
Towards an Inspection Technique for Use Case Models

Bente Anda and Dag I. K. Sjøberg

SEKE’02 -14th IEEE Conference on Software Engineering and Knowledge Engineering,
Ischia, Italy, July 15-19, 2002, pp. 127-134.

Abstract

A use case model describes the functional requirements of a software system and is
used as input to several activities in a software development project. The quality of
the use case model therefore has an important impact on the quality of the resulting
software product. Software inspection is regarded as one of the most efficient
methods for verifying software documents. There are inspection techniques for most
documents produced in a software development project, but no comprehensive
inspection technique exists for use case models. This paper presents a taxonomy of
typical defects in use case models and proposes a checklist-based inspection
technique for detecting such defects. This inspection technique was evaluated in two
studies with undergraduate students as subjects. The results from the evaluations
indicate that inspections are useful for detecting defects in use case models and
motivate further studies to improve the proposed inspection technique.

Keywords: Use cases, Inspections

1 Introduction

In a use case driven software development process, a use case model is used as input
to planning and estimating the software development project as well as to design and
testing. A use case model may also be part of the contract between the customers and
the developers regarding the functionality of a system. The quality of a use case
model in terms of correct, complete, consistent and well understood functional
requirements is thus important for the quality of the resulting software product.

Inspections [7] have proved to be an efficient means for detecting defects and
improving quality in software documents. The structuring of the functional
requirements in a use case model motivates an inspection technique with strategies for
discovering defects adapted to this particular structure. The literature on use case
models recommends reviews of the use case model to assure quality [3,10,16], and
many organizations conduct such reviews with varying degree of formality. The
increasing use of UML has motivated the development of a family of reading
techniques for UML diagrams [18], but to the knowledge of the authors, no
comprehensive inspection technique exists for use case models.

Several guidelines for constructing use case models exist. We conducted an
experiment to evaluate the effects of two different sets of guidelines [2]. The results
from that experiment show that the use of guidelines has an effect on the quality of
the resulting use case models. This motivated a study to investigate how the quality of
a use case model can be further improved through the use of an inspection technique.

Knowledge of typical defects is a prerequisite for developing and evaluating an
inspection technique for use case models. Therefore, a taxonomy of defects in use
case models and their consequences, was developed. The inspection technique is
based on the taxonomy and on several recommendations for checklists found in the
literature.

Any new technique should be evaluated, and the inspection technique was
evaluated in a student project of a large undergraduate course in software engineering,
and in a controlled experiment with 45 students as subjects.

The conducted studies indicate that inspections are useful for detecting defects in
use case models, and suggest how the proposed inspection technique can be
improved. Future work will focus on developing a basic technique that can be
calibrated to suit a particular organization or application domain.

The remainder of this paper is organized as follows. Section 2 includes a definition
of software inspections and describes different inspection techniques for requirements
specifications. Section 3 presents a taxonomy of typical defects in use case models.
Section 4 describes the proposed inspection technique. Section 5 reports the studies
undertaken to evaluate the inspection technique. Section 6 concludes and suggests
future work.

2 Software Inspections

This section describes the technique software inspection and the related techniques
reviews and walkthroughs. Some particular inspection techniques for requirements
specifications are also described.

2.1 Inspections, Reviews and Walkthroughs

An inspection is defined as a formal evaluation technique in which software
requirements, design or code are examined in details by a person or group to detect
defects, violations of development standards, and other problems [4]. The objective of
an inspection is to:

• verify that the software element(s) satisfy its specifications,
• verify that the software element(s) conform to applicable standards,
• identify deviation from standards and specifications, and
• collect software engineering data (such as defect and effort data).

In addition to detecting defects in a software document and thus improving quality,
inspecting a software document in a systematic manner teaches the developers to
build better software [18].

Inspection techniques that use a non-systematic way of identifying defects are
called ad hoc techniques [4]. The inspectors must utilize their own experience and
knowledge to identify defects. The results of this technique depend solely on the
abilities of the inspectors.

In checklist-based techniques the inspectors are provided with a list of general
defect classes to check against. This kind of inspection technique is most common in
industry [6], but the technique has some shortcomings that are described in [11].

A review is defined as a manual process that involves multiple readers checking a
document for anomalies and omissions [19]. It is generally recommended that
representatives of the different stakeholders in a project should participate in the
review, but that they should look for different problems and defects.

A walkthrough is a peer group review of a software document [21]. It involves
several people, each of whom plays a well defined role. A typical walkthrough
involves at least one person, most often usually the author, whose job it is to
introduce the document to the rest of the group.

In the context of requirements documents, inspections are recommended for defect
detection, reviews for consensus and walkthroughs for training [8]. It is also
recommended that an inspection should be performed before the two other activities
to remove defects, which are noise in the process of achieving consensus on the
requirements and in the walkthrough process.

2.2 Inspections of Requirements Specifications

The problems with ad hoc and checklist-based inspection techniques have been
attempted remedied by introducing a scenario-based technique [14], where a checklist
is used as a starting point for a more elaborate technique. The elements of the
checklist were replaced by scenarios implementing the elements. The claims for the
scenario-based technique is that it teaches the inspectors how to read the requirements
documents in order to detect defects, and it offers a strategy for decomposition
enabling each of the inspectors to concentrate on distinct parts of the requirements
document. The scenario-based technique proved more effective than ad hoc and
checklist-based inspections [14]. However, several replications of this evaluation
have been conducted with varying results [12,13,15]. The replication reported in [15]
found weak support for the original results, while the two other replications did not
find the scenario technique superior to the two other techniques.

Different alternative decomposition strategies have been attempted to give the
inspectors distinct responsibilities. One strategy is used in perspective-based reading.
This technique is based on the classification of defects according to the perspectives
represented by the different stakeholders in the project. The perspectives should be
tailored to the needs of the various stakeholders, typical perspectives are clients or
end-users, developers and testers. The reading technique for the user perspective
involves constructing a use case model from the textual requirements.

Another strategy is used in the inspection technique usage-based reading, where a
prioritized use case model is taken as input [20]. Its strength is claimed to be that it
makes the inspectors focus on the defects that are important for the future users of the
system.

3 Defects in Use Case Models

To develop and evaluate an inspection technique for use case models, we need
knowledge of typical defects in use case models and of their consequences. Table 1
shows our proposal for a taxonomy of defects in use case models. The defects are
divided into omissions, incorrect facts, inconsistencies, ambiguities and extraneous
information [17]. In addition to the general quality issues presented in [2], we have
considered different stakeholders to find a comprehensive list of defects.

Clients and end users want to be sure that they get the expected functionality. In
terms of use case models this implies the following:

• The correct actors should be identified and described.
• The correct use cases should be identified and should describe how the use case

goals [5] are reached. The actors should be associated with the correct use cases.
• The flow of events in each use case should be realistic in that it leads to the

fulfillment of the use case goal. The use case descriptions should be easy to
understand for users who are unfamiliar with use case modeling so that the

described functionality can be verified. This implies that the use cases should be
described at an appropriate level of detail.

• The functionality should be correctly delimited through the use of pre- and post-
conditions and variations.

Project managers need to plan software projects. For example, when estimating
software projects, use case models can be used successfully [1]. To support the
planning:
• the use case model should cover all the functional requirements, and
• all the interactions between the actor and the system that are relevant to the user,

both in the normal flow of events and the variations should be described.

Designers will apply use case models to produce an object-oriented design.
Therefore:

• the use of terminology should be consistent throughout the use case descriptions,
and

• the use case descriptions should be described at a suitable level of detail. There
should be no details of the user interface or internal details that put unnecessary
constraints on the design

Testers will apply use case models to test that the functionality is correctly
implemented. Therefore:
• the prerequisites (pre-conditions) for the execution of a use case, and the outcome

(post-conditions) of each use case should be testable, and
• all terms in the use case descriptions should be testable.

A use case model consists of a diagram that gives an overview of the actors and the
use cases, and of textual descriptions of each use case detailing out the requirements,
typically using a template [5]. Use cases can, however, be described using many
different formats [9]. The actual format may have an impact on the ease of detecting
certain defects. For example, it should always be clear what are the pre- and post-
conditions, of a use case. If a template format is used, pre- and post-conditions will
usually be easily detectable. If the use cases are described with free text, on the other
hand, it may be necessary to search the use case description for the information.

Some defects may also be specific to the format. To verify that applicable
standards are followed, the inspection technique must be tailored to the actual format
used. The proposed taxonomy is based on a format with normal flow of events and
variations as well as the use case starting condition (trigger), and pre- and post-
conditions. There are both simple and elaborate variants of the template format. We
have chosen the simple template since our aim is to present a basic taxonomy that can
be further extended to fit an actual project.

Table 1. Taxonomy of defects in use case models

Actors Use cases Flow of events Variations Relation
between use
cases

Trigger, pre-
and post-
conditions

Omissions Human users or
external entities
that will
interact with
the system are
not identified

Required
functionality is
not described
in use cases.
Actors have
goals that do
not have
corresponding
use cases

Input or output
for use cases is
not described.
Events that are
necessary for
understanding
the use cases
are missing

Variations that
may occur
when
attempting to
achieve the
goal of a use
case are not
specified

Common
functionality is
not separated
out in included
use cases

Trigger, pre- or
post-conditions
have been
omitted

Incorrect facts Incorrect
description of
actors or wrong
connection
between actor
and use case

Incorrect
description of a
use case

Incorrect
description of
one or several
events

Incorrect
description of a
variation

Not applicable Incorrect
assumptions or
results have led
to incorrect pre-
or post-
conditions

Inconsist-
encies

Description of
actor is
inconsistent
with its
behavior in use
cases

Description is
inconsistent
with reaching
the goal of the
use case

Events that are
inconsistent
with reaching
the goal of the
use case they
are part of

Variations that
are inconsistent
with the goal of
the use case.

Inconsistencies
between dia-
gram and
descriptions,
inconsistent
terminology,
inconsistencies
between use
cases, or
different level
of granularity

Pre- or post-
conditions are
inconsistent
with goal or
flow of events

Ambiguities Too broadly
defined actors
or ambiguous
description of
actor

Name of use
case does not
reflect the goal
of the use case

Ambiguous
description of
events, perhaps
because of too
little detail

Ambiguous
description of
what leads to a
particular
variation

Not applicable Ambiguous
description of
trigger, pre- or
post-condition

Extraneous
information

Actors that do
not derive
value
from/provide
value to the
system

Use cases with
functionality
outside the
scope of the
system or use
cases that
duplicate
functionality

Superfluous
steps or too
much detail in
steps

Variations that
are outside the
scope of the
system

Not applicable Superfluous
trigger, pre-or
post-conditions

Consequences Expected
functionality is
unavailable for
some users or
interface to
other systems
are missing

Expected
functionality is
unavailable

Too many or
wrong
constraints on
the design or
the goal is not
reached for the
actor

Wrong
delimitation of
functionality

Misunder-
standings
between
different stake-
holders,
inefficient
design and
code

Difficult to test
the system and
bad navigability
for users
between
different use
cases

1. Actors
1.1. Are there any actors that are not defined in the use case model, that is, will the system

communicate with any other systems, hardware or human users that have not been
described?

1.2. Are there any superfluous actors in the use case model, that is, human users or other
systems that will not provide input to or receive output from the system?

1.3. Are all the actors clearly described, and do you agree with the descriptions?
1.4. Is it clear which actors are involved in which use cases, and can this be clearly seen from

the use case diagram and textual descriptions? Are all the actors connected to the right
use cases?

2. The use cases
2.1. Is there any missing functionality, that is, do the actors have goals that must be fulfilled,

but that have not been described in use cases?
2.2. Are there any superfluous use cases, that is, use cases that are outside the boundary of the

system, do not lead to the fulfilment of a goal for an actor or duplicate functionality
described in other use cases?

2.3. Do all the use cases lead to the fulfilment of exactly one goal for an actor, and is it clear
from the use case name what is the goal?

2.4. Are the descriptions of how the actor interacts with the system in the use cases consistent
with the description of the actor?

2.5. Is it clear from the descriptions of the use cases how the goals are reached and do you
agree with the descriptions?

3. The description of each use case
3.1. Is expected input and output correctly defined in each use case; is the output from the

system defined for every input from the actor, both for normal flow of events and
variations?

3.2. Does each event in the normal flow of events relate to the goal of its use case?
3.3. Is the flow of events described with concrete terms and measurable concepts and is it

described at a suitable level of detail without details that restrict the user interface or the
design of the system?

3.4. Are there any variants to the normal flow of events that have not been identified in the
use cases, that is, are there any missing variations?

3.5. Are the triggers, starting conditions, for each use case described at the correct level of
detail?

3.6. Are the pre- and post-conditions correctly described for all use cases, that is, are they
described with the correct level of detail, do the pre- and post conditions match for each
of the use cases and are they testable?

4. Relation between the use cases:
4.1. Do the use case diagram and the textual descriptions match?
4.2. Has the include-relation been used to factor out common behaviour?
4.3. Does the behaviour of a use case conflict with the behaviour of other use cases?
4.4. Are all the use cases described at the same level of detail?

Fig. 1. Checklist for inspections of use case model

4 An Inspection Technique for Use Case Models

The checklist approach was chosen as a starting point for developing an inspection
technique for use case models, despite the problems mentioned in Section 2, because
several such checklists already exist [3,10,16,22]. Checklists were also the starting
point for more elaborate inspection techniques for other software documents as
described in Section 2.2. In this paper, we have chosen the term inspection instead of

the term review because our focus is on detecting defects rather than on reaching
consensus on the requirements. Based on the taxonomy in Section 3 and several
recommendations for checklists for use cases models, we developed the checklist in
Figure 1.

Our aim was a basic inspection technique which would be generally applicable.
The checklists proposed in [3,10,16,22] contain some aspects that we have not
included in our checklist because they were considered too specialized for our
purpose and applicable only for some projects.

In [3] it is recommended to consider how a use case model fits with the overall
business process model. For each use case it should be clear which business event
initiates it, and which source it originates from.

The approach described in [10] differs from ours in that it recommends that a
review should verify that the use cases meet technical criteria and that the user
interfaces are consistent. They recommend that use case granularity should be
verified. This is done by asking whether the use case model would be easier to
understand if some use cases were split, and whether one path through a use case can
be implemented in one iteration in the development project.

Separate reviews for completeness and for potential problems are recommended in
[16]. The review for completeness should verify that the use cases fit the architecture
and that the user interface matches the use cases. The review for potential problems
should be conducted with clients or end users, and developers. Clients and end users
should focus on whether they agree on the assumptions behind the functional
requirements. Developers should focus on whether they have sufficient information to
start construct the system. In addition to our checks, the checklist proposed in [22]
recommends prioritization of the use cases for delivery and classification of their
importance.

5 Evaluation of the Inspection Technique

To empirically evaluate the proposed inspection technique, two studies were
conducted: Study 1 and Study 2. The aim of this evaluation was to investigate to what
extent the inspection technique would improve defect detection1.

5.1 Study 1

Study 1 was conducted over two semesters (autumn 2000 and autumn 2001) in the
context of an undergraduate course in software engineering. The students were taught
use case modeling in two lectures, and had exercises in seminars. The course also
included a project where the students were organized in teams and developed a small
software system.

The students in the course were in their 3rd or 4th year. A large number,
approximately 40%, had part-time jobs as software developers or had previously

1 The material used in the evaluation can be found at
http://www.ifi.uio.no/forskning/grupper/isu/forskerbasen

worked with software development. About half of them were familiar with UML and
use case modeling, mostly from previous courses; only a couple had applied use case
modeling professionally.

5.1.1 Design of Study 1
In the project, the students were organized in teams of clients and developers. Two
different systems were developed; each team was clients for one system and
developers for the other system. In autumn 2000, 139 students divided into 31 teams
either developed a hospital roster management system or a system for conducting
opinion polls on the internet. In autumn 2001, 118 students divided into 27 teams
either developed a hotel room allocation system or a sales management system. The
client teams made informal, textual requirements specifications and handed those over
to their developers. The developers then constructed use case models. The pairs of
teams also had a couple of meetings to clarify the requirements.

During the autumn 2000, the client teams wrote an evaluation report on the use
case models they had received. Very few defects were reported even though an
analysis by the authors of this paper showed that the use case models did contain
many defects.

The following year, autumn 2001, we wanted to investigate whether an inspection
technique would improve the teams’ ability to detect defects. We also wanted to
examine whether the different perspectives represented by respectively the clients and
the developers would lead to detection of different defects.

The development teams and the client teams conducted inspections using the
checklist in Section 4. Each use case model was therefore inspected twice. The client
teams were asked to focus on whether the use case model described the expected
functionality. The development teams were asked to focus on whether there was
enough information to create a good design, and later test that the delivered system
was in accordance with the functional requirements. The teams had approximately
two weeks available for this task. The teams registered effort spent on the inspections.
There was a large difference in effort between the different teams, ranging from 2 to
30 hours, partly because of differences regarding how many of the team members
participated in the inspections. Nevertheless, the registered hours showed that the
teams were serious about the inspections.

The inspections resulted in reports that described the defects found. These reports
were analyzed, and then the use case models were inspected by two people, one of
them the first author of this paper. We decided to accept all the defects found by the
teams as actual defects. Since the textual requirements specifications were different
for all the teams, we considered the students’ knowledge of the requirements to be
better than ours. The defects were classified according to the categories described in
Section 3.

5.1.2 Results from Study 1
Table 2 shows the total number of defects found by the client teams and the
development teams distributed by the categories presented in Section 3. The number
of defects found by both the client team and the development team are shown in the
row marked common. The number 3 in the ‘Actors’ column means that out of the 92

defects concerning actors in the 27 use case models, only 3 were identified by both
the client team and the development team of a particular system. The defects found in
the final inspection by the first author and one assistant, and not found by neither the
client team nor the development team are shown in the row not found.

Almost all the teams found defects and suggested corrections. We consider these
results as good indications that the checklists helped the teams to detect defects. This
is further supported by the fact that we found very few defects that had been missed
by the teams.

The results show that the clients found most defects, on average more than twice as
many as the developers, and that there were strikingly few common defects. This
indicates a large difference between what is considered a defect in a use case model.

Table 2. Total number of defects detected in the student project

Actors Use
cases

Flow of
events

Variat-
ions

Relation
between
use cases

Trigger,
pre/post

conditions
Clients 60 49 59 37 8 48
Developers 26 17 29 24 3 42
Common 3 4 2 7 0 9
Not found 6 8 46 3 5 10
Total 92 74 134 64 16 100

The defects found by the clients frequently appeared to be due to expectations
regarding functionality of the system that they had not expressed in the informal
requirements specifications nor in the meetings with the development team, but which
they missed when they read through and inspected the use case model. Many defects
found by the developers were actually elements of the functionality that should have
been described more precisely, but these weaknesses were not necessarily defects.

The difference in defects found by the clients and developers indicates that an
inspection technique based on different perspectives, similar to perspective-based
reading for textual requirements [17], may be useful for use case models. It also
shows that after the inspection reviews of the use case models involving different
stakeholders in the project can be useful in order to reach consensus on the
requirements.

5.2 Study 2

Two weeks after the inspections were completed in the student project autumn 2001,
a controlled experiment was conducted with 45 of the students as subjects. The
students volunteered to participate in the experiment

5.2.1 Design of Study 2
The participants received a textual requirements specification for the hospital roster
management system which had been implemented in the student project the previous
year. The requirements for the system were based on the requirements for an actual
system for a Norwegian hospital. These students were unfamiliar with that system.

They received a use case model for the system with several defects inserted by us.
These defects were similar to the defects that we had detected when the system was
used in the student project the previous year.

Half of the participants received a checklist similar to the one used in Study 1,
shown in Section 4. The checklist in this experiment was slightly adapted to suit a
context where the participants were unfamiliar with the actual use case model.
Therefore, the checklist explicitly asked the participants to read the textual
requirements specification and mark possible actors and their goals, that is, possible
use cases. The other half was not given any particular inspection technique; they used
ad hoc inspection.

The inspections were performed individually. The students made a list of all the
defects, and they commented on the use case model when a defect was detected.

The duration of the experiment was three hours. The students were paid to
participate. We did not want time to be a constraint on the experiment, so the subjects
where given ample time. They were given an extra task after the inspection to keep
them busy for three hours, but it was stressed that they did not have to complete the
extra task.

The inspected use case models and the lists of defects were analyzed by the same
two persons as in Study 1. The defects were classified according to the categories
described in Section 3.

5.2.2 Results from Study 2
Table 3 shows that the inspectors who used the checklist found slightly more defects
regarding the actors and the use cases than did those using the ad hoc technique.
These defects are the most important, and could have had very serious consequences
if not detected early in the development process. The inspectors using the ad hoc
technique found more defects in the other categories, but overall the difference in the
number of defects detected was negligible. However, Figure 2 shows that the
difference in time spent on the inspection is significant in favor of the ad hoc
approach. Therefore, using the checklist was more time-consuming without leading to
more defects being found.

Table 3 further shows that all the subjects found quite a lot of the defects regarding
actors, use cases, triggers and pre- or post-conditions. They did not find many of the
defects in the flow of events or defects with superfluous or missing variations. This
indicates that such errors are difficult to detect without having developed a more
thorough understanding of the requirements.

Table 4 shows that the standard deviation was larger in most categories for those
using the ad hoc approach, probably because the subjects using the ad hoc approach
used more varied strategies for finding defects.

In addition to detecting defects that were deliberately planted in the use case
model, most of the inspectors made some suggestions for how the requirements and
the use case model could be improved. They also detected some “false” defects, that
is, they were not really defects. There was no noticeable difference between the two
inspection approaches.

The results indicate that a checklist or a specific inspection technique may not be
particularly useful when the inspectors already have good knowledge about the

defects they are expected to find as had the inspectors in this case; they had recently
performed similar inspections. On the contrary, experienced inspectors may be more
efficient without a checklist. This supports previous work that did not show any
particular differences between ad hoc, checklists or scenario-based techniques
[4,12,13]. A checklist may, however, be a good means to assure that a task is
performed seriously.

Table 3. Average number of defects found in the experiment

Actors Use
cases

Flow of
events

Variat-
ions

Relation
between
use cases

Trigger,
pre/post

conditions
Checklist 3,0 2,0 1,0 0,6 0,4 3,7
Ad hoc 2,8 1,8 1,7 1,0 0,6 4,6
Actual
defects

4 4 5 6 4 10

Table 4. Standard deviation for number of defects found in the experiment

Actors Use
cases

Flow of
events

Variat-
ions

Relation
between
use cases

Trigger,
pre/post

conditions
Checklist 0,8 1,1 1,0 0,7 0,6 2,4
Ad hoc 1,0 1,2 1,0 1,0 0,5 3,0
Actual
defects

4 4 5 6 4 10

Fig. 2. Moods Median test on time spent

5.3 Threats to Validity

The taxonomy of defects in use case models presented in Section 3 requires more
work to be more complete. A different taxonomy may lead to different results for the
proposed inspection technique. There were some defects in the use case models that
were difficult to assign to a specific category. Therefore, the distribution of defects in
the different categories might have been slightly different if the defects had been
categorized differently.

Both evaluations were conducted with undergraduate students on use case models
of rather small scale. We may get different results if evaluations are performed with

Chi-Square = 16,24 DF = 1 P = 0,000

 Individual 95,0% CIs
Type N<= N> Median Q3-Q1 -------+---------+---------+---------
Checklist 5 18 130,0 24,0 (--+--------)
Ad hoc 18 4 93,5 35,0 (----+---------------)
 -------+---------+---------+---
 96 112 128
Overall median = 120,0

inspectors who have more experience with use case modeling and inspections. A
follow-up experiment with professional software developers is therefore planned.

The size and format of the use case models may have impacted the results. Larger
use case models could have made it infeasible for the inspectors to inspect the whole
use case model. The experiment reported in [15] shows that the format of the textual
requirements may have a larger impact on the inspectors’ ability to detect defects than
does the inspection technique. However, the template style used in these evaluations
is frequently recommended and is a commonly used format [5].

Study 1 shows that the client teams found most defects. These teams may not be
representative of typical clients as they were also developers and thus familiar with
use case modeling.

Study 2 shows that the checklist-based inspection technique was not more efficient
than the ad hoc technique. In this study, the participants were familiar with the
checklist and the classes of defects from the student project. The students performing
the ad hoc inspections may therefore have used elements of the checklist even though
they did not have the checklist available when performing the inspection.

6 Conclusions and Future Work

The quality of a systems’ use case model is important for the quality of the resulting
software product. In this paper we introduced a tentative taxonomy of defects in use
case models and a checklist-based inspection technique to detect such defects. The
checklist was evaluated in a student project and subsequently in a controlled
experiment, also with students.

We presented anecdotal evidence that inspections may be a useful means to
improve the quality of use case models because the teams using the checklist in the
student project found many more defects than did the teams not using such a
checklist. Clients and developers in our studies found very different defects even
though they used the same inspection technique. This indicates that different
stakeholders should participate in the inspection.

The controlled experiment showed that experienced inspectors were more efficient
without using the checklist. Therefore, more work is needed to establish appropriate
inspection techniques. The following activities are planned:
• Studies of use case reviews in actual software development projects to investigate

how different stakeholders search for and detect defects in use case models.
• Refinement of the taxonomy and the inspection technique. We plan to investigate

how the questions can be tailored to the needs of different stakeholders. We also
intend to study how the questions best can be phrased in order to provide
appropriate strategies for detecting defects in use cases described with different
formats.

Acknowledgements

We thank Kirsten Ribu for help with the analysis. We also thank all the students who
took part in the evaluation of the use case inspection technique.

References

1. Anda, B., Dreiem, H., Sjøberg, D.I.K., and Jørgensen, M. Estimating Software
Development Effort Based on Use Cases - Experiences from Industry. UML’2001,
Toronto, Canada, October 1-5, 2001, LNCS 2185 Springer-Verlag, pp. 487-502.

2. Anda, B., Sjøberg, D.I.K. and Jørgensen, M. Quality and Understandability in Use Case
Models. ECOOP’2001, June 18-22, 2001, LNCS 2072 Springer-Verlag, pp. 402-428.

3. Armour, F. and Miller, G. Advanced Use Case Modelling. Addison-Wesley, 2000.
4. Cheng, B. and Jeffery, R. Comparing Inspection Strategies for Software Requirement

Specifications. Proceedings Australian Software Engineering Conference. IEEE Comput.
Soc, Los Alamitos, CA, USA, 1996.

5. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2000.
6. El Emam, K. and Laitenberger, O. Evaluating Capture-Recapture Models with Two

Inspectors. IEEE Trans. on Softw. Eng., Vol. 27(9), pp. 851-864, September 2001.
7. Fagan, M.E. Design and Code Inspections to Reduce Errors in Program Development.

IBM Systems Journal, Vol. 15(3), pp. 182-211, 1976.
8. Gilb, T. and Graham, D. Software Inspection. Addison-Wesley, 1993.
9. Hurlbut, R.R. A Survey of Approaches for Describing and Formalizing Use Cases.

Technical Report: XPT-TR-97-03, Expertech, Ltd., 1997.
10. Kulak, D. and Guiney, E. Use Cases: Requirements in Context. Addison-Wesley, 2000.
11. Laitenberger, O., Atkinson, C., Schlich, M. and El Emam, K. An experimental comparison

of reading techniques for defect detection in UML design documents. Journal of Systems
and Software, Vol. 53(2), pp. 183-204, August 2000.

12. Lanubile.F. and Visaggio, G. Assessing defect detection methods for software
requirements inspections through external replication, ISERN-96-01, January 1996.

13. Miller, J., Wood, M., Roper, M. and Brooks, A. Further Experiences with Scenarios and
Checklists. Empirical Software Engineering, Vol. 3(1), pp. 37-64, January 1998.

14. Porter, A.A., Votta, L.G. and Basili, V.R. Comparing Detection Methods for Software
Requirements Inspections: a Replicated Experiment. IEEE Trans. on Softw. Eng., Vol.
21(6), pp. 563-575, June 1995.

15. Sandahl, K, Blomkvist, O., Karlsson, J., Krysander, C., Lindvall, M. and Ohlsson, N. An
Extended Replication of an Experiment for Assessing Methods for Software Requirements
Inspections, Empirical Software Engineering, Vol. 3(4), pp. 327-354, December 1998.

16. Schneider, G. and Winters, J. Applying Use Cases – A Practical Guide. Addison-Wesley,
1998.

17. Shull, F., Rus, I. and Basili, V. How Perspective-Based Reading Can Improve
Requirements Inspections. IEEE Computer, Vol. 33(7), pp. 73-79, July 2000.

18. Shull, F., Travassos, G.H., Carver, J. and Basili, V.R. Evolving a Set of Techniques for
OO Inspections. CS-TR-4070 and UMIACS-TR-, October 1999.

19. Sommerville, I. Software Engineering, 5th Ed. Addison-Wesley, 1996.
20. Thelin, T., Runeson, P. And Wohlin, C. An Experimental Comparison of Usage-Based

and Checklist-Based Reading. WISE 2001.
21. Yourdon, E. Structured Walkthroughs. Prentice-Hall, 1989.
22. www.mcbreen.ab.ca/papers/QAUseCases.htm

http://link.springer.de/link/service/series/0558/papers/2185/21850487.pdf

