estimation model to a specific organization. While 

the majority of the empirical software studies, e.g., (Cuelenaere, Genuchten et al. 1987; Marouane and Mili 1989; Jeffery and 
Low 1990; Marwane and Mili 1991; Murali and Sankar 1997; Jeffery, Ruhe et al. 2000) report that calibration of estimation 
models to a specific organization led to more accurate estimates, the results in (Briand, El Emam et al. 1999; Briand, Langley et 
al. 2000) suggest that use of multi-organizational software development project data were just as accurate. However, the 
results in (Briand, El Emam et al. 1999; Briand, Langley et al. 2000) do not report from studies calibrating general estimation 
products. For example, the difference between the projects on which the original COCOMO model was developed (Boehm 
1981) and projects conducted in the 1990s may be much larger than the difference between multi-organizational and 
organization specific project data. The evidence in favour of calibration of general estimation models in order to increase the 
estimation accuracy is, therefore, strong. 
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Table 3: Expert versus Model Estimates 
Findings Strength 

of 
Evidence 

Sources of Evidence Consistence Between the Findings and the Results Described in 
Software Studies? 

Expert estimates are 
more accurate than 
model estimates when 
the experts possess (and 
efficiently apply) 
important domain 
knowledge not included 
in the estimation models.  
Model estimates are 
more accurate when the 
experts do not possess 
(or efficiently apply) 
important domain 
knowledge not included 
in the estimation models. 

Strong These findings are supported by “common sense”, e.g., it is 
obvious that there exists important case-specific domain 
knowledge about software developers and projects that 
cannot be included in a general estimation model. The 
finding is also supported by a number of studies (mainly 
business forecasting studies) on the importance of specific 
domain knowledge in comparison with models, see 
(Lawrence and O'Connor 1996; Webby and O'Connor 1996; 
Johnson 1998; Mendes, Counsell et al. 2001) for reviews on 
this topic. However, as pointed out by Dawes (1986), based 
on studies of clinical and business judgment, the 
correspondence between domain knowledge and estimation 
skills is easily over-rated. 
Meehl (1957) summarizes about 20 studies comparing 
clinical judgment with judgment based on statistical models. 
He found that the models had the same or better performance 
in all cases. The same negative result was reported by Dawes 
(1986). The results in favour of models seems to be less 
robust when the object to be estimated include human 
behavior, e.g., traffic safety (Hammond, Hamm et al. 1987). 

Yes. 
All studies where the models were not calibrated to the organizational 
context and the estimators had domain knowledge (Studies 1, 2, 5 and 7) 
report that the expert estimates were more accurate. 
All studies were the estimators had little relevant domain knowledge (due 
to the lack of requirement specification, lack of experience or project 
information tailored to the estimation models), and the estimation models 
were calibrated to the organizational context (Studies 10, 11, 12 and 13) 
report that the models had the same or better performance. 

Expert estimates are 
more accurate than 
model estimates when 
the uncertainty is low. 
Model estimates are 
more accurate when the 
uncertainty is high, e.g., 
when the project is much 
larger than previous 
projects. 

Medium  The majority of studies (mainly business forecasting studies) 
support this finding, e.g., (Braun and Yaniv 1992; Shanteau 
1992; O'Connor, Remus et al. 1993; Hoch and Schkade 
1996; Soll 1996). However, a few studies suggest that 
uncertain situations favour expert judgment, e.g., the study 
described in (Sanders and Ritzman 1991) on business related 
time series forecasting. 

 

Mixed. 
Study 3 reports that high uncertainty did not favour the use of (function 
point-based) estimation model. Similarly, Study 9 reports results 
suggesting that low uncertainty (homogeneous tasks) did not favour 
expert estimates compared with an analogy-based model. An 
investigation of the available studies on this topic suggests that high 
uncertainty favour the estimation models only if the uncertainty is 
included in the estimation model. If, however, a new software task is 
uncertain because it represents a new type of situation not included in 
model’s learning data set, e.g., reflects the development of a project 
much larger than the earlier projects, then the models are likely to be less 
accurate. Similar results on how uncertainty impact the expert estimation 
performance are reported in (Goodwin and Wright 1990) on time series 
forecasting.  



8 

Experts use simple 
estimation strategies 
(heuristics) and perform 
just as well or better than 
estimation models when 
these simple estimation 
strategies (heuristics) are 
valid. Otherwise, the 
strategies may lead to 
biased estimates. 

Strong The results reported in (Josephs and Hahn 1995; Todd and 
Benbasat 2000), describing studies on time planning and 
general decision tasks, indicate that the estimation strategies 
used by unaided experts were simple, even when the level of 
expert knowledge was high. Increasing the time pressure on 
the estimators may lead the experts to switch to even simpler 
estimation strategies, as reported in the business forecasting 
study described in (Ordonez and Benson III 1997). 
Gigerenzer and Todd (1999) present a set of human 
judgment studies, from several domains, that demonstrate an 
amazingly high accuracy of simple estimation strategies 
(heuristics). Kahneman et al. (1982), on the other hand 
studied similar judgment tasks and found that simple 
strategies easily led to biased estimates because the 
heuristics were applied incorrectly, i.e., they demonstrated 
that there are situations where the simple estimation 
strategies applied by experts are not valid. Unfortunately, it 
may be difficult to decide in advance whether a simple 
estimation strategy is valid or not. 

Yes.  
The software development estimation experiment reported in (Jørgensen 
and Sjøberg 2001b) suggests that the experts applied the so-called 
“representativeness heuristic”, i.e., the strategy of finding the most 
similar previous projects without regarding properties of other, less 
similar, projects (see also discussion in Section 4.5). Most of the 
estimators applied a valid version of this, but some of them interpreted 
representativeness too “narrow”, which lead to biased estimates. 
Similarly, Study 14 suggests that the low performance in assessing 
estimation uncertainty of experienced software maintainers were caused 
by misuse of the “representativeness heuristic”. 

Experts can be strongly 
biased and misled by 
irrelevant information, 
e.g., towards over-
optimism. Estimation 
models are less biased. 

Strong Substantial evidence supports this finding, e.g., (Kahneman, 
Slovic et al. 1982; Blattberg and Hoch 1990; Lim and 
O'Connor 1996; Connolly and Dean 1997; Makridakis, 
Wheelwright et al. 1998, p. 500-501; Whitecotton, Sanders 
et al. 1998; Hill, Thomas et al. 2000) reporting results from 
various domains. In particular relevant are the studies on the 
“planning fallacy” (Kahneman and Tversky 1979), i.e., the 
studies on people’s tendency to provide too optimistic 
prediction of own performance in spite of knowledge about 
their previous over-optimism. Buehler et al. (1997) 
summarize studies on possible cognitive and motivational 
reasons for the planning fallacy. 

Yes. 
The studies that describe expert and model estimates actually used by 
industrial software projects and report the size of the individual projects’ 
effort over-runs (Studies 3 and 8) suggest that the risk of large effort 
over-runs was reduced when applying estimation models. The software 
development estimation results described in (Jørgensen and Sjøberg 
2001a) suggest that an early estimate based on little information strongly 
biased the re-estimation, although the estimators were told not to use the 
early estimate as input, i.e., irrelevant information strongly misled the 
estimators. 
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An interesting observation is that the software development expert estimates are not systematically worse 
than the model-based estimates, such as the expert estimates in most other studied professions. For example, 
Dawes (1986) reports that the evidence against clinical expert judgment, compared with formal models, is 
overwhelming. Many of the studies described in Table 2, on the other hand, suggest that software development 
experts have the same or better accuracy as the formal estimation models. We believe that the two most 
important reasons for this difference in results are: 
•  The importance of specific domain knowledge (case-specific data) is higher in software development 

projects than in most other studied human judgment domains. For example, while most clinical diseases are 
based on stable biological processes with few, well-established diagnostic indicators, the relevant indicators 
of software development effort may be numerous, their relevance unstable and not well-established. For 
example, Wolverton (1974) found that: “There is a general tendency on the part of designers to gold-plate 
their individual parts of any system, but in the case of software the tendency is both stronger and more 
difficult to control than in the case of hardware.” How much a particular project member tend to gold-plate, 
i.e., to improve the quality beyond what is expected by the customer, is hardly part of any estimation model, 
but can be known by an experienced project leader. According to Hammond et al. (1987) a “fit” between 
the type of estimation (human judgment) task and the selected estimation approach is essential, i.e., if a task 
is an expert estimation (intuition) inducing task, then the experts provide the most accurate estimates and 
when the task is a model estimation (analysis) inducing task then the models provided the most accurate 
estimates. As we interpret Hammond et al., many software development effort estimation tasks are expert 
estimation inducing tasks. 

•  The performance of the software development estimation models is poorer than estimation models in most 
other studied human judgment domains. For example, although there has been much research on the shape 
of the software “production function”, i.e., relation between input and output parameters, for several years, 
no agreement has been reached. Dolado (2001), for example, investigated the relationship between software 
size and effort on 12 data sets using regression analysis and genetic programming. He reported that it was 
hard to conclude on a relationship between effort and size, and that we could only expect moderately good 
results of size-based estimation models. Currently, most software development effort estimation models are 
size-based. 

On the other hand, we do not believe that the software development experts are more skilled estimators than 
experts in other domains. On the contrary, as reported in (Jørgensen and Sjøberg 2001a; Jørgensen and Sjøberg 
2002b) the focus on learning estimation skills from software development experience seems to be very low. 

Many of the shortcomings of expert estimation may be reduced when following well-documented estimation 
principles. In the following sections we present and discuss 12 expert estimation principles that have 
improvement of expert estimation as goal. 

4 Reduce Situational and Human Biases 

Lederer et al. (1990) describe a “rational” and a “political” model of the estimation process, based on 
interviews with 17 software managers. The rational model describes the estimation process as in most text-
books on estimation, i.e., as a rational process with estimation accuracy as the only goal, while the political 
model describes the estimation process more as a “tug-of-war” with individual motives, differing goals, and 
power conflicts. While some of the biases resulting from a “tug-of-war” are situational, e.g., the wish to get a 
contract, others are more inherent human, e.g., the general need for positive feedback from other people. This 
section suggests six estimation principles aiming at reducing the size of situational and human biases: 
•  Evaluate estimation accuracy, but avoid high evaluation pressure. 
•  Avoid conflicting estimation goals. 
•  Ask the estimators to justify and criticize their estimates. 
•  Avoid irrelevant and unreliable estimation information. 
•  Use documented data from previous development tasks. 
•  Find estimation experts with highly relevant domain background and good estimation records. 

A general framework for identifying and handling the situational and human biases is described in (Meyer 
and Booker 1991, p. 44-53). 

4.1 Evaluate Estimation Accuracy, but Avoid High Evaluation Pressure 

Several human judgment studies suggest that a high motivation for accuracy, for example when people feel 
personally responsible, perceive that the estimation task is very important or receive monetary rewards for 
accurate estimates, actually decreases the estimation accuracy (Sieber 1974; Armstrong, Denniston Jr. et al. 
1975; Cosier and Rose 1977). Pelham and Neter (1995) suggest that this decrease in human judgment accuracy 
is mainly a problem in the case of difficult judgments, whereas high motivation for accuracy increases the 
estimation accuracy in cases with easy judgments. Their findings are consistent with the large number of studies 
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on the effect of “evaluation apprehension”, e.g., (Sanders 1984). An increased awareness of being evaluated 
seems to increase the level of so-called “dominant responses” (instincts) on cost of reflective responses (Zajonc 
1965), i.e., evaluation leads to more instinct and less reflection. That effect may be very robust, e.g., Zajonc et 
al. (1969) measured a decrease in performance by cockroaches completing a maze when other cockroaches were 
present. When reflections and analyses are important and the task is difficult, as in many software development 
estimation situations, a strong perception of evaluation may therefore lead to less accurate estimates. 

These results are, at first sight, not consistent with the results reported from the empirical software 
development studies on this topic. For example, Lederer and Prasad (1998) report that the factor with the highest 
impact on the estimation accuracy was the use of the estimation accuracy in the evaluation of the performance 
of the software professionals.  Similarly, the software estimation studies (Weinberg and Schulman 1974; 
Jørgensen and Sjøberg 2001a) found that inducing estimation accuracy as an important performance measure 
improved the estimation accuracy compared with situations where the projects were evaluated according to, e.g., 
time precision or quality. 

The different findings are, in our opinion, not in conflict. There is no reason to believe that software 
professionals are different from other estimators, i.e., an increased perception of accuracy evaluation may easily 
lead to decreased estimation accuracy of software projects. However, evaluations may also lead to: 1) The “self-
fulfilling prophecy” effect of software effort estimates, e.g., that an over-optimistic initial estimate and a high 
focus on estimation accuracy lead to actions that make that estimate more realistic as reported in the software 
project simulation study (Abdel-Hamid, Sengupta et al. 1999), and 2) An increase in “self-critical thinking” as 
in the study of first-job salary and exam results prediction of students reported in (Shepperd, Fernandez et al. 
1996). For example, when the accountability is high people may be motivated to spend more time and collect 
more relevant information to achieve an accurate estimate. The total effect of accuracy evaluation, therefore, 
depends on the strength of the pressure due to the accuracy evaluation, the flexibility of the work (determining 
the possible effect from the “self-fulfilling prophecy”), and the increased degree of “self-critical thinking” as a 
consequence of the evaluation. Software managers should focus on achieving the benefits from accuracy 
evaluation, while avoiding the disadvantages. In our opinion, this means that the estimation accuracy should be 
part of the projects’ evaluation criteria, but that a strong pressure from accuracy accountability or 
reward/punishment should be avoided. In addition, means to ensure “self-critical thinking” should be 
introduced, e.g., through estimation checklists and described estimation processes. 

4.2 Avoid Conflicting Goals 

There are conflicting estimation goal in situations where the estimation process is impacted by other goals 
(evaluations) than the accuracy of the estimate. This section focuses on two important instances of conflicting 
estimation goals: 1) The conflicts between “bid”, “planned effort” and “most likely effort”, and 2) The conflict 
between “wishful thinking” and “realism”. 

Jørgensen and Sjøberg (2001a) report that, frequently, there was no distinction between “bid”, “planned 
effort” and “most likely effort” when estimating software development effort. Similar results, i.e., that the 
distinction between planning and estimation are “blurred”, are reported in the time-estimation studies described 
in (Edwards and Moores 1994; Goodwin 1998). The decisions on “bid”, “planned effort” and “most likely 
effort”, however, have conflicting goals. A bid should, optimally, be low enough to get the job and high enough 
to maximize profit, the planned effort should enable a successful project and motivate to efficient work, and the 
estimate of the most likely effort should represent the most realistic use of effort. The conflict between these 
goals, together with the lack of separation of them, may hinder realism of the expert estimates. We have not 
found any software studies on the impact of this conflict on accuracy of effort estimate. However, applying 
common sense and the results described in the human judgment studies (Cosier and Rose 1977; Keen 1981; 
Buehler, Griffin et al. 1997), where conflicting goals were reported to reduce the realism of the estimates, we 
believe that the evidence against mixing the goals of “bid”, “planned effort” and “most likely effort” are fairly 
strong. 

The results from many human judgment studies indicate that people get over-optimistic when predicting 
own performance, i.e., they have problems separating “wish” and “realism”. A summary of these studies is 
described by Harvey (2001). Potential reasons for this over-optimism, or “planning fallacy” (Kahneman and 
Tversky 1979), are the “I am above average”-bias (Klein and Kunda 1994), and the lack of distinction between 
“best case” and “most realistic case” (Newby-Clark, Ross et al. 2000). A general phenomenon seems to be that 
the level of over-optimism increases with the level of control (Koehler and Harvey 1997), e.g., a software 
developer responsible for the whole task to be estimated is supposed to be more over-optimistic than a project 
leader that plans and supervises the work of other project members. This over-optimism may be difficult to 
reduce, and in (Newby-Clark, Ross et al. 2000) it was found that the only effective method was to let someone 
other than the executing person predict the work. The same conclusion is reported in (Harvey 2001): “someone 
other than the person(s) responsible for developing and implementing a plan of action should estimate its 
probability of success.” Buehler et al. (1994) found that the cause of an increased realism, when estimating other 
peoples work, was the increase in use of previous experience, i.e., while estimating own work induces mental 
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work on how to complete the task (construction), estimating other people’s work induces reflections on how 
much effort similar tasks required (history reflections). Unfortunately, we have not been able to find any 
published software development estimation specific study on the topic of estimating own work or other people’s 
work6. 

Similarly to the discussion in Section 4.1, there are advantages of estimating own work. For example, if 
there is a high level of flexibility in how to implement a software specification, then an initially over-optimistic 
estimate of own work may lead to actions that make the estimate more realistic. The decision whether to 
estimating own work or not may therefore be a trade-off between the potential advantages, e.g., higher 
motivation for low use of effort, and the disadvantages, e.g., the strong tendency of over-optimism. In situations 
where there are small opportunities for “self-fulfilling prophecies”, e.g., when the flexibility of the project work 
is strongly limited, then the software developers should, optimally, not estimate their own work. In real projects, 
however, estimation of own work may be the only option, e.g., because there are no other experts on a particular 
task. In such cases, it is especially important to be aware of the typical over-optimism and apply the de-biasing 
estimation principles described in this paper. 

An illustrative example of a conflict between wishful thinking and realism when predicting own 
performance is described in (Griffin and Buehler 1999): “Canadians expecting an income-tax refund were asked 
to predict when they would complete and mail in their tax forms. These respondents had indicated that they 
typically completed this chore about 2 weeks before the due rate; however, when asked about the current year, 
they predicted that they would finish, on average, about 1 month in advance of the due date. In fact, only 30% of 
the respondents were finished by their predicted data - on average they finished, as usual, about 2 weeks before 
the deadline.”  

There are other, obviously unfortunate, variants of the conflict between “wishful thinking” and “realism”, 
e.g., the “software estimation game” described in (Thomsett 1996): “Boss: Hi, Mary. How long do you think it 
will take to add some customer enquiry screens to the Aardvark System? Mary: Gee … I guess about six weeks 
or so. Boss: WHAAT?!!!! That long?!!! You’re joking, right? Mary: Oh! Sorry. It could be done perhaps in four 
weeks….” This type of situation both puts an unfortunate pressure on the estimator and leads to conflicting 
goals, i.e., a conflict between “be realistic” and “please the manager”.  

Software professionals should learn to identify estimation goals different from accuracy, and try to avoid or 
at least reduce the impact from them. In particular, software professionals should learn to identify when a person 
has a particularly strong interest in the outcome, e.g., when a person strongly want the project to be started. In 
this kind of conflicting goals situation, the highly involved person cannot be expected to provide realistic 
estimates, even when she/he is the person with the longest and most relevant experience. 

4.3 Ask Estimators to Justify and Criticize Their Estimates. 

Expert estimation of effort is frequently a “constructive” process. The estimators try to imagine how to build 
the software, which pieces that are necessary to develop and the effort needed to implement and integrate the 
pieces. Empirical results from human judgment studies suggests that this type of process easily lead the 
estimator into the mode of “confirming theories on how to complete the project”, rather than “reject incorrect 
hypotheses and assumptions” (Brehmer 1980; Koehler 1991). This means that the estimators’ confidence in their 
estimates depend more on the amount of effort they spent working on it, than on the actual accuracy of the 
estimate. Justification and critique of own estimates may have several important advantages related to this 
problem. It may: 
•  increase of the accuracy of the estimate, particularly in high uncertainty situations (Hagafors and Brehmer 

1983), 
•  lead to a more analytical estimation process and reduce the risk of using too simple estimation strategies 

(Hammond 1996), 
•  improve the level of confidence in the estimate (Koriat, Lichtenstein et al. 1980), and 
•  improve the compensation for missing information (Brenner, Koehler et al. 1996). 

All the above studies were general human judgment studies, e.g., studies based on real-world clinical 
judgment tasks, business tasks, or estimates of so-called “almanac quantities”. We have found no published 
software development estimation study on this topic. 

However, as part of an experiment conducted by the author of this paper, we asked thirteen software 
professionals to estimate the effort they would need to implement a specified timeshift-swapping system for 
hospital nurses. When the effort estimates were completed, the estimators were asked to list reasons why their 
estimate could be wrong, i.e., a critique of their own estimates. The average number of reasons listed were 4.3, 
ranging from 2 to 8. Finally, the estimators were asked to consider a change of their original estimates in light of 
their critique. Nine out of the thirteen software professionals increased their estimates of most likely effort, four 

                                                            
6 In a recent, unpublished, study of sixty small and medium large software development tasks, we find supporting 

evidence for this difference between estimation own and other peoples work. The difference in level of over-optimism was 
significant, but not very large. 
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of them more than 25%. The average increase in effort estimate was, however, only 10%, and four of the 
participants actually decreased their estimates. We had no opportunity to let the software professionals develop 
the software, i.e., we had no information about the realism of their estimates. However, the small, on average, 
adjustments suggested by our results mean that, although potentially helpful to improve estimation realism, we 
should not expect that justification and criticism improve the realism of estimates very much. If the initial 
estimate is hugely over-optimistic, a justification and critique may only improve the realism to some extent. A 
possible reason for this limited impact is described in (Einhorn and Hogarth 1978), based on studies on clinical 
judgment and probability assessments. Estimators are typically not very skilled in searching for weakening 
information when evaluating their own estimates.  

In spite of the expected small impact on the realism of the estimate, we believe that justification and 
criticism are sound and low-cost elements of improvements of expert estimates. 

4.4 Avoid Irrelevant and Unreliable Estimation Information 

It is easy to accept that irrelevant and unreliable information should be avoided. However, we have yet to see 
a checklist or estimation process effectively implementing this estimation principle. This may reflect the belief 
that expert estimators are able to filter out irrelevant and unreliable information when facing it. There are, 
however, several human judgment studies that suggest that this is not always the case, and that expert estimates 
may be strongly impacted by irrelevant information, even when the estimators know that the information is 
irrelevant. For example: 
•  Whitecotton et al. (1998) report that people are just as good as models to provide financial forecasts when 

presented with the same highly relevant information, but less accurate when irrelevant information is 
included. 

•  Lim and O’Connor (1996) report from business related time series predictions that an adjustment of an 
estimate for new information was not sufficient when the initial estimate was highly inaccurate, i.e., that the 
unreliable initial estimate strongly impacted the subsequent estimates. The software development estimation 
study described by Abdel-Hamid et al.(1993) confirm this result. 

•  Tversky and Kahneman (1974) report, based on general knowledge tasks, that the estimators were impacted 
by irrelevant information, because it was included in the question, i.e., people may have an implicit 
tendency to regard information as important when it is presented in the same context as the estimation 
problem. 

•  Ettenson et al. (1987) report that domain experts (financial auditing) were better than novices to focus on 
the most relevant information, i.e., the experts applied less information compared with the novices. 
Selection of proper experts may, therefore, be important to avoid strong impact from irrelevant information. 

•  Jørgensen and Sjøberg (2002a) report that the information about the software development cost expected by 
the customer had a strong impact on the estimate even when the estimators were told that the customer 
knew nothing about the realistic costs and that the information should be regarded as irrelevant for the 
estimation task. More surprisingly, this impact from the customer expectation was strongly underestimated 
by the software professionals. 

Consequently, it is may not be sufficient to warn against irrelevant information or instruct people to consider 
information as unreliable. The only safe approach seems to avoid irrelevant and unreliable information. For 
example, it may be difficult to provide realistic effort estimates if the customer expects an unrealistically low 
level of cost, and the estimator knows this. Then, the only safe option may be to find a new estimator, without 
that knowledge. 

4.5 Use Documented Data from Previous Development Tasks 

Use of documented data means that that the expert estimators have the opportunity to apply a more analytic 
estimation strategy and consequently, be less prone to human and situational biases. Benefits from use of 
documented software project data are reported by Lederer and Prasad (1992), who found that software project 
cost overruns were associated with lack of documented data from previous tasks, i.e., high reliance on “personal 
memory”. Without documented data people seem to both over-react to immediate past information, as reported 
in the time series prediction study (Remus, O'Connor et al. 1995), and rely too much on the “representativeness” 
estimation strategy, see the software development estimation study (Jørgensen and Sjøberg 2002b). The 
“representativeness” estimation strategy means, for example, that people use the actual effort of the most similar 
(most representative) recalled task as staring point for the estimate without regarding the distribution of effort of 
other similar tasks. This strategy works well when the most similar task is sufficiently similar, represents the 
typical use of effort on such tasks, and the estimation uncertainty is low. The strategy may, however, lead to 
inaccurate estimates when the need for adjustment is large, as illustrated in the business forecasting study 
(Blattberg and Hoch 1990), or the expected impact from the “regression toward the mean”7 is high, as reported 
                                                            

7 The impact from “regression toward the mean” is based on the observation that high or low performance tends to be 
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in the human judgment and software estimation studies (Kahneman and Tversky 1973; Nisbett and Ross 1980; 
Jørgensen 2002). 

A similar argument for the importance of documented data is reported in the time usage estimation study 
(Kahneman and Lovallo 1993). That study claims that people tend to adopt an “internal” or “inside” perspective 
on the estimation task, when relying on their own memory, instead of documented data. This “inside” 
perspective leads to a concentration on case-specific planning and a neglect of “background” information, such 
as the distribution of completion times for similar projects or the robustness of the construction plan. An 
“inside” perspective may work well when the estimator has strongly relevant task experience and the situation 
does not induce biases, but may otherwise lead to a high degree of estimation inaccuracy. The results described 
in (Kahneman and Lovallo 1993) may explain the reduction of high effort overruns from use of models reported 
in the software development estimation studies (Heemstra and Kusters 1991; Jørgensen 1997). The use of 
estimation models increases the use of historical data and, consequently, removes the potentially large biases 
from expert estimators’ “inside view” and the use of the “representativeness” estimation strategy. 

The software development estimation results reported in (Walkerden and Jeffery 1999) indicate that a semi-
automated use of documented data leads to the best estimation accuracy. They found, similar to the business 
forecasting results reported by Blattberg and Hoch (1990), that people were good at finding analogies, but did 
not adjust properly for large differences between the task to be estimated and the most similar tasks. A semi-
automated process of using people to find the relevant analogues and a simple formula for adjustments for 
differences had the best estimation accuracy. If the need for adjustments is large, simple models supporting the 
adjustments seem to be especially important. 

Overall, we believe that the potential benefits from use of documented data are similar to the potential 
benefits from use of estimation models, i.e., avoidance of very inaccurate estimates and reduction of human 
biases. 

4.6 Find Experts with Relevant Domain Background and Good Estimation Records 

Recently we conducted an estimation survey of the estimation processes of eighteen experienced software 
project leaders. Included in that survey was a question about how the project leaders selected experts to provide 
the effort estimates. While all the project leaders described that they emphasized domain and development 
experience, only four of them described that they applied information about the peoples’ previous estimation 
accuracy, and only two that they tried to get information about the estimation process applied by the estimator. 
An underlying assumption of the selection of estimation experts was, as we interpreted it, that “the people most 
competent in solving the task should estimate it”. While this assumption can be true, see (Sanders and Ritzman 
2001) for an overview of supporting expert judgment studies from various domains, we believe that the 
following refinements of the assumption are important: 
•  The relevance of experience is sometimes very “narrow”, i.e., only applicable in very similar situations, see 

(Skitmore, Stradling et al. 1994; Ericsson and Lehmann 1996) for overviews from different domains. 
•  Jørgensen and Sjøberg (2002b) report that software maintainers with application specific experience had 

fewer maintenance problems, but did not predict their own work more accurately. Similarly, Lichtenstein 
and Fischhoff (1977) report that the level of over-optimism when estimating the quality of their own 
answers on “general knowledge” questions was independent of the actual correctness of the answers, i.e., 
the level of expertise. These findings conflict those reported in statistical forecasting studies, e.g., (Sanders 
and Ritzman 2001). An examination of the studies suggests that the explanation is the difference between 
involved and uninvolved estimators. While all the results described in (Sanders and Ritzman 2001) are 
derived from studies where the estimators were uninvolved observers, the results described in (Lichtenstein 
and Fischhoff 1977; Jørgensen and Sjøberg 2002b) are from studies where own work was estimated. A 
large benefit from domain experience on estimation accuracy may, consequently, require that the estimator 
is an uninvolved observer. 

•  Klayman and Gonzalez-Vallejo (1999) report, based on tasks from several domains, that people get over-
confident in the accuracy of their estimates when receiving a set of estimation tasks more difficult than 
what they usually get. 

•  Stone and Opel (2000) report that having estimation expertise is not the same as being skilled in knowing 
the uncertainty of an estimate. Their experiment, based on art history related judgment tasks, suggest that 
these two types of expertise require different types of feedback and training. 

Consequently, we cannot safely assume that people knowing much about a task are good at estimating it, nor 
can we assume that people good at estimating are good at knowing how uncertain their estimates are. For this 
reason, there should be separate records on these three characteristics (know-how, know-how-much, and know-
how-uncertain) for each individual. Knowing much about a task may, for example, be useful for the 

                                                                                                                                                                                         
followed by more average performance, in particular when the variance (uncertainty) is high. This means, for example, that 
when the most similar task had an unusual high performance and the estimation uncertainty is high, then we should estimate 
effort closer to the average performance than the effort value of the most similar task (Jørgensen 2002). 
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development of the work breakdown structure. People with good estimation records should be consulted when 
estimating the most likely effort. People good at estimating uncertainty should be consulted when assessing the 
uncertainty of the estimate. These three skills are different and may require different estimators, training, and 
feedback, see Section 6. 

5 Support the Estimation Process 

There are many ways of supporting the experts’ estimation processes. This section provides and discusses 
the expert estimation principles: 
•  Estimate both top-down and bottom-up, independently of each other 
•  Use estimation checklists 
•  Combine estimates from different sources 
•  Assess the uncertainty of the estimate 

5.1 Estimate Both Top-Down and Bottom-Up, Independently of Each Other 

There are different strategies of decomposing the estimation problem, e.g., phase-based decomposition, 
functionality-based decomposition, additive, multiplicative, or combinations of these types. Most studies 
support the, on average, improvement from decomposing an estimation problem, see for example the multi-
domain survey on this topic in (MacGregor 2001). There are, however, studies that indicate no benefits of 
decomposition. For example, Connolly and Dean (1997) found that the estimation accuracy improved from 
software task decomposition in only one out of two experiments. Vicinanza et al. (1991) found that the expert 
applying a top-down (analogy)-based software development estimation process was more accurate than the 
experts relying on a decomposition-based process.  Moløkken (2002) found that the software professionals 
applying a bottom-up software development estimation process were more over-optimistic than those applying a 
more top-down estimation process. Similarly, no benefits were found from applying the function point software 
development estimation model “bottom-up”, instead of the common “top-down” application (Yau and Gan 
1995). It is common sense that some tasks are too complex to understand and estimate as a whole, i.e., that 
decomposition is necessary to understand some problems. The results from the software estimation studies, 
however, suggest that there are potential problems with decomposing the software development estimation 
problem applying the “bottom-up” (additive decomposition) that are avoided through a top-down estimation 
process. 

We suggest that a bottom-up estimation process, e.g., estimation of the activities described in a work 
breakdown structure (Tausworthe 1980), should be combined with a top-down estimation process, e.g., the 
process of estimating the project as a whole through comparison with similar completed projects. We believe 
that these two estimation processes should be conducted independently of each other, to avoid the “anchoring 
effect”8, i.e., that one estimate gets strongly impacted by the other as reported in the software development effort 
study (Jørgensen and Sjøberg 2001a). If there are large deviations between the estimates provided by the 
different processes, and estimation accuracy is important, then more estimation information and/or independent 
estimation experts should be added. Alternatively, a simple average of the two processes can be applied (more 
on the benefits of different strategies of combining estimates in Section 5.3). Our belief in the usefulness of this 
“do-both” principle is based on the complementary strengths and weaknesses of top-down and bottom-up-based 
expert estimates as described in Table 4. 

 
Table 4: Top-Down versus Bottom-Up 

 Top-Down (as a Whole) Bottom-Up (Decomposed) 
Strengths More robust with respect to forgotten 

activities and unexpected events. 
Encourages “distributional” (history-
based) thinking. 

Leads to increased understanding of the execution 
and planning of the project (how-to knowledge). 
 

Weaknesses Does not lead to increased 
understanding of the execution and 
planning of the project. 
Depends strongly on the proper 
selection and availability of similar 
projects from memory or project 
documentation. 

Easy to forget activities and underestimate 
unexpected events. 
Depends strongly on selection of software 
developers with proper experience. 
Does not encourage history-based criticism of the 
estimate and its assumptions. 

 
                                                            

8: Anchoring: “the tendency of judges’ estimates (or forecasts) to be influenced when they start with a ‘convenient’ 
estimate in making their forecasts. This initial estimate (or anchor) can be based on tradition, previous history or available data.” 
(Armstrong 2001b). 
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The claimed benefits and weaknesses in Table 4 are supported by results reported in, e.g., the software 
studies (Hill, Thomas et al. 2000; Moløkken 2002). Buehler et al. (1994) report a study where the difference 
between instructing people to use their past experience, instead of only focusing on how to complete a task, 
reduced the level of over-optimism in time estimation tasks. This result supports the importance of applying a 
strategy that induces distributional (history-based) thinking, e.g., top-down estimation strategies. Perhaps the 
most important part of top-down estimation is not that the project is estimated as a whole, but that it encourages 
the use of history. Other interesting results on impacts from decomposition strategies include: 
•  Decomposition is not useful for low-uncertainty estimation tasks, only for high-uncertainty, as reported in 

several forecasting and human judgment studies (Armstrong, Denniston Jr. et al. 1975; MacGregor 2001). 
•  Decomposition may “activate” too much knowledge (including non-relevant knowledge). For this reason, 

predefined decompositions, e.g., predefined work breakdown structures, activating only relevant knowledge 
should be applied. The human judgment study reported in (MacGregor and Lichtenstein 1991) supports this 
result. 

In sum, the results suggest that bottom-up-based estimates only lead to improved estimation accuracy if the 
uncertainty of the whole task is high, i.e., the task is too complex to estimate as a whole, and, the decomposition 
structure activates relevant knowledge only. The validity of these two conditions is, typically, not possible to 
know in advance and applying both top-down and bottom-up estimation processes, therefore, reduces the risk of 
highly inaccurate estimates. 

 

5.2 Use Estimation Checklists 

The benefits of checklists are not controversial and are based on, at least, four observations: 
•  Experts easily forget activities and underestimate the effort required to solve unexpected events. Harvey 

(2001) provides an overview of forecasting and human judgment studies on how checklists support people 
in remembering important variables and possibilities that they would otherwise overlook. 

•  Expert estimates are inconsistent, i.e., the same input may result in different estimates. For example, experts 
seem to respond to increased uncertainty with increased inconsistency (Harvey 2001). Checklists may 
increase the consistency, and hence the accuracy, of the expert estimates. 

•  People tend to use estimation strategies that require minimal computational effort, at the expense of 
accuracy, as reported in the time estimation study described in (Josephs and Hahn 1995). Checklists may 
“push” the experts to use more accurate expert estimation strategies. 

•  People have a tendency to consider only the options that are presented, and underestimate the likelihood of 
the other options, as reported in the “fault tree” study described in (Fischhoff, Slovic et al. 1978). This 
means that people have a tendency to “out of sight, out of mind”. Checklists may encourage the generation 
of more possible outcomes. 

Interestingly, there is evidence that checklists can bring novices up to an expert level. For example, Getty et 
al. (1988) describe a study were general radiologists were brought up to the performance of specialist 
mammographers using a checklist. 

Although we have experienced that many software organizations find checklists to be one of their most 
useful estimation tools, we have not been able to find any empirical study on how different types of checklists 
impact the accuracy of software effort estimation. Common sense and studies from other domains leave, 
however, little doubt that checklists are an important means to improve expert estimation. An example of a 
checklist (aimed at managers that review software project estimates) is provided in (Park 1996): (1) Are the 
objectives of the estimates clear and correct? 2) Has the task been appropriately sized? 3) Are the estimated cost 
and schedule consistent with demonstrated accomplishments on other projects? 4) Have the factors that affect 
the estimate been identified and explained? 5) Have steps been taken to ensure the integrity of the estimating 
process? 6) Is the organization’s historical evidence capable of supporting a reliable estimate? 7) Has the 
situation changed since the estimate was prepared? This type of checklist clearly supports the estimation 
reviewer to remember important issues, increases the consistency of the review process, and “pushes” the 
reviewer to apply an appropriate review process. 

A potential “by-product” of a checklist is the use of it as a simple means to document previous estimation 
experience. The aggregation of the previous estimation experience into a checklist may be easier to use and have 
more impact on the estimation accuracy compared with a large software development experience databases 
containing project reports and estimation data (Jørgensen, Sjøberg et al. 1998). 

5.3 Obtain and Combine Estimates from Different Experts and Approaches 

When two or more experts provide estimates of the same task, the optimal approach would be to use only the 
most accurate estimates. The individuals’ estimation accuracies are, however, not known in advance and a 
combination of several estimates has been shown to be superior to selecting only one of the available estimates. 
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See (Clemen 1989) for an extensive overview of empirical studies from various domains on this topic. The two 
software studies we were able to find on this topic are consistent with the findings from other domains. These 
studies report an increase in estimation accuracy through averaging of the individual estimate (Höst and Wohlin 
1998) and group discussions (Jørgensen and Moløkken 2002). Based on the extensive evidence in favour of 
combining estimates the question should not be whether we should combine or not, but how?  

There are many alternative combination approaches for software project estimates. A software project leader 
can, for example, collect estimates of the same task from different experts and then weight these estimates 
according to level of the experts’ level of competence. Alternatively, the project leader can ask different experts 
to discuss their estimates and agree on an estimate. The choice of combination strategy and the benefits from 
combined estimates depend on a number of variables. The variables are, according to Hogarth’s model (1978): 
1) Number of experts, 2) The individuals’ (expected) estimation accuracy, 3) The degree of biases among the 
experts, and 4) The inter-correlation between the experts’ estimates. A human judgment study validating 
Hogarth’s model is described in (Ashton 1986). Our discussion on combination of estimates will be based on 
these four variables, and, a fifth variable not included in Hogarth’s model9: 5) The impact of combination 
strategy. 

Number of experts (1): The number of expert estimates to be included in the combined estimate depends on 
their expected accuracy, biases and inter-correlation. Frequently, the use of relatively few (3-5) experts with 
different backgrounds seems to be sufficient to achieve most of the benefits from combining estimates, as 
reported in the study of financial and similar types of judgments described in (Libby and Blashfield 1978). 

The accuracy and biases of the experts (2+3): A documented record of the experts’ previous estimation 
accuracy and biases is frequently not available or not relevant for the current estimation task. However, the 
project leaders may have informal information indicating for example the level of over-optimism or expertise of 
an estimator. This information should be used, with care, to ensure that the accuracy of the experts is high and 
that individual biases are not systematically in one direction. 

The inter-correlation between the experts (4): A low inter-correlation between the estimators is important 
to exploit the benefits from combining estimates. Studies reporting the importance of this variable in business 
forecasting and software development estimation contexts are (Armstrong 2001a; Jørgensen and Moløkken 
2002). A low inter-correlation can be achieved when selecting experts with different backgrounds and roles, or 
experts applying different estimation processes. 

Combination process (5): There are several approaches of combining expert estimates. One may take the 
average of individual software development effort estimates (Höst and Wohlin 1998), apply a structured 
software estimation group process (Taff, Borchering et al. 1991), select the expert with the best estimate on the 
previous task (Ringuest and Tang 1987), or apply the well-documented Delphi-process (Rowe and Wright 
2001). A comprehensive overview of combination strategies is described in (Chatterjee and Chatterjee 1987). 
While the choice of combination strategy may be important in some situations, there are studies, e.g., the 
forecasting study described in (Fisher 1981), that suggest that most meaningful combination processes have 
similar performance. Other human judgment and forecasting studies, however, found that averaging the 
estimates was the best combination strategy (Clemen 1989), or that a group-based processes led to the highest 
accuracy (Reagan-Cirincione 1994; Henry 1995; Fischer and Harvey 1999). In (Moløkken 2002) it is reported 
that a group discussion-based combination of individual software development effort estimates was more 
accurate than the average of the individual estimates, because the group discussion led to new knowledge about 
the interaction between people in different roles. Similar results, on planning of R&D projects, were found in 
(Kernaghan and Cooke 1986; Kernaghan and Cooke 1990). This increase in knowledge through discussions is 
an important advantage of group-based estimation processes compared with “mechanical” combinations, such as 
averaging. However, the evidence in favour of group-based combinations is not strong. For example, group 
discussion may lead to more biased estimates (either more risky or more conservative) depending on the group 
processes and the individual goals, as illustrated in the financial forecasting study described in (Maines 1996).  

In summary, it seems that the most important part of the estimation principle is to combine estimates from 
different sources (with, preferably, high accuracy and low inter-correlation), not exactly how this combination is 
conducted. 

5.4 Assess the Uncertainty of the Estimate 

Important reasons for the importance of assessing the uncertainty of an effort estimate are: 
•  The uncertainty of the estimate is important information in the planning of a software project (McConnel 

1998). 
•  An assessment of the uncertainty is important for the learning from the estimate, e.g., low estimation 

accuracy is not necessarily an indicator of low estimation skills when the software development project 
work is highly uncertain (Jørgensen and Sjøberg 2002b). 

                                                            
9 This is no shortcoming of Hogarth’s model, since his model assumes that the combined estimate is based on the 

average of the individual estimates. 
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•  The process of assessing uncertainty may lead to more realism in the estimation of most likely software 
development effort. The software estimation study reported in (Connolly and Dean 1997) supports this 
finding, but there are also contradictory findings, e.g., time usage estimation study described in (Newby-
Clark, Ross et al. 2000). 

We recommend, similarly to the forecasting principles described by Armstrong (2001d), that the uncertainty 
of an estimate is assessed through a prediction interval. For example, a project leader may estimate that the most 
likely effort of a development project is 10000 work-hours and that it is 90% certain (confidence level) that the 
actual use of effort will be between 5000 and 20000 work-hours. Then, the interval [5000, 20000] work-hours is 
the 90% prediction interval of the effort estimate of 10000 work-hours.  

A confidence level of K% should, in the long run, result in a proportion of actual values inside the prediction 
interval (hit rate) of K%. However, Connolly and Dean (1997) report that the hit rates of students’ effort 
predictions intervals were, on average, 60% when a 90% confidence level was required. Similarly, (Jørgensen, 
Teigen et al. 2002) report that the activity effort hit rates of several industrial software development projects 
were all less than 50%10, i.e., the intervals were much too narrow. 

This type of over-confidence seems to be found in most other domains, see for example (Alpert and Raiffa 
1982; Lichtenstein, Fischhoff et al. 1982; McClelland and Bolger 1994; Wright and Ayton 1994; Bongaarts and 
Bulatao 2000). As reported earlier, Lichtenstein and Fischhoff (1977) report that the level of over-confidence 
was unaffected by differences in intelligence and expertise, i.e., we should not expect that the level of over-
confidence is reduced with more experience. Arkes (2001) gives a recent overview of studies from different 
domains on over-confidence, supporting that claim. Potential reasons for this over-confidence are: 
•  Poor statistical knowledge. The statistical assumptions underlying prediction intervals and probabilities are 

rather complex, see for example (Christensen 1998). Even with sufficient historical data the estimators may 
not know how to provide, for example, a 90% prediction interval of an estimate. 

•  Estimation goals in “conflict” with the estimation accuracy goal. The software professionals’ goals of 
appearing skilled and providing ”informative” prediction intervals may be in conflict with the goal of 
sufficiently wide prediction intervals, see for example the human judgment studies (Yaniv and Foster 1997; 
Keren and Teigen 2001) and our discussion in Section 4.1. 

•  “Anchoring effect”. Several studies from various domains, e.g., (Kahneman, Slovic et al. 1982; Jørgensen 
and Sjøberg 2002a), report that people typically provide estimates influenced by an anchor value and that 
they are not sufficiently aware of this influence. The estimate of the most likely effort may easily become 
the anchor value of the estimate of minimum and maximum effort. Consequently, the minimum and 
maximum effort will not be sufficiently different from the most likely effort in high uncertainty situations. 

•  “Tendency to over-estimate own skills”. Kruger and Dunning (1999) found a tendency to over-estimate 
one’s own level of skill in comparison with the skill of other people. This tendency increased with 
decreasing level of skill. A potential effect of the tendency is that information about previous estimation 
inaccuracy of similar projects has insufficient impact on a project leaders uncertainty estimate, because 
most project leaders believe to be more skilled than average. 

In total, there is strong evidence that the traditional, unaided expert judgment-based assessments of 
estimation uncertainty through prediction intervals are biased toward over-confidence, i.e., too narrow 
prediction intervals. An uncertainty elicitation process that seems to reduce the over-confidence in software 
estimation contexts is described in (Jørgensen and Teigen 2002). This process, which is similar to the method 
proposed by (Seaver, Winterfeldt von et al. 1978), proposes a simple change of the traditional uncertainty 
elicitation process: 

1. Estimates the most likely effort. 
2. Calculate the minimum and maximum effort as fixed proportions of the most likely effort. For example, 

an organisation could base these proportions on the NASA-guidelines (NASA 1990) of software 
development project effort intervals and set the minimum effort to 50% and the maximum effort to 200% 
of the most likely effort. 

3. Decide on the confidence level, i.e., assess the probability that the actual effort is between the minimum 
and maximum effort. 

Steps 2 and 3 are different from the traditional uncertainty elicitation process, where the experts are 
instructed to provide minimum and maximum effort values for a given confidence level, e.g., a 90% confidence 
level. The differences may appear minor, but include a change from “self-developed” to “mechanically” 
developed minimum and maximum values. Minimum and maximum values provided by oneself, as in the 
traditional elicitation process, may be used to indicate estimation skills, e.g., to show to other people that “my 
estimation work is of a high quality”. Mechanically calculated minimum and maximum values, on the other 
hand, may reduce this “ownership” of the minimum and maximum values, i.e., lead to a situation similar to 
when experts evaluate estimation work conducted by other people. As discussed in Section 4.2, it is much easier 
to be realistic when assessing other peoples performance, compared with own performance. In addition, as 
                                                            

10 The industrial projects did not have a consistent use of confidence level, but, typically, let the estimators decide how to 
interpret minimum and maximum effort. Nevertheless, most meaningful interpretations of minimum and maximum effort should 
lead to higher hit rates than 40-50%. 
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opposed to the traditional process, there is no obvious anchor value that influences the prediction intervals 
toward over-confidence when assessing the appropriate confidence level of a mechanically derived prediction 
interval. Other possible explanations for the benefits of the proposed approach, e.g., easier learning from history, 
are described in (Jørgensen and Teigen 2002). The proposed approach was evaluated on the estimation of a set 
of maintenance tasks and found to improve the correspondence between confidence level and hit rate 
significantly (Jørgensen and Teigen 2002). 

An alternative elicitation method, not yet evaluated in software contexts, is to ask for prediction intervals 
based on low confidence levels, e.g., to ask a software developer to provide a 60% instead of a 90% prediction 
interval. This may reduce the level of over-confidence, because, as found by (Roth 1993), people are generally 
better calibrated in the middle of a probability distribution than in its tails. 

6 Provide Estimation Feedback and Training Opportunities 

It is hard to improve estimation skills without feedback and training. Lack of estimation feedback and 
training may, however, be a common situation in software organizations (Hughes 1996a; Jørgensen and Sjøberg 
2002b). The observed lack of feedback of software organizations means that it is no large surprise that increased 
experience did not lead to improved estimation accuracy in the studies (Hill, Thomas et al. 2000; Jørgensen and 
Sjøberg 2002b). Similarly, many studies from other domains report a lack of correlation between amount of 
experience and estimation skills. Hammond (1996, p. 278) summarizes the situation: “Yet in nearly every study 
of experts carried out within the judgment and decision-making approach, experience has been shown to be 
unrelated to the empirical accuracy of expert judgments”.  

Learning estimation skills from experience can be difficult (Jørgensen and Sjøberg 2000). In addition to 
sufficient and properly designed estimation feedback, estimation improvements may require the provision of 
training opportunities (Ericsson and Lehmann 1996). This section discusses feedback and training principles for 
improvement of expert estimates. 

6.1 Provide Feedback on Estimation Accuracy and Development Task Relations 

There has been much work on frameworks for “learning from experience” in software organizations, e.g., 
work on experience databases (Basili, Caldierea et al. 1994; Houdek, K et al. 1998; Jørgensen, Sjøberg et al. 
1998; Engelkamp, Hartkopf et al. 2000) and frameworks for Post-Mortem (project experience) reviews (Birk, 
Dingsøyr et al. 2002). These studies do not, as far as we know, provide empirical results on the relation between 
type of feedback and estimation accuracy improvement. The only software study on this topic (Ohlsson, Wohlin 
et al. 1998), to our knowledge, suggest that outcome feedback, i.e., feedback relating the actual outcome to the 
estimated outcome, did not improve the estimation accuracy. Human judgment studies from other domains 
support this disappointing lack of estimation improvement from outcome feedback, see for example (Balzer, 
Doherty et al. 1989; Benson 1992; Stone and Opel 2000). This is no large surprise, since there is little estimation 
accuracy improvement possible from the feedback that, for example, “the effort estimate was 30% too low”. 
One situation were outcome feedback is reported to improve the estimation accuracy is when the estimation 
tasks are “dependent and related” and the estimator initially was under-confident, i.e., underestimated her/his 
own knowledge on general knowledge tasks (Subbotin 1996). In spite of the poor improvement in estimation 
accuracy, outcome feedback is useful, since it improves the assessment of the uncertainty of an estimate (Stone 
and Opel 2000; Jørgensen and Teigen 2002). Feedback on estimation accuracy should, for that reason, be 
included in the estimation feedback. 

To improve the estimation accuracy, several studies from various domains suggest that “task relation 
oriented feedback”, i.e.,  feedback on how different events and variables were related to the actual use of effort, 
are required (Schmitt, Coyle et al. 1976; Balzer, Doherty et al. 1989; Benson 1992; Stone and Opel 2000). A 
possible method to provide this type of feedback is the use “experience reports” or “post mortem” review 
processes.  

When analysing the impacts from different variables on the use of effort and the estimation accuracy, i.e., 
the “task relation oriented feedback”, it important to understand interpretation biases and the dynamics of 
software projects, e.g.,: 
•  The “hindsight bias”, e.g., the tendency to interpret cause-effect relationships as more obvious after it 

happen than before, see (Fischhof 1975; Stahlberg, Eller et al. 1995) for general human judgement studies 
on this topic. 

•  The tendency to confirm rules and disregard conflicting evidence, as illustrated in the human judgement 
studies (Camerer and Johnson 1991; Sanbonmatsu, Sharon et al. 1993) and our discussion in Section 4.3. 

•  The tendency to apply a “deterministic” instead of a “probabilistic” learning model. For example, assume 
that a software project introduces a new development tool for the purpose of increasing the efficiency and 
that the project has many inexperienced developers. The actual project efficiency turns out to be lower than 
that of the previous projects and the actual effort, consequently, becomes much higher than the estimated 
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effort. A (naïve) deterministic interpretation of this experience would be that “new tools decrease the 
development efficiency if the developers are inexperienced’. A probabilistic interpretation would be to 
consider other possible scenarios (that did not happen, but could have happen) and to conclude that it seems 
to be more than 50% likely that the combination of new tools and inexperienced developers lead to a 
decrease in efficiency. This ability to think in probability-based terms can, according to Brehmer (1980), 
hardly be derived from experience alone, but must be taught. Hammond (1996) suggest that the ability to 
understand relationships in terms of probabilities instead of purely deterministic connections is important 
for correct learning in situations with high uncertainty. 

•  The potential impact of the estimate on the actual effort as reported in the software estimation studies 
(Abdel-Hamid and Madnik 1983; Jørgensen and Sjøberg 2001a), i.e., the potential presence of a“self-
fulfilling prophecy”. For example, software projects that over-estimate the “most likely effort” may achieve 
high estimation accuracy if the remaining effort is applied to improve (“gold-plate”) the product. 

•  The potential lack of distinction between “plan” and “estimate”, see discussion in Section 4.2. 
•  The variety of reasons for high or low estimation accuracy, as pointed out in the industrial software 

estimation study (Jørgensen, Moen et al. 2002). Low estimation accuracy may, for example, be the results 
of poor project control, high project uncertainty, low flexibility in delivered product (small opportunity to 
“fit” the actual use of effort to the estimated), project members with low motivation for estimation 
accuracy, high project priority on time-to-market, “bad luck”, or, of course, poor estimation skills. 

•  A tendency to asymmetric cause-effect analyses dependent on high or low accuracy, i.e., high estimation 
accuracy is explained as good estimation skills, while low estimation accuracy is explained as impact from 
external uncontrollable factors. Tan and Lipe (1997) found, in a business context, that: “Those with positive 
outcomes (e.g., strong profits) are rewarded; justification or consideration of reasons as to why the 
evaluatee performed well are not necessary. In contrast, when outcomes are negative (e.g. losses suffered), 
justifications for the poor results are critical. .... Evaluators consider controllability or other such factors 
more when outcomes are negative than when they are positive.”  

In many human judgment situations with high uncertainty and unstable task relations, there are indications 
on that even task relation-oriented feedback is not sufficient for learning (Schmitt, Coyle et al. 1976; Bolger and 
Wright 1994), i.e., the situations do simply not enable learning from experience. For this reason, it is important 
to recognize when there is nothing to learn from experience, as reported in the software estimation study 
(Jørgensen and Sjøberg 2000). 

A problem with most feedback on software development effort estimates is that it takes too much time from 
the point-of-estimation to the point-of-feedback. This is unfortunate, since it has been shown that immediate 
feedback strongly improves the estimation learning and accuracy, as illustrated in the human judgment studies 
(Bolger and Wright 1994; Shepperd, Fernandez et al. 1996). Interestingly, Shepperd et al. (1996) also found that 
when the feedback is rapid, people with low confidence start to under-estimate their own performance, maybe to 
ensure that they will not be disappointed, i.e., there may be situations where the feedback can be too rapid too 
stimulate to realistic estimates. Although it is easy to over-rate the possibility to learn from feedback, it is 
frequently the only realistic opportunity for learning, i.e., even if the benefits are smaller than we like to believe, 
software organizations should do their best to provide properly designed estimation feedback. 

6.2 Provide Estimation Training Opportunities 

Frequently, real software projects provide too little information to draw valid conclusions about cause-
effects (Jørgensen and Sjøberg 2000). Blocher et al. (1997) report similar results based on studies of people’s 
analytical procedures. Bloher et al. attribute the cause-effect problems to the lack of learning about what would 
have happened if we had not done what we did, and the high number of alternative explanation for an event. 
Furthermore, they argue that learning requires the development of causal models for education, training and 
professional guidance. The importance of causal domain models for training is supported by the human 
judgment results described in (Bolger and Wright 1994). Similar reasons for learning problems, based on a 
review of studies on differences in performance between experts and novices in many different domains, are 
provided by Ericsson and Lehmann (1996). They claim that it is not the amount of experience but the amount of 
“deliberate training” that determines the level of expertise. They interpret deliberate training as “individualized 
training activities especially designed by a coach or teacher to improve specific aspects of an individual’s 
performance through repetition and successive refinement”. This importance of training is also supported by the 
review of human judgment studies described in (Camerer and Johnson 1991), suggesting that while training had 
an effect on estimation accuracy, amount of experience had almost none. 

We suggest that software companies provide estimation training opportunities through their database of 
completed projects. An estimation training session should include estimation of completed projects based on the 
information available at the point-of-estimation applying different estimation processes. This type of estimation 
training has several advantages in comparison with the traditional estimation training: 
•  Individualized feedback can be received immediately after completion of the estimates. 
•  The effect of not applying checklists and other estimation tool can be investigated on one’s own estimation 
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processes. 
•  The validity of own estimation experience can be examined on different types of projects, i.e., projects 

much larger than those estimated earlier. 
•  Reasons for forgotten activities or underestimated risks can be analyzed immediately, while the hindsight 

bias is weak. 
•  The tendency to be over-confidence can be understood, given proper coaching and training projects. 

As far as we know, there are no reported studies of organizations conducting estimation training in line with 
our suggestions. However, the results from other studies, in particular those summarized in (Ericsson and 
Lehmann 1996), strongly support that this type of training should complement the traditional estimation courses 
and pure “learning from experience”. 

7 Conclusions and Further Research 

The two main contributions of this paper are: 
•  A systematic review of papers on software development effort expert estimation. 
•  An extensive examination of relevant human judgment studies to validate expert estimation “best 

practice” principles. 
The review concludes that expert estimation is the dominant strategy when estimating the effort of software 

development projects, and that there is no substantial evidence supporting the superiority of model estimates 
over expert estimates. There are situations where expert estimates are more likely to be more accurate, e.g., 
situations where experts have important domain knowledge not included in the models or situations when 
simple estimation strategies provide accurate estimates. Similarly, there are situations where the use of models 
may reduce large situational or human biases, e.g., when the estimators have a strong personal interest in the 
outcome. The studies on expert estimation are summarized through an empirical evaluation of the twelve 
principles: 1) Evaluate estimation accuracy, but avoid high evaluation pressure, 2) Avoid conflicting estimation 
goals, 3) Ask the estimators to justify and criticize their estimates, 4) Avoid irrelevant and unreliable estimation 
information, 5) Use documented data from previous development tasks, 6) Find estimation experts with relevant 
domain background and good estimation record, 7) Estimate top-down and bottom-up, independently of each 
other, 8) Use estimation checklists, 9) Combine estimates from different experts and estimation strategies, 10) 
Assess the uncertainty of the estimate, 11) Provide feedback on estimation accuracy and task relations, 12) 
Provide estimation training opportunities. We find that there is evidence supporting all these principles and, 
consequently, that software organizations should apply them. 

The estimation principles are to some extent based on results from other domains than software 
development, or represent only one type of software projects and experts. For this reason there is a strong need 
for better insight into the validity and generality of many of the discussed topics. In particular we plan to 
continue with research on: 

•  When to use expert estimation and when to use estimation models. 
•  How to reduce the over-optimism bias when estimating own work applying expert estimation. 
•  How to select and combine a set of expert estimates. 
•  The benefits of “deliberate” estimation training. 
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