
1

A Review of Studies on
Expert Estimation of Software Development Effort

M. JØRGENSEN

magne.jorgensen@simula.no
Simula Research Laboratory,

P.O.Box 134, 1325 Lysaker, Norway

Abstract
This paper provides an extensive review of studies related to expert estimation of software development

effort. The main goal and contribution of the review is to support the research on expert estimation, e.g., to ease
other researcher’s search for relevant expert estimation studies. In addition, we provide software practitioners
with useful estimation guidelines, based on the research-based knowledge of expert estimation processes. The
review results suggest that expert estimation is the most frequently applied estimation strategy for software
projects, that there is no substantial evidence in favour of use of estimation models, and that there are situations
where we can expect expert estimates to be more accurate than formal estimation models. The following twelve
expert estimation “best practice” guidelines are evaluated through the review: 1) Evaluate estimation accuracy,
but avoid high evaluation pressure, 2) Avoid conflicting estimation goals, 3) Ask the estimators to justify and
criticize their estimates, 4) Avoid irrelevant and unreliable estimation information, 5) Use documented data
from previous development tasks, 6) Find estimation experts with relevant domain background and good
estimation records, 7) Estimate top-down and bottom-up, independently of each other, 8) Use estimation
checklists, 9) Combine estimates from different experts and estimation strategies, 10) Assess the uncertainty of
the estimate, 11) Provide feedback on estimation accuracy and development task relations, and, 12) Provide
estimation training opportunities. We found supporting evidence for all twelve estimation principles, and
provide suggestions on how to implement them in software organizations.

Keywords: Software development, effort estimation, expert judgment, project planning

1 Introduction

Intuition and judgment – at least good judgment – are simply analyses frozen into habit and into the
capacity for rapid response through recognition. Every manager needs to be able to analyze problems
systematically (and with the aid of the modern arsenal of analytical tools provided by management science and
operations research). Every manager needs also to be able to respond to situations rapidly, a skill that requires
the cultivation of intuition and judgment over many years of experience and training. (Simon 1987)

In this paper we summarize empirical results related to expert estimation of software development effort.

The primary goal and contribution of the paper is to support the research on software development expert
estimation through an extensive review of relevant papers, a brief description of the main results of these papers,
and the use of these results to validate important expert estimation guidelines. Although primarily aimed at other
researchers, we believe that most of the paper, in particular the validated guidelines, are useful for software
practitioners, as well.

We apply a broad definition of expert estimation, i.e., we include estimation strategies in the interval from
unaided intuition (“gut feeling”) to expert judgment supported by historical data, process guidelines and
checklists (“structured estimation”). Our main criteria to categorize an estimation strategy as expert estimation is
that the estimation work is conducted by a person recognized as an expert on the task, and that a significant part
of the estimation process is based on a non-explicit and non-recoverable reasoning process, i.e., “intuition”.
Most estimation processes have both intuitive and explicit reasoning elements, as reported in the business
forecasting study described in (Blattberg and Hoch 1990). In fact, even formal software development estimation
models may require expert estimates of important input parameters (Pengelly 1995), i.e., require non-explicit
and non-recoverable reasoning. Estimation strategies where a formal model is at the core of the estimation
process are, however, not the topic of this paper.

There are relatively few studies discussing software development effort expert estimation. For example, a
search for estimation papers in the journals IEEE Transactions on Software Engineering, Journal of Systems and
Software, Journal of Information and Software Technology, and Journal of Empirical Software Engineering
resulted in exactly 100 papers on software effort or size estimation1. Of these, only 17 (17%) include analyses or
discussions of expert estimation; (Kusters 1990; Taff, Borchering et al. 1991; van Genuchten and Koolen 1991;

1 Search conduced March 2002.

2

Betteridge 1992; Goodman 1992; Abdel-Hamid, Sengupta et al. 1993; Londeix 1995; Hughes 1996b; Höst and
Wohlin 1997; Lederer and Prasad 1998; Ohlsson, Wohlin et al. 1998; Chulani, Boehm et al. 1999; Myrtveit and
Stensrud 1999; Verner, Overmyer et al. 1999; Walkerden and Jeffery 1999; Mizuno, Kikuno et al. 2000;
Jørgensen and Sjøberg 2001a). Similarly, while there have been several surveys of software development effort
estimation models, e.g., (Mohanty 1981; Boehm 1984; Hihn and Habib-Agahi 1991b; Fairley 1992; Heemstra
1992; Walkerden and Jeffery 1997; Boehm and Sullivan 1999; Boehm, Abts et al. 2000; Briand and Wieczorek
2002), we found only one survey on expert estimation research results (Hughes 1996a). Fortunately, there are
many relevant studies on expert estimation in other domains, e.g., medicine, business, psychology, and project
management. To evaluate, understand, and extend the software development expert estimation results, we
therefore try to transfer selected expert estimation research results from other domains.

We have structured the large amount of empirical results around a discussion and empirical validation of
twelve “best practice” expert estimation principles. The selection of those principles was based on three sources:
(1) What we have observed as best expert estimation practice in industrial software development projects, (2)
The list of 139 forecasting principles described in (Armstrong 2001d), and, (3) The nine software estimation
principles described in (Lederer and Prasad 1992). The selected twelve estimation principles do, of course, not
cover all aspects of software development effort expert estimation. They provide, however, a set of principles
that we believe are essential for successful expert estimation. Table 1 describes the topics and main result of
each section of this paper.

Table 1: Contents of Paper

Section Description of Topic Main Results
2 Frequency of use of

expert estimation.
Expert estimation is the dominant strategy when estimating software
development effort.

3 Performance of expert
estimation in comparison
with estimation models.

The design of the empirical studies comparing expert and model-based
software development effort estimate seems to have had a strong impact
on the results. It is not possible to conclude that expert estimation or
estimation model, in general, are more accurate. However, expert
estimates seems to be more accurate when there are important domain
knowledge not included in the estimation models, when the estimation
uncertainty is high as a result of environmental changes not included in
the model, or when simple estimation strategies lead to relatively
accurate estimates.

4 Reduce situational and
human biases.

Empirical validation of the expert estimation principles:
1. Evaluate estimation accuracy, but avoid high evaluation pressure.
2. Avoid conflicting estimation goals.
3. Ask estimators to justify and criticize their estimates.
4. Avoid irrelevant and unreliable estimation information.
5. Use documented data from previous development tasks.
6. Find estimation experts with relevant domain background and good

estimation records.
5 Support the estimation

process.
7. Estimate top-down and bottom-up, independently of each other.
8. Use estimation checklists.
9. Combine estimates from different experts and estimation strategies.
10. Assess the uncertainty of the estimate.

6 Provide feedback and
training opportunities.

11. Provide feedback on estimation accuracy and task relations.
12. Provide estimation training opportunities.

7 Conclusions and further
research.

All 12 principles are based on empirical evidence. There is, however,
still a need for more knowledge about how to apply them in various
software estimation situations.

2 Frequency of Use of Expert Estimation

Published surveys on estimation practice suggest that expert estimation is the dominant strategy when
estimating software development effort. For example, the study of software development estimation practice at
Jet Propulsion Laboratory reported in (Hihn and Habib-Agahi 1991a) found that 83% of the estimators used
“informal analogy” as their primary estimation techniques, 4% “formal analogy” (defined as expert judgment
based on documented projects), 6% “rules of thumb”, and 7% “models”. The investigation of Dutch companies
described in (Heemstra and Kusters 1991) conclude that 62%, of the organizations that produced software
development estimates, based the estimates on “intuition and experience” and only 16% on “formalized
estimation models”. Similarly, a survey conducted in New Zealand (Paynter 1996) reports that 86% of the
responding software development organizations applied “expert estimation” and only 26% applied “automated
or manual models” (an organization could apply more than one method). A study of the information systems

3

development department of a large international financial company (Hill, Thomas et al. 2000) found that no
formal software estimation model was used. Jørgensen (1997) reports that 84% of the estimates of software
development projects conducted in a large Telecom company were based on expert judgment, and Kitchenham
et al. (2002) report that 72% of the project estimates of a software development company were based on “expert
judgment”. In fact, we were not able to find any study reporting that most estimates were based on formal
estimation models. The estimation strategy categories and definitions are probably not the same in the different
studies, but there is nevertheless strong evidence to support the claim that expert estimation is more frequently
applied than model-based estimation. This strong reliance on expert estimation is not unusual. Similar findings
are reported in, for example, business forecasting, see (Remus, O'Connor et al. 1995; Winklhofer,
Diamantopoulos et al. 1996).

There may be many reasons for the reported low use of formal software development effort estimation
models, e.g., that software organizations feel uncomfortable using models they do not fully understand. Another
valid reason is that, as suggested in our survey in Section 3, we lack substantial evidence that the use of formal
models lead to more accurate estimates compared with expert estimation. The strong reliance on the relatively
simple and flexible method of expert estimation is therefore a choice in accordance with the method selection
principle described in “Principles of Forecasting” (Armstrong 2001c, p. 374-375): “Select simple methods
unless substantial evidence exists that complexity helps. … One of the most enduring and useful conclusions
from research on forecasting is that simple methods are generally as accurate as complex methods.” However,
even if we had substantial evidence that the formal models led to, on average, more accurate estimates, this may
not be sufficient for widespread use. Todd and Benbasat (2000), studying people’s strategies when conducting
decisions based on personal preferences, found that a decision strategy also must be easier to apply, i.e., demand
less mental effort, than the alternative (default) decision strategy to achieve acceptance by the estimators.
Similarly, Ayton (1998) summarizes studies from many domains where experts were resistant to replace their
judgments with simple, more accurate decision rules.

3 Performance of Expert Estimation in Comparison with Estimation
Models

We found fifteen different empirical software studies comparing expert estimates with estimates based on
formal estimation models. Table 2 briefly describes the designs, the results and the, from our viewpoint,
limitations of the studies in a chronological sequence. We do not report the statistical significance of the
differences in estimation accuracy, because most studies do not report them, and because a meaningful
interpretation of significance level requires that: 1) A population (of projects, experts, and estimation situations)
is defined, and, 2) A random sample is selected from that population. None of the reported studies define the
population, or apply random samples. The samples of projects, experts and estimation situations are better
described as “convenience samples”. We use the term “expert” (alternatively, “software professional” or
“project leader”) in the description of the estimators, even when it is not clear whether the estimation situation,
e.g., experimental estimation task, enables the expert to apply his/her expertise. Consequently, experts may in
some of the studies be better interpreted as novices, even when the participants are software professionals and
not students.

4

Table 2: Software Studies on Expert Estimation of Effort
Nr References Designs of Studies Results and Limitations
1 (Kusters,

Genuchten et al.
1990)

Experimental comparison of the estimation accuracy of 14
project leaders with that of estimation models (BYL and
Estimacs) on 1 finished software project.

The project leaders’ estimates were, on average, more accurate than the estimation
model. Limitations: 1) The experimental setting, 2) The estimation models were not
calibrated to the organization.

2 (Vicinanza,
Mukhopadhyay
et al. 1991)

Experimental comparison of the estimation accuracy of 5
software professionals with that of estimation models
(function points and COCOMO) on 10 finished software
projects.

The software professionals had the most and least accurate estimates, and were, on
average, more accurate than the models. Limitation: 1) The experimental setting. 2) The
project information was tailored to the estimation models, e.g., no requirement
specification was available, and 3) The estimation models were not calibrated to the
organization.

3 (Heemstra and
Kusters 1991)

Questionnaire based survey of 597 Dutch companies. The organizations applying function points-based estimation models had the same
estimation accuracy as those not applying function points (mainly estimates based on
“intuition and experience”) on small and medium large projects, and lower accuracy on
large projects. The use of function points reduced the proportion of very large (>100%)
effort overruns. Limitations: 1) The questionnaire data may have a low quality2, 2) The
relationship is not necessarily causal, e.g., the organizations applying estimation models
may be different to other organizations. 3) Response rate not reported.

4 (Lederer and
Prasad 1992),
(Lederer and
Prasad 1993),
(Lederer and
Prasad 1998),
(Lederer and
Prasad 2000)
(reporting the
same study)

Questionnaires based survey of 112 software organizations.

The algorithmic effort estimation models did not lead to higher accuracy compared with
“intuition, guessing, and personal memory”. Limitations: 1) The questionnaire data may
have a low quality, 2) The relationship is not necessarily causal, e.g., the organizations
applying estimation models may be different to other organizations. 3) Response rate of
only 29%, i.e., potential biases due to differences between the organizations that
answered and those that did not.

5 (Mukhopadhyay,
Vicinanza et al.
1992)

Experimental comparison of the estimation accuracy of 1
expert with that of estimation models (case-based reasoning
model based on previous estimation strategy of the expert,
function points, and COCOMO) on 5 finished software
projects.

The expert’s estimates were the most accurate, but not much better than the case-based
reasoning estimation model. The algorithmic estimation models (COCOMO and function
points) were the least accurate. Limitations: 1) The experimental setting, 2) The
algorithmic estimation models were not calibrated to the organization, 3) Only one
expert.

6 (Atkinson and
Shepperd 1994)

Experimental comparison of the estimation accuracy of
experts (students?) with that of estimation models (analogy
and function points) on 21 finished projects.

One of the analogy-based estimation models provided the most accurate estimates, then
the expert judgments, then the two other analogy based models, and finally, the function
point based estimation model. Limitations: 1) The experimental setting, 2) Missing
information about the expert estimators and the models3.

7 (Pengelly 1995) Experimental comparison of the estimation accuracy of
experts (activity-based estimates) with that of estimation
models (Doty, COCOMO, function point, and Putnam
SLIM) on 1 finished project.

The expert estimates were the most accurate. Limitations: 1) The experimental setting, 2)
The estimation models were not calibrated to the organization, 3) Only one project was
estimated.

8 (Jørgensen 1997) Observation of 26 industrial projects, where 5 applied the The function point based estimates were more accurate, mainly due to avoidance of very

2 We include this comment on both studies applying questionnaires, because questionnaire studies typically have limited control over the quality of their data, see (Jørgensen 1995).
3 We were only able to locate a preliminary version of this paper (from one of the authors). It is possible that the final version provides more information about the expert estimation process.

5

function point estimation model, and 21 were based on
expert estimates (bottom-up-based estimates).

large effort overruns. Limitations: 1) Most projects applying the function point model did
also provided a bottom-up expert judgment-based effort estimate and combined these
two estimates, 2) The relationship is not necessarily causal, e.g., the projects applying an
estimation model may be different from the other projects.

9 (Niessink and
van Vliet 1997)

Observations of 140 change tasks of an industrial software
system. Comparison of the original expert estimates with
estimates from formal estimation models (function points
and analogy).

The analogy based-model had the most accurate estimates. The expert estimates were
more accurate than the function point estimates. Limitations: 1) The expert estimates
could impact the actual effort, the formal models could not, 2) The formal models used
the whole data set as learning set (expect the task to be estimated), the expert estimates
had only the previous tasks.

10 (Ohlsson,
Wohlin et al.
1998)

Observation of 14 student software projects developing the
same software.

The projects applying data from the experience database had no more accurate estimates
than those which did not use the experience database. Estimation models based on
previous projects with same requirement specification (analogy-based models) did not
improve the accuracy. Limitations: 1) The competence level of the estimators (students),
2) The artificial context of student projects, e.g., not real customer.

11 (Walkerden and
Jeffery 1999)

Experimental comparison of the estimation accuracy of 25
students with that of estimation models (analogy and
regression based models) on 19 projects.

The experts’ estimates had the same accuracy as the best analogy based model and better
than the regression-based and the other analogy-based models. Estimates based on expert
selected analogies, with a linear size adjustment, provided the most accurate effort
estimates. Limitations: 1) The experimental setting, 2) The competence level of the
estimators (students), 3) The project information was tailored to the estimation models,
e.g., no requirement specification was available.

12 (Myrtveit and
Stensrud 1999)

Experimental comparison of the estimation accuracy of 68
software professionals with that of a combination of expert
estimates and models (analogy and regression), and models
alone on 48 COTS projects (each participant estimated 1
project).

The models had the same or better accuracy than the combination of model and expert,
and better accuracy than the unaided expert. Limitations: 1) The experimental setting, 2)
The project information was tailored to the estimation models, e.g., no requirement
specification was available.

13 (Bowden,
Hargreaves et al.
2000)

Experimental comparison of students’ ability to find
“objects” as input to an estimation model in comparison
with an expert system.

There was no difference in performance. Limitations: 1) The experimental setting, 2)
The competence level of the estimators (students), 3) Study of input to effort estimation
models, not effort estimation.

14 (Jørgensen and
Sjøberg 2002b)

Observation of experts’ ability to predict uncertainty of
effort usage (risk of unexpected software maintenance
problems) in comparison with a simple regression-based
estimation model. Study based on interviews with 54
software maintainer before start and after completion of
maintenance tasks.

The simple regression model predicted maintenance problems better than software
maintainers with long experience. Limitations: 1) Assessment of effort estimation
uncertainty, not effort estimation.

15 (Kitchenham,
Pfleeger et al.
2002)

Observations of 145 maintenance tasks in a software
development organization. Comparison of expert estimates
with estimates based on the average of two estimation
methods, e.g., the average of an expert estimates and a
formal model-based estimate. The actual projects estimates
were also compared with the estimates from estimation
models (variants of a regression + function point-based
model) based on the observed maintenance tasks.

There was no difference in estimation accuracy between the average-combined and the
purely expert-based estimates. The expert estimates were more accurate than the model-
based estimates. Limitations: 1) The relationship is not necessarily causal, e.g., the
project combining estimation methods may be more complex than the other projects. 2)
The expert estimates could impact the actual effort, the formal models could not4.

4 The authors conclude that the estimates did not impact the actual effort.

6

The results of the studies in Table 2 are not conclusive. Of the fifteen studies, we categorize five to be in
favour of expert estimation (Studies 1, 2, 5, 7, and 15), five to find no difference (Studies 3, 4, 10, 11, and 13),
and five to be in favour of model-based estimation (Studies 6, 8, 9, 12, and 14).

Interesting dimensions of the studies are realism (experiment versus observation), calibration of models
(calibrated to an organization or not), and level of expertise of the estimator (students versus professionals). A
division of the studies into categories based on these dimensions suggests that the design of the empirical studies
has a strong impact on the result. All experiments applying estimation models not calibrated to the estimation
environment (Studies 1, 2, 5 and 7) showed that the expert estimates were the most accurate. On the other hand,
all experiments applying calibrated estimation models (Studies 10, 11, 12 and 13) showed a similar or better
performance of the models. The higher accuracy of the experts in the first experimental situation can be
explained by the estimation models’ lack of inclusion of organization and domain specific knowledge5. The
similar or better accuracy of the models in the second experimental situation can be explained by the lack of
domain-specific knowledge of the experts, i.e., in Studies 10, 11 and 13 the estimators were students, and in
Study 12 the estimation information seems to have been at a, for the software professional, unfamiliar format.

Three of the studies (Studies 8, 9, and 14) where the model-based estimates were calibrated, and both expert
and model estimates were applied by software projects, i.e., the five observational studies (Studies 3, 4, 8, 9, and
14), show results in favour of model-based estimation. The remaining two studies of that category (Studies 3,
and 4), report similar accuracy of the models and the experts. A possible explanation for the similar or higher
accuracy of model-based estimates of the observational studies is that the real-world model-based estimates
frequently were “expert adjusted model estimates”, i.e., a combination of model and expert. The model-based
estimates of Study 8, for example, seem to be of that type. A typical “expert adjusted model estimation”-process
may be to present the output from the model to the experts. Then, the domain experts adjust the effort estimate
according to what she/he believes is a more correct estimate. If this is the typical model-based estimation
process, then the reported findings indicate that a combination of estimation model and expert judgment is better
than pure expert estimates. More studies are needed to examine this possibility.

The above fifteen studies are not conclusive, other than that there is no substantial evidence in favour of
either model or expert-based estimates. In particular, we believe that there is a need for comparative studies
including a description of the actual estimation models and actual expert estimation processes in real software
effort estimation situations.

None of the studies in Table 2 were designed for the purpose of examining when we can expect expert
estimation to have the same or better estimation accuracy compared with estimation models. This is however the
main question. Clearly, there exist situations were the use of formal estimation models leads to more accurate
estimates, and situations where expert estimation results in higher accuracy, e.g., the two types of experimental
situations described earlier. To increase the understanding of when we can expect expert estimates to have an
acceptable accuracy in comparison with formal estimation models, we have tried to derive major findings from
relevant human judgment studies, e.g., time estimation studies, and describe the consistence between these
findings and the software-related results. This turned out to be a difficult task, and the summary of the studies
described in Table 3 should be interpreted carefully, e.g., some of the findings are rather vaguely formulated,
and other researchers may interpret the results from the same studies differently.

5 There is an on-going discussion on the importance of calibrating an estimation model to a specific organization. While

the majority of the empirical software studies, e.g., (Cuelenaere, Genuchten et al. 1987; Marouane and Mili 1989; Jeffery and
Low 1990; Marwane and Mili 1991; Murali and Sankar 1997; Jeffery, Ruhe et al. 2000) report that calibration of estimation
models to a specific organization led to more accurate estimates, the results in (Briand, El Emam et al. 1999; Briand, Langley et
al. 2000) suggest that use of multi-organizational software development project data were just as accurate. However, the
results in (Briand, El Emam et al. 1999; Briand, Langley et al. 2000) do not report from studies calibrating general estimation
products. For example, the difference between the projects on which the original COCOMO model was developed (Boehm
1981) and projects conducted in the 1990s may be much larger than the difference between multi-organizational and
organization specific project data. The evidence in favour of calibration of general estimation models in order to increase the
estimation accuracy is, therefore, strong.

7

Table 3: Expert versus Model Estimates
Findings Strength

of
Evidence

Sources of Evidence Consistence Between the Findings and the Results Described in
Software Studies?

Expert estimates are
more accurate than
model estimates when
the experts possess (and
efficiently apply)
important domain
knowledge not included
in the estimation models.
Model estimates are
more accurate when the
experts do not possess
(or efficiently apply)
important domain
knowledge not included
in the estimation models.

Strong These findings are supported by “common sense”, e.g., it is
obvious that there exists important case-specific domain
knowledge about software developers and projects that
cannot be included in a general estimation model. The
finding is also supported by a number of studies (mainly
business forecasting studies) on the importance of specific
domain knowledge in comparison with models, see
(Lawrence and O'Connor 1996; Webby and O'Connor 1996;
Johnson 1998; Mendes, Counsell et al. 2001) for reviews on
this topic. However, as pointed out by Dawes (1986), based
on studies of clinical and business judgment, the
correspondence between domain knowledge and estimation
skills is easily over-rated.
Meehl (1957) summarizes about 20 studies comparing
clinical judgment with judgment based on statistical models.
He found that the models had the same or better performance
in all cases. The same negative result was reported by Dawes
(1986). The results in favour of models seems to be less
robust when the object to be estimated include human
behavior, e.g., traffic safety (Hammond, Hamm et al. 1987).

Yes.
All studies where the models were not calibrated to the organizational
context and the estimators had domain knowledge (Studies 1, 2, 5 and 7)
report that the expert estimates were more accurate.
All studies were the estimators had little relevant domain knowledge (due
to the lack of requirement specification, lack of experience or project
information tailored to the estimation models), and the estimation models
were calibrated to the organizational context (Studies 10, 11, 12 and 13)
report that the models had the same or better performance.

Expert estimates are
more accurate than
model estimates when
the uncertainty is low.
Model estimates are
more accurate when the
uncertainty is high, e.g.,
when the project is much
larger than previous
projects.

Medium The majority of studies (mainly business forecasting studies)
support this finding, e.g., (Braun and Yaniv 1992; Shanteau
1992; O'Connor, Remus et al. 1993; Hoch and Schkade
1996; Soll 1996). However, a few studies suggest that
uncertain situations favour expert judgment, e.g., the study
described in (Sanders and Ritzman 1991) on business related
time series forecasting.

Mixed.
Study 3 reports that high uncertainty did not favour the use of (function
point-based) estimation model. Similarly, Study 9 reports results
suggesting that low uncertainty (homogeneous tasks) did not favour
expert estimates compared with an analogy-based model. An
investigation of the available studies on this topic suggests that high
uncertainty favour the estimation models only if the uncertainty is
included in the estimation model. If, however, a new software task is
uncertain because it represents a new type of situation not included in
model’s learning data set, e.g., reflects the development of a project
much larger than the earlier projects, then the models are likely to be less
accurate. Similar results on how uncertainty impact the expert estimation
performance are reported in (Goodwin and Wright 1990) on time series
forecasting.

8

Experts use simple
estimation strategies
(heuristics) and perform
just as well or better than
estimation models when
these simple estimation
strategies (heuristics) are
valid. Otherwise, the
strategies may lead to
biased estimates.

Strong The results reported in (Josephs and Hahn 1995; Todd and
Benbasat 2000), describing studies on time planning and
general decision tasks, indicate that the estimation strategies
used by unaided experts were simple, even when the level of
expert knowledge was high. Increasing the time pressure on
the estimators may lead the experts to switch to even simpler
estimation strategies, as reported in the business forecasting
study described in (Ordonez and Benson III 1997).
Gigerenzer and Todd (1999) present a set of human
judgment studies, from several domains, that demonstrate an
amazingly high accuracy of simple estimation strategies
(heuristics). Kahneman et al. (1982), on the other hand
studied similar judgment tasks and found that simple
strategies easily led to biased estimates because the
heuristics were applied incorrectly, i.e., they demonstrated
that there are situations where the simple estimation
strategies applied by experts are not valid. Unfortunately, it
may be difficult to decide in advance whether a simple
estimation strategy is valid or not.

Yes.
The software development estimation experiment reported in (Jørgensen
and Sjøberg 2001b) suggests that the experts applied the so-called
“representativeness heuristic”, i.e., the strategy of finding the most
similar previous projects without regarding properties of other, less
similar, projects (see also discussion in Section 4.5). Most of the
estimators applied a valid version of this, but some of them interpreted
representativeness too “narrow”, which lead to biased estimates.
Similarly, Study 14 suggests that the low performance in assessing
estimation uncertainty of experienced software maintainers were caused
by misuse of the “representativeness heuristic”.

Experts can be strongly
biased and misled by
irrelevant information,
e.g., towards over-
optimism. Estimation
models are less biased.

Strong Substantial evidence supports this finding, e.g., (Kahneman,
Slovic et al. 1982; Blattberg and Hoch 1990; Lim and
O'Connor 1996; Connolly and Dean 1997; Makridakis,
Wheelwright et al. 1998, p. 500-501; Whitecotton, Sanders
et al. 1998; Hill, Thomas et al. 2000) reporting results from
various domains. In particular relevant are the studies on the
“planning fallacy” (Kahneman and Tversky 1979), i.e., the
studies on people’s tendency to provide too optimistic
prediction of own performance in spite of knowledge about
their previous over-optimism. Buehler et al. (1997)
summarize studies on possible cognitive and motivational
reasons for the planning fallacy.

Yes.
The studies that describe expert and model estimates actually used by
industrial software projects and report the size of the individual projects’
effort over-runs (Studies 3 and 8) suggest that the risk of large effort
over-runs was reduced when applying estimation models. The software
development estimation results described in (Jørgensen and Sjøberg
2001a) suggest that an early estimate based on little information strongly
biased the re-estimation, although the estimators were told not to use the
early estimate as input, i.e., irrelevant information strongly misled the
estimators.

9

An interesting observation is that the software development expert estimates are not systematically worse
than the model-based estimates, such as the expert estimates in most other studied professions. For example,
Dawes (1986) reports that the evidence against clinical expert judgment, compared with formal models, is
overwhelming. Many of the studies described in Table 2, on the other hand, suggest that software development
experts have the same or better accuracy as the formal estimation models. We believe that the two most
important reasons for this difference in results are:
• The importance of specific domain knowledge (case-specific data) is higher in software development

projects than in most other studied human judgment domains. For example, while most clinical diseases are
based on stable biological processes with few, well-established diagnostic indicators, the relevant indicators
of software development effort may be numerous, their relevance unstable and not well-established. For
example, Wolverton (1974) found that: “There is a general tendency on the part of designers to gold-plate
their individual parts of any system, but in the case of software the tendency is both stronger and more
difficult to control than in the case of hardware.” How much a particular project member tend to gold-plate,
i.e., to improve the quality beyond what is expected by the customer, is hardly part of any estimation model,
but can be known by an experienced project leader. According to Hammond et al. (1987) a “fit” between
the type of estimation (human judgment) task and the selected estimation approach is essential, i.e., if a task
is an expert estimation (intuition) inducing task, then the experts provide the most accurate estimates and
when the task is a model estimation (analysis) inducing task then the models provided the most accurate
estimates. As we interpret Hammond et al., many software development effort estimation tasks are expert
estimation inducing tasks.

• The performance of the software development estimation models is poorer than estimation models in most
other studied human judgment domains. For example, although there has been much research on the shape
of the software “production function”, i.e., relation between input and output parameters, for several years,
no agreement has been reached. Dolado (2001), for example, investigated the relationship between software
size and effort on 12 data sets using regression analysis and genetic programming. He reported that it was
hard to conclude on a relationship between effort and size, and that we could only expect moderately good
results of size-based estimation models. Currently, most software development effort estimation models are
size-based.

On the other hand, we do not believe that the software development experts are more skilled estimators than
experts in other domains. On the contrary, as reported in (Jørgensen and Sjøberg 2001a; Jørgensen and Sjøberg
2002b) the focus on learning estimation skills from software development experience seems to be very low.

Many of the shortcomings of expert estimation may be reduced when following well-documented estimation
principles. In the following sections we present and discuss 12 expert estimation principles that have
improvement of expert estimation as goal.

4 Reduce Situational and Human Biases

Lederer et al. (1990) describe a “rational” and a “political” model of the estimation process, based on
interviews with 17 software managers. The rational model describes the estimation process as in most text-
books on estimation, i.e., as a rational process with estimation accuracy as the only goal, while the political
model describes the estimation process more as a “tug-of-war” with individual motives, differing goals, and
power conflicts. While some of the biases resulting from a “tug-of-war” are situational, e.g., the wish to get a
contract, others are more inherent human, e.g., the general need for positive feedback from other people. This
section suggests six estimation principles aiming at reducing the size of situational and human biases:
• Evaluate estimation accuracy, but avoid high evaluation pressure.
• Avoid conflicting estimation goals.
• Ask the estimators to justify and criticize their estimates.
• Avoid irrelevant and unreliable estimation information.
• Use documented data from previous development tasks.
• Find estimation experts with highly relevant domain background and good estimation records.

A general framework for identifying and handling the situational and human biases is described in (Meyer
and Booker 1991, p. 44-53).

4.1 Evaluate Estimation Accuracy, but Avoid High Evaluation Pressure

Several human judgment studies suggest that a high motivation for accuracy, for example when people feel
personally responsible, perceive that the estimation task is very important or receive monetary rewards for
accurate estimates, actually decreases the estimation accuracy (Sieber 1974; Armstrong, Denniston Jr. et al.
1975; Cosier and Rose 1977). Pelham and Neter (1995) suggest that this decrease in human judgment accuracy
is mainly a problem in the case of difficult judgments, whereas high motivation for accuracy increases the
estimation accuracy in cases with easy judgments. Their findings are consistent with the large number of studies

10

on the effect of “evaluation apprehension”, e.g., (Sanders 1984). An increased awareness of being evaluated
seems to increase the level of so-called “dominant responses” (instincts) on cost of reflective responses (Zajonc
1965), i.e., evaluation leads to more instinct and less reflection. That effect may be very robust, e.g., Zajonc et
al. (1969) measured a decrease in performance by cockroaches completing a maze when other cockroaches were
present. When reflections and analyses are important and the task is difficult, as in many software development
estimation situations, a strong perception of evaluation may therefore lead to less accurate estimates.

These results are, at first sight, not consistent with the results reported from the empirical software
development studies on this topic. For example, Lederer and Prasad (1998) report that the factor with the highest
impact on the estimation accuracy was the use of the estimation accuracy in the evaluation of the performance
of the software professionals. Similarly, the software estimation studies (Weinberg and Schulman 1974;
Jørgensen and Sjøberg 2001a) found that inducing estimation accuracy as an important performance measure
improved the estimation accuracy compared with situations where the projects were evaluated according to, e.g.,
time precision or quality.

The different findings are, in our opinion, not in conflict. There is no reason to believe that software
professionals are different from other estimators, i.e., an increased perception of accuracy evaluation may easily
lead to decreased estimation accuracy of software projects. However, evaluations may also lead to: 1) The “self-
fulfilling prophecy” effect of software effort estimates, e.g., that an over-optimistic initial estimate and a high
focus on estimation accuracy lead to actions that make that estimate more realistic as reported in the software
project simulation study (Abdel-Hamid, Sengupta et al. 1999), and 2) An increase in “self-critical thinking” as
in the study of first-job salary and exam results prediction of students reported in (Shepperd, Fernandez et al.
1996). For example, when the accountability is high people may be motivated to spend more time and collect
more relevant information to achieve an accurate estimate. The total effect of accuracy evaluation, therefore,
depends on the strength of the pressure due to the accuracy evaluation, the flexibility of the work (determining
the possible effect from the “self-fulfilling prophecy”), and the increased degree of “self-critical thinking” as a
consequence of the evaluation. Software managers should focus on achieving the benefits from accuracy
evaluation, while avoiding the disadvantages. In our opinion, this means that the estimation accuracy should be
part of the projects’ evaluation criteria, but that a strong pressure from accuracy accountability or
reward/punishment should be avoided. In addition, means to ensure “self-critical thinking” should be
introduced, e.g., through estimation checklists and described estimation processes.

4.2 Avoid Conflicting Goals

There are conflicting estimation goal in situations where the estimation process is impacted by other goals
(evaluations) than the accuracy of the estimate. This section focuses on two important instances of conflicting
estimation goals: 1) The conflicts between “bid”, “planned effort” and “most likely effort”, and 2) The conflict
between “wishful thinking” and “realism”.

Jørgensen and Sjøberg (2001a) report that, frequently, there was no distinction between “bid”, “planned
effort” and “most likely effort” when estimating software development effort. Similar results, i.e., that the
distinction between planning and estimation are “blurred”, are reported in the time-estimation studies described
in (Edwards and Moores 1994; Goodwin 1998). The decisions on “bid”, “planned effort” and “most likely
effort”, however, have conflicting goals. A bid should, optimally, be low enough to get the job and high enough
to maximize profit, the planned effort should enable a successful project and motivate to efficient work, and the
estimate of the most likely effort should represent the most realistic use of effort. The conflict between these
goals, together with the lack of separation of them, may hinder realism of the expert estimates. We have not
found any software studies on the impact of this conflict on accuracy of effort estimate. However, applying
common sense and the results described in the human judgment studies (Cosier and Rose 1977; Keen 1981;
Buehler, Griffin et al. 1997), where conflicting goals were reported to reduce the realism of the estimates, we
believe that the evidence against mixing the goals of “bid”, “planned effort” and “most likely effort” are fairly
strong.

The results from many human judgment studies indicate that people get over-optimistic when predicting
own performance, i.e., they have problems separating “wish” and “realism”. A summary of these studies is
described by Harvey (2001). Potential reasons for this over-optimism, or “planning fallacy” (Kahneman and
Tversky 1979), are the “I am above average”-bias (Klein and Kunda 1994), and the lack of distinction between
“best case” and “most realistic case” (Newby-Clark, Ross et al. 2000). A general phenomenon seems to be that
the level of over-optimism increases with the level of control (Koehler and Harvey 1997), e.g., a software
developer responsible for the whole task to be estimated is supposed to be more over-optimistic than a project
leader that plans and supervises the work of other project members. This over-optimism may be difficult to
reduce, and in (Newby-Clark, Ross et al. 2000) it was found that the only effective method was to let someone
other than the executing person predict the work. The same conclusion is reported in (Harvey 2001): “someone
other than the person(s) responsible for developing and implementing a plan of action should estimate its
probability of success.” Buehler et al. (1994) found that the cause of an increased realism, when estimating other
peoples work, was the increase in use of previous experience, i.e., while estimating own work induces mental

11

work on how to complete the task (construction), estimating other people’s work induces reflections on how
much effort similar tasks required (history reflections). Unfortunately, we have not been able to find any
published software development estimation specific study on the topic of estimating own work or other people’s
work6.

Similarly to the discussion in Section 4.1, there are advantages of estimating own work. For example, if
there is a high level of flexibility in how to implement a software specification, then an initially over-optimistic
estimate of own work may lead to actions that make the estimate more realistic. The decision whether to
estimating own work or not may therefore be a trade-off between the potential advantages, e.g., higher
motivation for low use of effort, and the disadvantages, e.g., the strong tendency of over-optimism. In situations
where there are small opportunities for “self-fulfilling prophecies”, e.g., when the flexibility of the project work
is strongly limited, then the software developers should, optimally, not estimate their own work. In real projects,
however, estimation of own work may be the only option, e.g., because there are no other experts on a particular
task. In such cases, it is especially important to be aware of the typical over-optimism and apply the de-biasing
estimation principles described in this paper.

An illustrative example of a conflict between wishful thinking and realism when predicting own
performance is described in (Griffin and Buehler 1999): “Canadians expecting an income-tax refund were asked
to predict when they would complete and mail in their tax forms. These respondents had indicated that they
typically completed this chore about 2 weeks before the due rate; however, when asked about the current year,
they predicted that they would finish, on average, about 1 month in advance of the due date. In fact, only 30% of
the respondents were finished by their predicted data - on average they finished, as usual, about 2 weeks before
the deadline.”

There are other, obviously unfortunate, variants of the conflict between “wishful thinking” and “realism”,
e.g., the “software estimation game” described in (Thomsett 1996): “Boss: Hi, Mary. How long do you think it
will take to add some customer enquiry screens to the Aardvark System? Mary: Gee … I guess about six weeks
or so. Boss: WHAAT?!!!! That long?!!! You’re joking, right? Mary: Oh! Sorry. It could be done perhaps in four
weeks….” This type of situation both puts an unfortunate pressure on the estimator and leads to conflicting
goals, i.e., a conflict between “be realistic” and “please the manager”.

Software professionals should learn to identify estimation goals different from accuracy, and try to avoid or
at least reduce the impact from them. In particular, software professionals should learn to identify when a person
has a particularly strong interest in the outcome, e.g., when a person strongly want the project to be started. In
this kind of conflicting goals situation, the highly involved person cannot be expected to provide realistic
estimates, even when she/he is the person with the longest and most relevant experience.

4.3 Ask Estimators to Justify and Criticize Their Estimates.

Expert estimation of effort is frequently a “constructive” process. The estimators try to imagine how to build
the software, which pieces that are necessary to develop and the effort needed to implement and integrate the
pieces. Empirical results from human judgment studies suggests that this type of process easily lead the
estimator into the mode of “confirming theories on how to complete the project”, rather than “reject incorrect
hypotheses and assumptions” (Brehmer 1980; Koehler 1991). This means that the estimators’ confidence in their
estimates depend more on the amount of effort they spent working on it, than on the actual accuracy of the
estimate. Justification and critique of own estimates may have several important advantages related to this
problem. It may:
• increase of the accuracy of the estimate, particularly in high uncertainty situations (Hagafors and Brehmer

1983),
• lead to a more analytical estimation process and reduce the risk of using too simple estimation strategies

(Hammond 1996),
• improve the level of confidence in the estimate (Koriat, Lichtenstein et al. 1980), and
• improve the compensation for missing information (Brenner, Koehler et al. 1996).

All the above studies were general human judgment studies, e.g., studies based on real-world clinical
judgment tasks, business tasks, or estimates of so-called “almanac quantities”. We have found no published
software development estimation study on this topic.

However, as part of an experiment conducted by the author of this paper, we asked thirteen software
professionals to estimate the effort they would need to implement a specified timeshift-swapping system for
hospital nurses. When the effort estimates were completed, the estimators were asked to list reasons why their
estimate could be wrong, i.e., a critique of their own estimates. The average number of reasons listed were 4.3,
ranging from 2 to 8. Finally, the estimators were asked to consider a change of their original estimates in light of
their critique. Nine out of the thirteen software professionals increased their estimates of most likely effort, four

6 In a recent, unpublished, study of sixty small and medium large software development tasks, we find supporting

evidence for this difference between estimation own and other peoples work. The difference in level of over-optimism was
significant, but not very large.

12

of them more than 25%. The average increase in effort estimate was, however, only 10%, and four of the
participants actually decreased their estimates. We had no opportunity to let the software professionals develop
the software, i.e., we had no information about the realism of their estimates. However, the small, on average,
adjustments suggested by our results mean that, although potentially helpful to improve estimation realism, we
should not expect that justification and criticism improve the realism of estimates very much. If the initial
estimate is hugely over-optimistic, a justification and critique may only improve the realism to some extent. A
possible reason for this limited impact is described in (Einhorn and Hogarth 1978), based on studies on clinical
judgment and probability assessments. Estimators are typically not very skilled in searching for weakening
information when evaluating their own estimates.

In spite of the expected small impact on the realism of the estimate, we believe that justification and
criticism are sound and low-cost elements of improvements of expert estimates.

4.4 Avoid Irrelevant and Unreliable Estimation Information

It is easy to accept that irrelevant and unreliable information should be avoided. However, we have yet to see
a checklist or estimation process effectively implementing this estimation principle. This may reflect the belief
that expert estimators are able to filter out irrelevant and unreliable information when facing it. There are,
however, several human judgment studies that suggest that this is not always the case, and that expert estimates
may be strongly impacted by irrelevant information, even when the estimators know that the information is
irrelevant. For example:
• Whitecotton et al. (1998) report that people are just as good as models to provide financial forecasts when

presented with the same highly relevant information, but less accurate when irrelevant information is
included.

• Lim and O’Connor (1996) report from business related time series predictions that an adjustment of an
estimate for new information was not sufficient when the initial estimate was highly inaccurate, i.e., that the
unreliable initial estimate strongly impacted the subsequent estimates. The software development estimation
study described by Abdel-Hamid et al.(1993) confirm this result.

• Tversky and Kahneman (1974) report, based on general knowledge tasks, that the estimators were impacted
by irrelevant information, because it was included in the question, i.e., people may have an implicit
tendency to regard information as important when it is presented in the same context as the estimation
problem.

• Ettenson et al. (1987) report that domain experts (financial auditing) were better than novices to focus on
the most relevant information, i.e., the experts applied less information compared with the novices.
Selection of proper experts may, therefore, be important to avoid strong impact from irrelevant information.

• Jørgensen and Sjøberg (2002a) report that the information about the software development cost expected by
the customer had a strong impact on the estimate even when the estimators were told that the customer
knew nothing about the realistic costs and that the information should be regarded as irrelevant for the
estimation task. More surprisingly, this impact from the customer expectation was strongly underestimated
by the software professionals.

Consequently, it is may not be sufficient to warn against irrelevant information or instruct people to consider
information as unreliable. The only safe approach seems to avoid irrelevant and unreliable information. For
example, it may be difficult to provide realistic effort estimates if the customer expects an unrealistically low
level of cost, and the estimator knows this. Then, the only safe option may be to find a new estimator, without
that knowledge.

4.5 Use Documented Data from Previous Development Tasks

Use of documented data means that that the expert estimators have the opportunity to apply a more analytic
estimation strategy and consequently, be less prone to human and situational biases. Benefits from use of
documented software project data are reported by Lederer and Prasad (1992), who found that software project
cost overruns were associated with lack of documented data from previous tasks, i.e., high reliance on “personal
memory”. Without documented data people seem to both over-react to immediate past information, as reported
in the time series prediction study (Remus, O'Connor et al. 1995), and rely too much on the “representativeness”
estimation strategy, see the software development estimation study (Jørgensen and Sjøberg 2002b). The
“representativeness” estimation strategy means, for example, that people use the actual effort of the most similar
(most representative) recalled task as staring point for the estimate without regarding the distribution of effort of
other similar tasks. This strategy works well when the most similar task is sufficiently similar, represents the
typical use of effort on such tasks, and the estimation uncertainty is low. The strategy may, however, lead to
inaccurate estimates when the need for adjustment is large, as illustrated in the business forecasting study
(Blattberg and Hoch 1990), or the expected impact from the “regression toward the mean”7 is high, as reported

7 The impact from “regression toward the mean” is based on the observation that high or low performance tends to be

13

in the human judgment and software estimation studies (Kahneman and Tversky 1973; Nisbett and Ross 1980;
Jørgensen 2002).

A similar argument for the importance of documented data is reported in the time usage estimation study
(Kahneman and Lovallo 1993). That study claims that people tend to adopt an “internal” or “inside” perspective
on the estimation task, when relying on their own memory, instead of documented data. This “inside”
perspective leads to a concentration on case-specific planning and a neglect of “background” information, such
as the distribution of completion times for similar projects or the robustness of the construction plan. An
“inside” perspective may work well when the estimator has strongly relevant task experience and the situation
does not induce biases, but may otherwise lead to a high degree of estimation inaccuracy. The results described
in (Kahneman and Lovallo 1993) may explain the reduction of high effort overruns from use of models reported
in the software development estimation studies (Heemstra and Kusters 1991; Jørgensen 1997). The use of
estimation models increases the use of historical data and, consequently, removes the potentially large biases
from expert estimators’ “inside view” and the use of the “representativeness” estimation strategy.

The software development estimation results reported in (Walkerden and Jeffery 1999) indicate that a semi-
automated use of documented data leads to the best estimation accuracy. They found, similar to the business
forecasting results reported by Blattberg and Hoch (1990), that people were good at finding analogies, but did
not adjust properly for large differences between the task to be estimated and the most similar tasks. A semi-
automated process of using people to find the relevant analogues and a simple formula for adjustments for
differences had the best estimation accuracy. If the need for adjustments is large, simple models supporting the
adjustments seem to be especially important.

Overall, we believe that the potential benefits from use of documented data are similar to the potential
benefits from use of estimation models, i.e., avoidance of very inaccurate estimates and reduction of human
biases.

4.6 Find Experts with Relevant Domain Background and Good Estimation Records

Recently we conducted an estimation survey of the estimation processes of eighteen experienced software
project leaders. Included in that survey was a question about how the project leaders selected experts to provide
the effort estimates. While all the project leaders described that they emphasized domain and development
experience, only four of them described that they applied information about the peoples’ previous estimation
accuracy, and only two that they tried to get information about the estimation process applied by the estimator.
An underlying assumption of the selection of estimation experts was, as we interpreted it, that “the people most
competent in solving the task should estimate it”. While this assumption can be true, see (Sanders and Ritzman
2001) for an overview of supporting expert judgment studies from various domains, we believe that the
following refinements of the assumption are important:
• The relevance of experience is sometimes very “narrow”, i.e., only applicable in very similar situations, see

(Skitmore, Stradling et al. 1994; Ericsson and Lehmann 1996) for overviews from different domains.
• Jørgensen and Sjøberg (2002b) report that software maintainers with application specific experience had

fewer maintenance problems, but did not predict their own work more accurately. Similarly, Lichtenstein
and Fischhoff (1977) report that the level of over-optimism when estimating the quality of their own
answers on “general knowledge” questions was independent of the actual correctness of the answers, i.e.,
the level of expertise. These findings conflict those reported in statistical forecasting studies, e.g., (Sanders
and Ritzman 2001). An examination of the studies suggests that the explanation is the difference between
involved and uninvolved estimators. While all the results described in (Sanders and Ritzman 2001) are
derived from studies where the estimators were uninvolved observers, the results described in (Lichtenstein
and Fischhoff 1977; Jørgensen and Sjøberg 2002b) are from studies where own work was estimated. A
large benefit from domain experience on estimation accuracy may, consequently, require that the estimator
is an uninvolved observer.

• Klayman and Gonzalez-Vallejo (1999) report, based on tasks from several domains, that people get over-
confident in the accuracy of their estimates when receiving a set of estimation tasks more difficult than
what they usually get.

• Stone and Opel (2000) report that having estimation expertise is not the same as being skilled in knowing
the uncertainty of an estimate. Their experiment, based on art history related judgment tasks, suggest that
these two types of expertise require different types of feedback and training.

Consequently, we cannot safely assume that people knowing much about a task are good at estimating it, nor
can we assume that people good at estimating are good at knowing how uncertain their estimates are. For this
reason, there should be separate records on these three characteristics (know-how, know-how-much, and know-
how-uncertain) for each individual. Knowing much about a task may, for example, be useful for the

followed by more average performance, in particular when the variance (uncertainty) is high. This means, for example, that
when the most similar task had an unusual high performance and the estimation uncertainty is high, then we should estimate
effort closer to the average performance than the effort value of the most similar task (Jørgensen 2002).

14

development of the work breakdown structure. People with good estimation records should be consulted when
estimating the most likely effort. People good at estimating uncertainty should be consulted when assessing the
uncertainty of the estimate. These three skills are different and may require different estimators, training, and
feedback, see Section 6.

5 Support the Estimation Process

There are many ways of supporting the experts’ estimation processes. This section provides and discusses
the expert estimation principles:
• Estimate both top-down and bottom-up, independently of each other
• Use estimation checklists
• Combine estimates from different sources
• Assess the uncertainty of the estimate

5.1 Estimate Both Top-Down and Bottom-Up, Independently of Each Other

There are different strategies of decomposing the estimation problem, e.g., phase-based decomposition,
functionality-based decomposition, additive, multiplicative, or combinations of these types. Most studies
support the, on average, improvement from decomposing an estimation problem, see for example the multi-
domain survey on this topic in (MacGregor 2001). There are, however, studies that indicate no benefits of
decomposition. For example, Connolly and Dean (1997) found that the estimation accuracy improved from
software task decomposition in only one out of two experiments. Vicinanza et al. (1991) found that the expert
applying a top-down (analogy)-based software development estimation process was more accurate than the
experts relying on a decomposition-based process. Moløkken (2002) found that the software professionals
applying a bottom-up software development estimation process were more over-optimistic than those applying a
more top-down estimation process. Similarly, no benefits were found from applying the function point software
development estimation model “bottom-up”, instead of the common “top-down” application (Yau and Gan
1995). It is common sense that some tasks are too complex to understand and estimate as a whole, i.e., that
decomposition is necessary to understand some problems. The results from the software estimation studies,
however, suggest that there are potential problems with decomposing the software development estimation
problem applying the “bottom-up” (additive decomposition) that are avoided through a top-down estimation
process.

We suggest that a bottom-up estimation process, e.g., estimation of the activities described in a work
breakdown structure (Tausworthe 1980), should be combined with a top-down estimation process, e.g., the
process of estimating the project as a whole through comparison with similar completed projects. We believe
that these two estimation processes should be conducted independently of each other, to avoid the “anchoring
effect”8, i.e., that one estimate gets strongly impacted by the other as reported in the software development effort
study (Jørgensen and Sjøberg 2001a). If there are large deviations between the estimates provided by the
different processes, and estimation accuracy is important, then more estimation information and/or independent
estimation experts should be added. Alternatively, a simple average of the two processes can be applied (more
on the benefits of different strategies of combining estimates in Section 5.3). Our belief in the usefulness of this
“do-both” principle is based on the complementary strengths and weaknesses of top-down and bottom-up-based
expert estimates as described in Table 4.

Table 4: Top-Down versus Bottom-Up

 Top-Down (as a Whole) Bottom-Up (Decomposed)
Strengths More robust with respect to forgotten

activities and unexpected events.
Encourages “distributional” (history-
based) thinking.

Leads to increased understanding of the execution
and planning of the project (how-to knowledge).

Weaknesses Does not lead to increased
understanding of the execution and
planning of the project.
Depends strongly on the proper
selection and availability of similar
projects from memory or project
documentation.

Easy to forget activities and underestimate
unexpected events.
Depends strongly on selection of software
developers with proper experience.
Does not encourage history-based criticism of the
estimate and its assumptions.

8: Anchoring: “the tendency of judges’ estimates (or forecasts) to be influenced when they start with a ‘convenient’
estimate in making their forecasts. This initial estimate (or anchor) can be based on tradition, previous history or available data.”
(Armstrong 2001b).

15

The claimed benefits and weaknesses in Table 4 are supported by results reported in, e.g., the software
studies (Hill, Thomas et al. 2000; Moløkken 2002). Buehler et al. (1994) report a study where the difference
between instructing people to use their past experience, instead of only focusing on how to complete a task,
reduced the level of over-optimism in time estimation tasks. This result supports the importance of applying a
strategy that induces distributional (history-based) thinking, e.g., top-down estimation strategies. Perhaps the
most important part of top-down estimation is not that the project is estimated as a whole, but that it encourages
the use of history. Other interesting results on impacts from decomposition strategies include:
• Decomposition is not useful for low-uncertainty estimation tasks, only for high-uncertainty, as reported in

several forecasting and human judgment studies (Armstrong, Denniston Jr. et al. 1975; MacGregor 2001).
• Decomposition may “activate” too much knowledge (including non-relevant knowledge). For this reason,

predefined decompositions, e.g., predefined work breakdown structures, activating only relevant knowledge
should be applied. The human judgment study reported in (MacGregor and Lichtenstein 1991) supports this
result.

In sum, the results suggest that bottom-up-based estimates only lead to improved estimation accuracy if the
uncertainty of the whole task is high, i.e., the task is too complex to estimate as a whole, and, the decomposition
structure activates relevant knowledge only. The validity of these two conditions is, typically, not possible to
know in advance and applying both top-down and bottom-up estimation processes, therefore, reduces the risk of
highly inaccurate estimates.

5.2 Use Estimation Checklists

The benefits of checklists are not controversial and are based on, at least, four observations:
• Experts easily forget activities and underestimate the effort required to solve unexpected events. Harvey

(2001) provides an overview of forecasting and human judgment studies on how checklists support people
in remembering important variables and possibilities that they would otherwise overlook.

• Expert estimates are inconsistent, i.e., the same input may result in different estimates. For example, experts
seem to respond to increased uncertainty with increased inconsistency (Harvey 2001). Checklists may
increase the consistency, and hence the accuracy, of the expert estimates.

• People tend to use estimation strategies that require minimal computational effort, at the expense of
accuracy, as reported in the time estimation study described in (Josephs and Hahn 1995). Checklists may
“push” the experts to use more accurate expert estimation strategies.

• People have a tendency to consider only the options that are presented, and underestimate the likelihood of
the other options, as reported in the “fault tree” study described in (Fischhoff, Slovic et al. 1978). This
means that people have a tendency to “out of sight, out of mind”. Checklists may encourage the generation
of more possible outcomes.

Interestingly, there is evidence that checklists can bring novices up to an expert level. For example, Getty et
al. (1988) describe a study were general radiologists were brought up to the performance of specialist
mammographers using a checklist.

Although we have experienced that many software organizations find checklists to be one of their most
useful estimation tools, we have not been able to find any empirical study on how different types of checklists
impact the accuracy of software effort estimation. Common sense and studies from other domains leave,
however, little doubt that checklists are an important means to improve expert estimation. An example of a
checklist (aimed at managers that review software project estimates) is provided in (Park 1996): (1) Are the
objectives of the estimates clear and correct? 2) Has the task been appropriately sized? 3) Are the estimated cost
and schedule consistent with demonstrated accomplishments on other projects? 4) Have the factors that affect
the estimate been identified and explained? 5) Have steps been taken to ensure the integrity of the estimating
process? 6) Is the organization’s historical evidence capable of supporting a reliable estimate? 7) Has the
situation changed since the estimate was prepared? This type of checklist clearly supports the estimation
reviewer to remember important issues, increases the consistency of the review process, and “pushes” the
reviewer to apply an appropriate review process.

A potential “by-product” of a checklist is the use of it as a simple means to document previous estimation
experience. The aggregation of the previous estimation experience into a checklist may be easier to use and have
more impact on the estimation accuracy compared with a large software development experience databases
containing project reports and estimation data (Jørgensen, Sjøberg et al. 1998).

5.3 Obtain and Combine Estimates from Different Experts and Approaches

When two or more experts provide estimates of the same task, the optimal approach would be to use only the
most accurate estimates. The individuals’ estimation accuracies are, however, not known in advance and a
combination of several estimates has been shown to be superior to selecting only one of the available estimates.

16

See (Clemen 1989) for an extensive overview of empirical studies from various domains on this topic. The two
software studies we were able to find on this topic are consistent with the findings from other domains. These
studies report an increase in estimation accuracy through averaging of the individual estimate (Höst and Wohlin
1998) and group discussions (Jørgensen and Moløkken 2002). Based on the extensive evidence in favour of
combining estimates the question should not be whether we should combine or not, but how?

There are many alternative combination approaches for software project estimates. A software project leader
can, for example, collect estimates of the same task from different experts and then weight these estimates
according to level of the experts’ level of competence. Alternatively, the project leader can ask different experts
to discuss their estimates and agree on an estimate. The choice of combination strategy and the benefits from
combined estimates depend on a number of variables. The variables are, according to Hogarth’s model (1978):
1) Number of experts, 2) The individuals’ (expected) estimation accuracy, 3) The degree of biases among the
experts, and 4) The inter-correlation between the experts’ estimates. A human judgment study validating
Hogarth’s model is described in (Ashton 1986). Our discussion on combination of estimates will be based on
these four variables, and, a fifth variable not included in Hogarth’s model9: 5) The impact of combination
strategy.

Number of experts (1): The number of expert estimates to be included in the combined estimate depends on
their expected accuracy, biases and inter-correlation. Frequently, the use of relatively few (3-5) experts with
different backgrounds seems to be sufficient to achieve most of the benefits from combining estimates, as
reported in the study of financial and similar types of judgments described in (Libby and Blashfield 1978).

The accuracy and biases of the experts (2+3): A documented record of the experts’ previous estimation
accuracy and biases is frequently not available or not relevant for the current estimation task. However, the
project leaders may have informal information indicating for example the level of over-optimism or expertise of
an estimator. This information should be used, with care, to ensure that the accuracy of the experts is high and
that individual biases are not systematically in one direction.

The inter-correlation between the experts (4): A low inter-correlation between the estimators is important
to exploit the benefits from combining estimates. Studies reporting the importance of this variable in business
forecasting and software development estimation contexts are (Armstrong 2001a; Jørgensen and Moløkken
2002). A low inter-correlation can be achieved when selecting experts with different backgrounds and roles, or
experts applying different estimation processes.

Combination process (5): There are several approaches of combining expert estimates. One may take the
average of individual software development effort estimates (Höst and Wohlin 1998), apply a structured
software estimation group process (Taff, Borchering et al. 1991), select the expert with the best estimate on the
previous task (Ringuest and Tang 1987), or apply the well-documented Delphi-process (Rowe and Wright
2001). A comprehensive overview of combination strategies is described in (Chatterjee and Chatterjee 1987).
While the choice of combination strategy may be important in some situations, there are studies, e.g., the
forecasting study described in (Fisher 1981), that suggest that most meaningful combination processes have
similar performance. Other human judgment and forecasting studies, however, found that averaging the
estimates was the best combination strategy (Clemen 1989), or that a group-based processes led to the highest
accuracy (Reagan-Cirincione 1994; Henry 1995; Fischer and Harvey 1999). In (Moløkken 2002) it is reported
that a group discussion-based combination of individual software development effort estimates was more
accurate than the average of the individual estimates, because the group discussion led to new knowledge about
the interaction between people in different roles. Similar results, on planning of R&D projects, were found in
(Kernaghan and Cooke 1986; Kernaghan and Cooke 1990). This increase in knowledge through discussions is
an important advantage of group-based estimation processes compared with “mechanical” combinations, such as
averaging. However, the evidence in favour of group-based combinations is not strong. For example, group
discussion may lead to more biased estimates (either more risky or more conservative) depending on the group
processes and the individual goals, as illustrated in the financial forecasting study described in (Maines 1996).

In summary, it seems that the most important part of the estimation principle is to combine estimates from
different sources (with, preferably, high accuracy and low inter-correlation), not exactly how this combination is
conducted.

5.4 Assess the Uncertainty of the Estimate

Important reasons for the importance of assessing the uncertainty of an effort estimate are:
• The uncertainty of the estimate is important information in the planning of a software project (McConnel

1998).
• An assessment of the uncertainty is important for the learning from the estimate, e.g., low estimation

accuracy is not necessarily an indicator of low estimation skills when the software development project
work is highly uncertain (Jørgensen and Sjøberg 2002b).

9 This is no shortcoming of Hogarth’s model, since his model assumes that the combined estimate is based on the

average of the individual estimates.

17

• The process of assessing uncertainty may lead to more realism in the estimation of most likely software
development effort. The software estimation study reported in (Connolly and Dean 1997) supports this
finding, but there are also contradictory findings, e.g., time usage estimation study described in (Newby-
Clark, Ross et al. 2000).

We recommend, similarly to the forecasting principles described by Armstrong (2001d), that the uncertainty
of an estimate is assessed through a prediction interval. For example, a project leader may estimate that the most
likely effort of a development project is 10000 work-hours and that it is 90% certain (confidence level) that the
actual use of effort will be between 5000 and 20000 work-hours. Then, the interval [5000, 20000] work-hours is
the 90% prediction interval of the effort estimate of 10000 work-hours.

A confidence level of K% should, in the long run, result in a proportion of actual values inside the prediction
interval (hit rate) of K%. However, Connolly and Dean (1997) report that the hit rates of students’ effort
predictions intervals were, on average, 60% when a 90% confidence level was required. Similarly, (Jørgensen,
Teigen et al. 2002) report that the activity effort hit rates of several industrial software development projects
were all less than 50%10, i.e., the intervals were much too narrow.

This type of over-confidence seems to be found in most other domains, see for example (Alpert and Raiffa
1982; Lichtenstein, Fischhoff et al. 1982; McClelland and Bolger 1994; Wright and Ayton 1994; Bongaarts and
Bulatao 2000). As reported earlier, Lichtenstein and Fischhoff (1977) report that the level of over-confidence
was unaffected by differences in intelligence and expertise, i.e., we should not expect that the level of over-
confidence is reduced with more experience. Arkes (2001) gives a recent overview of studies from different
domains on over-confidence, supporting that claim. Potential reasons for this over-confidence are:
• Poor statistical knowledge. The statistical assumptions underlying prediction intervals and probabilities are

rather complex, see for example (Christensen 1998). Even with sufficient historical data the estimators may
not know how to provide, for example, a 90% prediction interval of an estimate.

• Estimation goals in “conflict” with the estimation accuracy goal. The software professionals’ goals of
appearing skilled and providing ”informative” prediction intervals may be in conflict with the goal of
sufficiently wide prediction intervals, see for example the human judgment studies (Yaniv and Foster 1997;
Keren and Teigen 2001) and our discussion in Section 4.1.

• “Anchoring effect”. Several studies from various domains, e.g., (Kahneman, Slovic et al. 1982; Jørgensen
and Sjøberg 2002a), report that people typically provide estimates influenced by an anchor value and that
they are not sufficiently aware of this influence. The estimate of the most likely effort may easily become
the anchor value of the estimate of minimum and maximum effort. Consequently, the minimum and
maximum effort will not be sufficiently different from the most likely effort in high uncertainty situations.

• “Tendency to over-estimate own skills”. Kruger and Dunning (1999) found a tendency to over-estimate
one’s own level of skill in comparison with the skill of other people. This tendency increased with
decreasing level of skill. A potential effect of the tendency is that information about previous estimation
inaccuracy of similar projects has insufficient impact on a project leaders uncertainty estimate, because
most project leaders believe to be more skilled than average.

In total, there is strong evidence that the traditional, unaided expert judgment-based assessments of
estimation uncertainty through prediction intervals are biased toward over-confidence, i.e., too narrow
prediction intervals. An uncertainty elicitation process that seems to reduce the over-confidence in software
estimation contexts is described in (Jørgensen and Teigen 2002). This process, which is similar to the method
proposed by (Seaver, Winterfeldt von et al. 1978), proposes a simple change of the traditional uncertainty
elicitation process:

1. Estimates the most likely effort.
2. Calculate the minimum and maximum effort as fixed proportions of the most likely effort. For example,

an organisation could base these proportions on the NASA-guidelines (NASA 1990) of software
development project effort intervals and set the minimum effort to 50% and the maximum effort to 200%
of the most likely effort.

3. Decide on the confidence level, i.e., assess the probability that the actual effort is between the minimum
and maximum effort.

Steps 2 and 3 are different from the traditional uncertainty elicitation process, where the experts are
instructed to provide minimum and maximum effort values for a given confidence level, e.g., a 90% confidence
level. The differences may appear minor, but include a change from “self-developed” to “mechanically”
developed minimum and maximum values. Minimum and maximum values provided by oneself, as in the
traditional elicitation process, may be used to indicate estimation skills, e.g., to show to other people that “my
estimation work is of a high quality”. Mechanically calculated minimum and maximum values, on the other
hand, may reduce this “ownership” of the minimum and maximum values, i.e., lead to a situation similar to
when experts evaluate estimation work conducted by other people. As discussed in Section 4.2, it is much easier
to be realistic when assessing other peoples performance, compared with own performance. In addition, as

10 The industrial projects did not have a consistent use of confidence level, but, typically, let the estimators decide how to
interpret minimum and maximum effort. Nevertheless, most meaningful interpretations of minimum and maximum effort should
lead to higher hit rates than 40-50%.

18

opposed to the traditional process, there is no obvious anchor value that influences the prediction intervals
toward over-confidence when assessing the appropriate confidence level of a mechanically derived prediction
interval. Other possible explanations for the benefits of the proposed approach, e.g., easier learning from history,
are described in (Jørgensen and Teigen 2002). The proposed approach was evaluated on the estimation of a set
of maintenance tasks and found to improve the correspondence between confidence level and hit rate
significantly (Jørgensen and Teigen 2002).

An alternative elicitation method, not yet evaluated in software contexts, is to ask for prediction intervals
based on low confidence levels, e.g., to ask a software developer to provide a 60% instead of a 90% prediction
interval. This may reduce the level of over-confidence, because, as found by (Roth 1993), people are generally
better calibrated in the middle of a probability distribution than in its tails.

6 Provide Estimation Feedback and Training Opportunities

It is hard to improve estimation skills without feedback and training. Lack of estimation feedback and
training may, however, be a common situation in software organizations (Hughes 1996a; Jørgensen and Sjøberg
2002b). The observed lack of feedback of software organizations means that it is no large surprise that increased
experience did not lead to improved estimation accuracy in the studies (Hill, Thomas et al. 2000; Jørgensen and
Sjøberg 2002b). Similarly, many studies from other domains report a lack of correlation between amount of
experience and estimation skills. Hammond (1996, p. 278) summarizes the situation: “Yet in nearly every study
of experts carried out within the judgment and decision-making approach, experience has been shown to be
unrelated to the empirical accuracy of expert judgments”.

Learning estimation skills from experience can be difficult (Jørgensen and Sjøberg 2000). In addition to
sufficient and properly designed estimation feedback, estimation improvements may require the provision of
training opportunities (Ericsson and Lehmann 1996). This section discusses feedback and training principles for
improvement of expert estimates.

6.1 Provide Feedback on Estimation Accuracy and Development Task Relations

There has been much work on frameworks for “learning from experience” in software organizations, e.g.,
work on experience databases (Basili, Caldierea et al. 1994; Houdek, K et al. 1998; Jørgensen, Sjøberg et al.
1998; Engelkamp, Hartkopf et al. 2000) and frameworks for Post-Mortem (project experience) reviews (Birk,
Dingsøyr et al. 2002). These studies do not, as far as we know, provide empirical results on the relation between
type of feedback and estimation accuracy improvement. The only software study on this topic (Ohlsson, Wohlin
et al. 1998), to our knowledge, suggest that outcome feedback, i.e., feedback relating the actual outcome to the
estimated outcome, did not improve the estimation accuracy. Human judgment studies from other domains
support this disappointing lack of estimation improvement from outcome feedback, see for example (Balzer,
Doherty et al. 1989; Benson 1992; Stone and Opel 2000). This is no large surprise, since there is little estimation
accuracy improvement possible from the feedback that, for example, “the effort estimate was 30% too low”.
One situation were outcome feedback is reported to improve the estimation accuracy is when the estimation
tasks are “dependent and related” and the estimator initially was under-confident, i.e., underestimated her/his
own knowledge on general knowledge tasks (Subbotin 1996). In spite of the poor improvement in estimation
accuracy, outcome feedback is useful, since it improves the assessment of the uncertainty of an estimate (Stone
and Opel 2000; Jørgensen and Teigen 2002). Feedback on estimation accuracy should, for that reason, be
included in the estimation feedback.

To improve the estimation accuracy, several studies from various domains suggest that “task relation
oriented feedback”, i.e., feedback on how different events and variables were related to the actual use of effort,
are required (Schmitt, Coyle et al. 1976; Balzer, Doherty et al. 1989; Benson 1992; Stone and Opel 2000). A
possible method to provide this type of feedback is the use “experience reports” or “post mortem” review
processes.

When analysing the impacts from different variables on the use of effort and the estimation accuracy, i.e.,
the “task relation oriented feedback”, it important to understand interpretation biases and the dynamics of
software projects, e.g.,:
• The “hindsight bias”, e.g., the tendency to interpret cause-effect relationships as more obvious after it

happen than before, see (Fischhof 1975; Stahlberg, Eller et al. 1995) for general human judgement studies
on this topic.

• The tendency to confirm rules and disregard conflicting evidence, as illustrated in the human judgement
studies (Camerer and Johnson 1991; Sanbonmatsu, Sharon et al. 1993) and our discussion in Section 4.3.

• The tendency to apply a “deterministic” instead of a “probabilistic” learning model. For example, assume
that a software project introduces a new development tool for the purpose of increasing the efficiency and
that the project has many inexperienced developers. The actual project efficiency turns out to be lower than
that of the previous projects and the actual effort, consequently, becomes much higher than the estimated

19

effort. A (naïve) deterministic interpretation of this experience would be that “new tools decrease the
development efficiency if the developers are inexperienced’. A probabilistic interpretation would be to
consider other possible scenarios (that did not happen, but could have happen) and to conclude that it seems
to be more than 50% likely that the combination of new tools and inexperienced developers lead to a
decrease in efficiency. This ability to think in probability-based terms can, according to Brehmer (1980),
hardly be derived from experience alone, but must be taught. Hammond (1996) suggest that the ability to
understand relationships in terms of probabilities instead of purely deterministic connections is important
for correct learning in situations with high uncertainty.

• The potential impact of the estimate on the actual effort as reported in the software estimation studies
(Abdel-Hamid and Madnik 1983; Jørgensen and Sjøberg 2001a), i.e., the potential presence of a“self-
fulfilling prophecy”. For example, software projects that over-estimate the “most likely effort” may achieve
high estimation accuracy if the remaining effort is applied to improve (“gold-plate”) the product.

• The potential lack of distinction between “plan” and “estimate”, see discussion in Section 4.2.
• The variety of reasons for high or low estimation accuracy, as pointed out in the industrial software

estimation study (Jørgensen, Moen et al. 2002). Low estimation accuracy may, for example, be the results
of poor project control, high project uncertainty, low flexibility in delivered product (small opportunity to
“fit” the actual use of effort to the estimated), project members with low motivation for estimation
accuracy, high project priority on time-to-market, “bad luck”, or, of course, poor estimation skills.

• A tendency to asymmetric cause-effect analyses dependent on high or low accuracy, i.e., high estimation
accuracy is explained as good estimation skills, while low estimation accuracy is explained as impact from
external uncontrollable factors. Tan and Lipe (1997) found, in a business context, that: “Those with positive
outcomes (e.g., strong profits) are rewarded; justification or consideration of reasons as to why the
evaluatee performed well are not necessary. In contrast, when outcomes are negative (e.g. losses suffered),
justifications for the poor results are critical. Evaluators consider controllability or other such factors
more when outcomes are negative than when they are positive.”

In many human judgment situations with high uncertainty and unstable task relations, there are indications
on that even task relation-oriented feedback is not sufficient for learning (Schmitt, Coyle et al. 1976; Bolger and
Wright 1994), i.e., the situations do simply not enable learning from experience. For this reason, it is important
to recognize when there is nothing to learn from experience, as reported in the software estimation study
(Jørgensen and Sjøberg 2000).

A problem with most feedback on software development effort estimates is that it takes too much time from
the point-of-estimation to the point-of-feedback. This is unfortunate, since it has been shown that immediate
feedback strongly improves the estimation learning and accuracy, as illustrated in the human judgment studies
(Bolger and Wright 1994; Shepperd, Fernandez et al. 1996). Interestingly, Shepperd et al. (1996) also found that
when the feedback is rapid, people with low confidence start to under-estimate their own performance, maybe to
ensure that they will not be disappointed, i.e., there may be situations where the feedback can be too rapid too
stimulate to realistic estimates. Although it is easy to over-rate the possibility to learn from feedback, it is
frequently the only realistic opportunity for learning, i.e., even if the benefits are smaller than we like to believe,
software organizations should do their best to provide properly designed estimation feedback.

6.2 Provide Estimation Training Opportunities

Frequently, real software projects provide too little information to draw valid conclusions about cause-
effects (Jørgensen and Sjøberg 2000). Blocher et al. (1997) report similar results based on studies of people’s
analytical procedures. Bloher et al. attribute the cause-effect problems to the lack of learning about what would
have happened if we had not done what we did, and the high number of alternative explanation for an event.
Furthermore, they argue that learning requires the development of causal models for education, training and
professional guidance. The importance of causal domain models for training is supported by the human
judgment results described in (Bolger and Wright 1994). Similar reasons for learning problems, based on a
review of studies on differences in performance between experts and novices in many different domains, are
provided by Ericsson and Lehmann (1996). They claim that it is not the amount of experience but the amount of
“deliberate training” that determines the level of expertise. They interpret deliberate training as “individualized
training activities especially designed by a coach or teacher to improve specific aspects of an individual’s
performance through repetition and successive refinement”. This importance of training is also supported by the
review of human judgment studies described in (Camerer and Johnson 1991), suggesting that while training had
an effect on estimation accuracy, amount of experience had almost none.

We suggest that software companies provide estimation training opportunities through their database of
completed projects. An estimation training session should include estimation of completed projects based on the
information available at the point-of-estimation applying different estimation processes. This type of estimation
training has several advantages in comparison with the traditional estimation training:
• Individualized feedback can be received immediately after completion of the estimates.
• The effect of not applying checklists and other estimation tool can be investigated on one’s own estimation

20

processes.
• The validity of own estimation experience can be examined on different types of projects, i.e., projects

much larger than those estimated earlier.
• Reasons for forgotten activities or underestimated risks can be analyzed immediately, while the hindsight

bias is weak.
• The tendency to be over-confidence can be understood, given proper coaching and training projects.

As far as we know, there are no reported studies of organizations conducting estimation training in line with
our suggestions. However, the results from other studies, in particular those summarized in (Ericsson and
Lehmann 1996), strongly support that this type of training should complement the traditional estimation courses
and pure “learning from experience”.

7 Conclusions and Further Research

The two main contributions of this paper are:
• A systematic review of papers on software development effort expert estimation.
• An extensive examination of relevant human judgment studies to validate expert estimation “best

practice” principles.
The review concludes that expert estimation is the dominant strategy when estimating the effort of software

development projects, and that there is no substantial evidence supporting the superiority of model estimates
over expert estimates. There are situations where expert estimates are more likely to be more accurate, e.g.,
situations where experts have important domain knowledge not included in the models or situations when
simple estimation strategies provide accurate estimates. Similarly, there are situations where the use of models
may reduce large situational or human biases, e.g., when the estimators have a strong personal interest in the
outcome. The studies on expert estimation are summarized through an empirical evaluation of the twelve
principles: 1) Evaluate estimation accuracy, but avoid high evaluation pressure, 2) Avoid conflicting estimation
goals, 3) Ask the estimators to justify and criticize their estimates, 4) Avoid irrelevant and unreliable estimation
information, 5) Use documented data from previous development tasks, 6) Find estimation experts with relevant
domain background and good estimation record, 7) Estimate top-down and bottom-up, independently of each
other, 8) Use estimation checklists, 9) Combine estimates from different experts and estimation strategies, 10)
Assess the uncertainty of the estimate, 11) Provide feedback on estimation accuracy and task relations, 12)
Provide estimation training opportunities. We find that there is evidence supporting all these principles and,
consequently, that software organizations should apply them.

The estimation principles are to some extent based on results from other domains than software
development, or represent only one type of software projects and experts. For this reason there is a strong need
for better insight into the validity and generality of many of the discussed topics. In particular we plan to
continue with research on:

• When to use expert estimation and when to use estimation models.
• How to reduce the over-optimism bias when estimating own work applying expert estimation.
• How to select and combine a set of expert estimates.
• The benefits of “deliberate” estimation training.

Acknowledgement: Thanks to professor in psychology at the University of Oslo, Karl Halvor Teigen, for

his very useful suggestions and interesting discussions.

21

References

Abdel-Hamid, T. K. and S. E. Madnik 1983. The dynamics of software project scheduling. Communications of
the ACM 26(5): 340-346.

Abdel-Hamid, T. K., K. Sengupta and D. Ronan 1993. Software project control: An experimental investigation
of judgment with fallible information. IEEE Transactions on Software Engineering 19(6): 603-612.

Abdel-Hamid, T. K., K. Sengupta and C. Swett 1999. The impact of goals on software project management: An
experimental investigation. MIS Quarterly 23(4): 531-555.

Alpert, M. and H. Raiffa 1982. A progress report on the training of probability assessors. Judgment under
uncertainty: heuristics and biases. Ed. A. Tversky. Cambridge, Cambridge University Press: 294-305.

Arkes, H. R. 2001. Overconfidence in judgmental forecasting. Principles of forecasting: A handbook for
researchers and practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 495-515.

Armstrong, J. S. 2001a. Combining forecasts. Principles of forecasting: A handbook for researchers and
practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 417-440.

Armstrong, J. S. 2001b. The forecasting dictionary. Principles of forecasting: A handbook for researchers and
practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 761-824.

Armstrong, J. S. 2001c. Selecting forecasting methods. Principles of forecasting: A handbook for researchers
and practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 365-386.

Armstrong, J. S. 2001d. Standards and practices for forecasting. Principles of forecasting: A handbook for
researchers and practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 679-732.

Armstrong, J. S., W. B. Denniston Jr. and M. M. Gordon 1975. The use of the decomposition principle in
making judgments. Organizational-Behavior-and-Human-Decision-Processes. 14(2): 257-263.

Ashton, R. H. 1986. Combining the judgments of experts: How many and which ones? Organizational
Behaviour and Human Decision Processes 38(3): 405-414.

Atkinson, K. and M. Shepperd 1994. Using function points to find cost analogies. European Software Cost
Modelling Meeting, Ivrea, Italy.

Ayton, A. 1998. How bad is human judgment? Forecasting with judgment. Ed. G. Wright and P. Goodwin. New
York, Johh Wiley & Son: 237-268.

Balzer, W. K., M. E. Doherty and R. J. O'Connor 1989. Effects of cognitive feedback on performance.
Psychological Bulletin 106(3): 410-433.

Basili, V., H. Caldierea and D. Rombach 1994. The Experience Factory. Encyclopedia of Software Engineering.
Ed. J. J. Marciniak, Wiley: 469-476.

Benson, P. G. 1992. The effects of feedback and training on the performance of probability forecasters.
International Journal of Forecasting 8(4): 559-573.

Betteridge, R. 1992. Successful experience of using function points to estimate project costs early in the life-
cycle. Information and Software Technology 34(10): 655-658.

Birk, A., T. Dingsøyr and T. Stalhane 2002. Postmortem: Never leave a project without it. IEEE Software 19(3):
43-45.

Blattberg, R. C. and S. J. Hoch 1990. Database models and managerial intuition: 50% model + 50% manager.
Management Science 36: 887-899.

Blocher, E., M. J. Bouwman and C. E. Daves 1997. Learning from experience in performing analytical
procedures. Training Research Journal 3: 59-79.

Boehm, B., C. Abts and S. Chulani 2000. Software development cost estimation approaches - A survey. Annals
of software engineering 10: 177-205.

Boehm, B. and K. Sullivan 1999. Software economics: Status and prospects. Information and Software
Technology 41: 937-946.

Boehm, B. W. 1981. Software engineering economics. New Jersey, Prentice-Hall.
Boehm, B. W. 1984. Software engineering economics. IEEE Transactions on Software Engineering 10(1): 4-21.
Bolger, F. and G. Wright 1994. Assessing the quality of expert judgment: Issues and analysis. Decision support

systems 11(1): 1-24.
Bongaarts, J. and R. A. Bulatao 2000. Beyond Six Billion: Forecasting the World's Population, National

Academy Press.
Bowden, P., M. Hargreaves and C. S. Langensiepen 2000. Estimation support by lexical analysis of

requirements documents. Journal of Systems and Software 51(2): 87-98.
Braun, P. A. and I. Yaniv 1992. A case study of expert judgment: economists' probabilities versus base-rate

model forecasts. Journal of Behavioral Decision Making 5(3): 217-231.
Brehmer, B. 1980. In one word: Not from experience. Acta Psychologica 45: 223-241.
Brenner, L. A., D. J. Koehler and A. Tversky 1996. On the evaluation of one-sided evidence. Journal of

Behavioral Decision Making 9(1): 59-70.
Briand, L. C., K. El Emam, D. Surmann, I. Wieczorek and K. D. Maxwell 1999. An assessment and comparison

of common software cost estimation modeling techniques. International Conference on Software
Engineering, Los Angeles, USA, ACM, New York: 313-323.

22

Briand, L. C., T. Langley and I. Wieczorek 2000. A replicated assessment and comparison of common software
cost modeling techniques. International Conference on Software Engineering, Limerick, Ireland,
ACM, New York: 377-386.

Briand, L. C. and I. Wieczorek 2002. Resource estimation in software engineering. Encyclopedia of software
engineering. Ed. J. J. Marcinak. New York, John Wiley & Sons.

Buehler, R., D. Griffin and H. MacDonald 1997. The role of motivated reasoning in optimistic time predictions.
Personality and social psychology bulletin 23(3): 238-247.

Buehler, R., D. Griffin and M. Ross 1994. Exploring the "Planning fallacy": Why people underestimate their
task completion times. Journal of Personality and Social Psychology 67(3): 366-381.

Camerer, C. F. and E. J. Johnson 1991. The process-performance paradox in expert judgment: How can experts
know so much and predict so badly? Towards a general theory of expertise. Ed. K. A. Ericsson and J.
Smith, Cambridge University Press: 195-217.

Chatterjee, S. and S. Chatterjee 1987. On combining expert opinion. American Journal of mathematical and
management sciences 7(3&4): 271-295.

Christensen, R. 1998. Analysis of variance, design and regression. Applied statistical methods, Chapman &
Hall/Crc.

Chulani, S., B. Boehm and B. Steece 1999. Bayesian analysis of empirical software engineering cost models.
IEEE Transactions on Software Engineering 25(4): 573-583.

Clemen, R. T. 1989. Combining forecasts: A review and annotated bibliography. International Journal of
Forecasting 5(4): 559-583.

Connolly, T. and D. Dean 1997. Decomposed versus holistic estimates of effort required for software writing
tasks. Management Science 43(7): 1029-1045.

Cosier, R. A. and G. L. Rose 1977. Cognitive conflict and goal conflict effects on task performance.
Organizational Behaviour and Human Performance 19(2): 378-391.

Cuelenaere, A. M. E., M. J. I. M. Genuchten and F. J. Heemstra 1987. Calibrating a software cost estimation
model: Why and how. Information and Software Technology 29(10): 558-567.

Dawes, R. M. 1986. Proper and improper linear models. International Journal of Forecasting 2: 5-14.
Dolado, J. J. 2001. On the problem of the software cost function. Information and Software Technology 43(1):

61-72.
Edwards, J. S. and T. T. Moores 1994. A conflict between the use of estimating and planning tools in the

management of information systems. European Journal of Information Systems 3(2): 139-147.
Einhorn, H. J. and R. M. Hogarth 1978. Confidence in judgment: Persistence of the illusion of validity.

Psychological review 85(5): 395-416.
Engelkamp, S., S. Hartkopf and P. Brössler 2000. Project Experience Database: A Report Based on First

Practical Experience. PROFES, Oulu, Finland, Springer-Verlag: 204-215.
Ericsson, K. A. and A. C. Lehmann 1996. Expert and exceptional performance: Evidence of maximal adaptation

to task constraints. Annual Review of Psychology 47: 273-305.
Ettenson, R., J. Shanteau and J. Krogstad 1987. Expert judgment: Is more information better. Psychological

reports 60(1): 227-238.
Fairley, R. E. 1992. Recent advantages in software estimation techniques. International Conference on Software

Engineering, Melbourne, Australia: 382-391.
Fischer, I. and N. Harvey 1999. Combining forecasts: What information do judges need to outperform the

simple average. International Journal of Forecasting 15(3): 227-246.
Fischhof, B. 1975. Hindsight <> foresight: The effect of outcome knowledge on judgement under uncertainty.

Journal of Experimental Psychology: Human Perception and Performance 1: 288-299.
Fischhoff, B., P. Slovic and S. Lichtenstein 1978. Fault trees: Sensitivity of estimated failure probabilities to

problem representation. Journal of Experimental Psychology: Human Perception and Performance
4(2): 330-334.

Fisher, G. W. 1981. When oracles fail--a comparison of four procedures for aggregating subjective probability
forecasts. Organizational Behaviour and Human Performance 28(1): 96-110.

Getty, D. J., R. M. Pickett, S. J. D'Orsi and J. A. Swets 1988. Enhanced interpretation of diagnostic images.
Investigative radiology 23: 244-252.

Gigerenzer, G. and P. M. Todd 1999. Simple heuristics that make us smart. New York, Oxford University Press.
Goodman, P. A. 1992. Application of cost-estimation techniques: Industrial perspective. Information and

Software Technology 34(6): 379-382.
Goodwin, P. 1998. Enhancing judgmental sales forecasting: The role of laboratory research. Forecasting with

judgment. Ed. G. Wright and P. Goodwin. New York, John Wiley & Sons: 91-112.
Goodwin, P. and G. Wright 1990. Improving judgmental time series forecasting: A review of the guidance

provided by research. International Journal of Forecasting 9: 147-161.
Griffin, D. and R. Buehler 1999. Frequency, probability, and prediction: Easy solutions to cognitive illusions?

Cognitive Psychology 38(1): 48-78.
Hagafors, R. and B. Brehmer 1983. Does having to justify one's judgments change nature of the judgment

23

process? Organizational Behaviour and Human Decision Processes 31(2): 223-232.
Hammond, K. R. 1996. Human judgement and social policy: Irreducible uncertainty, inevitable error,

unavoidable injustice. New York, Oxford University Press.
Hammond, K. R., R. M. Hamm, J. Grassia and T. Pearson 1987. Direct comparison of the efficacy of intuitive

and analytical cognition in expert judgment. IEEE Transactions on systems, man, and cybernetics
17(5): 753-770.

Harvey, N. 2001. Improving judgment in forecasting. Principles of forecasting: A handbook for researchers and
practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic Publishers: 59-80.

Heemstra, F. J. 1992. Software cost estimation. Information and Software Technology 34(10): 627-639.
Heemstra, F. J. and R. J. Kusters 1991. Function point analysis: Evaluation of a software cost estimation model.

European Journal of Information Systems 1(4): 223-237.
Henry, R. A. 1995. Improving group judgment accuracy: Information sharing and determining the best member.

Organizational Behaviour and Human Decision Processes 62: 190-197.
Hihn, J. and H. Habib-Agahi 1991a. Cost estimation of software intensive projects: A survey of current

practices. International Conference on Software Engineering, IEEE Comput. Soc. Press, Los Alamitos,
CA, USA: 276-287.

Hihn, J. and H. Habib-Agahi 1991b. Cost estimation of software intensive projects: A survey of current
practices. International Conference on Software Engineering: 276-287.

Hill, J., L. C. Thomas and D. E. Allen 2000. Experts' estimates of task durations in software development
projects. International Journal of Project Management 18(1): 13-21.

Hoch, S. J. and D. A. Schkade 1996. A psychological approach to decision support systems. Management
Science 42(1): 51-64.

Hogarth, R. M. 1978. A note on aggregating opinions. Organizational Behaviour and Human Performance
21(1): 40-46.

Houdek, F., S. K and W. E 1998. Establishing Experience Factories at Daimler-Benz An Experience Report.
International Conference on Software Engineering, Kyoto, Japan: 443-447.

Hughes, R. T. 1996a. Expert judgement as an estimating method. Information and Software Technology 38(2):
67-75.

Hughes, R. T. 1996b. Expert judgement as an estimation method. Information and Software Technology 38: 67-
75.

Höst, M. and C. Wohlin 1997. A subjective effort estimation experiment. Information and Software Technology
39(11): 755-762.

Höst, M. and C. Wohlin 1998. An experimental study of individual subjective effort estimations and
combinations of the estimates. International Conference on Software Engineering, Kyoto, Japan, IEEE
Comput. Soc, Los Alamitos, CA, USA: 332-339.

Jeffery, D. R. and G. Low 1990. Calibrating estimation tools for software development. Software Engineering
Journal 5(4): 215-221.

Jeffery, D. R., M. Ruhe and I. Wieczorek 2000. A comparative study of two software development cost
modeling techniques using multi-organizational and company-specific data. Information and Software
Technology 42(14): 1009-1016.

Johnson, E. J. 1998. Expertise and decision under uncertainty: Performance and process. The nature of
expertise. Ed. M. T. H. Chi, R. Glaser and M. J. Farr. Hillsdale, N. J., Lawrence Erlbaum: 209-228.

Josephs, R. and E. D. Hahn 1995. Bias and accuracy in estimates of task duration. Organizational Behaviour
and Human Decision Processes 61(2): 202-213.

Jørgensen, M. 1995. The quality of questionnaire based software maintenance studies. ACM SIGSOFT -
Software Engineering Notes 20(1): 71-73.

Jørgensen, M. 1997. An empirical evaluation of the MkII FPA estimation model. Norwegian Informatics
Conference, Voss, Norway, Tapir, Oslo: 7-18.

Jørgensen, M. 2002. Software Effort Estimation by Analogy and "Regression Toward the Mean". To appear in:
Journal of Systems and Software.

Jørgensen, M., L. Moen and N. Løvstad 2002. Combining Quantitative Software Development Cost Estimation
Precision Data with Qualitative Data from Project Experience Reports at Ericsson Design Center in
Norway. Proceedings of the conference on empirical assessment in software engineering, Keele,
England, Keele University.

Jørgensen, M. and K. Moløkken 2002. Combination of software development effort prediction intervals: Why,
when and how? Fourteenth IEEE Conference on Software Engineering and Knowledge Engineering
(SEKE’02), Ischia, Italy.

Jørgensen, M. and D. Sjøberg 2000. The importance of not learning from experience. European Software
Process Improvement 2000 (EuroSPI'2000), Copenhagen: 2.2-2.8.

Jørgensen, M. and D. I. K. Sjøberg 2001a. Impact of effort estimates on software project work. Information and
Software Technology 43(15): 939-948.

Jørgensen, M. and D. I. K. Sjøberg 2001b. Software process improvement and human judgement heuristics.

24

Scandinavian Journal of Information Systems 13: 99-121.
Jørgensen, M. and D. I. K. Sjøberg 2002a. The Impact of Customer Expectation on Software Development

Effort Estimates. Submitted to International Journal of Project Management.
Jørgensen, M. and D. I. K. Sjøberg 2002b. Impact of experience on maintenance skills. Journal of Software

Maintenance and Evolution: Research and practice 14(2): 123-146.
Jørgensen, M., D. I. K. Sjøberg and R. Conradi 1998. Reuse of software development experience at Telenor

Telecom Software. European Software Process Improvement Conference (EuroSPI’98), Gothenburg,
Sweden: 10.19-10.31.

Jørgensen, M. and K. H. Teigen 2002. Uncertainty Intervals versus Interval Uncertainty: An Alternative Method
for Eliciting Effort Prediction Intervals in Software Development Projects. Proceedings of:
International conference on Project Management (ProMAC), Singapore, 343-352.

Jørgensen, M., K. H. Teigen and K. Moløkken 2002. Better sure than safe? Overconfidence in judgment based
software development effort prediction intervals. Submitted to Journal of Systems and Software.

Kahneman, D. and D. Lovallo 1993. Timid choices and bold forecasts: A cognitive perspective on risk taking.
Management Science 39(1): 17-31.

Kahneman, D., P. Slovic and A. Tversky 1982. Judgment under uncertainty: Heuristics and biases. Cambridge,
United Kingdom, Cambridge University Press.

Kahneman, D. and A. Tversky 1973. On the psychology of prediction. Psychological Review 80(4): 237-251.
Kahneman, D. and A. Tversky 1979. Intuitive predictions: Biases and corrective procedures. TIMS Studies in

Management Science 12: 313-327.
Keen, P. G. W. 1981. Information systems and organizational change. Social Impacts of Computing 24(1): 24-

33.
Keren, G. and K. H. Teigen 2001. Why is p=.90 better than p=.70? preference for definitive predictions by lay

consumers of probability judgments. Psychonomic Bulletin & Reviews 8(2): 191-202.
Kernaghan, J. A. and R. A. Cooke 1986. The contribution of the group process to successful project planning in

R&D settings. IEEE Transactions on Engineering Management 33(3): 134-140.
Kernaghan, J. A. and R. A. Cooke 1990. Teamwork in planning innovative projects: Improving group

performance by rational and interpersonal interventions in group process. IEEE Transactions on
Engineering Management 37(2): 109-116.

Kitchenham, B., S. L. Pfleeger, B. McColl and S. Eagan 2002. A case study of maintenance estimation
accuracy. To appear in: Journal of Systems and Software.

Klayman, J., J. B. Soll, V. C. Gonzalez and S. Barlas 1999. Overconfidence: It depends on how, what and whom
you ask. Organizational Behaviour and Human Decision Processes 79(3): 216-247.

Klein, W. M. and Z. Kunda 1994. Exaggerated self-assessments and the preference for controllable risks.
Organizational behavior and human decision processes. 59(3): 410-427.

Koehler, D. J. 1991. Explanation, imagination, and confidence in judgment. Psychological bulletin 110(3): 499-
519.

Koehler, D. J. and N. Harvey 1997. Confidence judgments by actors and observers. Journal of Behavioral
Decision Making 10(3): 221-242.

Koriat, A., S. Lichtenstein and B. Fischhoff 1980. Reasons for confidence. Journal of Experimental Psychology:
Human Learning and Memory 6(2): 107-118.

Kruger, J. and D. Dunning 1999. Unskilled and unaware of it: How difficulties in recognizing one's own
incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology 77(6):
1121-1134.

Kusters, R. J. 1990. Are software cost-estimation models accurate? Information and software technology 32:
187-190.

Kusters, R. J., M. J. I. M. Genuchten and F. J. Heemstra 1990. Are software cost-estimation models accurate?
Information and Software Technology 32(3): 187-190.

Lawrence, M. and M. O'Connor 1996. Judgement or models: The importance of task differences. Omega,
International Journal of Management Science 24(3): 245-254.

Lederer, A. L., R. Mirani, B. S. Neo, C. Pollard, J. Prasad and K. Ramamurthy 1990. Information system cost
estimating: a management perspective. MIS Quarterly 14(2): 159-176.

Lederer, A. L. and J. Prasad 1992. Nine management guidelines for better cost estimating. Communications of
the ACM 35(2): 51-59.

Lederer, A. L. and J. Prasad 1993. Information systems software cost estimating: a current assessment. Journal
of Information Technology 8(1): 22-33.

Lederer, A. L. and J. Prasad 1998. A causal model for software cost estimating error. IEEE Transactions on
Software Engineering 24(2): 137-148.

Lederer, A. L. and J. Prasad 2000. Software management and cost estimating error. Journal of Systems and
Software 50(1): 33-42.

Libby, R. and R. K. Blashfield 1978. Performance of a composite as a function of the number of judges.
Organizational Behaviour and Human Performance 21(2): 121-129.

25

Lichtenstein, S. and B. Fischhoff 1977. Do those who know more also know more about how much they know?
Organizational Behaviour and Human Decision Processes. 20(2): 159-183.

Lichtenstein, S., B. Fischhoff and L. D. Phillips 1982. Calibration of probabilities: The state of the art to 1980.
Judgment under uncertainty: Heuristics and biases. Ed. A. Tversky. Cambridge, Cambridge University
Press.

Lim, J. S. and M. O'Connor 1996. Judgmental forecasting with time series and causal information. International
Journal of Forecasting 12(1): 139-153.

Londeix, B. 1995. Deploying realistic estimation (field situation analysis). Information and Software
Technology 37(12): 655-670.

MacGregor, D. G. 2001. Decomposition for judgmental forecasting and estimation. Principles of forecasting: A
handbook for researchers and practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic
Publishers: 107-123.

MacGregor, D. G. and S. Lichtenstein 1991. Problem structuring aids for quantitative estimation. Journal of
Behavioral Decision Making 4(2): 101-116.

Maines, L. A. 1996. An experimental examination of subjective forecast combination. International Journal of
Forecasting 12(2): 223-233.

Makridakis, S., S. C. Wheelwright and R. J. Hyndman 1998. Forecasting : methods and applications. New
York, John Wiley & Son.

Marouane, R. and A. Mili 1989. Economics of software project management in Tunisia: basic TUCOMO.
Information and Software Technology 31(5): 251-257.

Marwane, R. and A. Mili 1991. Building tailor-made software cost model: Intermediate TUCOMO. Information
and Software Technology 33(3): 232-238.

McClelland, A. G. R. and F. Bolger 1994. The calibration of subjective probabilities: theories and models 1980-
94. Subjective probability. Ed. P. Ayton. Chichester, John Wiley.

McConnel, S. 1998. Software project survival guide, Microsoft Press.
Meehl, P. E. 1957. When shall we use our heads instead of the formula? Journal of Counseling Psychology 4(4):

268-273.
Mendes, E., S. Counsell and N. Mosley 2001. Measurement and effort prediction for Web applications,

Springer-Verlag, Berlin, Germany.
Meyer, M. A. and J. M. Booker 1991. Eliciting and analyzing expert judgment: A practical guide. Philadelphia,

Pennsylvania, SIAM.
Mizuno, O., T. Kikuno, K. Inagaki, Y. Takagi and K. Sakamoto 2000. Statistical analysis of deviation of actual

cost from estimated cost using actual project data. Information and Software Technology 42: 465-473.
Mohanty, S. N. 1981. Software cost estimation: Present and future. Software - Practice and Experience 11(2):

103-121.
Moløkken, K. 2002. Expert estimation of Web-development effort: Individual biases and group processes

(Master Thesis). Department of Informatics, University of Oslo.
Mukhopadhyay, T., S. S. Vicinanza and M. J. Prietula 1992. Examining the feasibility of a case-based reasoning

model for software effort estimation. MIS Quarterly 16(2): 155-171.
Murali, C. S. and C. S. Sankar 1997. Issues in estimating real-time data communications software projects.

Information and Software Technology 39(6): 399-402.
Myrtveit, I. and E. Stensrud 1999. A controlled experiment to assess the benefits of estimating with analogy and

regression models. IEEE Transactions on Software Engineering 25: 510-525.
NASA 1990. Manager's handbook for software development. Goddard Space Flight Center, Greenbelt, MD,

NASA Software Engineering Laboratory.
Newby-Clark, I. R., M. Ross, R. Buehler, D. J. Koehler and D. Griffin 2000. People focus on optimistic

scenarios and disregard pessimistic scenarios when predicting task completion times. Journal of
Experimental Psychology: Applied 6(3): 171-182.

Niessink, F. and H. van Vliet 1997. Predicting maintenance effort with function points. International conference
on software maintenance, Bari, Italy, IEEE Comput. Soc, Los Alamitos, CA, USA: 32 - 39.

Nisbett, R. E. and L. Ross 1980. Human inference: Strategies and shortcomings of social judgment, Englewood
Cliffs, NJ: Prentice-Hall.

O'Connor, M., W. Remus and K. Griggs 1993. Judgmental forecasting in times of change. International Journal
of Forecasting 9(2): 163-172.

Ohlsson, M. C., C. Wohlin and B. Regnell 1998. A project effort estimation study. Information and Software
Technology 40(14): 831-839.

Ordonez, L. and L. Benson III 1997. Decisions under time pressure: How time constraint affects risky decision
making. Organizational Behaviour and Human Decision Processes 71(2): 121-140.

Park, R. E. 1996. A manager's checklist for validating software cost and schedule estimates. American
Programmer 9(6): 30-35.

Paynter, J. 1996. Project estimation using screenflow engineering. International Conference on Software
Engineering: Education and Practice, Dunedin, New Zealand, IEEE Comput. Soc. Press, Los

26

Alamitos, CA, USA: 150-159.
Pelham, B. W. and E. Neter 1995. The effect of motivation of judgment depends on the difficulty of the

judgment. Journal of Personality and Social Psychology 68(4): 581-594.
Pengelly, A. 1995. Performance of effort estimating techniques in current development environments. Software

Engineering Journal 10(5): 162-170.
Reagan-Cirincione, P. 1994. Improving the accuracy of group judgment: A process intervention combining

group facilitation, social judgment analysis, and information technology. Organizational Behaviour
and Human Decision Processes 58(2): 246-270.

Remus, W., M. O'Connor and K. Griggs 1995. Does reliable information improve the accuracy of judgmental
forecasts? International Journal of Forecasting 11(2): 285-293.

Ringuest, J. L. and K. Tang 1987. Simple rules for combining forecasts: Some empirical results. Socio-Econ.
Plann. Sci. 21(4): 239-243.

Roth, P. L. 1993. Research trends in judgment and their implications for the Schmidt-Hunter global estimation
procedure. Organizational Behaviour and Human Decision Processes 54(2): 299-319.

Rowe, G. and G. Wright 2001. Expert opinions in forecasting: The role of the Delphi process. Principles of
forecasting: A handbook for researchers and practitioners. Ed. J. S. Armstrong. Boston, Kluwer
Academic Publishers: 125-144.

Sanbonmatsu, D. M., A. A. Sharon and E. Biggs 1993. Overestimating causality: Attributional effects of
confirmatory processing. Journal of Personality and Social Psychology 65(5): 892-903.

Sanders, D. E. and L. P. Ritzman 1991. On knowing when to switch from quantitative to judgemental forecasts.
International Journal of Forecasting 11(6): 27 - 37.

Sanders, G. S. 1984. Self-presentation and drive in social facilitation. Journal of Experimental Social
Psychology 20(4): 312-322.

Sanders, N. R. and L. P. Ritzman 2001. Judgmental adjustment of statistical forecasts. Principles of forecasting:
A handbook for researchers and practitioners. Ed. J. S. Armstrong. Boston, Kluwer Academic
Publishers: 405-416.

Schmitt, N., B. W. Coyle and L. King 1976. Feedback and task predictability as determinants of performance in
multiple cue probability learning tasks. Organizational Behaviour and Human decision processes.
16(2): 388-402.

Seaver, D. A., D. Winterfeldt von and W. Edwards 1978. Eliciting subjective probability distributions on
continuous variables. Organizational Behaviour and Human Decision Processes. 21(3): 379-391.

Shanteau, J. 1992. Competence in experts: The role of task characteristics. Organizational Behaviour and
Human Decision Processes 53(2): 252-266.

Shepperd, J. A., J. K. Fernandez and J. A. Quellette 1996. Abandoning unrealistic optimism: Performance
estimates and the temporal proximity of self-relevant feedback. Journal of Personality and Social
Psychology 70(4): 844-855.

Sieber, J. E. 1974. Effects of decision importance on ability to generate warranted subjective uncertainty.
Journal of Personality and Social Psychology 30(5): 688-694.

Simon, H. A. 1987. Making management decisions: The role of intuition and emotion. Acad. Management Exec.
1: 57-63.

Skitmore, R. M., S. G. Stradling and A. P. Tuohy 1994. Human effects in early stage construction contract price
forecasting. IEEE Transactions on Engineering Management 41(1): 29-40.

Soll, J. B. 1996. Determinants of overconfidence and miscalibration: The roles of random error and ecological
structure. Organizational Behaviour and Human Decision Processes 65(2): 117-137.

Stahlberg, D., F. Eller, A. Maass and D. Frey 1995. We knew it all along: Hindsight bias in groups.
Organizational Behaviour and Human Decision Processes 63(1): 46-58.

Stone, E., R and R. B. Opel 2000. Training to improve calibration and discrimination: The effects of
performance and environmental feedback. Organizational Behaviour and Human Decision Processes
83(2): 282-309.

Subbotin, V. 1996. Outcome feedback effects on under- and overconfident judgments (general knowledge
tasks). Organizational Behaviour and Human Decision Processes 66(3): 268-276.

Taff, L. M., J. W. Borchering and J. W. R. Hudgins 1991. Estimeetings: development estimates and a front-end
process for a large project. IEEE Transactions on Software Engineering 17(8): 839-849.

Tan, H.-T. and M. G. Lipe 1997. Outcome effects: the impact of decision process and outcome controllability.
Journal of Behavioral Decision Making 10(4): 315-325.

Tausworthe, R. C. 1980. The work breakdown structure in software project management. Journal of Systems
and Software 1(3): 181-186.

Thomsett, R. 1996. Double Dummy Spit and other estimating games. American Programmer 9(6): 16-22.
Todd, P. and I. Benbasat 2000. Inducing compensatory information processing through decision aids that

facilitate effort reduction: An experimental assessment. Journal of Behavioral Decision Making 13(1):
91-106.

Tversky, A. and D. Kahneman 1974. Judgment under uncertainty: Heuristics and biases. Science 185: 1124-

27

1131.
van Genuchten, M. and H. Koolen 1991. On the use of software cost models. Information and Management 21:

37-44.
Verner, J. M., S. P. Overmyer and K. W. McCain 1999. In the 25 years sins The Mythical Man-Month what

have we learned about project management? Information and Software Technology 41: 1021-1026.
Vicinanza, S. S., T. Mukhopadhyay and M. J. Prietula 1991. Software effort estimation: An exploratory study of

expert performance. Information systems research 2(4): 243-262.
Walkerden, F. and D. R. Jeffery 1997. Software cost estimation: A review of models, process, and practice.

Advances in Computers 44: 59-125.
Walkerden, F. and R. Jeffery 1999. An empirical study of analogy-based software effort estimation. Journal of

Empirical Software Engineering 4(2): 135-158.
Webby, R. G. and M. J. O'Connor 1996. Judgemental and Statistical Time Series Forecasting: A Review of the

Literature. International Journal of Forecasting 12(1): 91-118.
Weinberg, G. M. and E. L. Schulman 1974. Goals and performance in computer programming. Human Factors

16(1): 70 - 77.
Whitecotton, S. M., D. E. Sanders and K. B. Norris 1998. Improving predictive accuracy with a combination of

human intuition and mechanical decision aids. Organizational Behaviour and Human Decision
Processes 76(3): 325-348.

Winklhofer, H., A. Diamantopoulos and S. F. Witt 1996. Forecasting practice: a review of the empirical
literature and an agenda for future research. International Journal of Forecasting 12(2): 193-221.

Wolverton, R. W. 1974. The cost of developing large-scale software. IEEE Transactions on Software
Engineering C-23(6): 615-636.

Wright, G. and P. Ayton 1994. Subjective probability. West Sussex, England, John Wiley.
Yaniv, I. and D. P. Foster 1997. Precision and accuracy of judgmental estimation. Journal of behavioral

decision making 10: 21-32.
Yau, C. and L.-Y. Gan 1995. Comparing the top-down and bottom-up approaches of function point analysis: A

case study. Software Quality Journal 4(3): 175-187.
Zajonc, R. B. 1965. Social facilitation. Science 149(Whole No. 3681): 269-274.
Zajonc, R. B., A. Heingarner and E. M. Herman 1969. Social enhancement and impairment of performance in

the cockroach. Journal of Personality and Social Psychology 13(2): 83-92.

