
Managing Change in Persistent Object Systems
�

Atkinson, M.P.y Sj�berg, D.I.K.z Morrison, R.x

Abstract

Persistent object systems are highly-valued technology because they o�er an e�ec-

tive foundation for building very long-lived persistent application systems (PAS).
The technology becomes more e�ective as it o�ers a more consistently integrated

computational context.

For it to be feasible to design and construct a PAS it must be possible to in-
crementally add program and data to the existing collection. For a PAS to endure

it must o�er
exibility: a capacity to evolve and change. This paper examines the

capacity of persistent object systems to accommodate incremental construction and
change.

Established store based technologies can support incremental construction but

methodologies are needed to deploy them e�ectively. Evolving data description
is one motivation for inheritance but inheritance alone is not enough to support

change management.

The case for supporting incremental change is very persuasive. The challenge is
to provide technologies that will facilitate it and methodologies that will organise

it.

This paper identi�es change absorbers as a means of describing how changes
should propagate. It is argued that if we systematically develop an adequate reper-

toire of change absorbers then they will facilitate much better quality change man-

agement.

1 Introduction

The primary interest in object technology arises from its capacity to be an essential
material from which large and long-lived application systems are built. Such long-lived
applications are called Persistent Application Systems (PAS). Examples of such systems
are CAD systems, geographic information systems, urban planning systems, health-care
management systems, etc. They are characterised by becoming large, often being dis-
tributed with a wide variety of users and being concerned with the long-term support of
cooperative activity. Large investments are involved in their construction and operation.
People and organisations depend on them.

�Invited paper, JSSST International Symposium on Object Technologies for Advanced Software
(Kanazawa, Japan, 4th{6th November 1993)

yDepartment of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland
zInstitute of Informatics, P.O. Box 1080 Blindern, N-0316 Oslo, Norway
xDepartment of Computational Science, University of St Andrews, St Andrews, KY16 9SX, Scotland

1

As PAS attain central importance to an organisation (for example, a hospital trusts
all its medical histories, accounting information and sta� records to a health-care man-
agement system) the continuance of the organisation and the adaptability and continuity
of the PAS become strongly interrelated. If the PAS fails the organisation may also fail.
Equally, if the PAS cannot be adapted to the changing environment and needs of the
organisation su�ciently quickly and economically it will inhibit the organisation from
adapting. Such rigidity may lead to the demise of the organisation. This paper assumes
that PAS will be built using object technologies and enquires about the adequacy of their
provisions for change.

Persistent object storage enables a wide range of program and data forms to be built
and to endure for as long as the storage technology which holds them and the execution
technology which interprets them continue to exist. The stability of references based
on identity allows long-term representation of constructional relationships. The binding
mechanisms allow incremental growth of the total body of program and other data.
The mechanisms of inclusion polymorphism (loosely, inheritance and subtyping) allow
certain kinds of change to be accommodated and localised. Hence, at �rst sight, we
might be complacent and regard existing persistent object systems as adequate. This
paper attempts to assess precisely where that complacency is well founded and where
advances are necessary before organisations may safely become dependent on persistent
object technology, or more precisely on PAS built using persistent object technology.

The paper is divided into two parts. In the �rst part (Sections 2 and 3) the progress
towards achieving a consistent platform on which to build PAS is examined. This is very
much a sample of actual progress, focusing on orthogonal persistence and the relationship
between data models and type systems. Two recent developments in type systems are
examined: the provision of parametric type constructors (3.3.1) allows modelling and
descriptive capacity to be extended, and the provision of in�nite unions (3.3.2) permits
certain forms of change absorber to be de�ned.

The second part of the paper deals with various aspects of change management. Sec-
tion 4 restates why change management is essential and proposes that improved methods
will emphasise incremental change. Section 5 identi�es what might be expected from
change management tools, how they may be improved with persistent object technology
and why they will remain de�cient until better structural description is available. Section
6 presents change absorbers as a means of providing this description. Three categories are
proposed: automatic transformers (6.1), partial transmitters (6.2) and active responders
based on enquiry mechanisms (6.3).

Current practice for managing program change is reformulated in terms of change
absorbers in Section 7. It is postulated that the necessary primitives, e.g. dynamic
binding and incremental linking may already exist, but regular patterns for their use
need to be better characterised. Section 8 shows that coping with type/schema change
is a good deal more problematic. The in�nite union types that currently exist and type
subsumption provide only a partial solution. This leads to a conclusion that identi�es
research challenges.

2 Progress towards Uniformity

Persistence is provision for values to remain computationally available for an arbitrary
length of time; as long as they are required for computation. This period may be very

2

brief or the full life-time of a PAS. Note that, for the PAS envisaged, these maximum
life-times may be tens or even hundreds of years.

Orthogonal persistence is the provision of persistence equitably to all values [Atkinson
et al., 1982]. It is important as it ensures that PAS designers and programmers may
choose data structures freely from all those available. If persistence isn't orthogonal, they
will need to choose representations suitable for processing and other representations for
storage. This additional modelling complexity and the inevitable translations between
representations that result from a failure to make persistence orthogonal are needless
impediments to the construction and maintenance of PAS.

It should be noted that the choice of the type system is a separate issue. It might
be based entirely on relations, be appropriate only to formatted text processing or be
based on the type system of an object oriented programming language. That choice will
be made to provide appropriate modelling capabilities for the application area.

A further principle that guides the provision of persistence is that of persistence
independence. This means that code should not need to be di�erent for data of di�erent
age or longevity. A consequence of this principle is that programmers should not be
required to explicitly move data from long-term storage to processing storage. Transfers
must be automated.

Avoiding the need for translation and explicit transfer reduces the volume of code in
a typical PAS by about one third. A more important gain from orthogonal persistence
is the reduction of cognitive load on designers and programmers. In a typical system
(shown in Figure 1) they are trying to envisage, implement and manage three mappings.
They have the particularly tricky task of keeping any pair of the mappings consistent
with the other one.

DBMS & Data Model

Programming
Language

Real
System

Figure 1: Many PAS are constructed using two models: one in the database and one in
the programs

This complexity and the need for programmers to maintain this consistency are both
avoided with orthogonal persistence as only one model is used and one mapping main-
tained (see Figure 2).
Those object-oriented systems that use di�erent notations to describe schemata from
those they use to describe data in their operations (methods), fail to deliver this orthogo-

3

Persistent
Programming
Language

Real
System

Figure 2: New PAS may be constructed using only one model in a PPL

nality. Such object-oriented systems re-introduce the complexity piecemeal as fragmented
triple mappings for each operation.

The successful persistent object systems are therefore likely to be those that take
some programming language and provide it with orthogonal persistence [Atkinson et al.,
1983] or those that are designed explicitly to provide orthogonal persistence [Morrison et

al., 1989]. The most popular versions of persistent systems at present are derived from
C++ [Richardson and Carey, 1987; Bancilhon et al., 1992; Object Design Inc., 1991;
Ontologic Inc., 1991].

Provision of orthogonal persistence may be viewed as a step in the process of pro-
viding a more uniform computational environment. If the environment in which PAS
computation takes place is made uniform several advantages may be expected:

1. programming will be simpler (and hence more economic and less error prone) as
programmers have less detailed rules to comprehend;

2. programs will have a more easily speci�ed environment (and therefore it is more
reasonable to assume that it can be perpetuated unchanged);

3. incremental construction is simpli�ed as the successive components all interact with
a constant environment; and

4. it may be easier to plan and conduct changes to the support platform when it is
conceived as a coherent entity.

The search for a uniform computational environment still has a long way to go. For
example, Figure 3 shows the complex environment of programs in a recently constructed
health management system. Figure 4 shows a much simpli�ed environment based on a
hypothetical platform which provides the full range of requirements for PAS components.
The search for a uniform scalable platform has been discussed elsewhere [Atkinson, 1992].
For the rest of this paper it is assumed that the optimal context for incremental design
and construction will be a uniform and complete platform. Researchers and industry will
need to pursue its provision.

3 The Rôle of Types

Throughout the last two decades database researchers have made considerable progress
with data models while programming language researchers have made signi�cant progress
with type systems. It is helpful to review aspects of that progress to recognise the common
goals. This is important if we espouse uniformity of computational environment, as to
achieve it requires that only one of these is part of that environment.

Type systems will be examined �rst and then their relationship with data models will
be reviewed. A type system services four interrelated tasks:

4

Database

Programs Real System

Operating System

Communication
System

User
Programmer

UIMS

Figure 3: A Recent PAS shows the Complex Environment of its Programs

1. description of the data;

2. restriction of programs to reduce errors;

3. protection of critical structures; and

4. provision of information to implementations.

3.1 Description of Data

A type system provides a means of describing the forms values may take. Typically this
may involve a (possibly recursive) combination of the following:

1. choice of some prede�ned forms, called base types (e.g. integer, boolean, real, string,
date, etc.);

2. composition of types using type constructors to register relationships between values
(e.g. aggregations in records, alternatives in unions or tagged sums, collections in
sets, mappings in maps and arrays, etc.);

3. reference, usually de�ned via recursive types, which implies instances and identity;

4. declaration and naming of new (usually parametric) type constructors;

5. abstract data types, that provide encapsulation; and

6. combination of data structures with program (e.g. operations or procedures) that
will manipulate the data in those structures.

5

Generalised
Persistent
Programs

Real System

UserProgrammer

UIMS

Figure 4: An Ideal Goal for the Computational Environment of PAS Components

Many programming languages provide particular forms and additional forms of the mech-
anisms listed above; the env and any types used later (see Sections 3.3.2 and 8) are
examples.

Some languages provide a means of de�ning one type as a re�nement of a previously
de�ned type, e.g. Simula [Birtwistle et al., 1973], SmallTalk [Goldberg and Robson, 1983],
C++ [Ellis and Stroustrup, 1990], Galileo [Albano et al., 1985], Oberon [Reiser, 1991],
Fibonacci [Albano et al., 1993], etc. This facility will be called \type inheritance" in
this paper, though some call it \explicit subtyping". These languages, and some others
e.g. Machiavelli [Ohori et al., 1989], Quest [Cardelli, 1990], Tycoon [Matthes, 1992], etc.,
permit values of one type to be used where values with less properties are required. This
property of types will be called \subtyping" in this paper, though it is more properly
called \inclusion polymorphism". Where it isn't combined with type inheritance it may
be referred to as \implicit subtyping" [Connor et al., 1990a].

A number of languages (e.g. SETL2 [Schwartz et al., 1986], Pascal/R [Schmidt, 1977],
Modula/R [Koch et al., 1983], DBPL [Matthes et al., 1992], P-Pascal [Berman, 1991],
RAPP [Hughes and Connolly, 1990], etc.) provide a variety of bulk type constructors,
e.g. set, relation, sequence, map, etc. as a means of constructing collections.

This exploration of descriptive components out of which a model can be built is
reminiscent of the contemporaneous exploration of data models, e.g. SDM [Hammer and
McLeod, 1981], Daplex [Shipman, 1981], RM/T [Codd, 1979], IFO [Abiteboul and Hull,
1987], etc.

The crucial common goal is to impose a structure on the data by mapping it to a
composition of standard but
exible, appropriate and suggestive building blocks. The
results are useful for several reasons:

� they enable parts or features of the structure to be named, thus allowing people
and programs to refer to them;

� they give access to operations that are associated with the component structures,
for instance, iteration over the elements of some collection and tests on the current
form of variants; and

6

� they facilitate communication among a system's designers, builders and users via
related textual and diagrammatic representations.

The programming languages have supported a model of reference and identity and seen
it as an important modelling tool for many years [Hoare, 1975; Atkinson, 1978]. They
have had a concern for specifying the relationship between code and data, for example,
in Fortran subprograms and in modules in many languages. Higher-order languages1,
languages with modules and languages with abstract data types all provide a means of
describing a static relationship between program and data. (More
exible relationships
will be considered later in the paper | see Section 3.3.2.)

In recent years Object-Oriented Databases (OODBs) have attempted to support sim-
ilar modelling structures [Atkinson et al., 1989].

3.2 Equivalences between Data Models and Type Systems

The preceding discussion shows that similar activities and common goals can be recog-
nised in data model research and in type system research. Approximate equivalences are
summarised in the following table:

Database Vocabulary Programming Language Vocabulary

data models type systems

schema type expression

database variable

database extent value

Although detailed comparison shows that in both cases features2 are tagged onto the
concepts that invalidate these equivalences, they hold well at a conceptual level. There-
fore it is feasible that one of type systems or data models will ful�ll the common rôle.
Of importance here is current type system research into methods of describing bulk
types [Atkinson et al., 1993]. These allow regular structures to be described and provide
operators that abstract over iteration.

3.3 Extensible and Universal Type Constructs

Three areas of innovation now increase the power of type systems:

1. regular and powerful polymorphisms [Cardelli and Wegner, 1985];

2. mechanisms for handling parametric type de�nitions [Cardelli, 1989]; and

3. models of in�nite union types which support incremental evolution and binding
[Morrison, 1979].

The latter two of these are now illustrated in a little more detail. It is assumed that
the reader is already familiar with parametric and inclusion polymorphism. For a fuller
discussion of type system research applicable to persistent application systems the reader
is referred to [Connor, 1991; Connor, 1993].

1Those that have procedures in their value space, so that procedures may be the arguments to, and
results of, other procedures; may be elements of data structures and values of variables.

2Typically those concerned with e�ciency, such as placement or representation annotations.

7

3.3.1 De�ning New Type Constructors

A type constructor is a programming language or data model construct which when
supplied with suitable parameters generates a new type. Readers will be familiar with
built-in type constructors, such as array and record in Pascal-like languages, table
in SQL and set and sequence in semantic data models and OODBs. The set of built
in constructors is inevitably a compromise between complexity and completeness. A
compromise may be unsatisfactory for everyone: the suppliers of the system �nd it
overly complex to build, the users �nd it overly complex to understand but still lacking
in constructs they would like to use in their particular application.

Parametric type de�nitions allow a programmer to de�ne new constructors in terms
of already provided and user-de�ned constructors. These can be equivalent to those
that have already proved their utility in data model research or can be new constructors
appropriate to particular application domains.

Where type constructors require parameters these may be supplied with: a base type,
another constructed type or with another type constructor. In the last case a new type
constructor is de�ned, in the other cases a type is the result. This will be illustrated by
developing an example that describes a database of a teaching department.

type Student is record[MatricNo: integer; Name: string]
type Students is Set[Student]
type Course is record[Cname: string; Max enrolment: integer]
type Courses is Set[Course]
type Prerequisites is DAG[Course]
type Enrolment is record[course: Course; start: Date; enrolled: Students]
type YearsWork is Set[Enrolment]
type History is Sequence[YearsWork]
type TreadMill is Ring[Courses]

Four di�erent constructors have been used: Set, with its usual mathematical meaning
but probably an implicit order; DAG, a directed acyclic graph; Sequence, again with
its standard meaning and Ring, with the obvious meaning. The composition is well
illustrated by the type History which is itself a Sequence of Sets, each element of these
Sets contains a Set of students.

Of course, such composition can be a property of any data model that provides
orthogonality and data type completeness; that is, types constructed with any constructor
may be parameters to any other constructor. The additional important feature is that
these constructors may themselves be de�ned (out of other constructors). So, while Set
and Sequence might be provided, it is scarcely credible that DAG and Ring would already
be provided. The importance of the current work on types is that they can be de�ned
and then re-used elsewhere. For example, the DAG constructor might be used to model
descendants in a genetics experiment and Ring might be used to model the phases in the
life cycle of species in a palaeo-zoological data collection.

The new constructors can be de�ned by composing those already de�ned as is illus-
trated in this example:

type Chain[E] is Sequence[Ring [E]]
type Forest[T] is Set[DAG[T]]

8

type Pairs[A, B] is Sequence[record[�rst: A; second: B]]

The identi�er E denotes a type parameter which is supplied when a type is constructed.
Thus an expression like:

type Citations is Forest[string]

occurring at any subsequent point will be equivalent to:

type Citations is Set[DAG [string]]

The ability to establish new constructors is used later in the paper.

3.3.2 In�nite Unions and Extensibility

Some type systems provide types that denote an in�nite union of types, that is a value
that is described by one of these types has an in�nite number of possible types from
which it was injected into the in�nite union. In this context, the type information must
be associated with the value to ensure that when it is eventually projected out of the
union it is treated in a way compatible with the original type; otherwise, type safety is
compromised. A typical name for this type is any.

Such types are important as they allow type-safe program to be written that will
perform operations on values whose types have not even been de�ned or thought of at
the time of writing. A typical example is a browser [Dearle and Brown, 1988]. Other
examples would be form generators or other standard interfaces. The reader should note
that this is fundamentally di�erent from the code which can be written using parametric
polymorphism alone.

These in�nite union types permit a new kind of incremental program development
that will be motivated and discussed below. Essentially, a type-check is postponed until
projection out of the in�nite union occurs. This means that for any code that does not
need to unpack the value, type checking is satis�ed without enquiry into the type of the
injected value. When projection occurs, the system has to examine the type and ensure
that the code which will be applied to the projected value only carries out operations
compatible with that value. Hence the type checking (correctness validation) has been
partitioned into parts:

1. the code prior to the projection which can be checked completely statically;

2. the code after the projection which can be checked completely statically on the
assumption that the projection performs satisfactorily; and

3. the projection itself, which is checked dynamically at the time when the projection
is performed.

This will be made concrete with another in�nite union construct, env, in the program-
ming language Napier88 [Dearle, 1989; Morrison et al., 1989] which will be used for
illustrative purposes below.

The type env denotes any set of bindings. Each binding is a quadruple: a unique
identi�er, a type, a value, and a constancy. The value must conform to the type. Values
of type env are therefore a set of such bindings and have all the rights of any value in

9

the language. Operations exist to construct new instances of this type, to add bindings
to an env value, to remove them, to extract the value, to assign a new value, and to scan
all the bindings.

The projection operation takes the form:

use e with x:int; p: proc(int) in
begin

p(x)
: : :

end

where the code between the begin, end pair is statically type checked as is the code
outside the use statement. However, when the expression e is evaluated (it is statically
determined that it must produce an env) there is a dynamic check to establish that the
particular environment produced actually contains (at least) the bindings speci�ed in the
signature after with which have been assumed in the compilation of the clause after in.

This mechanism is an example of developing support for incremental program devel-
opment. Such mechanisms allow programs providing de�nitions, services or values to be
developed and replaced independently of the programs which will use those components.

Before discussing other incremental mechanisms, it is important to review (in Sec-
tion 4) why incremental approaches to large scale system design and maintenance are
becoming important.

3.4 Summary of the Provision of Uniform Technology

The case for providing a uniform technology is that it simpli�es the processes of PAS
design, construction and maintenance. It will also facilitate incremental methods for
building and maintaining PAS. The relationship between type systems and data models
provides an example of technology which could be made to converge to provide a more
uniform computational platform for PAS. For the purposes of this paper, type systems
will be used as the putative limit of that convergence. They are chosen as they already
have notations for regular extensibility (Section 3.3.1) and incremental binding (Section
3.3.2).

4 Incremental Design and Construction

Incremental construction is one of the traditional reasons for using databases. The
database is a central repository and the suites of application programs attached to it
are added or replaced incrementally. Schema editors have also provided a mechanism for
incrementally extending and changing the de�nition of the total body of data.

Incremental design is the primary motivation for object orientation. Initial, quite
general object speci�cations (classes) are re�ned to provide specialisations or to capture
increments in the understanding of the modelled system.

These may be seen as examples of a more general principle:

To be e�ective all technologies and methodologies for PAS construction must
support incremental design, incremental construction and incremental change.

10

Any PAS will have been developed to support human activity in an organisation. Since
human behaviour is sophisticated and in organisations particularly complex, the require-
ments for a PAS are inevitably sophisticated and complex. It is infeasible to expect that
they can be comprehended and converted into a design in a single e�ort. Early database
methodology, in contrast, expected to fully understand an organisation and develop a
schema that \represented the enterprise". Experience has shown that for modern re-
quirements it is necessary to understand and design the PAS incrementally. A portion
of the enterprise is understood, the corresponding design is developed and the construc-
tion is often undertaken before other parts of the enterprise are tackled. This is also a
common strategy for organising other large engineering endeavours, e.g. chemical plant
design and construction.

It usually transpires that the initial understanding of requirements, even for these
parts is inadequate and further revision of the design is undertaken even before the rele-
vant subsystem is complete. Again, it is partly the limitation of implementors' conceptual
capacities that engenders this incrementalism. It is almost impossible to fully understand
even a part of the activity to be supported and an iterative approach results. System
development methodologies normally recognise this, insisting, for example, on dialogue
with representatives of all those who will eventually use the PAS, to detect and correct
such misunderstandings.

This dialogue and the introduction of parts of the system, is however, a further
stimulus to change. It is therefore normal to �nd that the user community immediately
perceives ways in which their operations and the system might now be improved.

However carefully this design process is undertaken, the system continues to require
change. Existing operational practices are revised and elaborated and new activities are
added. This is a manifestation of a strength of cooperating humans, they continually re-
view and revise their working practices in order to improve their performance or product.
This has long been understood.

For example, it was traditional to arrange workers in craft-villages. In Burma, as
you travel west from Mandalay to Sagaing, you pass through a village of woodcarvers,
a village of people making alabaster casts, a village of bronze casters and a village of
gold leaf makers. Clustering the people resulted in more rapid improvement of their
technology as they copied each other's improvements and further developed them. A
process of incremental change.

As Persistent Application Systems are built it is important that they do not inhibit
this process of incremental improvement. Indeed, modern systems make possible the mu-
tual stimulus towards improvement between cooperating workers that are geographically
distributed | a \distributed craft-village". To respond, it is necessary that the PAS
be able to be incrementally changed both rapidly and economically. There is a danger
that massive databases and software will stultify change by embedding the organisa-
tion in a mass of \digital concrete". To combat this danger the PAS technologies and
methodologies must be developed to support incremental change as a matter of course.

There are other more mundane reasons for espousing incrementalism as a matter of
course. Organising design and construction becomes more manageable. The work can
be split into separate, relatively small components that match the capacities of small
teams. Teams with di�erent expertise, such as requirements, design, implementation
and testing, can move ahead of one another preparing the ground for the next team
while it is working on another increment.

11

As PAS and the organisations they support become both more extensive and more
intertwined so the feasibility of making radical changes is reduced. It becomes progres-
sively harder to turn o� an old system and transfer work to a new one. It becomes
impracticable to stop a system for hours or even days while schemata are re-organised
and software is replaced.

There is, therefore, an unassailable case for founding the technology and methodol-
ogy that supports PAS on the observation that change is normal throughout the PAS's
lifetime of design, construction, maintenance and operation. Incremental change is eas-
ier to manage and probably easier to sustain than cataclysmic change. The challenge is
to develop methodologies and technologies that support incremental change well in the
context of the very large and very long-lived systems which we aspire to achieve. The
following sections assess our current levels of success and identify the challenge more
precisely.

5 Change Management Requirements

Change management is concerned with the organisation of change. If the change is to
be incremental and if the system is to go on functioning correctly for its users there are
two requirements to be met:

1. all the consequences of a change must be properly propagated; and

2. no unnecessary changes should be made.

These requirements will be illustrated with an example from a health care system. It has
previously been the practice to record a patient's next-of-kin. It is now noted that for
many elderly patients the next-of-kin is unable to perform some required actions as they
too are elderly. A new fact about a patient is therefore to be recorded, the responsible-
person (perhaps a care-worker, the organiser of a home in which the patient resides,
etc.).

The schema is changed to accommodate the extra information. All extant records
will not have that extra information and it will not be collected unless or until the patient
re-presents. Therefore, it is probably desirable not to change the existing records until
the new information becomes available (this also avoids an initial value problem).

Similarly,most programs will not be concerned with handling the new informationand
should operate unchanged in the future. However, certain programs must be changed, in
particular, those that enter a new patient into the system, those concerned with checking
the continued correctness of patient details and those that generate letters that should
now go to the responsible-person.

These program changes will also require that certain screen designs need to be
changed, certainly those used for inputting and checking patient details and at least
some of those for displaying patient details in other circumstances. But screen re-design
may overload a screen so that the information must be re-organised and split between
two screens. This results in a change to the sequence of screen operations. Similarly pro
forma, report formats and letter templates may have to be changed.

Some of these changes will a�ect users. For example, sta� admitting patients now
have to ask extra questions and enter extra data. The relevant existing sta� will need

12

re-training, user documentation will need to be revised, training manuals and documen-
tation of hospital procedures will also need revision. Design and maintenance documen-
tation will also need to be revised.

We may enquire how common such changes are, how much of the system is a�ected
by each change, etc. Recently Sj�berg [Sj�berg, 1993a] has measured such parameters
for 18 months in the development of a health care system. There are not many similar
studies, so it is impossible to be sure how generally applicable are his observations. How-
ever, his study detected very high rates of change and extensive consequential changes.
Hopefully, similar studies will soon be available to allow relevant norms to be included
in the estimation of development and operational costs.

Sj�berg's data supports anecdotal evidence that it is worthwhile investing in tech-
nology that supports the change management process and in methods that make im-
plementing the changes less error prone and costly. There are at present two levels of
support:

1. informative systems that provide PAS developers and maintainers with data about
the existing system, its present representation and perhaps some of its dependen-
cies; and

2. automatic systems that directly implement some of the steps necessary to deal with
the consequences of change.

Examples of the former are data dictionaries, repositories and build management tools.
Examples of the latter are automatic forms interfaces that, at the cost of not having a tai-
lored screen design, automatically generate a user interface and automatic re-structuring
tools that propagate change to the existing data.

Sj�berg has also implemented a prototype change management system that utilises
the reliable references available in persistent systems. As a result of this reliability, his
system is able to discover and record dependency information automatically and provide
reliable information about the consequences of changes [Sj�berg et al., 1993]. He is also
investigating the automation of some aspects of change propagation based on the more
reliable information [Sj�berg, 1993b]. However, automation is limited by the lack of
information about which changes should be propagated and which absorbed. It is here
suggested that this additional information may be provided by a combination of two
techniques:

1. the division of the system into cells which communicate through well de�ned inter-
faces; and

2. the use of change absorbers to specify more precisely the system architect's intent
about when and how change should propagate.

A methodology is then needed to ensure that there is disciplined and su�cient provision
of the propagation speci�cation information. Given this additional information, it should
be possible to use techniques such as those developed by Sj�berg to provide much more
helpful information for those considering a change and to automate more of the change
processes.

13

6 Change Absorbers

An important adjunct of change management tools are change absorbers. Without them
the extent to which change would propagate would be intolerable. Most users want the
illusion that the system is unchanging except on the (what they consider rare) occasions
when they want a change or they wish to exploit a new feature.

Typical examples of change absorbers are:

1. database views, which protect programs using the view from changes in the schema3;

2. type subsumption in object oriented systems which allows procedures to continue
to operate with re�nements of the data types originally expected; and

3. in�nite union types which protect part of a type or schema de�nition from \seeing"
changes beyond the in�nite union.

A comprehensive repertoire of change absorbers will be needed to permit
uent incre-
mental change. The important property of a change absorber is that it transmits the
changes that are important across a boundary and suppresses propagation of all other
changes.

The system can then be visualised as a composition of cells. Each cell would be
protected by a semi-permeable membrane constructed from change absorbers that trans-
mitted change important to the cell and kept out extraneous change. Such a structure
would be recursive, compositions of cells behaving as a cell. The cellular analogy is in-
tended to suggest a total system in which its smallest components are undergoing almost
continuous change or replacement.

System architects would then need a methodology to decide on the appropriate bound-
aries for the cells and to choose the correct change absorbers. System constructors and
maintainers would then need tools that report on the cell structure and how it would
react to particular changes.

This di�ers from much modular construction in that the cellular boundaries are not
as rigid. In most modular systems, the modules are statically bound together and it is
not possible to replace modules, or add modules without massive reconstruction.

It is expected that architects will deliberately build in signi�cant change absorption
capacity so as to avoid rigidity. This requires investment during design and construc-
tion, but it should be more than repaid during the system's life-time of change. Some
computational costs are inevitably incurred as information and control passes across cell
boundaries. The designer can trade these change costs by adjusting the size of cells and
the units of work and information transmitted between them.

The repertoire of change absorption techniques can be categorised as:

1. automatic transformers;

2. partial transmitters; and

3. enquiry mechanisms.

3Not necessarily automatically, someone may have to rede�ne the view to maintain the old image.

14

6.1 Automatic Transformers

These attempt to absorb change entirely and to continue to transmit the same infor-
mation. Typical examples are communication protocols, for example RPC mechanisms
on top of TCP/IP or the database interfaces on PCs such as ODBC [MICROSOFT,
1993]. Another example is the object transmission mechanism of CORBA [Scha�ert,
1992]. In such cases, the intermediate machinery will perform transformations to recover
from representational changes across the interface.

An early example in the database context was the System/R access mechanism. Ac-
cess code was compiled to deliver results for a query under the assumption that the
database had a certain structure. If, when the query was eventually applied, it transpired
that that structure had changed, the access code would be regenerated automatically to
achieve the same result.

When considered from the viewpoint of absorbing change within a system we might
expect signi�cant developments in these standard interfaces. They e�ectively give guar-
antees to cells that they can rely on certain invariants. It is likely to become a major
architectural issue, identifying precisely what invariants a cell can assume. For example,
there may be some global invariants and others that are provided or promised more lo-
cally. Without such invariants it is almost impossible to construct a system. There is a
challenge �nding su�cient invariants without seriously inhibiting change.

It is probable that re
ection [Stemple et al., 1992] will be an important technol-
ogy for building automatic change handlers. Just as type enquiry, program generation
and re
ection can be combined to give type dependent behaviour [Stemple et al., 1990;
Sheard, 1991] so it can use delivery and target descriptions to automatically generate
transformers.

6.2 Partial Transmitters

The example already given of database views illustrates this kind of mechanism. It hides
from the programs/users connected to the view: schema changes, changes to data values
outside the view and some operations. It transmits all data changes that are within the
view.

Another example is the use of subsumption at interfaces, such as in ADT signatures
and as procedure parameters. This hides change which introduces additional properties
and behaviours in excess of those speci�ed. It transmits changes that reduce or change
the properties of the expected type. It also transmits changes to the accessible values.

As was exhibited in the health care example, additions should not always be hidden.
It should be possible to specify that at some interfaces any deviation from an exact match
is unacceptable and requires change propagation.

However, it is possible to admit interfaces that propagate increases but perhaps hide
certain removals from the object's properties. The increases might always be passed
on to the target because its job was to present or preserve full information. However,
established formats might be important so that omitted data should be replaced by a
default (typically a null value) so that the code, etc. in the target does not have to be
altered.

Combinations of subsumption and substitution would permit an interface to appar-
ently present a constant type, absorbing all type changes with automatic transformations.
Clearly the transformation functions would soon become complex and would need to be

15

structured systematically. They would inevitably lose information and this is potentially
dangerous. The change management tools that reported on the propagation structure
would need to make it easy to obtain noti�cation of their dangers.

It seems likely that an extensive repertoire of these partial transmitters will evolve as
typical change propagation patterns are recognised.

6.3 Enquiry Mechanisms

The two previous mechanisms essentially consider the cells as passive objects. It is
possible to make them active in the change process and to introduce special classes of
cells that mediate in the change propagation process.

An important form of active change handling is that of environment enquiry. Here
the cell changes its behaviour of its own volition on the basis of what it �nds in its envi-
ronment. Good examples appear on personal machines: word processors o�er fonts based
on the fonts they �nd on the system, and they o�er printers after enquiring which are
available. Similarly, program building aids and spreadsheets, enquire what libraries are
mounted before presenting the user with the available options. In all cases it is expected
that changes will occur, and that these will result in changed component behaviour.

Dynamic linking mechanisms and command interpreters �nd and load program based
on information they �nd when they search for a module or command.

Such enquiries have been systematised in distributed �le servers as name servers
and in the ISA architecture for distributed object systems as object trading [ANSA, ;
ISO,].

A common feature of these enquiry mechanisms is that a cell or cells (in our vo-
cabulary) is introduced to hold some information that is expected to change. Programs
causing such changes then record the information in these inquiry servers. Cells that wish
to be sensitive to these changes then precede operations that use the a�ected facility by
enquiries to the relevant enquiry server.

This use of enquiry mechanisms is important as it permits anticipated changes to be
propagated completely automatically. In persistent object systems it is of course trivially
easy to arrange that the data against which the enquiry is made is made persistent and
changed transactionally. Thus, a cell having made an enquiry may trust the result of the
enquiry until it has been used.

It is expected that such enquiry mechanisms will be used systematically to avoid
having to explicitly propagate change.

7 Managing Program Change

Several authors have recently looked at the possibilities of managing program change
in persistent object stores [Connor, 1991; Kirby, 1993; Cutts, 1993; Kirby et al., 1992;
Farkas et al., 1992]. All three aspects of the above categorisation may be observed:

1. A standard structure in the persistent object store holds information about the
available programs | thus the store acts as an enquiry server.

2. the program parts are held in variables which are themselves reached via bindings
in env instances | which act as partial transmitters. Consequently, changes such
as the insertion and removal of other program parts are hidden (see Section 3.3.2).

16

3. Changes to program parts that do not change their type are transmitted auto-
matically whereas changes that do alter the part's type are detected and require
programmers to manually accommodate the change.

The handling of some kinds of change to the types of program components might be
automated with the caveats given above. This could be done by automatically intro-
ducing a \correcting procedure" that accepted the old call and called the new form, or
vice-versa.

It has already been shown that in these systems it is easy to specify and control the
propagation of changes to program components. For example, it is possible to statically
bind to a value (using higher-order procedures as values and persistent identities in the
source | hyper-references) immutably, so that whatever happens the value chosen at
construction will be used. At the other extreme, programs can �nd other program parts
they require every time they use them. As this all takes place in a transactional store, it
is \safe" as programs using other code will behave like readers on that code.

It is expected that this structure of program parts will be regularised into various
patterns of binding that allow the builders and architects to choose the corresponding
patterns of change propagation. It is suspected that the necessary primitive types de-
scribing various forms of binding have already been developed in experimental systems.
The patterns still need formal identi�cation and capture in the form of de�ned type
constructors.

8 Managing Type Change

Type change (or schema change) is perhaps the most di�cult class of changes to manage
in a PAS. There are several problem areas.

1. It is desirable to preserve as much of the type graph as possible unperturbed.
Types refer to other types when they are de�ned, e.g. the parameters given to a
constructor are referred to by the generated type. When type T1 is changed it
is undesirable that every type that refers to T1 should appear to have changed
| it would often produce a substantial cascade of changes. On the other hand,
it is di�cult to avoid this as for any model of type equivalence those types have
changed.

2. Existing instances of the types must be changed. This can be done either in an

immediate but expensive sweep of the store or incrementally whenever the objects
whose type has been changed are next used.

3. The graph of instance references must be preserved but the preceding process may
involve making new copies or changing addresses. Indirection mechanisms are one
solution commonly employed in databases but they lose any performance potential
of references.

4. The programs that handle the data either have to operate with the new data
unchanged or respond to the changes.

Several partial solutions to this class of problem have already been discussed above. They
are also well known in the literature [Skarra and Zdonik, 1987; Wegner and Zdonik, 1988;

17

Connor et al., 1990b]. Solutions to all these problems can be arranged if the costs of
anticipating change are tolerable. For example, objects that may change could be de�ned
using the following constructor.

type ChangeProtected[InvariantPart] is record[�xed: InvariantPart; extra: any]

Any object is now declared with a type such as that in the following example.

type Patient is ChangeProtected[record[name: string; : : : ; next of kin: string]]

This works because, both at the type level and at the instance level the outer record
structure is invariant and so type references, instance references and program interfaces
are unperturbed by changes that are localised to the extra �eld. Initially all instances of
this �eld would hold a null value.

When the previously described change occurs, a new structure for responsible-person
information is introduced.

type ExtraPatient1 is record[responsible person: string]

All subsequent and upgraded Patient objects now have a value of type ExtraPatient1

injected into their extra �eld. This can be accessed via a projection by programs that
need to use this data. All other programs are unchanged. The population of instances
can be changed incrementally.

But there are some drawbacks to this method. An extra �eld access has been in-
troduced and code has become more complex to write and execute. Optimisations and
automatic code generation might overcome these problems. However, there is a more
serious problem. The quality of the types as a description of the data has been seriously
impaired. It is only in running text and in similarities of identi�ers that the relationship
between Patient and ExtraPatient1 is established. The operational system and future
programmers would not know that the �eld extra of Patient was only meant to have
values of type Extrapatient1 injected into it and no other.

Such notations will su�ce for experiments that allow classes of change absorber to
be investigated. Subsequently, more precise notations that actually limit the allowed
changes to intended patterns, will be required. It is suspected that new primitives in the
type system de�ning other classes of in�nite union will be needed and/or de�ning other
type matching rules. These will then be combined into standard patterns using de�ned
type constructors.

9 Conclusions

The challenge of building Persistent Application Systems that will satisfy expectations
is very great and of economic importance. They should enhance human cooperative
behaviour. The work of the last decade on the development of persistence and object
oriented systems has been much concerned to facilitate this design and construction
process. The fundamentally important aspect of that research is to develop uniform
computational environments so that unnecessary complexity in the Persistent Application
System is avoided. There is still opportunity for further improvement.

18

It is apparent that a successful PAS will be expected to service its user community for
a very long time, tens or hundreds of years. As the sophistication of PASs increases these
required lifetimes will extend. In consequence an even greater challenge is to facilitate the
maintenance and evolution of PASs. If that challenge is not met and the PASs become
rigidly resistant to change or even just uneconomic to change then they will seriously
harm the performance of their user communities. They will do this by inhibiting the
normal processes of improvement that go on among a group of interacting people.

To achieve the required uniformity careful attention has been paid to orthogonality.
For example, the rights to persistence are equal for values of all types and the parameters
for type constructors are any type. Uniformity is also achieved by removing unnecessary
duplication of concepts. The example given in the paper is the convergence of data model
and type system.

An important issue, not covered in this paper, is how to maintain and evolve this
uniform platformwith adequate stability over the long lifetimes of PASs [Atkinson, 1992].
PASs built on technology for which that problem hasn't been solved | most persistent
and object-oriented systems perhaps | will fail their user communities as they will not
be able to capitalise on improved technology.

Type constructors enable the de�nition of new modelling constructs. This will allow
the development of constructs appropriate to classes of PASs or even to parts of a PAS.
In�nite union types are important in permitting code to be written which accommodates
change. They have the property that new types can be injected into them and manip-
ulated within them that were not de�ned when that manipulation code was written.
Subsequently the injected type can be recovered by projection.

The preferred basis for accommodating change is an incremental approach to main-
tenance operations. This would extend throughout the life cycle. It is argued that only
such an approach will ensure the capacity for change. It requires that from requirements
capture, through design, construction and maintenance, the PAS is considered in terms
of small units which are able to change with varying degrees of independence.

Although the above approach makes change possible it still leaves many technical
problems to be solved. The maintainers still need accurate and relevant information to
guide them as they plan and perform changes. Some work is reported which exploits
the stable reference properties of persistent object systems to collect and maintain that
information [Sj�berg, 1993b].

However, the various modes of change propagation between components have not yet
been fully described. Consequently, the change management tools that can be built at
present are of limited utility. In practice, PAS builders will use various techniques for
limiting the propagation of change, but with present practices these are not identi�ed
and to tools are indistinguishable from other code.

It is proposed that forms of change propagation be identi�ed. Here the interface com-
ponents that permit various aspects of change to be absorbed or transmitted through a
boundary have been called \change absorbers". The research community could therefore
study the existing change propagation arrangements and requirements in order to prop-
erly identify an adequate repertoire of change absorbers. If these are then de�ned, named
and provided by the technology they will enhance the capacity of PAS to change and
permit the construction of tools that are more helpful when managing and implementing
change.

The focus on describing the behaviour of the system under change will be the most

19

important outcome of such a line of research. As indicated in the paper, many ad hoc

developments to accommodate change and actively respond to it can be found in current
research and current technology. The challenge is to systematise these into regular struc-
tures so that they can be more easily and extensively used by PAS architects, builders
and maintainers. If this is done it will enhance the quality as well as the durability of a
typical Persistent Application System.

Acknowledgements

Discussions with Tim King, Ray Welland, Richard Connor and Rich Cooper were im-
portant in formulating the ideas. In particular, Professor Morrison's team | including
Richard Connor, Quintin Cutts and Graham Kirby | at St Andrews University, Scot-
land provided the language Napier88 that engenders thought about these ideas and allows
them to be explored. We were much helped by Paul Philbrow in the preparation of this
paper and some of the reported work was supported by a European Community ESPRIT
Basic Research Action, FIDE2, number 6309. Dag Sj�berg was also supported by the
Research Council of Norway, Division NAVF.

References

[Abiteboul and Hull, 1987] S. Abiteboul and R. Hull. IFO: A formal semantic database
model. ACM Transactions on Database Systems, 12(4):525{565, December 1987.

[Albano et al., 1985] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed,
interactive conceptual language. ACM Transactions on Database Systems, 10(2):230{
260, June 1985.

[Albano et al., 1993] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An introduction
to the database programming language Fibonacci. Technical Report FIDE/93/64,
ESPRIT Basic Research Action, Project Number 6309|FIDE2, 1993. 30pp.

[ANSA,] The ANSA Model for Trading and Federation, AR.005, APM.

[Atkinson et al., 1982] M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-algol:
An algol with a persistent heap. ACM SIGPLAN Notices, 17(7):24{31, July 1982.

[Atkinson et al., 1983] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and
R. Morrison. An approach to persistent programming. The Computer Journal,
26(4):360{365, November 1983.

[Atkinson et al., 1989] M.P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
and S. Zdonik. The object-oriented database system manifesto. In Deductive and

Object-Oriented Databases. Proceedings of the First International Conference on De-

ductive and Object-Oriented Databases (Kyoto, Japan, 4th{6th December 1989). Else-
vier Science Publisher B.V., 1989.

[Atkinson et al., 1993] M.P. Atkinson, F. Matthes, and J.W. Schmidt. Progress with
bulk types, 1993. Report in preparation, ESPRIT Basic Research Action, Project
Number 6309|FIDE2.

20

[Atkinson, 1978] M.P. Atkinson. Programming languages and databases. In S.B. Yao,
editor, The Fourth International Conference on Very Large Data Bases (Berlin, West

Germany, September 1978), pages 408{419, September 1978.

[Atkinson, 1992] M.P. Atkinson. Persistent foundations for scalable multi-paradigmal
systems. Invited paper. In M.T. �Ozsu, U. Dayal, and P. Valduriez, editors, Pre-

Proceedings of the International Workshop on Distributed Object Management (Ed-

monton, Canada, 18th-21st August 1992), 1992. The �nal proceedings will be pub-
lished as: M.T. �Ozsu, U. Dayal and P. Valduriez (eds.), Distributed Object Manage-

ment, Morgan Kaufmann, 1992.

[Bancilhon et al., 1992] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building

an Object-Oriented Database System: The Story of O2. Morgan Kaufmann Publishers,
1992.

[Berman, 1991] S. Berman. P-Pascal: A Data-Oriented Persistent Programming Lan-

guage. PhD thesis, University of Cape Town, Department of Computer Science, August
1991.

[Birtwistle et al., 1973] G.M. Birtwistle, O.J. Dahl, B. Myrhaug, and K. Nygaard. Sim-
ula BEGIN. Auerbach Press, Philadelphia, 1973.

[Cardelli and Wegner, 1985] L. Cardelli and P. Wegner. On understanding types, data
abstraction and polymorphism. ACM Computing Surveys, 17(4):471{523, December
1985.

[Cardelli, 1989] L. Cardelli. Typeful programming. Technical Report Digital Systems
Research Center Report 45, Digital Eqipment Corp., Systems Research Centre, 130
Lytton Avenue, Palo Alto, Calif., USA, May 1989.

[Cardelli, 1990] L. Cardelli. The Quest language and system (tracking draft). Technical
report, Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, June 1990.

[Codd, 1979] E.F. Codd. Extending the relational model of data to capture more mean-
ing. ACM Transactions on Database Systems, 4(4):397{434, December 1979.

[Connor et al., 1990a] R.C.H. Connor, A.L. Brown, Q. Cutts, A. Dearle, R. Morrison,
and J. Rosenberg. Type equivalence checking in persistent object systems. In A. Dearle,
G.M. Shaw, and S.B. Zdonik, editors, Implementing Persistent Object Bases, Princi-

ples and Practice. Proceedings of the Fourth International Workshop on Persistent

Object Systems, Their Design, Implementation and Use (Martha's Vineyard, USA,

September 1990), pages 154{167. San Mateo, CA: Morgan Kaufmann Publishers, 1990.

[Connor et al., 1990b] R.C.H. Connor, A. Dearle, R. Morrison, and A.L. Brown. Existen-
tially quanti�ed types as a database viewing mechanism. In F. Bancilhon, C. Thanos,
and D. Tsichritzis, editors, Proceedings of the Second International Conference on

Extending Database Technology (Venice, Italy, March 1990), number 416 in Lecture
Notes in Computer Science, pages 301{315. Springer-Verlag, 1990.

21

[Connor, 1991] R.C.H. Connor. Types and Polymorphism in Persistent Programming

Systems. PhD thesis, Department of Computational Science, University of St Andrews,
1991.

[Connor, 1993] R.C.H. Connor, 1993. In preparation: a survey paper on persistent type
systems. Department of Computational Science, University of St Andrews.

[Cutts, 1993] Q.I. Cutts. Delivering the Bene�ts of Persistence to System Construction

and Execution. PhD thesis, Department of Computational Science, University of St
Andrews, 1993.

[Dearle and Brown, 1988] A. Dearle and A.L. Brown. Safe browsing in a strongly typed
persistent environment. The Computer Journal, 31(3), 1988.

[Dearle, 1989] A. Dearle. Environments: A
exible binding mechanism to support system
evolution. In B.H. Shriver, editor, Proceedings of the Twenty-Second Annual Hawaii

International Conference on System Sciences, Volume II Software Track (January

1989), pages 46{45, 1989.

[Ellis and Stroustrup, 1990] M.A. Ellis and B. Stroustrup. The Annotated C++ Refer-

ence Manual. Addison-Wesley, 1990.

[Farkas et al., 1992] A. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Morrison, and
R. Connor. Persistent program construction - a new paradigm. In A. Albano and
R. Morrison, editors, Fifth International Workshop on Persistent Object Systems. De-

sign, Implementation and Use (San Miniato, Italy, 1st-4th September 1992), Work-
shops in Computing. Springer-Verlag in collaboration with the British Computer So-
ciety, 1992.

[Goldberg and Robson, 1983] A. Goldberg and D. Robson. Smalltalk80: The Language

and its Implementation. Addison Wesley, 1983.

[Hammer and McLeod, 1981] M. Hammer and D. McLeod. Database description with
sdm: A semantic database model. ACM Transactions on Database Systems, 6(3):351{
386, September 1981.

[Hoare, 1975] C.A.R. Hoare. Recursive Data Structures. International Journal of Com-
puter and Information Science, 4(2):105{132, 1975.

[Hughes and Connolly, 1990] J.G. Hughes and M. Connolly. Data abstraction and trans-
action processing in the database programming language RAPP. In F. Bancilhon and
O.P. Buneman, editors, Advances in Database Programming Languages. Based on Pro-

ceedings of the Workshop on Database Programming Languages (Rosco�, Brittanny,

France, September 1987), ACM Press, Frontier Series, chapter 11, pages 177{186.
Addison-Wesley Publishing Company and ACM Press, 1990.

[ISO,] Draft Recommendation X.903: Basic Reference Model of Open Distributed Pro-
cessing - Part 3: Prescriptive Model, ISO/IEC JTC1/SC21/WG7, ISO.

[Kirby et al., 1992] G. Kirby, R. Connor, Q. Cutts, A. Dearle, A. Farkas, and R. Morri-
son. Persistent hyper-programs. In A. Albano and R. Morrison, editors, Fifth Interna-
tional Workshop on Persistent Object Systems. Design, Implementation and Use (San

22

Miniato, Italy, 1st-4th September 1992), Workshops in Computing. Springer-Verlag in
collaboration with the British Computer Society, 1992.

[Kirby, 1993] G.N.C. Kirby. Re
ection and Hyper-Programming in Persistent Program-

ming Systems. PhD thesis, Department of Computational Science, University of St
Andrews, 1993.

[Koch et al., 1983] J. Koch, M. Mall, P. Putfarken, M. Reimer, J.W. Schmidt, and C.A.
Zehnder. Modula/R report, Lilith version. Technical report, Institute fur Informatik,
Eidgenossische Technische Hochschule Z�urich, February 1983.

[Matthes et al., 1992] F. Matthes, A. Rudlo�, J.W. Schmidt, and K. Subieta. The
database programming language DBPL user and system manual. Technical Report
FIDE/92/47, ESPRIT Basic Research Action, Project Number 3070|FIDE, 1992.

[Matthes, 1992] F. Matthes. Generic Database Programming: A Linguistic and Architec-

tural Framework. PhD thesis, Fachbereich Informatik, Universit�at Hamburg, Germany,
September 1992. (In German).

[MICROSOFT, 1993] Microsoft ODBC programmer's reference, June 1993. 01.03.0005.

[Morrison et al., 1989] R. Morrison, A.L. Brown, R.C.H. Connor, and A. Dearle. The
Napier88 reference manual. Technical Report PPRR-77-89, Universities of Glasgow
and St Andrews, 1989.

[Morrison, 1979] R. Morrison. On the development of algol. PhD thesis, Department of
Computational Science, University of St Andrews, 1979.

[Object Design Inc., 1991] Object Design Inc. The ObjectStore Technical Overview.
Product Marketing, One New England Executive Park, Burlington, Mass, MA 01803,
USA, May 1991.

[Ohori et al., 1989] A. Ohori, O.P. Buneman, and V. Breazu-Tannen. Database program-
ming in Machiavelli { a polymorphic language with static type inference. In Proceed-

ings of the ACM SIGMOD 1989 Conference on the Management of Data (Portland,

Oregon, May-June), SIGMOD Record 18, 8, June 1989, pages 46{57, 1989.

[Ontologic Inc., 1991] Ontologic Inc. The ONTOS Developer's Guide. Three Burlington
Woods, Burlington, Mass, MA 01803, USA, 1991.

[Reiser, 1991] M. Reiser. The Oberon System | User Guide and Programmer's Manual.
Addison-Wesley Publishing Company, Wokingham, 1991.

[Richardson and Carey, 1987] J.E. Richardson and M.J. Carey. Programming constructs
for database system implementation in EXODUS. In Proceedings of the ACM SIGMOD

1987 Conference on the Management of Data (San Francisco, CA, 27th-29th May),
pages 208{219, 1987.

[Scha�ert, 1992] C. Scha�ert. CORBA: OMG's object request broker. In M.T. �Ozsu,
U. Dayal, and P. Valduriez, editors, Pre-Proceedings of the International Workshop on

Distributed Object Management (Edmonton, Canada, 18th-21st August 1992), 1992.
The �nal proceedings will be published as: M.T. �Ozsu, U. Dayal and P. Valduriez
(eds.), Distributed Object Management, Morgan Kaufmann, 1992.

23

[Schmidt, 1977] J.W. Schmidt. Some high level language constructs for data of type
relation. ACM Transactions on Database Systems, 2(3):247{261, September 1977.

[Schwartz et al., 1986] J.T. Schwartz, R.B.K. Dewar, E. Dubinski, and E. Schonberg.
Programming with Sets: An Introduction to SETL. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1986.

[Sheard, 1991] T. Sheard. Automatic generation and use of abstract structure operators.
ACM Transactions on Programming Languages and Systems, 13(4):531{557, 1991.

[Shipman, 1981] D.W. Shipman. The functional data model and the data language
DAPLEX. ACM Transactions on Database Systems, 6(1):140{173, March 1981.

[Sj�berg et al., 1993] D. Sj�berg, M.P. Atkinson, J. Lopes, and P.W. Trinder. Building
an integrated persistent application | a multi-author, multilevel, Napier88 project.
In Proceedings of the Fourth International Workshop on Database Programming Lan-

guages (Manhattan, USA, 30th August{1st September 1993). Springer-Verlag, 1993.
To appear.

[Sj�berg, 1993a] D. Sj�berg. Quantifying schema evolution. Information and Software

Technology, 35(1):35{44, January 1993.

[Sj�berg, 1993b] D. Sj�berg. Thesaurus-Based Methodologies and Tools for Maintaining

Persistent Application Systems. PhD thesis, Submitted to University of Glasgow, July
1993.

[Skarra and Zdonik, 1987] A.H. Skarra and S.B. Zdonik. Type evolution in an object-
oriented database. In B.S. Shriver and P. Wegner, editors, Research Directions in

Object Oriented Programming, Computer Systems, pages 393{415. MIT Press, Cam-
bridge, MA, 1987.

[Stemple et al., 1990] D. Stemple, L. Fegaras, T. Sheard, and A. Socorro. Exceeding
the limits of polymorphism in database programming languages. In F. Bancilhon,
C. Thanos, and D. Tsichritzis, editors, Proceedings of the Second International Con-

ference on Extending Database Technology (Venice, Italy, March 1990), number 416
in Lecture Notes in Computer Science, pages 269{285. Springer-Verlag, 1990.

[Stemple et al., 1992] D. Stemple, R.B. Stanton, T. Sheard, P.C. Philbrow, R. Morrison,
G.N.C. Kirby, L. Fegaras, R.L. Cooper, R.C.H. Connor, M.P. Atkinson, and S. Alagic.
Type-safe linguistic re
ection: A generator technology. Technical Report FIDE/92/49,
ESPRIT Basic Research Action, Project Number 3070|FIDE, 1992. 29pp.

[Wegner and Zdonik, 1988] P. Wegner and S.B. Zdonik. Inheritance as an incremental
modi�cation mechanism or what like is and isn't like. In S. Gjessing and K. Ny-
gaard, editors, Proceedings of the European Conference on Object-oriented Program-

ming (Oslo, August 15-17, 1988), Lecture Notes in Computer Science 322, pages 55{77.
Springer-Verlag, 1988.

24

