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Abstract. Module constructs in programming languages have protec-
tion mechanisms hindering unauthorised external access to internal op-
erators of data types. In some cases, granting external access to internal
operators would result in serious violation of a data type’s specified ex-
ternal properties. In order to reason consistently about specifications of
such data types, it is necessary in general to incorporate a notion of pro-
tective abstraction barrier in proof strategies as well. We show how this
can be done in equational calculus by simply restricting the congruence
axiom, and see how the motivation for this naturally arises from FI and
FRI approaches to specification refinement.

1 Introduction

Many programming languages have encapsulation mechanisms that hide internal
detail of data types. Besides providing abstraction from uninteresting detail,
these encapsulation mechanisms also provide vital protection of a data type’s
internal workings, to which direct access might otherwise enable a user to create
havoc. Consider for example a data type implementation of sets in SML by sorted
non-repeating lists. If granted access to the set constructor, a user might generate
things (s)he thinks represent sets but which do not according to the data type.
Then applying operators which assume the correct representation might give
wrong answers. The power to enforce a suitable abstraction barrier between a
module and the surrounding program is thus not just an organisational nicety,
but also essential for program soundness. We here address these latter aspects
of encapsulation, i.e. those pertaining to its logical or protective, as opposed to
organisational, necessity.

Algebraic specification is viewed in this paper in a refinement setting as
described in e.g. [13,14] or [10]. In such a setting data types are viewed as
algebras, and in several schemes, e.g. [12], [3] specifications and programs are
written in a uniform language, so that specifications are abstract multi-modeled
descriptions of a data type, while program modules are concrete monomorphic
executable descriptions of the same. A refinement process then seeks to develop
in a sound methodical way the latter from the former. In this setting, the need
for abstraction barriers arises naturally in algebraic specifications as well. The
specificational and semantic formalisms of algebraic specification have structural
constructs, which if combined in the right order provide protective encapsulation,
as for example in the forget-identify (FI) and the forget-restrict-identify (FRI)
approach to refinement [18].



The broad issue of this paper is that when reasoning about specifications and
programs, e.g. when doing refinement proofs, one needs to take into consideration
abstraction barriers in proof methods as well. This is because information about
hidden parts of a data type may have to be used when reasoning about its
external properties. In this paper we look specifically at proof obligations arising
from the FI and FRI implementation schemes, i.e. implementing a data type by
hiding details in, and then quotienting, another data type. Moreover, we wish to
show how an abstraction barrier can easily be enforced in equational logic, so we
look here at equational specifications. This means we will consider the case when
the congruence with which the quotienting is done can be expressed by equations.
It would then be proof-technically convenient if these latter equations could
be used in an equational calculus directly in conjunction with other equations
specifying the data type. Our result is that this is indeed possible, provided one
incorporates the appropriate abstraction barrier in the calculus itself. It suffices
to restrict the congruence (monotonicity) axiom to contexts without designated
hidden symbols, i.e. imposing referential opacity, see [11,16] for other uses of
referential opacity. Without such an abstraction barrier, the resulting set of
equations may be inconsistent since (the axioms for) hidden operators might
not respect the intended equality predicate.

Several proof system schemata for structured specifications exist, see 7] for
an overview, and the standard way by which quotienting is dealt with is by intro-
ducing a predicate symbol and explicitly axiomatising the congruence in terms
of that symbol [20]. This also goes for the behavioural equalities viz. congruences
dealt with in [7], where the axiomatisations are in general infinitary, although in
[9] this problem is taken to higher order logic and finitary axiomatisation is then
possible. Our approach is beneficial to mechanised reasoning because it remains
finitary, first-order and purely equational. In some cases it also allows one to do
behavioural verification more directly because now we can safely do proofs w.r.t.
behavioural quotients instead of having to axiomatise behavioural equalities.

We will assume that the specifications to which the hiding and quotienting
operators are applied are basic or “flat”. It should be noted that this is not such
a great restriction. Any first-order specification built from a basic specification
by applying the standard specification building operators sum, derive, translate
[20] can be algorithmically normalised to a basic specification with a derive op-
erator outermost [19, 5,2]. The other relevant operators are abstract, behaviour
and quotient. In a refinement context the two former, it can be argued, should
be seen as meta-operators and should only be applied outermost [1]. A similar
argument can be made for quotient.

In Sect. 2 relevant notions are given as well as motivating examples. In Sect.
3 a calculus is presented which is sound and complete w.r.t. the model class of
an equational instance of an FI structure. In Sect. 4 we present a calculus with
an w-rule which is shown sound and complete for the semantics of an equational
instance of the FRI approach. The FI case is a special case of the FRI case and
the completeness proof of the latter immediately gives a completeness proof for
the former. Omitted proofs and more detail may be found in [6].



2 Preliminaries and Motivation

A basic knowledge of notions within universal algebra and algebraic specification
is assumed, see [18,13]. Below we give some notions and simplifying assumptions
central to the paper. We will be dealing with many-sorted algebraic specifications
whose semantics will be given as classes of total many-sorted algebras with non-
empty carriers. Fix a signature X = (S, 2). The class of Y-algebras is denoted
by YAlg. For Y-algebras A and B the class of X-homomorphisms from A to B
is denoted by YAlg(A, B). We also write ¢ : A — B to indicate that ¢ is a
homomorphism from A to B. Throughout this paper, fix X as a U-sorted set of
variables, where U includes all sorts involved. The X-term algebra, i.e. the free
Y-algebra generated by X where the S-sorted X is given by X5 = X, for
s € S, is denoted by T's;(X). For a X-context c[o] we write ¢ € T (X) instead of
¢ € Txyqey(X). All signatures X = (S, £2) are assumed to be sensible w.r.t. to a
designated set I C S, i.e. for the I-sorted X! given by X! = X for s € I, we
assume that the free Y-algebra generated by X7, denoted T':(X7), is non-empty.
If I = () this amounts to assuming that there is at least one constant in 2 of
every sort s in S. We write T'x;(0) as Gx.

For signatures X = (S, 2), X' = (S', '), a signature morphism o : X — '
maps the sorts and operator symbols of X' to those of X’ such that sorts are
preserved. For a X'-algebra A the o-reduct A|, of A is the Y-algebra with carriers
(Als)s = Ay(s) for each sort s € S and fAle = o(f)* for each f € 2. For any
X'-congruence ~4 on A, ~4|, is defined as ~4|,, = NA(,(S) for each sort s € S.
For any X’'-homomorphism ¢ : A = B, ¢|, : A|, = B|, is the X-homomorphism
defined by ¢|,, = ¢g(5) for each sort s € S. In case ¥ C ¥ and o : ¥ — X' is
the inclusion morphism, we write 4|5, ~*|5, ¢*|5s, and we might write a ~* a'
in place of a ~4|x a', since ~4|5, = ~4; for s € S.

If o is not surjective, the effect is that of hiding, i.e. removing, those carriers
and operators of A which are not interpretations of symbols in o(X).

The class of all X-algebras that are models (in the standard sense) of a set
of axioms & is denoted Mod 5 (P).

2.1 Congruence Induced by a Set of Equations

The following standard notion is central. For a set of Y-equations E C T'x;(X) x
Tx(X), the congruence ~4 induced by E on any Y-algebra A is defined as the
least X-congruence containing {(¢(1), #(r)) | (I,r) € E, ¢ : Tx(X) — A}. This
definition is equivalent to demanding the least equivalence relation containing
{p(c[l]), plc[r])) | {I,r) € E,c € Tu(X), ¢ : Tx(X) — A}, ie. the relation
inductively defined by

induce : T (l,ry€e E,ceTs(X), ¢:Ts(X) > A
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The quotient w.r.t. to ~4 is written A/E. Of course, usually s ~ EE( )t is

written E' F s = ¢.
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2.2 Abstraction Barriers by Specificational Structure - FI and FRI

Henceforth, we tacitly assume that every class of algebras presented is closed
under isomorphism. A basic specification is a pair (X, ®). Its loose semantics
[(X,®)] is Mod (). A number of specification building operators exist for con-
structing structured specifications. A common one which will be used in examples
is enrich SP by sorts S’ ops {2 axioms ¢' with semantics {A € Y'Alg | A|x €
[SP] A AE &'}, where X' = (SU S’, 2 U 2'). (This enrich operator can be
expressed by the sum operator.) In this paper we are interested in encapsulation
and in particular encapsulation out of logical necessity. Our focus is therefore
on the two operators derive SP by ¢ whose semantics for a signature morphism
o, is {A], | A € [SP]}, and quotient SP by E whose semantics for a set of
equations E, is {A/E | A € [SP]}. The particular structure of interest is

quotient (derive (¥, E) by incl : ¥¢* — X¥) by E' (1)

with semantics {(A|xe)/E' | A € Modx(E)}. It ¥¢ C X then the signature
fragment T% = X'\ X is outside the image of incl, so the reduct construct
hides the interpretations of operator symbols and sorts in X". Structure is the
essential abstraction barrier here: It is crucial that the hiding derive step is done
before quotienting, since quotienting in the presence of hidden operators might
give inconsistency in the sense illustrated in the following example.

Example 1. Following [13], a specification SP' is a refinement of SP, written
SP ~ SP' iff [SP'] C [SP]. A nice feature in refinement settings is the provi-
sion for using an implementation of one data type to implement another. In the
example below from [13], the specification Set is refined by using Bag and spec-
ification building operators. This reuses any refinement Bag ~~ SP" previously
done for Bag. In particular if Bag has been refined to an executable module, then
this code is reused when implementing Set. Specifically we have

spec Set is
sorts nat, set
ops empty : set, add : nat x set — set
in : nat x set = bool

axioms add(z,add(z,s)) = add(z, s)
add(z, add(y, s)) = add(y, add(z, s))
in(z, empty) = false
in(z,add(y, s)) = if £ =na y then true else in(z, s)

spec Bag is
sorts nat, bag
ops empty : bag, add : nat X bag — bag
count : nat x bag — nat
axioms add(z,add(y,b)) = add(y, add(zx, b))
count(z,empty) =0
count(z, add(y,b)) = if £ =nat y then succ(count(z, b)) else count(z,b)

The idea is to put an appropriate interface on bags as specified by Bag, so that
they look like sets as specified by Set. This may be done safely by adding in as



an interface operator, then hiding its implementation in terms of count and then
identifying bags that represent the same set. First in is added:

spec Bag+ is
enrich Bag by
ops in : nat x bag — bool
axioms in(x,b) = count(z,b) > 0

Then we use an instance of the structure (1):

spec SetbyBag is
quotient
derive Bag+ by o = i[set — bag]
by E' : {add(z,add(z, s)) = add(z, s)}

where o is the signature morphism from the signature of Set to that of Bag+
which is the identity on everything except the sort set which is renamed to bag.
(For simplicity (1) was stated using an inclusion morphism. In this example, the
signature morphism is not an inclusion proper. However, the renaming from set
to bag is trivial.) The morphism is not surjective thus hiding count. This speci-
fication is structured so that count is hidden before quotienting. If this were not
done, the specification would be inconsistent relative to the intended semantics
on nat, since any model B = A/E' would then have to satisfy e.g. 2 =1, by

2 = count? (x, add® (z, add® (z, empty®))) = count® (z, add® (z, empty®)) = 1

and now it would be too late for hiding count®. However, the above structure
ensures the appropriate abstraction barrier and the desired semantics.

In an executable implementation of SetbyBag, the derive operator might be
implemented by an encapsulation mechanism hindering outside access to count,
and the quotient operator might be implemented by an equality predicate.

The task is now to prove Set ~* SetbyBag. This paper presents a calculus
allowing a direct approach to proofs w.r.t. the general structure (1), and hence
particularly w.r.t. SetbyBag for this example. e}

The specification structure (1) in general, and the specification SetbyBag of
Example 1 in particular, are instances of the common forget-identify (FI) imple-
mentation strategy of algebraic specification. Even more common is the strategy
of forget-restrict-identify (FRI), which involves restricting to the unique reach-
able sub-algebra after reducting and before quotienting.

Let ¥ =(S,12) and let S’ C S. The set I = S\ S’ might be thought of as
designated input sorts. A X-algebra A is reachable on S’ if there is no proper
X-subalgebra whose I-sorted carriers are the same as those of A. Equivalently,
let XI C X denote the I-sorted variables of X. Then A is reachable on S’
iff for every a € A there is a term t € T (X') such that ¢(t) = a for some
homomorphism ¢ : Tx(X!) — A. Any Y-algebra has a unique Y-subalgebra
which is reachable on ', denoted Rg:(A). The restriction R|E, of a relation
R C Ax B is here taken to be RN A’ x B'. For any X¥-homomorphism ¢ : A — B,
the X-homomorphism Rg/(¢) : Rs'(A) — Rg(B) (qua relation) is defined to



X-congruence Rg:(~) is defined as ~[ ﬁ).

The semantics of the specification restrict SP on S’ is {Rgs/(A) | A € [SP]}.
Specifications with the restrict operator are normalisable to the form mentioned
prefatorially, but with infinitary axioms. However, in refinement we could again
claim restrict as a meta-operator to be applied outermost. The FRI approach
then, is in our context represented by the specification structure

quotient (restrict (derive (¥, E) by incl:X°— X) onS’) by E' (2)

where X¢ = (S, 2°), S' C S°. Its semantics is {Rs'(A|x-)/E' | A € Modx(E)}.
Note that the input sorts I are now S¢\ S’. There is a range of model classes
according to the choice of S’. The case S' = 0 gives Ry(A|se) = A|x., and
corresponds to FI. The case S’ = S¢ is ground term denotability.

Example 2. Consider the specification

spec SetEnr is
enrich Set by
ops remove : nat X set — set
axioms in(z, remove(z, s)) = false

In this example sets as specified by SetEnr are implemented by lists where equal
elements occur consecutively. (One might at lower levels of implementation wish
to keep a record of insertions. Also, formulating the example in this way will
nicely illustrate the use of referential opacity.) We do this by putting an appro-
priate interface on basic lists, i.e. starting from

spec List is
sorts nat, list
ops nil : list, _:: _ :nat x list — list

we add interface operators:

spec List+ is
enrich List by
ops empty : list, add : nat x list — list,
remove : nat x list — list, in: nat x list — bool
axioms empty = nil
add(z, nil) = z :: nil
add(z,y :: 1) = if & =na y then z 1 y :: L else y :: add(z, 1)
in(z, nil) = false
in(z,y :: 1) = if £ =nat y then true else in(z,1)
remove(z, nil) = nil
remove(z,y :: nil) = if £ =nat y then nil else y :: nil
remove(z,y :: z :: 1) = if & =pat y then
if £ =nat 2 then remove(z, 1) else z :: |
else y :: remove(zx, 2 :: 1)
Notice that remove is optimised by using the fact that we intend to represent
sets by lists in which equal elements are stored consecutively. However, this

representation has to be guaranteed by imposing a suitable abstraction barrier.
We use the FRI construct (2):



spec SetbyCanonicallList is
quotient
restrict
derive List+ by o = ([set — list]
on {set}
by E': {add(z,add(y, s)) = add(y, add(z, s)),
add(z, add(z, s)) = add(z, s)}

where ¢ is the signature morphism from the signature of Set to that of List+
which is the identity on everything except for the renaming of set to list. It is
not surjective thus hiding nil and ::. Semantically, no model of SetbyCanonicalList
has interpretations of nil and ::, so the only way of generating lists is by the
interpretations of the operator symbols empty and add which in the initial model
will generate the canonical lists with which we intend to represent sets. However,
we also have to restrict to the least reachable sub-algebra on {set}, because the
reduct operator only takes away operators and entire carriers, and leaves all
carriers which are interpretations of sorts in ¢(X) intact. Without the restrict
step, models would not necessarily satisfy in(z, remove(z, s)) = false, since s would
then range over all lists hence also non-canonical lists. Note that we must prove
[SetbyCanonicallist] |= in(z,remove(z, s)) = false to verify that SetbyCanonicalList is
a refinement of Set. o

2.3 Overview of Main Results

This paper presents sound and complete equational calculi for the FI and FRI
structured semantics as formulated in schemes (1) and (2). The usefulness of
such calculi are apparent in refinement scenarios as those in Examples 1 and 2.
The calculi will be generalisations in a certain sense of calculi for the flat basic
cases, as explained in the following. For a basic specification SP = (¥, E) we
have by Birkhoff for the equational calculus

[SPlEs=t & Tx(X)[EEs=t & Ets=t *

Here T:(X)/E is a classifying model of [SP]. Now let K¥! be the semantics of
the FI structure (1). The first main result will be a calculus F¥! and a classifying
model Txrr such that

Kles=t & TymEs=t & Fls=t¢

Secondly, recall that for the basic specification SP we have for F¥, i.e. the equa-
tional calculus augmented with the w-rule,

Reach([SP]) Es=t & Gg/EEs=t & FYs=t ok

where Reach([SP]) is the subclass of [SP] consisting of all algebras reachable on
the sorts S of X, i.e. ground term denotable algebras, or computation structures.
Now, in the FRI approach we are interested in classes of reachable sub-algebras,
rather than sub-classes of reachable algebras. However in a flat equational setting
these two are the same: Let Rg/(Modx(E)) = {Rs/(A) | A € Mods(E)} and
Reachgs (Modx(E)) = {A € Mods(E) | A is reachable on S'}.



Fact 1. Rs/(Modx(E)) = Reachgs (Modx (E))

This correspondence means that we can utilise the w-rule also when considering
Rs/ ([SP]). In fact it is follows that for arbitrary S’ C S,

RSI([SP]]) ': s=1t & RSI(TE(X)/E) IZ s=t & F¢s=t
where %, denotes the standard equational calculus augmented by the following
parametrised w-rule.
V7 :Tx(X) - Re (T (X)) . F71(s) =7(¢)
Fs=t

The special case S’ = () is simply *. The case S’ = S is *x, in which case
R (Tx(X)/E) =2 Gy /E is the initial object of Mod 5 (E).

Now let KER! be the semantics the FRI structure (2). By analogy to the basic
case we will as a second main result devise a calculus F5R! with a parametrised
w rule and classifying model TKFRI such that

Kg/RI':S_t@TKFRI|—S—t<:> FFRI =t

Analogously to the basic case above, the classifying model TKFRI will in the case
S' = S be the initial object of K.

As a curio, there is an aspect in which the analogy does not hold. In the
basic case Rg (TE( )/E) is free on Xg\g in [SP], assuming that E does not
identify any variables. However, in general TKFRI is not free on Xg\ g in or for
KFT, except in the case S’ = S.

3 FI Approach — A Referentially Opaque Calculus

In the following we shall develop a calculus for structured specifications of the
form (1), for X¢ = (5S¢, 12°) C X' = (S, 2), E a set of Y-equations and E' a set
of X¢-equations. The calculus implements a protective abstraction barrier in the
form of referential opacity. The model class of (1) is given by {(A|x:)/E' | A €
Mods(E)} and will be denoted by K¥! throughout. We will give a calculus that
is equationally sound and complete for K¥T.

Algebras in K¥T are of the form (A|yxe)/E' where A is a model for E.
The classifying model is (T'sx(X)/E|xe)/E' (Theorem 2). Viewing for the mo-
ment T's(X)/E|x. as a “term—algebra” T, we directly get an “abstract” cal-
culus for K1 by considering ~%, on T and the classifying model T/E'. This
is a generahsatlon of the basic case * in Sect. 2.3 where E F is given di-
rectly by ~% T=(X) The abstract calculus thus operates on elements of T, i.e.
congruence classes g of T (X)/E|s.. Notice that each ¢ has the form [t]g for
t € Tx;(X)|s-, and recall that in general Txe(X) 2 T (X)|x-, because for any
s € Se, TE(X)|EES = TE(X)S

Of course, instead of this abstract calculus we would rather have a calculus
operating on terms. We obtain this by “opening up” the congruence classes ¢
and then building a calculus over E' on T's;(X)|xe. Opening up the congruence
classes necessitates importing the calculus E .



Definition 1 (Calculus F1). For all u,v € Tx(X)|se,

. tE_EI—u:v
impor s py——
induceE’ : (1 E' Txe(X :Tse (X T (X)|xe
tnauce FFI¢(C[I])=¢(C[T])’<’T)E ,CE E( )7¢ E( )_> E( )|E
1. Ty =w . Hly=w,HTw =1y
re T —— sym.}_FIv:u rans : T pe—

In rule induceE' in Definition 1, the contexts are T's;e (X)-contexts, giving refer-
ential opacity w.r.t. Tsx(X)|ge. This is a direct consequence of the definition of
congruence on a X°-algebra (Tx(X)|xe) induced by a set of X¢-equations (E')
(Sect. 2.1). In this way the abstraction barrier provided by the reduct construct
in the semantics K¥1, gets its counterpart in the calculus in the form of referen-
tial opacity. Notice that in fact ¢(c[0]) € Ts(X)|x.. However, the fact that ¢[o]
is a Ty« (X)-context, ensures the essential property that all operator symbols in
the path from o to the root of ¢(c[n]) (seen as a tree of sub-terms) are from (2¢.

Note that the calculus in Definition 1 is given by the X¢-congruence on
T5(X)|xe induced by the set of X¢-equations

E" = (N o U E (3)

We shall make use of this observation later.

All algebras in KF! are X¢-algebras, so satisfaction by K¥! only has meaning
for X¢-equations. However, it is necessary for completeness that the calculus con-
siders substitutions into T's;(X)| 5. of X¢-equations, since (T's(X)/E|se)/E' is in
KFI This is just a manifestation of the above discussion, where it was motivated
from considering what will turn out to be the classifying model (T's (X)/E|s-) /E'
that F! must be defined over Tx(X)|se.

Theorem 2 (Soundness and completeness). Let K¥! be the semantics
{(Als<)/E' | A€ Modx:(E)} of (1). For all u,v € Ts-(X),

EKl'ru=v & To(X)/E|lg-/E'Fu=v & Flu=v

Proof: This follows from Theorem 5 by observations 3 and 4. O

Example 3. By Theorem 2, the calculus F¥! can be used in verifying the refine-
ment postulated in Example 1, namely Set ~* SetbyBag. The calculus ensures
the safe interaction between the set E of equations associated with Bag+ and the
set E' of equations introduced in the quotienting step forming SetbyBag. For in-
stance, although F'! add(z, add(z, empty)) = add(z, empty), referential opacity pre-
vents us from inferring F¥T count(z, add(z, add(z, empty))) = count(z, add(z, empty)),
which would have given F! 2 = 1. The inference is illegal because count is a hid-
den operator symbol. Referential opacity ensures soundness and is an appropriate
abstraction barrier in the calculus. o)



4 FRI Approach

We now address the FRI approach in which reducts are restricted to reachable
subalgebras on certain sorts. We consider the FRI specification structure (2).
Again, for X¢ = (5°,2°) C X = (S, 12), let E be a set of equations over T's;(X)
and let E' be a set of equations over T'xe(X). Let S’ C S¢. The model class of
(2) is given by {Rg(A|se)/E' | A € Modx(E)} and will be denoted by KER!
throughout.

Observation 3. For S’ = (), KER! = KFL

4.1 A Restricted Calculus with w-rule

Algebras in KER! are of the form Rg (A|x:)/E' where A is a model for E.
The classifying model is Rg/ (T (X)/E|s<)/E"' (Theorem 5). As we did for the
FI case, viewing for the moment Rg (Tx(X)/E|5<) as a “term-algebra” T', we
directly get an “abstract” calculus for K*®T by considering ~%, on T" and the
classifying model T"/E'. The abstract calculus thus operates on elements of 7",
i.e. congruence classes q of Rg' (T (X)/E|xe), and each ¢ has the form [t]g for ¢t €
Rs (Tx(X)|x-). Again we obtain a term calculus by opening up the congruence
classes and importing E F. This calculus is defined over Rg/ (T's(X)|x-) and is
given by the congruence on Rg/(T's(X)|x-) induced by the set of X¢-equations

B = (~p ) [Re (To(x)5e) Y E

Remember now that as K™®! consists of X°-algebras, we are interested in satis-

fiability of X'¢ statements, i.e. X°-equations. However, depending on S’ it may
be the case that T'se(X) € Rgs' (Tx(X)|xe), in which case the calculus will not
respond to all X¢-equations. Hence, we supply an w-rule dependent on S’.

Definition 2 (Calculus FER!). The calculus FER! is given by the following
single rule. For all u,v € Tx(X),
V7 Ty (X) = Re(Ts(X)|5e) . 7(u) ~ase 20129 1(0)
' FERL 4 = v
Sl

wg!

To spell that out, let F5! be the following calculus. For all u,v € Rg(Ts(X)|se),
Elru=w
Flu=v

Al,r) € E',c € Tx(X),

importE :

induceE' : ;
5 o(ell]) = plcr]) ¢ 2 Tawe(X) = R (T (X))
FEly = Fsu=wFgw=v
refl : % sym : % trans : l—g} P

Now FER is given by the following rule. For all u,v € Txe(X),

V7:Tx:(X) = Rs(Ts(X)|xe) . FEL 7(u) = 7(v)
’ FERL 4 = v
S’

wgr



Observation 4. FERT subsumes F¥1: If S’ = () then the rule ws adds nothing
to b5, so foru,v € Tye(X), FHfMu=v & Hlu=v & Flu=w.

Theorem 5 (Soundness and completeness). Let Kt be the semantics
{Rs(A|x-)/E" | A€ Mods(E)} of (2). For any u,v € Tx-(X),

KMeEu=v & Re(Tx(X)/E|x)/E'Eu=v & Filu=v
Proof: The proof is split into Lemmas 6 and 9 below. |

Lemma 6 (Completeness).

Kf'Eu=v = Rs(Ts(X)/E|ls:)/E'mru=v = Fflu=1yv

Proof: Suppose KEM = u = v. By definition Rs/ (Ts(X)/E|s<)/E' E u = v.

Lemma 7 gives V7 : Txe(X) - Ro(Tx(X)|xe) . [r(W)ele = [[T(v)]E]E -
Lemma 8 then gives V7 : Tse(X) = Rs/(Ts(X)|se) . it 7(u) = 7(v). Finally,
the rule wg: gives FER 4 = v. ]

Lemma 7. For u,v € Txe(X),
Rs/(Tx(X)/E|ge)/E' Fu=v

A
V7 : Txe(X) = Re (T (X)) - [[7(w)]E]lEr = [[T(v)]E] &

where [w]g denotes the congruence class of w in Rg(Tx(X)/E|x-), and [q]
denotes the congruence class of ¢ in Rs'(T's(X)/E|s-)/E".

Proof: Suppose Rg'(Tx;(X)/E|s<)/E' Eu =, i.e.
Vi : Tye(X) = Rs (Tx(X)/E|x) [E" . p(u) = ¢(v)

Define v : Tx(X) — Tx(X)/E as ¢g(u) = [u]g. For any 7 : Tx.(X) —
RS’(TE(X)|2€), we get RS! (¢E|2e) oOT: Tze(X) — Rsl (TE(X)/E|Ee)

Let ’L/)El . RSI (TZ(X)/E|2e) — RSI (Tz(X)/E|2e)/E' be defined as ’LﬁEl (q) =
[g]E . Then g o (Rsi(YE|se) o 7) : Txe(X) = Rs(Tx(X)/E|xe)/E', and so
[[r(w)]E]lEr = ¥E o(Rs (YE|se)oT)(v) = Ypro(Rs (YE|se)oT)(v) = [[T(v)]E]E-

O

Lemma 8. Let [w]g denote the congruence class of w in Rs(Tx(X)/E|x-),
and [g]g denote the congruence class of ¢ in Rs (I's;(X)/E|x)/E'. For u,v €
Re (T (X)|xe),

[Wleler = [V]ele = Fyu=v

15 Ng,s' (Ts(X)/E| ge) [v]

Proof: Suppose [[u]g]g = [[v]E]E, that is, [u E- Induc-

tion on the construction of ~ ' (1 (X)/Elze)

induce : For some (I,r) € E', ¢ € Txe(X), ¢ : Txe(X) - Rs (Tx(X)/E|5-),
we have o(c[l]) ~s'(T=0/El=2) o (lr]) and u € @(cll]) and v € (c[r]). Tt is



afact that Rg: (Tx(X)/E|ze) 2 Rs/ (Ts(X)|5e) /Rs (~ %) |52). So by Fact 11
© can be factored into g o 7 for some 7 : T'xe(X) = Rg (Tx(X)|xe), and we
have ¢(c[l]) = [r(c[]))]e and ¢(c[r]) = [7(c[r])]E- So then E F u = 7(c[l]) and
E + 7(c[r]) = v, which by importE gives F&t u = 7(c[l]) and FE 7(c[r]) = v. By
induce E' we have F5t 7(c[l]) = 7(c[r]), and trans then gives F5! u = v.

refl : Then [u]g = [v]g. So E F u = v, which by importE gives F5! u = v.

sym and trans: These are dealt with by the i.h. and sym and trans of FEI.
O

Lemma 9 (Soundness). l—g}ﬂ u=v = KE,RI FEu=v

Proof: Fix A € Modx(E) arbitrarily. Suppose FER! u = v, for u,v € Tse(X).
The way this is possible is via the only rule wgs, and so we must have V7 :
Tse(X) & Rs(Tx(X)|xe) . F& 7(u) = 7(v). By Lemma 10 we then get for
any 7 : Tze(X) — RS/(TE(XNEP.) and ¢ : Rg (TZ(X)|Ee) — RSI(A|Ee) that

(Al ge
()~ N (). *
Fix ¢ : Txe(X) — Rg/(A|xe) arbitrarily. We now show that there exist 7 :
Tse (X) — Rg: (TE (X) |Ee) and w : Rg (TZ' (X)lze) — Rg: (A|Ee) such that
¢' =1 o1, i.e. making the left-hand part of following diagram commute:

Tse(X) =% Rg (Ts(X)|5-)

£ .
oz E|¢ AN

P> I
RS’(A|EE) - - - - TEe(X )

For any € X,, s € S¢, let a = ¢'(z). There is some t, € Tx-(X!) and
p:Txe(X!) — A|se such that p(t,) = a. We determine 7 by defining 7(z) = t,
(Te(X") € Rs/(Tx(X)|5:) because X' C Rsr(Ts(X)|x<) and Rs: (T (X)|5<)
is a X'¢-algebra).

Determine ¢ as follows. Let ¢, : T;(X) — A be determined by

() plz), € X5, sl =5°\5
P lar, z€Xs,s€ 8\, for some choice a

Define 9 = Rg(1,|x:). Then for any t € Txe(X'), ¢(t) = Re(¢p|se)(t) =
Up(t) = p(t).

So for any z € X, s € S¢, ¥(7(z)) = ¥(ta) = p(ta) = a = ¢'(x), and so
¢ =or.

Together with  this gives ¢/ (u) = (7 (1)) ~25' /=) y(7(v)) = ¢ (v). Now,
¢ was arbitrary so we get Vo' : Txe(X) — R (Alye) . ¢' (1) ~a5" A=) g1y,
Consider any ¢ : Txe(X) — Rg (A|xe)/E'. Fact 11 gives a ¢’ : Txe(X) —
Rs: (A|se) such that ¢ = g o ¢'. So for all ¢ : Txe(X) - Rg (A|x:)/E" we
have ¢(u) = [¢'(u)]z = [¢'(v)]er = $(v), L.e. Ry (Alge)/E" = u=v. 0



Lemma 10. Let A € Modx(E). For u,v € Rg(Tx(X)|xe),
Filu=0v = V¢ :Rs(Ts(X)|s:) = Rs (Alse) - d(u) ~ps =) p(0)

Proof: Suppose F5I u = v, for u,v € Rg(Ts(X)|x-). Induction on the con-
struction of FEL. Fix ¢ : Rg/ (Ts:(X)|xe) = R (A|x-) arbitrarily.

importE: Since A € Modx;(E) we have for any ¢ : Ts;(X) — A that p(u) =
¢(v). Determine ¢y, : Tx:(X) — A by

(2) (), x a variable in Rg/ (Ts(X)|xe)
Pl =1 g 1,  a variable otherwise in X°, for some choice a

Then for w € Rg/(Tx(X)|xe), we have gy (w) = ¢(w), and so ¢(u) = py(u) =
iy (v) = ¥(v). By refl of ~p#' A1), () ~p 45 (o).

induceE': Then u = 7(c[l]), 7(c[r]) = v for some (I,r) € E' ¢ € Tx(X) and
7 :Txe(X) = Rs/(Tx(X)|xe). By induce of NS,S'(Alze) we have p(c[l]) NS,S'(Alze)
plc[r]) for p : Tx;e(X) = Rgi(Alxe). Now o7 : Te (X) — Rgi(A|xe), and so
Plu) = P(r(ell))) ~g7 ) p(r(elr]) = v().

refl, sym and trans: These are dealt with by the i.h. and refl, sym and trans
of ~g (Alze), O

Fact 11. Let X be arbitrary. For any X-algebras A and B, let ~ be any X-
congruence on B, and let ¢ : A — B/~ be a X-homomorphism. Then there
exists a X-homomorphism ¢' : A — B, such that ¢ = 9. o ¢' where ., is the
XY -homomorphism taking any b in B to its equivalence class [b]~. in B/~.

Example 4. The calculus 5! can thus be used in verifying the refinement
postulated in Example 2, namely Set ~~+ SetbyCanonicalList. Referential opacity
ensures the safe and sound interaction between the set E of equations associated
with List+ and the set E’ of equations introduced in the quotienting step form-
ing SetbyCanonicalList. For instance, although FERT add(z, add(z, add(y, empty))) =
add(y, add(z, add(z, empty))), referential opacity hinders the inference
l—g,RI in(y, remove(y, y :: add(z,add(z, add(y, empty))))) =

in(y, remove(y, y :: add(y, add(z, add(z, empty)))))
which would have given FER! true = false. The inference is illegal because :: is
a hidden operator symbol. Also, completeness is secured by the wg/-rule for
S" = {set}. We have FER! in(z,remove(z,s)) = false because for this to hold it
is only required that FERT in(x, remove(z, s7)) = false holds for all instances st

generated by empty and add. o)

4.2 Coincidence of Initial Models

Fact 12. If E is sufficiently complete w.r.t. X¢, i.e. for every ground term
g € Gx there is a ground term g¢ € Gxe such that E + g = g° then the class
K has an initial object, namely G [E| 5. [E'.



If E is not sufficiently complete in the sense above, then KF! may or may not
have an initial object.

Theorem 13. Suppose E is sufficiently complete w.r.t. X¢, i.e. for every ground
term g € Gy there is a ground term g¢ € Gy such that E+ g = g°. By Fact 12
the initial object Gy JE|x-|E' of K¥' exists. Then for S' =S,

Rg: (TE(X)/E|2e)/E' = Gz/ElEe/El

Note for S’ = S that Rg/(T(X)/E|se)/E' is initial in KER*! by virtue of it being
the classifying model, and a X¢-computation structure.

4.3 Forget-Identify-Restrict (FIR)

The FRI structure (2) is not equivalent to the structure in which the restrict
step is done outermost, i.e. FRI is not equivalent to forget-identify-restrict (FIR),
for a counter-example see [4]. Let K&® = {Rg/(A|x:/E') | A € Mods(E)}. A
sound and complete calculus FER for KE™ is given by the following rule. For

all u,v € Tx(X),

: V7 : Txe(X) - Ry (Ts(X)|5) . b5t 7(u) = 7(v)

wgr
FER 4 =

Again, ! is subsumed by FE®. Also, for S’ = S, we have that the classifying
model of K5/® is isomorphic to the initial model of K*T.

5 Discussion and Conclusions

We are concerned with the idea of enforcing protective abstraction barriers in
proof methods that reflect abstraction barriers in (the semantics of) programs
and more generally in program specifications. In this paper we have shown that
for equational forms of the FI and FRI approaches to refinement, it suffices to use
primitive equational logic with an abstraction barrier in the form of referential
opacity. Although we have only discussed the flat case, we claim generality in
light of the normal form result for specifications [19, 5,2] and the argument that
quotient should only be employed outermost [1].

The calculi devised in this paper could form a basis upon which adaptations
of semi-automated proof systems could be done. For instance, the referential
opacity present in the calculi suggests altering the rewrite and completion-based
method of proof by consistency by constraining the generation of critical pairs
according to the context in the overlap of rewrite rules. Note that the results
concerning the coincidence of initial models is then relevant. In particular, the
wg rule of the FRI calculus is relevant for the FI case at initiality. Note also,
that the wg: rule is particularly interesting when constructors are hidden as
in Example 2. Under certain sufficient completeness conditions, the rule states
that it is enough to do induction over “abstract constructors”, like empty and



add, even when functions are defined over “concrete” constructors, as is remove
over nil and :: in Example 2.

Behavioural proofs are often simplified greatly by introducing behavioral lem-
mas, i.e. propositions that are true according to behavioural equality but not true
literally. The referentially opaque calculus ensures an appropriate abstraction
barrier so that such lemmas may be inserted soundly into the proof environ-
ment. The assumption of stability introduced in [15] ensures the safe insertion of
such lemmas too. Although the notion of stability applies at a different level of
the refinement process, there seems to be a relationship worthwhile looking at
between the abstraction barriers provided by stability and referential opacity.

In the setting of behavioural refinement, semantically one does not need quo-
tienting, and the restrict operator is also superfluous since one can speak in terms
of partial behavioural congruences. However, for proving behavioural refinement
steps, the calculi developed here are useful. One way of proving behavioural re-
finement steps is to consider the behaviour of algebras [7]. The behaviour of an
algebra is its quotient by a behavioural congruence, and in the case where this
congruence is partial, a restrict step has to be done. Hence we regain the FI and
FRI situation.

We remarked in Sect. 3 that the calculus in Definition 1 is given by the X¢-
congruence on T (X)|xe induced by the set of X¢-equations E¥! given by (3).
We could therefore have defined K*! as {C|x:/E*! | C € XAlg}, and expressed
the classifying model as Ts;(X)|yxe /EF!. In a sense this flattens the structured
view of the semantics we had in the former characterisation of K¥!. In fact we
can flatten things even more by considering the following relation.

Definition 3 (Referentially Opaque Congruence). For any set E of X-
equations and any set E' of X¢-equations, define ~4 on any X-algebra A as the
least equivalence containing

{(o(cll]), ¢(clr])) | (I,7) € E,c € Tu(X), ¢:Tx(X) = A} U
{((cli]), o(clr])) | (I,7) € E',c € Txe(X), ¢:Txe(X) - Az}

i.e. the relation inductively defined by

(l,T) € E,C (S TE(X), ¢ : TE(X) — A

induceE : ;
o(c[l]) =4 p(c[r])
induceE’ : s Lty e E ,c€Txe(X), ¢p:Txe(X) = Alxe
s~ o (), &) = 4
a~?a ax~?a’ a" ~4d
reﬂ:a%*‘a sym:a’z*‘a trans : A

Note that a4 is not (in general) a X-congruence on A. However, if we define the
reduct zA|(, of ~4 w.r.t. a signature morphism o : £’ — X as for congruences,
ie. (m%)5)s = m%,(s), then 4|5 is a T°-congruence on A|g.. It is easy to
show:

Fact 14. Let K @ = {A|se (~4|5:) | A€ ZAlg}. Then K= K



In a behavioural context, we can in fact use congruences of the form ~*|s.
to give behaviours of algebras. Here we manage to generate the behavioural
congruence in the manner of a congruence induced by equations, even in the
presence of problematic hidden operators. By Fact 14 the calculus F¥! lets us do
proofs accordingly.

Now having considered A|x-/(x4|s<), one might ask what (A/~4)|s. is,
and in particular what A/~4 is. For a X-algebra A and a congruence ~ on A4,
(A/~)|se is of course equal to A|xe /(~|xe). Since = is not in general a congruence
on A, considering an obvious naive definition of A/~4 wouldn’t necessarily give
a X-algebra. There are however, reasons to consider various other definitions of
A/~A. Let us give the as yet tentative structure A/~” the name @ 4.

For example, we could define () 4 as the X¢-algebra, having as carriers A, /x‘s“
for each s € S, and standard interpretations of each f € 2¢. Note that () 4 then
has carriers for all sorts in S. If we want a direct proof of the soundness and
completeness of the calculus ! rather than deriving it is a sub-case of the FRI
result, this definition of @ 4 enables an easy direct proof. This is due to the flat
structure, but also to the ability of Qr,(x) = Tx(X)/~T*) to characterise
all derivations involved in FF!, also the ones giving the equations (theorems)
imported by importE.

Hidden operator symbols, i.e. those in {2\ 2° have no interpretation in the
above tentative definition of Q) 4. Viewing @ 4 as a X-structure would demand
that hidden operator symbols get an interpretation. These interpretations could
be intensional operators, i.e. operators not respecting the equality predicate of
the data type. For instance, looking to Example 1, count®4 would not respect
the equality predicate given by the idempotency and associativity axioms for
add?4 . Considering intensional operators in data types is not an alien concept.
Hiding and quotienting do not only occur in software development, but abound
elsewhere in mathematics too. At the very foundations of real analysis, the reals
are defined as a quotient of a set of Cauchy-sequences. The n’th approximant
function is then intensional, and from a constructivist point of view, so is every
discontinuous function [17]. Indeed in a constructive setting it might be prudent
to add intensional operators to a data type [8] (a choice operator for quotient
types). Note then that in (A/~“)|x- the reduct operator is now applied outer-
most, in contrast to the FI- and FRI-models we considered earlier. One could
speculate if there might be an adjunction between the appropriate reduct functor
and some free functor. The free functor would then add intensional operators,
and it would seem imperative to find a definition of structures with intensional
operators, and in particular a definition of ()4 as a X-structure, such that in-
tensional operators are added in a manner in which they bring with them the
appropriate abstraction barrier.
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