Specification Refinement with System F,
The Higher-Order Case

Jo Erskine Hannay

LFCS, Division of Informatics, University of Edinburgh, Scotland, U.K.
joh@dcs.ed.ac.uk

Abstract. A type-theoretic counterpart to the notion of algebraic spec-
ification refinement is discussed for abstract data types with higher-order
signatures. The type-theoretic setting consists of System F and the logic
for parametric polymorphism of Plotkin and Abadi. For first-order sig-
natures, this setting immediately gives a natural notion of specification
refinement up to observational equivalence via the notion of simulation
relation. Moreover, a proof strategy for proving observational refinements
formalised by Bidoit, Hennicker and Wirsing can be soundly imported
into the type theory. In lifting these results to the higher-order case, we
find it necessary firstly to develop an alternative simulation relation and
secondly to extend the parametric PER-model interpretation, both in
such a way as to observe data type abstraction barriers more closely.

1 Introduction

One framework in algebraic specification that has particular appeal and appli-
cability is that of stepwise specification refinement. The idea is that a program
is the end-product of a step-wise refinement process starting from an abstract
high-level specification. At each refinement step some design decisions and imple-
mentation issues are resolved, and if each refinement step is proven correct, the
resulting program is guaranteed to satisfy the initial specification. This formal
methodology for software development, although in principle first-order, is sup-
ported e.g. by the wide-spectrum language EML for SML result programs [17].

The motivation for our present work is a wish to transfer this concept and its
theoretical rigour to a wider spectrum of language principles, and to go beyond
the first-order boundaries inherent in the universal algebra approach.

In this paper we look at Girard/Reynolds’ polymorphic A-calculus System F.
The accompanying logic of Plotkin and Abadi [30] asserts relational parametric-
ity in Reynolds’ sense [34,21]. This setting allows an elegant formalisation of
abstract data types as existential types [25], and the relational parametricity
axiom enables one to derive in the logic that two concrete data types are equal
if and only if there exists a simulation relation between their operational parts.
At first order, this in turn corresponds to a notion of observational equivalence.
Thus, the type-theoretic formalism of refinement due to Luo [20] automatically
gives a notion in the logic of specification refinement up to observational equiv-
alence; a key issue in program development.

In [11] a formal connection is shown at first order between an account of
algebraic specification refinement due to Sannella and Tarlecki [37,36] and the
type-theoretic refinement notion above. Issues in algebraic specification refine-
ment, such as input-sort choice [35] and constructor stability [38, 36, 9], are auto-
matically resolved in the type-theoretic setting. Also, a proof method for prov-
ing observational refinements due to Bidoit, Hennicker and Wirsing [4, 3, 5] is
soundly imported into the type-theory logic. The soundness of the logic as a
whole is with reference to the parametric PER-model of Bainbridge et al. [2].

This paper now generalises the concepts established at first order and treats
data types whose operations may be higher-order and polymorphic. At higher
order we run into two problems, both of which are solvable by simply observ-
ing more closely the abstraction barrier supplied by existential types. Firstly,
at higher order, the formal link between the existence of a simulation relation
and observational equivalence breaks down. By analysing the existential-type
abstraction barrier, one can devise an alternative notion of simulation relation
in the logic [12]. This notion composes at higher-order, thus relating the syntac-
tic level to on-going work on the semantic level remedying the fact that logical
relations traditionally used to describe refinement do not compose at higher or-
der [15,16,19,18,31]. Now, using an alternative simulation relation means that
parametricity is not applicable in the needed form. This is solved soundly w.r.t.
the parametric PER-model by augmenting the logical language with a new basic
predicate Closed with predefined semantics, so as to restrict observable compu-
tations to be closed, and then asserting the needed variant of parametricity [12].

The second problem arises when attempting to validate the proof method of
Bidoit et al. at higher order w.r.t. the parametric PER-model. Again, observing
abstraction barriers more acutely, this problem is solved by supplying an inter-
pretation for encapsulated operations that exactly mirror their applicability.

The theoretical foundations in universal algebra are formidable, see [8]. But
there has been substantial development for refinement in type theory as well,
and other relevant work include [32, 28,29, 27,33, 1, 40, 39].

Section 2 outlines the type theory, the logic, and the standard PER semantics.
In Sect. 3 specification refinement is introduced. Simulation relations and the
proof method for proving observational refinements are introduced for first order.
In Sect. 4 we present the alternative simulation relation in the logic to cope with
higher-order and polymorphism, and in Sect. 5 we develop the semantics to
validate the proof method also at higher order.

2 Parametric Polymorphism

2.1 Syntax
The polymorphic A-calculus System F has types and terms given by grammars
T:=X|T—-T|VXT tu=a | ATt |t | AX.¢t | tT

where X and z range over type and term variables respectively. Judgements for
type and term formation involve type contexts, and term-contexts depending on

type contexts, e.g. X, z: X >2: X. The logic in [30, 22] for relational parametricity
on System F has formulae built using the standard connectives, but now basic
predicates are not only equations, but also relation membership statements:

pu=(t=4au)| R(t,u)| -+ | YRCAXxB.¢ | IRCAXB.¢

where R ranges over relation symbols. We write o[R, X,] to indicate possible
occurrences of R, X and x in type, term or formula «, and may write a[p, A, t]
for the result of substitution, following the appropriate rules concerning capture.
We also write ¢t R u in place of R(t,u). Judgements for formula formation
now involve relation symbols, so contexts are augmented with relation variables,
depending on the type context, and obeying standard conventions for contexts.
The judgements are as expected. Relation definition is accommodated,

I'z: A, y: B> ¢ prop
' (v:A,y:B).¢ CAxB

by syntax as indicated. For example eq 4 £ (2 A,y A).(x =4 v).
If pCAXB, p'CA'xB" and p”[R] C A|Y]|x B[Z], then complex relations are
built by p — p/ C (A — A’)x (B — B’) where

(0=) 2 (J:A— A',g:B — B).(va: AV B.(apz’ = (f2)(g2"))
and V(Y, Z, RCY x Z)p"[R] C (VY.A[Y])x (VZ.B[Z]) where
V(Y,Z,RCYxZ)p" £ (y:VY.A]Y], 2VZ.B[Z]).(VYNZVRCYxZ.((yY)p"|R](2Z)))

One acquires further relations by substituting relations for type variables in
types.For X = X4,...,X,,, B=B4,...,B,,C=C1,...,C,and p=p1,...,pn,
where p; C B; x C;, we get T[p] CT[B]xT[C], the action of T[X] on p, defined
by cases on T'[X] as follows:

T(X] = T'[X] — T"[X] : T[p] = T'[p] — T"|p]
T[X] =VX'T'[X.X]: Tlp|=Y(Y,Z,RCY xZ).T"[p, R]

)

The proof system is natural deduction over formulae now involving relation
symbols, and is augmented with inference rules for relation symbols, for example
we have for @ a finite set of formulae:

QI)'_I‘,RCAXB qi)[R] Rin & @"FVRCAXB(MR], FDPCAXB
no m
& +r VRCAXB . ¢[R]’ dFr ¢lp]

One has axioms for equational reasoning and n equalities. And now finally, the
following relational parametricity axiom schema is asserted:

PARAM : VY1,... VY, Vu: (VX.T[X,Y1,...,Y,]) . u(VX.T[X,eqy,, ..., eqy, |)u

To understand, it helps to ignore the parameters Y; and expand the definition
to get Vu: (VX.T[X]) VYVZVRCY xZ . w(Y') T[R] u(Z) i.e. if one instantiates
a polymorphic inhabitant at two related types then the results are also related.
This logic is sound w.r.t. the parametric PER-model of [2] and also w.r.t. the
syntactic parametric models of [13]. The following link to equality is essential.

Theorem 1 (Identity Extension Lemma [30]). For any T[Z], the following
sequent is derivable using PARAM.

VZ Yu,v:T([Z] . (uTleqz] v & (u=rpz v))

For abstract data types (ADTs), encapsulation is provided in the style of [25]
by the following encoding of existential types and pack and unpack combinators.
Parameters in existential types are omitted from the discussion, since we will
not be dealing with parameterised specifications.

IXTX]E VY. (VX.(T[X] - Y) = Y)

packy x) VX (T[X] — IX.T[X])
packy(xj(A)(opns) LAY NLYX(T[X] = Y).f(A)(opns)

unpackyyy: (3X.T[X]) = VY.(VX.(T[X] - Y) = Y)
unpackry(package)(B)(client) = package(B)(client)

We omit subscripts to pack and unpack as much as possible. Operationally, pack
packages a data representation and an implementation of operations on that data
representation to give an instance of the ADT given by the existential type. The
resulting package is a polymorphic functional that given a client computation
and its result domain, instantiates the client with the particular elements of the
package. The unpack combinator is the application operator for pack.
Existential types together with the pack and unpack combinators embody
a crucial abstraction barrier. Any client computation f:VX.(T[X] — Y) is
n-equivalent to a term of the form AX. Az: T[X] . ¢[X,x]. Notice then that a
client computation cannot have free variables of types involving the bound (viz.
existentially quantified) type variable X. The only way a client computation
may compute over types involving X is by accessing virtual operations in the
supplied collection x of operations. Notice also that the only way a package can
be used is through client computations for which the above holds. The result of
all this is the following crucial fact that will be instrumental for our results later:

abs-bar: Operations from « in a package (packAa): 3X.T[X] will only be ap-
plied to terms t[E/Y ,A/X,a/z] st. Y, X, x: T[X] > t[Y,X, 2] : U[Y,X]
where the vector Y accounts for instances of polymorphic operations.

Theorem 2 (Characterisation by Simulation Relation [30]). The follow-
ing sequent schema is derivable using PARAM.

V’LL,’UHXT[X] . U =3x.T1T[X]V =
JA,B.3a:T[A],b:T[B].3RCAX B . u = (packAa) A v = (packBb) A a(T[R])b

Theorem 2 states the equivalence of equality at existential type with the existence
of a simulation relation in the sense of [23]. From this we also get

Theorem 3. Vu:3X.T[X]|.3A.3a:T[4] . u = (packAa)

Weak versions of standard constructs such as products, sums, initial and final
(co-)algebras are encodable in System F [6]. With PARAM, these constructs are
provably universal constructions. We can e.g. freely use product types. Given
pCAxB and o CA'xB’, (p x p) is defined as the action (X x X')[p, p']. One
derives Vu: AXA’, v: BxB' . u(pxp')v < (fst(u) p fst(v) A snd(u) p snd(v)). We
use the abbreviations bool £ VX.X — X — X, nat ZVX.X — (X — X) — X,
and list(A) Yyx.X — A-X—-X)— X.

2.2 Semantics

We very briefly overview the parametric PER-model of [2] for the logic.

Let PER denote the universe of all partial equivalence relations (PERs) over
the natural numbers N. Types are interpreted as PERs, but intuitively it helps to
think of the associated quotient instead, whose elements are equivalence classes.
Terms are thus interpreted as functions mapping equivalence classes from one
PER to another. Relations between PERs relate equivalence classes of the PERs.

Formally this is expressed in elementary terms as follows. A PER A is a
symmetric and transitive binary relation on N. The domain dom(A) of A con-
tains those a € N for which a A a. For any a € dom(A) we can form the
equivalence class [a]4. A morphism from A to B is given by n € N if for
any a,a’ € N, a € dom(A) = n(a) | and a A ¢ = n(a) B n(a’). Here,
n(a) denotes the result of evaluating the n'® partial recursive function on a,
and n(a) | denotes that this function is defined for a. We can form a PER
(A — B) by defining n (A — B) ' & for any a,d’ € N, a € dom(A) = n(a)]
and n'(a) |, and a A o’ = n(a) B n'(a’). That is, the equivalence classes in
(A — B) contain functions that are extensionally equal w.r.t. A and B. Each
such equivalence class is then a morphism between A and B, with applica-
tion defined as [n]4_5[a]la Z [n(a)]s. Products are given by n (AxB) n’ &
nl An'.1 A n2 B n'2, where m.i decodes the pairing encoding of natural
numbers. A relation between A and B is given by a relation S between dom(.A)
and dom(B) that is saturated, i.e. (m Anandn Sn'andn’ Bm') = mSm'
Thus S preserves, and can be seen to relate equivalence classes. Any member n
of an equivalence class ¢ is called a realiser for q.

Type semantics are now defined denotationally w.r.t. to an environment -.

[X > X], £ y(X)
[M>U—-V], € (I'>U), = [I'>V],)
[T > VX.UX]], 2 (Nacper[T, X > UX]]yxa)’

where (Nacper[I, X >U[X]],(x4)° is the indicated intersection but trimmed
down to only those elements invariant over all saturated relations. This trimming
is what makes the model relational parametric.

For brevity we omit the details of term interpretation, since these are not
extensively needed in our discussion. The fact we will need, is that the term
semantics yields realisers that encode partial recursive functions according to
term structure. One is thus justified in viewing a realiser as being generated

freely over a set of realisers representing free variables, using term-formation
rules. This can be done independently of typing information.

In the parametric PER-model initial constructs interpret to objects isomor-
phic to interpretations of corresponding inductive types, e.g. let T[X] =1+ X.
Then [>VX.((T[X] = X) = X)] 2 [pVX.(X = (X = X)—= X)|=N

3 Abstract Data Type Specification Refinement

We describe ADT specification refinement up to observational equivalence. The
latter is defined w.r.t. a finite set Obs of observable types, viz. closed inductive
types. Examples are bool and nat. Henceforth we reserve ¥[X] for the body part of
abstract data type 3X.T[X]. Parameterised specifications are outside the scope
of this paper, so we assume X to be the only free type variable in ¥[X].
Reflecting notions from algebraic specification and [23], we define observa-
tional equivalence in terms of observable computations in the logic as follows.

Definition 1 (Observational Equivalence (ObsEq) [11,12]). Define obser-
vational equivalence ObsEq w.r.t. observable types Obs in the logic by

ObsEq®" ¥ (u:3X.%[X], v:IX.Z[X]).
(34, B3a:%[A],0:%[B] . u = (packAa) A v = (packBb) A
Apeops VI VX(T[X] — D) . (fAa) = (fBb))

Now we define ADT specification up to observational equivalence. ADT bodies
may contain higher-order and polymorphic types. In our setting, there is always
a current set Obs of observable types. We assume the following:

adt: A product T1[Y, X]x---xT,,,[Y, X] is on ADT-body form if each T;[Y , X]
is in uncurried form, i.e. of the form T [Y, X| x - - -x T, [Y, X] — T, [Y, X],
where T, [Y, X] is not an arrow type, and secondly, T¢,[Y, X] is either X or
some D € Obs or a universal type VY'.T[Y,Y’, X]| where T[Y,Y’, X] is on
ADT-body form. If n; = 0, then T;[Y, X| = T.,[Y, X]. At top level, then,
we assume for the body [X] of IX.F[X] that T[X] = Ty [X] x - -- x T},[X] is
on ADT-body form. We will write T[X] as Record(f1:T1[X],. .., fr: Tr[X]).

The uncurried form and the record-type notation are merely notational conve-
niences aiding discourse. The restriction on universal types is however a proper
restriction. We do not know exactly how severe this restriction is in practice.

Definition 2 (Abstract Data Type Specification). An abstract data type
specification SP is a tuple {((Siggp,Osp), Obsgp) where

Ly
Siggp —dcfEIX.Tsp[X], Obeur
Ogsp(u) = IX. 3= Tsp[X] . u ObskEq (packXx) A Psp(X. 1],

where Psp[X, 1] is a finite set of formulae in the logic. If Ogp(u) is derivable,
then w is said to be a realisation of SP.

Consider for example the specification Set = ((Sigs.,, Oset), {bool, nat}), where

Sigew = IX.FseX],
Fset| X| = Record(empty: X, add:natx X—X, remove:natx X—X,
N:X x X — X, ininatx X—bool, prsrvn: (X — X) — bool),

Oset (1) = IX.T5:Tser [X] . u ObsEqCIPO "2t (packXy) A

Va:nat, s: X . p.add(z, r.add(z, s)) = p.add(z,s) A

Va,y:nat, s: X . p.add(z, r.add(y, s)) = r.add(y,z.add(z, s)) A

Va:nat . r.in(x,z.empty) = false A

Vz,y:nat,s: X . p.in(z,r.add(y, s)) = if © =pat v then true else r.in(z,s) A

Vax:nat, s: X . p.in(x,z.remove(z, s)) = false A

Vs, s: X, z:nat . rin(z,s) A pin(z,s’) & rpin(z,r.N(s,s’)) A

VX — X,s,8: X . p.prstv(f) = true & x.N(s,s') =2.N(fs, fs')

This higher-order specification also illustrates the notion of input types/sorts.
Consider the package LI % (pack list(nat) [): Sigs.,, where Lempty gives the
empty list, [.add adds a given element to the end of a list only if the element
does not occur in the list, [in is the occurrence function, [.remove removes the
first occurrence of a given element, and [.N takes two lists and generates a non-
repeating list of common elements. By abs-bar, typing allows users of LI to
only build lists using operations of [, such as l.empty and [.add, and on such
lists the efficient [.remove gives the intended result. By the same token, any
observable computation f:VX.(Tset[X] — D), D € {bool, nat} can only refer to
such lists, and not to arbitrary lists. This is the crucial point that admits LI as
a realisation of Set according to Def. 2. In the world of algebraic specification,
there is no formal restriction on the set In of so-called input-sorts. Thus, if one
chooses the set of input sorts to be In = {set, bool, nat}, then in(z, remove(z, s))
where s is a variable, is an observable computation. This computation might give
true, since s ranges over all lists. One has to explicitly restrict input sorts to not
include the abstract sort, in this case set, when defining observational equivalence
[35], whereas the type-theoretic formalism here deals with this automatically.

The realisation predicate @gp(u) of Def. 2 expresses u is observationally
equivalent to a package (packXy) that satisfies the azioms ®gp. Hence specifica-
tion is up to observational equivalence. Specification refinement up to observa-
tional equivalence can now be expressed in the logic as follows.

Definition 3 (Specification Refinement). A specification SP’ is a refine-
ment of a specification SP, via constructor F:Siggp, — Siggp if

Yu: Siggpr - Ospr(u) = Ogp(Fu)

is derivable. We write SP > SP' for this fact.

The notion of constructor in Def. 3 is based on the notion of parameterised
program [9]. Given a program P that is a realisation of SP’, the instantiation
F(P) is then a realisation of SP. Constructors correspond to refinement maps
in [20] and derived signature morphisms in [15]. It is evident that the refinement

relation of Def. 3 is transitive, i.e. for F' o F' = \u: Sig gpr.F(F'u):
SP~ SP' and SP'~7 SP" = SP~.SP"

If T[X] is first-order, we get a string of interesting results in the logic.

Theorem 4 ([11]). Suppose ((IX.F[X],O), Obs) is a specification where T[X]
only contains first-order function profiles. With PARAM we derive that the ez-
istence of a simulation relation is equivalent to observational equivalence, i.e.

VA, BNa:T[A], 0:3[B] .
JRCAXB . a(T[R)b < Apecop V/:YX.(T[X] — D) . (fAa) = (fBb)

Proof: =-: This follows from PARAM.

<: We must exhibit an R such that a(%[R])b. Semantically, [23, 24, 38] relate
elements iff they are denotable by some common term. We mimic this: For R
give Dfnbl £ (a: A, b: B).(3f:VX.(Z[X] — X).(fAa)=a A (fBb)=0b). O

Together with Fact 2 this gives:
Theorem 5 ([11]). Let 3X.T[X] be as in Theorem 5. With PARAM we derive

Vu,v:3X.T[X] . u=3xgx)v < u ObsEquw

By Theorem 5 we can substitute equality for ObsEq Obsse in Def. 2, the definition
of specification. This reduces our formalisms of specification and specification re-
finement to those of Luo’s [20], with the important difference that parametricity
lifts the formalisms to observational equivalence. Also any constructor F' is now
inherently stable, i.e. u ObsEq?"*s” v = F(u) ObsEq®"*s* F(v), simply by
congruence for equality. Stability simplifies observational proofs significantly.

Theorem 4 means that we can explain observational equivalence, and thus
also specification refinement up to observational equivalence, in terms of the
existence of simulation relations. At first order, theorems 5 and 4 give the essen-
tial property that the existence of simulation relations is transitive, but we can
actually give a more constructive result:

Theorem 6 (Composability of Simulation Relations[12]). Suppose T[X]
only contains first-order function profiles. Then we can derive

VA, B,C,RC Ax B, SC BxC,a:%[A], b:%[B], :5[C].
a(T[R)6 A B(Z[S])e = a(T[S o R])c

Thus simulation relations explain stepwise refinement, but methodologically this
is not enough. Given instances u and v and constructor F' one can check that
there is a simulation relation relating (F'u) and v. But this point-wise method of
verifying a refinement step is impractical, since it involves choosing candidates v
at best heuristically, and then specialised verification is employed for each pair
u, v. One would prefer a general method for proving refinement.

Such a universal method exists in algebraic specification, using only abstract
information. One proves observational refinements by considering quotients w.r.t.
a possibly partial congruence [4], and then one uses an axiomatisation of this
congruence to prove relativised versions of the axioms of the specification to
be refined. If the congruence is partial, clauses restricting to the domain of the
congruence must also be incorporated [5, 3].

As observed in [32,11], this method is not expressible in the type theory or
the logic of [30]. The simple solution of [32,11] is to soundly add axioms in order
to axiomatise partial congruences. We give the axiom schemata below. Rather
than being fundamental, they are tailored to suit refinement-proof purposes.

Definition 4 (Existence of Sub-objects (SUB) [11]).

VX .VeZ[X].VRCXxX. (%[R1) =
35.3s:%[S]. 3R’ CSx S .dmono: S — X . Vs:S.s R s A
Vs.s:S . s R s < (monos) R (monos’) A
r (F[(: X, 5:59).(x =x (mono s))]) s

Definition 5 (Existence of Quotients (QuoT) [32]).

VX . Vr%[X].VRCXxX . (r%[Rlr AN equiv(R)) =
Q. 3q:%[Q] . Fepi: X — Q . Vz,y: X . 2Ry < (epiz) =¢ (epiy) A
Vg Q.3: X . q =¢ (epiz) A
¢ (Sl X, ¢ Q)-((epie) =) 4

where equiv(R) specifies R to be an equivalence relation.

Theorem 7. If ¥[X]| adheres to adt and contains only first-order function pro-
files, then SUB and QUOT are valid in the parametric PER-model of [2].

We refer to [32,41] for concrete examples using QUOT and SuB and to the vast
amount of specification examples in the literature, e.g. [14] for other examples
using this framework. In [11] the axioms are instrumental for the correspondence
between refinement in type theory and refinement in algebraic specification.

4 The Simulation Relation at Higher Order

If ¥[X] has higher-order function profiles, theorems 4 and 6 fail, and indeed we
cannot even derive that the existence of simulation relations is transitive.

We here take the view that the current notion of simulation relation is unduly
demanding, and fails to observe closely enough the abstraction barrier provided
by existential types. Consider prsrv: (X — X) — bool from specification Set.
For R C Ax B to be respected by two implementations a and b, one demands
Va: A — AVB:B — B . a(R — R)B = a.prsiv () =pool b.prsrv(5). But
according to abs-bar, a.prsrv() and b.prsrvN can only be applied to arguments
expressible by the supplied operations in a and b. One solution is therefore to
alter the relational proof criteria accordingly. Depending on what type of model
one is interested in, this can be done in several ways [12]. We here recapture a
solution that works in the parametric PER-model. For this we must first refine
our notion of observational equivalence.

4.1 Closed Computations

Semantically, observational equivalence is usually defined w.r.t. contexts that
when filled, are closed terms. A reasonable alternative definition in the logic of
observational equivalence is therefore the following.

Definition 6 (Closed Context Observational Equivalence (ObsEqC) [12]).
Define closed context observational equivalence ObsEqC w.r.t. Obs by

ObsEqCY* ¥ (u:3X.F[X],v:IX.Z[X]).
(A, BAa:T[A],0:%[B] . u = (packAa) A v = (packBb) A
Apeoss Vf:VX.(Z[X] — D) . Closedrn(f) = (fAa)=(fBb))

where Closed pm (f) is derivable iff '™ 1> f.

Closedness is qualified by a given context I so as to allow for variables of input
types In in observable computations. This is automatically taken care of in the
notion of general observable computations of Def 1, but now we are compelled
to explicitly specify In. We set In = Obs as a sensible choice [35, 11].

The predicate Closedrm (f) is intractable in the existing logic, but we can
easily circumvent this problem by introducing Closed . as a family of new basic
predicates together with a predefined semantics as follows.

Definition 7 ([12]). The logical language is extended with families of predicates
Closed - (T') ranging over types T', and Closed (¢, T') ranging over terms t:T', both
relative to a given environment I'. This syntazx is given a predefined semantics
as follows. For any type I' >T, term I' > T, and valuation v on [I'],

=r., Closed ~(T) & exists some type I'> A, some Y on I
Y I Y
st. ['>T], =[I> A]4

=1 Closed(t,T) & exists some type I'> A, term I'> a: A, some 4 on [I]
st [>T, =[I>A]; and [['>tT], = [I'> a:A]s

We will usually omit the type argument in the term family of Closed.

4.2 The Alternative Simulation Relation

For a k-ary vector Y, we write VY for the string VY71.VYs.... VY. If £ = 0 this
denotes the empty string. The first [components of Y are denoted by Y|;.

Definition 8 (Data Type Relation [12]). For ¥[X], for k-ary Y, l-ary, | > k,
E, F, pCEXF, A, B, RCAXB, a:%[A], b: ¥[B], we define the data type
relation Ulp, R]¢ for the string ¢ = E, F, A, B, a,b inductively on U[Y, X] by

U=X :Ulp, Rt £ R
de,
U=VX'"U'[Y,X' X]:Ulp, R ¥
V(Eir1s Fia, pren © Eipr X Fin) (U'lps pra, RJgH i)
u=U0 -U" :Ulp, Rl =

<

10

(¢:U'|E,A] - U"[E,A], h:U'|F,B] — U"|F,B|) . (V&:U'|E, A],Vy:U'|F, B] .
(x Ulp.Rlcy A DRbICh,y (1)) = (g2) U"[p, RIS (hy))
where
DfnbICy xy (7 y) < 3f:VY VX(T[X] = U'[Y, X]) .
Closedrm(f) A (fE|gAa)=x A (fF|;Bb)=y
for T = 21:Uy, ..., 20Uy, U € In, 1 < i < m.

We usually omit the type subscript to the DfnbIC® clause. The essence of Def. 8
is the weakened arrow-type relation via the DfnblC® clause; an extension of the
relation exhibited for proving Theorem 4. We have conveniently:

Lemma 8 ([12]). For ¥[X] satisfying adt, we have the derivability of
a(T[R]E)b < Ni<i<k a.f,- (TZ[R]CC) bfl

Lemma 9 ([12]). With respect to the parametric PER-model of [2] it is sound
to assert the following axiom schema for D € Obs.

IDENTC: Vz,y:D .2 =py < z(Dplc)y

4.3 Special Parametricity

With the alternative simulation relation in place we should now be able to re-
establish versions of theorems 4 and 6 valid for T[X] of any order. However, since
we do not alter the parametricity axiom schema, we can no longer rely directly on
parametricity as in Lemma 4, when deriving observational equivalence from the
existence of a simulation relation. However, the needed instance of alternative
parametricity can be validated semantically.
We write f (VX.Z[X]¢ — U[X]¢) f, meaning VA, B, RC Ax B.Na:%[A], b: T[B].

a(T[R]p)b = (fAa)(U[RJg)(fBbY)), for ¢ = A, B, a,b.

Lemma 10 ([12]). For ¥[X]| adhering to adt, for f:VX.(¥[X] — U[X]), for
any U[X], and where free term variables of f are of types in In, we can derive

[(VXZ[X]e - UlX]e) f
By Lemma 10 the following schema is sound w.r.t. the parametric PER-model.
SsPPARAMC: Vf:VX.(T[X] — U[X]).Closedrn(f) = f(VX.Z[X]¢ = U[X]e) f

We can now show the higher-order polymorphic generalisation of Theorem 4
validated w.r.t. the parametric PER-model:

Theorem 11. With SPPARAMC, for ¥[X]| adhering to adt, the following is
derivable, for I'™ = x1:U1, ..., 2m:Um, U; € In, 1 < i < m.

YA, BNa:T[A],b:3[B] .
JRCAxB . a(Z[R])b <
Abecops V/:VX.(T[X] — D) . Closedpm(f) = (fAa)= (fBb)

11

We regain not only transitivity of the existence of simulation relations, but also
composability of simulation relations. This is akin to recent notions on the se-
mantic level, i.e. pre-logical relations [15,16], lax logical relations [31,19], and
L-relations [18].

Theorem 12 (Composability of Simulation Relations). For ¥[X] adher-
ing to adt, let ¢ = A,B,a,b,¢' = B,C,b,¢c, " = A,C,a,c. Given SPPARAMC,

VA,B,C,RCAxB,SCBxC,a:%[A], b:%[B],:%[C].
a(T[RI)b A B(T[S]E)e = a(T[SoRIE e

If one is content with syntactic models, one may drop the Closed clause
everywhere in the previous discussion. One thus obtains relations U|p, R]* in
place of Ulp, R]¢, and axioms SPPARAM in place of SPPARAMC, and IDENT in
place of IDENTC. These axiom schema are valid in the parametric term model
and the parametric second-order minimum model of Hasegawa [13], based on the
polymorphic extensionally collapsed syntactic models of [7] and the second-order
maximum consistent theory of [26]. In fact, with SPPARAM we can show that
the existence of an alternative simulation relation coincides with the existence
of a standard simulation relation. Let (3X.%[X])¢ be the relation defined by

(AX.ZX) € (w:3X.Z[X],»:IX.Z[X]) .
(VYVZNSCY xZ . VVXZ[X]— Y. VgVX.Z[X] — Z .
f VX' Z[X—8) g = (WYf) S (vZg))

Theorem 13. The following is derivable using SPPARAM.
Vu,v:3XZ[X] . u=3xgxjv & v (IX.ZX])v

Theorem 14 (Characterisation by Alternative Simulation Relation).
The following is derivable.

Vu,v:3X.Z[X]. uw (3EXZ[X]) v <
JA, B3a:%[A],0:T[B].GRCAx B . u = (packAa) A v = (packBb) A a(Z[R]°)b

5 The Refinement Proof Strategy at Higher Order

We now have that composable simulation relations explain specification refine-
ment via observational equivalence—for arbitrary order function profiles and
limited polymorphism. But what now about the general proof method for prov-
ing observational refinement? We do not know whether or not SUB and QuoT
with higher-order ¥[X] are valid in the parametric PER-model. It is conjectured
in [41] but not proven, that QUOT and an extension of SUB is valid. In this paper
we are however in possession of some additional insight, and we are able to val-
idate versions of SUB and QUOT using the alternative simulation relation in an
interpretation using the parametric PER-model that reflects abs-bar. Again,
observing existing abstraction barriers more closely, offers a solution.

12

To motivate, suppose we attempt to validate QUOT as is, w.r.t. the paramet-
ric PER-model. Immediately there is a definitional problem. For any PER X
and element x € [X > T[X]][x,x], we should display a quotienting PER Q and
element q € [X > T[X]]x..g with the desired characteristics. Quotients over
an algebra A are usually constructed directly from A with the new operations
derived from the original operations. Thus, the natural approach to constructing
the operations of g is to use the same realisers that give the operations of x.

At first order this is straight-forward, but at higher order this is problematic.
Suppose x = ([eo]x, [e1]x—x, [e2](x—x)—x,---)- We would now like to simply
define q as ([eo] o, [e1]o— g, [e2](@)0, - - -)- But to be able to do this we must
check that the indicated equivalence classes actually exist. Suppose we want
to show ey ((Q — Q) — Q) ey. First we must show that if n (Q — Q) n
then es(n) |. However, this does not follow from the running assumption that
n (X — X) n implies ea(n) |; indeed it is easy to find counter-examples.

The angle of approach we take to this problem is simply a natural contin-
uation of tactics so far, namely we refine the interpretation of ADT-instance
operations to reflect exactly their actual applicability as captured in abs-bar.
For example, above we need clearly only consider arguments n expressible over
supplied ADT-instance operations eg, e1, €2, etc.

5.1 Observing the ADT-Abstraction Barrier in the Semantics

We now implement this idea. We keep the parametric PER-model as structure,
but supply a modified interpretation for ADT operations.

Definition 9 (ADT Semantics). For any PER X and z,y € N,

z [X>F[X]]xma) ¥ E for all components g Ty[X] in F[X]
. z,y,X,5:T[X] .
zi ([X > Ti[X]]][XyHXﬁ) y.i
where, for o =x,y, I for I' =Y, X, u:%[X], k-ary Y, v a valuation on' Y, X,

[Y, X > X]2 = 5(X)

[V, X >Yj]5 = ~(Y;) .

[V, X > VX' UIX', X][¢ = (Naeper[Y, Yit1, X > U[Y, Yirr, X])2000)
Y, X o U, X] - VY, X])¢ £)

(I¥. X & UY, X]I 0Dy) — [V, X & VY, X]]2)

def

where
n D[‘?['Yyyx} n & there exist terms t,t' s.t.
' tU[Y,X] and I'>¢:U[Y,X]|, and
tlzg] =n and ty]=n

where u[z] denotes the realiser freely generated over z, according to term u.

13

The special semantics defined in Def. 9 simply reflects the actual use of ADT
operations captured by abs-bar. The essence is the weakened condition for
arrow-type semantics. All relevant instances of PARAM and SPPARAMC hold
under this semantics, and previous results hold.

It would be nice to have special types or annotated types for use in ADTs.
However, this does not seem feasible without involving recursive (domain-)equa-
tions, the solutions of which are not obvious. In the current approach, when to
apply ADT semantics is not given by the type system; one simply has to know
when to do this. This applies to the logic as well. Moreover, issues of co-existence
of ADT semantics and normal semantics have not been thoroughly explored. The
presented ADT semantics is thus an interesting solution utilising abs-bar, but
more work may be necessary in order that this approach be fitted properly.

Here then, are the new versions of SUB and QuUoOT. Besides referring to the
alternative simulation relation, there are also other changes: We need to treat
higher-order variables in propositions, so the statements are generalised accord-
ingly. Unfortunately, we cannot yet deal with variables of open universal types
in propositions. Below, U € & ranges over all types U, except open universal
types, involving the existentially bound type variable, that occur in the axioms
@ of the relevant specification.

Definition 10 (Existence of Sub-objects (SUBG)). For¢ = X, S,1,s5,
VX .Vi¥[X].VRCXxX. (%R =
3S. 35:‘3:[5] . HR/CSXS.HUeqsmOnOU:U[S} — U[X] .
Nvea Vs:U[S] . s UR'] s A
Aves Vs.8"U[S] . s U[R] s < (monoy s) U[R] (monoy s') A
¥ (F[(a:X,s5:5).(x =x (monos))]¢) s
Definition 11 (Existence of Quotients (QuoTG)). For¢ = X,Q,1,q,
VX .Vi¥[X].VRCXxX . (%[Rlz A equiv(R)) =
3Q . 3q:F[Q)] - Fuesepiy: U X] — U[Q] .
Nves Ve, y:UX] .2 URly < (epiyz) =u(q) (epipy) A
Ny Ve:UQl-32:UIX] . q =yiq) (epiy) A
¥ (Fl(z X, q:Q)-((epiz) =@ 9)¢) q
where equiv(R) specifies R to be an equivalence relation.

Theorem 15. SUBG and QUOTG are valid in the parametric PER-model of
[2], under the assumption of ADT semantics.

In the following, we will write e.g. [U[X]] in place for [X > U[X]];x..x]. In the
following I' £ X, r:¥[X].

5.2 Validating SUBG (proof of Theorem 15)

Definition 12 (Sub-object PER). Let X be any PER, and R any relation
on X. Define the sub-object Rp(X) restricted on R by

n Rp(X)m & nXm and [n]x R [mlx

14

As expected we do not in general have n Rp(X) m < [n]x R [m]x. We
do have by definition and symmetry n Rp(X) m = [n]x R [m]x, and also
n X m < n S m, but not necessarily the converse implication.

To validate SUBG, consider an arbitrary PER X, x € [T[X]], and relation R
on X. We must exhibit a PER S, a relation R on S, an 4 € [¥[S]], and maps
monoy: [U[S]]¢ — [U[X]]¢", where ¢ = s, I, for s a realiser of 4, and ¢ =z, I,
for x a realiser of x, all satisfying the following properties,

Sus-1. For all s € [U[S]]¢, s [U[R]]¢ s ’
Sus-2. Foralls,s" € [U[S]]¢, s[UR]]¢ s’ < monoy(s) [UR]]¢ monoy(s)
SuB-3. x [F[(x:X,s:S).(x =x (mono s))]¢] »

def

We exhibit 8 = Rp(X), define monoy ([n|is)je) = (R, and define '
by s R s £ mono(s) R mono(s'). Well-definedness and (Sus-1) and (Sus-2)
follow by definition and from Lemma 18 below.

We now postulate that we can construct s as the k-tuple where the " com-
ponent is [e;]r;(s)je derived from the i*" component leil gz, (ayper Of x. For each
component g;: (U[X] — V[X]) in T[X] we must show for all n,n’ s.t. there exist
terms ¢, ¢’ s.t. I' > t:U[X], I >t U[X], and ¢[s] =n, t'[s] =n’, that

verSuB-1. n [U[S]]¢ n = (ei(n)] A ei(n)l]),
verSuB-2. n [U[S]]2 ' = e;(n) [VIS]]¢ e:(n).

The crucial observation that now lets us show the well-definedness of 4, is that
the realiser s can be assumed to be a realiser x for the existing x. It therefore
suffices to show (verSus-1) and (verSus-2) for n,n’ s.t. t[x] =n and ¢'[z] = n’.

Lemma 16. For any PER X, realiser x of x, and relation R on X s.t. x [T[R]] x,
for any n s.t. there exists a term ¢ s.t. I'> X, and t[z] = n,

[nlx R [n]x
Proof: This follows from a variant of Lemma 10. m|

Lemma 17. For any n,n’ s.t. there exist terms t,t' s.t. >t X, '>t: X, and
tlz] =n, t'[x] =n/, where x is a realiser of x,

nXn < nSn

Proof: Suppose n X n'. It suffices to show [n]y R [n']x. By Lemma 16 we get
[n]x R [n']x, and n X n' gives [n]xy = [n/]x. Suppose n S n’. By definition this
givesn X n'. ad

Lemma 18. For anyn,n’ s.t. there exist termst,t’ s.t. '>tU[X], '>t:U[X],
and tlx] = n, t'[z] = n', where x is a realiser of x,

n [UX]]en < n [U[S]]¢ n

15

Proof: This follows from Lemma 17 by induction on type structure. O

So let n,n’ be as proposed, and recall that we are assuming the existence of
x, thus we have e; [(U[X] — V[X])]? e;. We may now use Lemma 18 directly
and immediately get what we want since e; satisfies its conditions. However, for
illustrative purposes we go a level down. By assumption we have

assmpSUB-1. n [U[X]]?2 n = (ei(n)] A ei(n)l),
assmpSUB-2. n [U[X]]? n' = e;(n) [V[X]]? ei(n').

Showing (verSus-1) is now easy. By assumption on n, we can use Lemma 18, and
then (assmpSuB-1) yields (e;(n)] A e;(n)]). For (verSus-2) assume n [U[S]]2 n'.
Lemma 18 gives n [U[X]]¢ n/, and (assmpSuB-2) gives e;(n) [V[X]]? e;(n), and
then Lemma 18 gives e;(n) [V[S]]2 ei(n’). This concludes the definition of .

It is time to verify x [Z[(z: X, s:S).(x =x (mono s))]] o. First we have

Lemma 19. For any D € Obs, n (D)2 m < n (D) m

Let p 2 (2: X, 5:S).(x =x (mono s)). For any component, g;: (U[X] — V[X]) in
T[X]. we must show for all [n] € [U[X]]2 and [m] € [U[S]]? that

[n] [U[p]]? [m] A [DfnbIC ([n], [m])] = [ei(n)] [VI[p]]® [e:(m)]

Let e be the realiser of the polymorphic functional of which DfnblC® asserts the
existence. This realiser is the same for all instances of this functional, and by
construction the realiser for x and the realiser for 4 are the same, say z. Hence
the DfnblC® clause asserts that e(z) = n and e(z) = m, thus n = m. If V[X]
is X we must show [e;(n)]x = mono([e;(m)]s), i.-e. [e;(n)]x = [ei(m)]x, and if
V[X] is some D € Obs we must show [e;(n)]p = [e;(m)]p. Both cases follow
since n = m. To deal with V[X] a universal type according to adt, generalise
the proof to incorporate quantifier-introduced Y, omitted here for clarity.

5.3 Validating QUoTG (proof of Theorem 15)
Definition 13 (Quotient PER). Let X be any PER, and R any equivalence
relation on X. Define the quotient X /R of X w.r.t. ~ by

nXMRm & nXn and m X m and [n]x R [m]x

The following lemma follows immediately by definition.

Lemma 20. For all n,m, we have, provided that [n]x and [m]x exist,
nXMm & [nlx R [m]x

We also have by definition and reflexivity of ®, n X m = n Q m, but not
necessarily the converse implication.

To validate QUOTG, consider any PER X, x € [%[X]], and equivalence
relation & on X'. We must exhibit a PER Q, a q € [F[Q]], and maps epi:
[U[X]]¢ — [U]Q]]¢, where ¢ = g, I, for q a realiser of q, and ¢’ = 2, T, for z a
realiser of x, all satisfying the following properties.

16

Quot-1. For all z,y € [U[X]]?, z [U[R]]¢ v < epiy (z) =ug)ie epiv(y)
Quot-2. For all ¢ € [U[Q]]¢, there exists z € [U[X]]? s.t. ¢ =[p(ay epiy(x)
Quotr-3. x [T[(z: X, s:Q).(epi(z) =x q)lec] g

We exhibit @ = X /R, and define epiy; ([n] i) =4 [n]jrigpe- Well-definedness,
(Quor-1) and (Quot-2) follow by definition and Lemma 20.

Both the construction of g and the rest of the proof follow analogously to
the case for SUBG. Things are a bit simpler, because we have lemma 20.

5.4 Using QuorG and SuBG

We illustrate the general use of QUOTG and SUBG in proving a refinement
SP ~ SP'. For clarity we omit constructors, and then Tgp[X] = Tsp/[X]. We
denote both by T[X]. We also assume Obs = Obsgp = Obsgps, and for brevity
we assume equational axioms. As mentioned before, QUOTG and SUBG cannot
as yet deal with variables of open universal types in the axioms of specifications.

The task is to derive Vu: Siggps . Ospr(u) = Ogp(u), in other words, for
u: Sig gpr, assuming 3A.3a: T[A] . (packAa) ObsEqCO" u A Bgpr[A, a] we must
derive 3B.36:%[B] . (packBb) ObsEqC?* u A ®gp[B,b].

Following the strategy of algebraic specification, we attempt to define a (par-
tial) congruence ~ on A and show Pgp[A, a],e;, where Pgp[A, a]ye; is obtained
from ®sp[A, a] by replacing all occurrences of =4 by U[~] (justified by ex-
tensionality), and in case ~ is partial, also conditioning every formula ¢ whose
free variables of types U;[A] are among x1, ..., Ty, by A;(z; Ui[~] ;) = ¢.

Suppose this succeeds. Then since ~ is an axiomatisation of a partial con-
gruence, we have a ¥[~] a. We use SUBG to get S4, 5, and ~'C S4xS4, and
maps monog:U[S4] — UJ[A] such that we can derive

(81) Aveds, ¥Vs:U[S4] . s U[~] s
(82) Apeay, ¥s:8"U[Sa] . s U[~'] 8 < (monoy s) U[~] (monoy s')
(s3) a (T[(a:A,5:54).(a =4 (monos))]¢) sa

By (s2) we get 84 T[~'] 54. We also get equiv(~') by (s1). We now use
QUOTG to get @ and q:T[Q] and maps epi;: U[S4] — U[Q] s.t.

(q1) /\U6<I>sp Vs,s:U[Sa] . s U[~'] s < (epiys) =yjq (epiy s')
(22) Nveds, Ve U[Q|3s:U[S4] . ¢ =U[Q) (epiy; 5)
(43) 5a (Z[(s:94,¢:Q)-((epis) =q)¢) 4

Thus we should exhibit @ for B, and q for b; and it then remains to derive
1. (packQq) ObsEqC®"*(packAa), and 2. $sp[Q.q]. To show the derivability
of (1), it suffices to observe that, through Theorem 11, (s3) and (¢3) give
(packAa) ObsEqC 9" (packS 484) ObsEqC " (packQq). For (2) we must show the
derivability of Vaq.u[Q, q] =v|g| v[Q, q] for every Ve x.u =y (x| v in Psp[X,x].
We may by extensionality assume that V is X or some D € Obs. For any
variable ¢: U[Q] in u[Q, q] or v[Q, q], we may by (¢2) assume an s,: U[S4] s.t.
(epiyy 5q) =v(Q| ¢- Since we succeeded in deriving @sp[A, a],e, we can derive

17

((monoy s4) U[~] (monoy s4)) = u[A, a][(monoy s,)] V]~] v[A4, a][(monoy s,)]
(for clarity only displaying one variable). By (s2) and (s3) this is equivalent
to sq U[~] sq = u[Sa,84][sq] VI[~'] v[Sa,5q][sq], which by (s1) is equivalent
to u[Sa, 8q)[sq] V[~'] v[S4,84][sq]. Then from (¢1), or if V.= D € Obs we have
this immediately, we can derive (epiy u[Sa, 8q][s4]) =v(q] (epiy v[Sa, 84][s¢]). By
(q3) we gt (epiy u[Sa, 5a][5q]) = u[Q. 4] and (epiy 0[S, sa]) = v[Q. 4]

This illustration is somewhat oversimplified. In most concrete examples where
SUBG would be necessary, one would at least find useful the hiding constructor

Au: Sig gpr.(unpack(u)(Siggp)
(AX. \:%spr [X].(pack X record(those items of r matching Siggp)))

6 Final Remarks

This paper has described specification refinement up to observational equiva-
lence for specifications involving operations of any order and a limited form
of polymorphism. This was done in System F using extensions of Plotkin and
Abadi’s logic for parametric polymorphism, which are sound w.r.t. the para-
metric PER-model. We established in the logic a common general method for
proving observational refinements, and we established in the logic a simulation
relation that composes at any order.

The main stratagem of this paper was to observe more closely existing ab-
straction barriers provided by existential types. This is fruitful both in devising
the alternative simulation relation, and in providing a semantics to validate the
higher-order version of the proof method for showing observational refinement.

In future work, one should clarify how the ADT semantics outlined in this
paper should be integrated into a wider semantical framework. One should also
try to find a counterpart in the syntax for the ADT-semantics. An interesting
alternative to all of this would perhaps be to impose suitable abstraction barriers
in the logical deduction part of the system instead, extending ideas in [10].

Obvious links to ongoing work on the semantic level concerning data refine-
ment and specification refinement should be clarified. This promises interesting
results in both directions. For example in System F and the logic, semantic no-
tions such as applicative structures and combinatory algebras can be internalised
in syntax. The semantic notion of pre-logical relations could therefore also be in-
ternalised. The problem posed by an infinite family of relations might be solved
by using definability w.r.t. the relevant ADT according to abs-bar.

We have added axioms to the logic, but we have not made any model-
theoretical deliberations outside relating the discussion mainly to the parametric
PER-model. It is for example highly relevant to investigate the general power of
these axioms in restricting the class of models. This would especially comes into
play if one were to consider consistency w.r.t. related type systems.

Acknowledgements Many thanks to John Longley for a crucial hint concern-
ing the ADT semantics. Thanks also to Martin Hofmann, Furio Honsell, and Don
Sannella for valuable discussions. Thanks to the referees for helpful comments.

18

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

D. Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
University of Edinburgh, 1998.

E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35 64, 1990.

M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 165:3-55, 1996.

M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifica-
tions. Science of Computer Programming, 25:149-186, 1995.

M. Bidoit, R. Hennicker, and M. Wirsing. Proof systems for structured specifica-
tions with observability operators. Theoretical Computer Sci., 173:393 443, 1997.
C. Bohm and A. Beraducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135 154, 1985.

V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. The-
oretical Computer Science, 59:85-114, 1988.

M. Cerioli, M. Gogolla, H. Kirchner, B. Krieg-Briickner, Z. Qian, and M. Wolf.
Algebraic System Specification and Development. Survey and Annotated Bibliogra-
phy, 2nd Ed., volume 3 of Monographs of the Bremen Institute of Safe Systems.
Shaker, 1997. 1st edition available in LNCS 501, Springer, 1991.

J.A. Goguen. Parameterized programming. IEEE Transactions on Software Engi-
neering, SE-10(5):528-543, 1984.

J.E. Hannay. Abstraction barriers in equational proof. In Proc. of AMAST’98,
volume 1548 of LNCS, pages 196-213, 1998.

J.E. Hannay. Specification refinement with System F. In Proc. CSL’99, volume
1683 of LNCS, pages 530-545, 1999.

J.E. Hannay. A higher-order simulation relation for System F. In Proc.
FOSSACS 2000, volume 1784 of LNCS, pages 130-145, 2000.

R. Hasegawa. Parametricity of extensionally collapsed term models of polymor-
phism and their categorical properties. In Proc. TACS’91, volume 526 of LNCS,
pages 495-512, 1991.

R. Hennicker. Structured specifications with behavioural operators: Semantics,
proof methods and applications. Habilitationsschrift, LMU, Miinchen, 1997.

F. Honsell, J. Longley, D. Sannella, and A. Tarlecki. Constructive data refinement
in typed lambda calculus. In Proc. FOSSACS 2000, volume 1784 of LNCS, pages
161-176, 2000.

F. Honsell and D. Sannella. Pre-logical relations. In Proc. CSL’99, volume 1683
of LNCS, pages 546561, 1999.

S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle
introduction. Theoretical Computer Science, 173:445-484, 1997.

Y. Kinoshita, P.W. O’Hearn, A.J. Power, M. Takeyama, and R.D. Tennent. An
axiomatic approach to binary logical relations with applications to data refinement.
In Proc. of TACS’97, volume 1281 of LNCS, pages 191-212, 1997.

Y. Kinoshita and A.J. Power. Data refinement for call-by-value programming
languages. In Proc. CSL’99, volume 1683 of LNCS, pages 562—-576, 1999.

Z. Luo. Program specification and data type refinement in type theory. Math.
Struct. in Comp. Sci., 3:333-363, 1993.

Q. Ma and J.C. Reynolds. Types, abstraction and parametric polymorphism, part
2. In Proc. 7th MFPS, volume 598 of LNCS, pages 1-40, 1991.

19

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

H. Mairson. Outline of a proof theory of parametricity. In ACM Symposium on
Functional Programming and Computer Architecture, volume 523 of LNCS, pages
313-327, 1991.

J.C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 305-330. Academic Press, 1991.

J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans.
on Programming Languages and Systems, 10(3):470-502, 1988.

E. Moggi and R. Statman. The maximum consistent theory of the
second order lambda calculus. e-mail to Types list. Available at
ftp://ftp.disi.unige.it/person/MoggiE/papers/maxcons, 1986.

N. Mylonakis. Behavioural specifications in type theory. In Recent Trends in Data
Type Spec., 11th WADT, volume 1130 of LNCS, pages 394—408, 1995.

A.M. Pitts. Parametric polymorphism and operational equivalence. In Proc. 2nd
Workshop on Higher Order Operational Techniques in Semantics, volume 10 of
ENTCS. Elsevier, 1997.

A.M. Pitts. Existential types: Logical relations and operational equivalence. In
Proc. ICALP’98, volume 1443 of LNCS, pages 309-326, 1998.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. of TLCA
93, volume 664 of LNCS, pages 361-375, 1993.

G.D. Plotkin, A.J. Power, and D. Sannella. Lax logical relations. To appear in
Proc. ICALP 2000, LNCS, 2000.

E. Poll and J. Zwanenburg. A logic for abstract data types as existential types. In
Proc. TLCA’99, volume 1581 of LNCS, pages 310-324, 1999.

B. Reus and T. Streicher. Verifying properties of module construction in type
theory. In Proc. MFCS’93, volume 711 of LNCS, pages 660—-670, 1993.

J.C. Reynolds. Types, abstraction and parametric polymorphism. Information
Processing, 83:513-523, 1983.

D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150 178, 1987.

D. Sannella and A. Tarlecki. Toward formal development of programs from alge-
braic specifications: Implementations revisited. Acta Inform., 25(3):233-281, 1988.
D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229 269, 1997.

O. Schoett. Data Abstraction and the Correctness of Modular Programming. PhD
thesis, University of Edinburgh, 1986.

T. Streicher and M. Wirsing. Dependent types considered necessary for specifica-
tion languages. In Recent Trends in Data Type Spec., volume 534 of LNCS, pages
323-339, 1990.

J. Underwood. Typing abstract data types. In Recent Trends in Data Type Spec.,
Proc. 10th WADT, volume 906 of LNCS, pages 437-452, 1994.

J. Zwanenburg. Object-Oriented Concepts and Proof Rules: Formalization in Type
Theory and Implementation in Yarrow. PhD thesis, Technische Universiteit Eind-
hoven, 1999.

20

