
Evaluating Usability Aspects of PJama based on

Source Code Measurements

Stein Grimstad Dag I.K. Sjøberg
Department of Informatics, University of Oslo

PO box 1080, Blindern, N-0316 OSLO, Norway

{steingr,dagsj}@ifi.uio.no

Malcolm Atkinson Ray Welland
Computing Science Department, University of Glasgow

Glasgow G12 8 QQ, Scotland

{mpa,ray}@dcs.gla.ac.uk

Abstract

PJama is a system that provides orthogonal persistence defined by reach-
ability with no changes to the Java [13] language. Introduction of per-
sistence into the Java language is expected to give software productivity
gains and reduce maintenance costs. A set of hypotheses that investigate
these expectations have been defined and tested. The contribution of this
paper is two-fold. First, it describes a tool that automatically measures
the use of persistence in Java source code given a keywordfile specific to
the technology being used. Second, we have tested a set of hypotheses
applying this measurement technology. The results indicate that it is
possible to have persistence with minimal changes to the source code in
PJama. The results also indicate that the number of lines that explicitly
use persistence does not grow with the size of the application.

1 Introduction

Developing code to create, update and read persistent data is a major task
in application building. It is frequently mentioned in the persistent program-
ming literature that typically 30% of all code in conventional languages is con-
cerned with transferring data to and from secondary storage [8]. Persistent
programming languages aim to simplify this task. PJama [2] is an experimen-
tal persistent programming system for the Java programming language. It has
much in common with OO databases systems used together with Java. PJama
is being developed in a collaborative project between Glasgow University and
Sun Microsystems. The purpose of this project is to make PJama an efficient,
orthogonally, persistent system [2].

1



The work addressed in this paper evaluates usability aspects of PJama. In
this context, we define usability to mean how easy it is for programmers to
maintain, understand and reuse the software. There are indications that usabil-
ity of PJama will be good if the following two design goals, as stated in [2], for
PJama are achieved. There should be no syntactic changes, negligable semantic
changes and minimal requirements to use additional ‘core’ classes for the Java
language to include persistence, and there should be a simple, almost sublimi-
nal, use of persistence for many programmers who can be satisfied by a default
transaction model.

In order to evaluate usability, we have identified relationships between the
respective usability attributes maintainability, understandability and reusabil-
ity, and some directly measurable attributes regarding length and clustering
of code. We defined a set of hypotheses on these measurable attributes. The
hypotheses were tested on a collection of PJama applications.

The results indicate that it is possible to introduce persistence with almost
no changes to the source code. The results also indicate that the number of lines
that explicitly deal with persistence, does not grow with the size of the applica-
tion. A consequence of this is the claim that the extra burden of maintenance
will be insignificant and that the source code will not be harder to understand
nor more difficult to reuse.

There are two motivations for our work. Hopefully the results will be useful
for the further development of PJama. Another goal is to provide a means to
compare PJama with competing persistent technologies for Java.

Other viewpoints than usability for evaluation of persistent systems, such as
performance, tool-support and the price of the system, are beyond the scope of
this paper.

The reminder of this paper is organized as follows. Section 2 describes the
hypotheses. Section 3 introduces a source code measurement tool. Section
4 presents the applications investigated in our study. Section 5 discusses the
results of the study. Section 6 evaluates. Section 7 suggests future work.

2 Hypotheses

People often choose software technology on the basis of their subjective opinions
with no quantifiable evidence that one technology is better than another. An
aim in software engineering should therefore be to provide a set of measurable
criteria to evaluate different technologies.

Our work focuses on the usability aspect of PJama, that is, to what extent
it is easy to develop software with higher quality and lower costs when using
PJama as development environment. We divide the concept of usability into
maintainability, understandability and reusability (Figure 1):

• Software maintenance is the process of changing a system after it has been
delivered and is in use. Maintenance includes fixing errors, accommoda-
tion of changes to the environment and adding new functionality [12].
Maintainability indicates how much effort such changes require.

2



MAINTAINABILITY

REUSABILITY

LINES OF CODE

PERSISTENT EXPLICIT 

LINES OF CODE 
UNDERSTANDABILITY 

NUMBER OF PERSISTENCE 

AFFECTED CLASSES

Figure 1: Relationship between external and internal attributes

• Understandability indicates how easy it is to understand source code. Un-
derstandability is a difficult concept which has been subject of much in-
vestigation in the research community [14].

• Demands for lower software development and maintenance costs together
with higher quality can only be met by widespread software reuse. There-
fore, reusability aspects of persistent technology are important. Reuse is
not limited to code, but applies to specification and design documents.

Of course, these three concepts are interrelated. For example, we would expect
improved understandability to reduce maintenance costs and also aid reusability.

A major problem with maintainability, understandability and reusability are
that they are external attributes. That is, they can only be discovered after the
software has been put into use [1]. Because of their subjective nature, external
attributes are not directly measurable and thus difficult to compare. The best
thing we can do, is to assume that there is a relationship between external and
internal attributes. “Internal attributes are attributes of the software products
which are dependent on only the product itself.” [3] Hence, the values of internal
attributes are directly measurable.

Although little research with actual experiments has been carried out, there
are indications that there exist relationships between the external and internal
attributes as shown in Figure 1 [1, 3, 6, 9, 10, 17].

It is assumed that fewer lines of code (internal attribute) improves external
attributes of an application such as maintainability. Lipow [7] reports studies
that show that faults per line of code is an increasing function of the lines of
code of the application. Providing the same functionality with fewer lines of
code therefore implies an improvement of the software quality. Albrecht [6]
found that work-effort increases with the size of an application although with
great variations over different languages.

The number of lines that explicitly involve persistent code relates to under-
standability aspects of the technology. It is reasonable to assume that the fewer

3



lines of persistent code there is, the easier it is to comprehend the persistent
aspects of the code.

A high degree of cohesion and low degree of coupling is a well-known de-
sign principle [15] to improve understandability, reusability and maintainabil-
ity. Basili [10], using the OO metrics described by Chidamber and Kemerer [9],
found that highly coupled classes were more fault prone than weakly coupled
classes.

On the assumptions that lower values for the three internal attributes de-
scribed above leads to better values for the external attributes, we have defined
three hypotheses:

1. PJama programmers provide persistence in an application with overhead
that does not exceed 100 lines of code compared with a transient version
of the application.1

2. PJama programmers use less than 20 lines of code directly using PJama
statements to provide persistence in an application.

3. PJama programmers collect their persistent code in one or two classes.

The difference between hypotheses (1) and (2) is that (1) requires a version not
using persistence in addition to the persistent version, since the actual overhead
in a persistent version compared with a transient version of the same program
is measured. Hypothesis (2) applies also to the cases where only a persistent
version of the program being measured is available.

A consequence of these hypotheses is that the work-load when using per-
sistence will not increase with the size of the application. The overhead will
be small, in many cases, insignificant. The extra burden of maintenance will
be insignificant and the source code will not be harder to understand nor more
difficult to reuse.

In formulating the hypotheses, we made three assumptions regarding PJama
code:

• Two pieces of code of the same length have the same complexity.

• The default transaction model in PJama is used. More complex transac-
tion models will imply more effort in the management of data and thus
bias the measurements.

• Most applications use a large number of classes from libraries, particularly
the core classes. Generally, these require no modification in the context of
PJama, but there are a few exceptions. Threads and the AWT/SwingSet
classes cannot become persistent at present. However, our experience so
far is that these classes are very rarely made persistent by the program-
mers. We therefore assume that the necessary transformations in these
rare cases can be ignored in our measurements.

1The actual figures in these hypotheses were chosen on the basis of a pilot study of PJama
programs.

4



loc Lines of code
ploc Persistence affected lines of code
pirol Persistence impact ratio on lines of code (pirol = ploc/loc)
noc Number of classes
nopc Number of persistence affected classes
piroc Persistence impact ratio on classes (piroc = nopc/noc)
adploc Average distance between persistence affected lines of code
pibploc Length of the interval between the first and last keyword

Table 1: PCMT metrics

3 Measurement Technology

Manual data collection is expensive, unreliable and tedious. We thus built a
measurement tool, the Persistent Code Measurement Tool (PCMT). The metrics
produced by PCMT are shown in Table 1. PCMT measures the proportion of
lines and classes that explicitly include persistent code in Java programs. The
persistent keywords are loaded from a keyword file. Hence, PCMT can easily be
adapted to new tools/versions for providing persistence, and also other program
characteristics, by generating new keyword files.

PCMT parses Java source code and tracks the use of identifiers from the
package(s) under investigation and of identifiers refering to instances of classes
from those packages.

The total size of the application is measured in lines of code (loc). Lines
are defined as productions rather than line-shifts to avoid some of the impact
caused by personal programming styles. Comments are ignored.

Persistent affected lines of code (ploc) are also counted. A line is counted as
persistent affected if at least one class/interface from the keyword file is used.
For example, if PJStore is a word listed in the keyword file, the following line
will be counted as a persistent line of code:

PJStore ps = PJStoreImpl.getStore();

Lines where a variable introduced by such a declaration is used, e.g.,

manyana = (ToDoList)(ps.getPRoot("ToDoList"));

will also be counted as a persistent line of code since ps is a variable of type
PJStore, which (in this case) is a persistent keyword.

PCMT also reports the persistent impact ratio on lines of code (pirol), which
is calculated by dividing the ploc metrics by the corresponding loc metrics.

Some statistics on class level are collected. The number of classes (noc) is
counted. Internal classes are considered to belong to the outer class and are
thus not counted as classes.

A class is considered to be persistence affected if it includes persistent af-
fected code (ploc). The number of persistence affected classes (nopc) is the
number of classes (noc) that have such code.

5



Application Name: FamilyTreeDB

Parsed: 10-Jan-98

Author: lisefr

Persistent technology: sql

-----------------------------------------------------------------------

Class Name Loc Ploc Pirol Adploc Pibploc

-----------------------------------------------------------------------

ChildrenCanvas 13 0 0.0% 0 0%

ConnectDatabaseWindow 44 0 0.0% 0 0%

Woman 41 0 0.0% 0 0%

IntElem 4 0 0.0% 0 0%

FamilyTreeAppl 261 19 7.2% 11 75%

Man 41 0 0.0% 0 0%

NewPersonWindow 118 0 0.0% 0 0%

Person 149 3 2.0% 5 7%

SListEl 11 0 0.0% 0 0%

FamilyTreeReg 254 2 0.7% 31 12%

FamilyTreeCanvas 49 0 0.0% 0 0%

-----------------------------------------------------------------------

Total 985 24 0.0%

=======================================================================

Number of Classes : 11

Number of Persistence Affected Classes : 3

Persistence Impact Ratio on Classes : 27.2%

=======================================================================

Figure 2: Example of output from PCMT

The persistent impact ratio on classes (piroc) resembles the pirol metric. It is
calculated by dividing the noc metrics by the nopc metrics.

Some measurements on distribution within a class are also collected. PCMT
captures the average distance between the persistent affected lines of code (ad-
ploc) and the interval between the first and last persistent affected line (pibploc).
The pibploc metric is reported as the proportion of the total number of lines.

The default of PCMT is to investigate the transitive closure of classes (source
files) reachable from a persistent root. An example output from PCMT is shown
in Figure 2.

3.1 Implementation

PCMT is built using JavaCC [4] and uses the Java grammar given there almost
unchanged. One production is added to the import-statements to capture all
legal statements. The original parser reported an error on an empty statement

6



within imports— a construct that is accepted by the Java compilers. Instead of
altering the grammar in order to collect the statistics, we have added actions on
the different productions. These actions include methods to investigate whether
an identifier is a persistent identifier, methods to keep track of the scope of the
variables and a few other methods.

3.2 Strategy for Line Counting

A line is defined as a compiler directive, a declaration or an executable ending
with a “;”. Class and method headers are counted as lines too. Nested classes
loc/ploc are counted as loc/ploc of the outer class and not as individual classes.

The options -bt, -bw and -bf of PCMT enable all statements within try-,
while- and for -blocks to be counted as persistent lines if at least one of the
lines includes a persistent keyword. This might help capture some of the cases
where code has to be changed due to lack of orthogonality. However, these
options should be used with care, as there is no guarantee that the block does
not include other functionality than the persistence transformation.

A problem with PCMT is that it only captures explicitly persistent code.
Ideally, we would like to include the cases where a class has to be changed due
to lack of orthogonality. For example, suppose we were to analyse programs
using PSE [23] (ObjectStore’s object database architecture). Vectors in PSE
for Java cannot be persistent, which means that an alternative storage structure
has to be used. Such re-writing decreases the quality of the source code, since
the application will have more lines of code, and require structural changes in
some cases (e.g., new classes added).

4 Investigated Applications

This section describes the applications on which we tested the hypotheses. The
applications were developed at the universities of Glasgow, Oslo and St Andrews,
and are described below.

PJPresent is an application written for presentations. Information such as
technical reports are specified in a text file with certain tags and a slide-
like presentation is built. Different styles, fonts, backgrounds, etc. can be
chosen for the presentation. The application was designed with PJama in
mind.

ZEST is a system for modeling and automatically generating code for dis-
tributed systems [16]. It consists of different components such as parser,
data model editor, validator, code generator, etc.

GAP is an acronym for Geographic Application of Persistence.

OCB is an object and class browser written entirely in Java. The program is
available at [22].

7



Hyper-Program System consists of object browser and editor. Both are
implemented using PJama.

Variadic Generity is example code for testing variadic generity. A detailed
presentation of the code can be found in [21].

MountainClimbing is an application for registering people and the moun-
tains they have climbed.

FamilyTree keeps track of people’s family trees. You can register people and
their relatives and get information about family relationships.

ProjectWorkflow is a beta version of an application for distributed project
management, based on a client/server architecture. A server keeps track
of the different tasks and associated documents. The clients request tasks
and documents from the server. Persistence is only applied on the server
side of the program.

Persistent RMI Demo The first step in implementing support for distri-
bution in PJama is the porting of RMI to a persistent context. A first
implementation of persistent RMI (PJRMI) [18] has been produced. The
Persistent RMI Demo is a program that exploits this technology. It has
support for persistence added for both the server and the client. The
Persistent RMI Demo consists of four programs that can be run indepen-
dently: persistent client, “shut-down” persistent client, persistent server
and “shut-down” persistent server.

The applications are divided into four groups. The Java and PJama experience
of the programmers is described as one of the following:

• experienced — Java or PJama has been part of the their daily working
environment for at least half a year.

• moderately experienced — prior experience with Java or PJama, but
not part of the daily working environment.

• inexperienced — the developed application was their first application
ever in Java or PJama.

PJPresent, ZEST, GAP, OCB and Hyper-Program System are large applications
written by experienced programmers. Variadic Generity is a collection of
programs also written by experienced programmers. We therefore assume that
their code demonstrates smart use of the PJama technology.

MountainClimbing is an experiment where six teams of students imple-
mented an application based on the same specification. Each team consisted of
3–4 fourth year students. The programmers were inexperienced.

FamilyTree was implemented in three versions using three different persis-
tent technologies: The same, inexperienced programmer wrote all three imple-
mentations.

8



name technology loc ploc noc nopc
PJPresent PJama 4804 6 58 1
PJPresent transient Java 4779 0 57 0
ZEST PJama 5728 13 150 2
ZEST transient Java 5654 0 148 0
GAP PJama 3938 39 60 5
OCB Pjama 2511 6 65 1
Hyper-Program System Browser PJama 3395 8 62 2
Hyper-Program System Editor PJama 4585 9 19 3
Variadic Generity (reflective) PJama 625 13 12 3
Variadic Generity (generic) PJama 379 13 16 3
Variadic Generity (non-generic) PJama 478 13 21 3
Mountains-group1 PJama 1249 100 32 13
Mountains-group2 PJama 801 87 18 15
Mountains-group3 PJama 913 13 20 3
Mountains-group4 PJama 398 25 11 4
Mountains-group5 PJama 1247 87 21 14
Mountains-group6 PJama 997 90 20 16
FamilyTree Java.io 822 48 10 2
FamilyTree PJama 871 28 11 2
FamilyTree JDBC 985 24 11 3
ProjectWorkflow Java.io 510 96 (48) 17 11(3)
ProjectWorkflow PJama 419 16 17 1
Persistent RMI demo PJama 124 17 9 4

Table 2: Measurements of the applications

ProjectWorkFlow and the Persistent RMI Demo differ from the other pro-
grams measured as they are not “real-world” applications, but demonstration
programs to test distributed technology. For example, user interfaces have not
been properly implemented in these programs. Project Workflow was devel-
oped by a moderately experienced programmer, while the Persistent RMI

Demo was developed by an experienced programmer.

5 Results

This section describes the testing of the hypotheses (Section 2), which is based
on measurements resulting from applying PCMT on the applications described
in the previous section (Table 2).

5.1 Hypothesis 1: extra overhead in lines of code

PJama programmers provide persistence in an application with overhead that
does not exceed 100 lines of code compared with a transient version of the ap-
plication.

9



The metric relevant to this hypothesis is loc. The hypothesis applies to only
those applications that have both a transient and a persistent implementation.
PJPresent and ZEST are the only two applications that meet this requirement.
FamilyTree does not have a transient version, but the application had file man-
agement as part of its system requirements. The consequence is that persistence
gained with PJama and JDBC is added on top of the Java.io version with al-
most no code from the Java.io version removed. Therefore, the Java.io version
of FamilyTree can be viewed as a transient version in this context.

PJPresent has an overhead of 25 loc, ZEST 74 loc and FamilyTree 30 loc.
These results support our hypothesis that an overhead of less than 100 loc is
needed for providing persistence using PJama. These results also indicate that
the absolute number of overhead-loc are independent of the total application
size.

5.2 Hypothesis 2: persistent explicit lines of code

PJama programmers use less than 20 lines of code directly using PJama state-
ments to provide persistence in an application.

The metric used to test this hypothesis is ploc. PJPresent has 6 ploc; ZEST 17
ploc; OCB 6 ploc; Hyper-Program System Browser and Hyper-Program System

Editor have 8 and 9 ploc; all the Variadic Generity programs 13 ploc. Only
one of the MountainClimbing applications has ploc as expected, even though
another is close (25 ploc). The remaining four have significantly more (87-100
ploc). This differs greatly from our hypothesis. FamilyTree has 28 ploc, which
also exceed the limit specified in the hypothesis. However, here code for creation
of a store is included as part of the application. Both ProjectWorkFlow demo

and Persistent RMI Demo have results as expected (respectively 16 and 17
ploc). GAP is the only large application that has more ploc than expected: 39
ploc. We received the GAP results just before the deadline for this paper, so we
have at present no explanation why these numbers are higher than expected.

We have investigated the anomalous version of MountainClimbing by man-
ually analyzing the code. It seems like persistence is included in places where
transitive closure from a persistent root would have been sufficient. This may
be a result of inadequate understanding of the technology. This is not totally
unexpected. Similar results were found in a study of applications written in
Napier88 [19]. There were significant differences between novices and experi-
enced programmers in the way they designed their applications and their use
of the languages constructs [11]. A common factor that also may explain why
these applications conflict with the hypothesis is that quite a bit of test code is
included (i.e., dumping all classes reachable from a root to a screen) and that
code for creation of a store is included as part of the application.

The applications developed by experienced and moderately experienced pro-
grammers support our hypothesis with the exception of GAP, while most of the
applications by inexperienced programmers conflict with the hypothesis. The
results also suggest that the number might be a bit higher than 20 ploc when
the creation of a persistent store is included as part of the application.

10



5.3 Hypothesis 3: classes including persistent code

PJama programmers collect their persistent code into one or two classes.
This hypothesis is tested using the nopc metric. PJPresent and OCB have

one class containing persistent code, while ZEST and Hyper-Program System

Object Browser have two. Hence, they all support the hypothesis. ZEST has
new functionality added to the persistent version such as a save option. If new
functionality had not been added, only one class would have been needed to
provide persistence.

Hyper-Program System Editor and Variadic Generity both have three
classes containing persistent code; GAP has five. These programs thus conflict
slightly with the hypothesis.

All of the MountainClimbing applications conflict with this hypothesis.
There are different degrees of conflicts, though. While two of them only just
exceed the hypothesis (3-4 nopc), the four remaining have persistent affected
code in almost all the classes (13–16 nopc). As discussed for hypothesis two,
the probable reason for this is lack of understanding of how to design properly.

FamilyTree has two nopc. They include code to create a persistent store.
ProjectWorkflow demo has one nopc; Persistent RMI Demo has four nopc.
However, as discussed in the description of the applications, Persistent RMI

Demo consists of four programs that can be run independently. Hence, all of them
have to connect to a store, and therefore do not conflict with our hypothesis.

As for hypothesis 2, we observe that the investigated applications support
the hypothesis with the exception of most of the applications developed by
inexperienced programmers, and the GAP application.

6 Evaluation

During our study we encountered problems common to many aspects of soft-
ware engineering research. Some of the aspects that might have biased the
measurements are:

1. Individual programmer influence. Different programming styles and inef-
fective use of the technology probably affect the results.

2. Reuse of code. Use of local libraries might result in the same code being
measured several times.

3. The application domain. The suitability of various persistence technolo-
gies may depend on the application domain.

4. Services supported by the application such as restore functions, versioning
and advanced transaction models. In our study, we have assumed that the
programmers use the default transaction model.

We are aware that other internal attributes than those related to size and clus-
tering have an effect on the the external attributes we investigate. For example,

11



methods per class directly influence maintainability [10]. However, size is often
the key factor in models for evaluating cost, productivity and effort [1]. As
discussed in Section 2, it is also reasonable to assume that clustering of the
persistent code will improve the external attributes we investigate.

PCMT measures more attributes than we ended up using in our final set of
hypotheses. We were unable to find use of the attributes concerning internal
distribution of persistent code on class level (pirol, piroc, adploc, pibploc). It
seems like most classes using persistence have the code scattered all over the
class.

We have measured a small set of applications, and there are many uncertain-
ties regarding the relationship between internal and external attributes. Even
though we have confirmed our hypotheses, we still cannot confirm or reject
whether this means that the usability aspects of PJama are good. We can
only say that if the technology gives high scores on the investigated internal
attributes, it is more likely that we have high scores on the related external
attributes.

To provide more reliable results, we would like to measure the same applica-
tion written with several different technologies by people who have experience
with those technologies, have the same application domain experience and gen-
erally have the same programming skills. However, such an experiment is not
realistic because of limitations regarding money, time, available people, etc.

7 Conclusions and Future Work

Our work is a first attempt to collect measurements of attributes to evalu-
ate usability aspects of PJama. In order to evaluate usability, we identified
relationships between the respective usability attributes maintainability, under-
standability and reusability, and some directly measurable attributes regarding
length and clustering of code. This research showed that little extra effort is
required from the programmer to provide persistence in applications.

The total overhead in lines of code of an application when introducing per-
sistence with PJama is small (typically less than 100 loc). Of these, typically
less than 20 were lines explicitly using the persistent technology. The numbers
are relatively constant, therefore the proportions will be comparably smaller
for larger applications. This indicates that the introduction of persistence by
PJama does not adversely affect the usability aspects of the application code.

When using PJama, the code for providing persistence is in most cases kept
within a few classes, typically 1 or 2. As for the lines of code figures, this number
does not increase with the size of the applications. The result of this, is that
maintainability, understandability and reusability aspects of an application do
not deteriorate when persistence is introduced using PJama.

To provide data-collection automatically, we developed a general purpose
measurement tool that also can exploit other programming constructs such as
distribution and user-interfaces to help identify critical issues for software de-
velopment. Optimizing one area might lead to worse results in other areas, and

12



possibly less good overall results.
We investigated a number of different applications written by people with

different backgrounds, and tried to extract trends from the results we collected.
However, inexperienced programmers are still inexperienced programmers and
our results suggest that there is a need for better introductory and tutorial
material, and more extensive documentation about the PJama technology.

The results from the applications that have implementations using other
persistent technologies than PJama, suggest that PJama has less overhead and
changes to structure, and therefore has advantages in comparison. However,
considerably more measurements are needed before we are able to collect suffi-
cient reliable results to make strong claims.

A next step would be to investigate how other proposed OO metrics such
as depth of inheritance trees and weighted methods per class [9] are affected
by different persistent technologies. Such metrics have been shown useful in
detecting error-prone classes [10].

As the cost of hardware resources fall and the cost of software staff rises, it is
naturally prudent to invest computing resources in making software development
and maintenance less labour intensive and less error prone.2 The provision of
orthogonal persistence has long been justified on these grounds [20]. A valid
engineering approach requires a means of measuring whether the intended goal
(less costly development and maintenance) is being met. This is particularly
important for Java where many mechanisms for persistence are being developed.
The only valid way to choose between these and to direct development is to use
relevant and comparative measurements.

We are not particularly satisfied with the preliminary measurement technol-
ogy we report here. Its primary merit is that it exists and it is cheap to use.
We hope that its use will lead to better metrics and to comparisons between
alternative technologies that have a relevant and testable basis.

When we consider the large investments being made by companies to develop
persistence technologies for Java and the even larger costs of projects using these
technologies, we believe it is very suprising that there is not a well developed
strategy for comparing programming costs. Whilst performance remains im-
portant, the enthusiasm for benchmarks and the dearth of programmability
measurements, may already be unballanced and becoming inappropriate.

Acknowledgements

We would like to thank the people in the RAPIDS group and the senior honour
database students at Glasgow University, Lise Frengen, John Hagemeijster and
Graham Kirby for providing us with measurements of their source code. We
would particularly like to thank Susan Spence, Tony Printezis and Cathy Waite

2Bill Gates identified the unification of the plethora of stores (file systems, none registries,
databases, etc.) on our computers and improved relationships between databases and pro-
gramming languages as an urgent research priority [24].

13



for their helpful support as the work proceeded. The work is supported by the
Pastel working group (EP 22552) funded by the European Community.

References

[1] Sommerville I. Software Engineering. Fifth edition, Addison-Wesley, 1996.

[2] Atkinson M, Jordan M, Daynes L, Spence S. Design Issues for Persistent
Java: a Type-safe, Object-oriented, Orthogonally Persistent System. Sev-
enth International Workshop on Persistent Object Systems (POS7) Cape
May, New Jersey, May 1996.

[3] Fenton N. Software Metrics. First edition, Chapman & Hall, 1991.

[4] Sun Microsystems, Inc. The Java Compiler Compiler.

[5] Hamilton, Cattel. JDBC: A Java SQLAPI.
http://splash.javasoft.com/jdbc, 1996.

[6] Albrecht AJ, Gaggney JE. Software Function, Source Lines of Code, and
Development Effort Prediction: a Software Science Validation. IEEE Trans
Software Engineering SE-9(6), pp. 639–648, 1983.

[7] Lipow M. Number of Faults Per Line of Code. IEEE Trans Software Engi-
neering, SE-8(4), pp. 437–439, 1982.

[8] King F. IBM Report on the Contents of a Sample of Programs Surveyed.
IBM Research Centre, San Jose, California, 1978.

[9] Chidamber R, Kemerer R. A Metric Suite for Object Oriented Design.
IEEE Trans Software Engineering 20(6), pp. 476–493, 1994.

[10] Basili VR, Briand LC, Melo WL. A Validation of Object-Oriented De-
sign Metrics as Quality Indicators. IEEE Trans Software Engineering SE-
22(10), pp. 751–761 1996.

[11] Sjøberg DIK, Cutts Q, Welland R, Atkinson M. Analysing Persistent
Language Applications. Sixth International Workshop on Persistent Ob-
ject Systems, pp. 235–255, Workshops in Computing, Springer-Verlag and
British Computer Society, 1995.

[12] Swanson EB. The Dimension of Maintainance. Proceedings of the Second
International Conference on Software Engineering, pp. 492–497, 1976.

[13] Gosling J, Joy B, Steel G. The Java Language Specification, Addison-
Wesley, 1996.

[14] von Mayrhauser A, Vans AM. Comprehension Processes During Large Scale
Maintenance. 16th International Conference on Software Engineering, pp.
39–49, 1994.

14



[15] Constantine LL, Yourdon E. Structured Design. Englewood Cliffs, N.J.
Prentice-Hall, 1979.

[16] Waite C, Welland R, Atkinson M.P. Supporting Software Evolution in
ZEST. Technical Report TR-1997-29, Department of Computing Science,
University of Glasgow, December 1997.

[17] Banker RD, Datar SM, Kermerer CF, Zweig D. Software Complexity and
Maintenance Costs. Communications of the ACM 36(11), pp. 81–94, 1993.

[18] Spence S. Persistent RMI. More information at
http://www.sunlabs.com/research/forest/opj.tutorial.pjrmidoc.html

[19] Morrison R, Brown F, Connor R, Dearle A. The Napier88 Reference Man-
ual. Technical Report PPRR-77-89, Universities of Glasgow and St An-
drews, 1989.

[20] Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R. An
Approach to Persistent Programming. The Computer Journal 26(4), pp.
360–365, 1983.

[21] Kirby G, Morrison R. Variadic Genericity Through Lingustic Reflection: A
Performance Assesment. To appear at POS8, 1998.

[22] OCB - Object Class Browser. Available for download at http://www-
ppg.dcs.st-and.ac.uk/Java/ocb/

[23] PSE for Java from ODI. Available for download at http://www.odi.com

[24] Gates B. SIGMOD Opening and Plenary Keynote. ACM SIGMOD/PODS
Seattle, june 1998.

15


