Specification Refinement with System F

Jo Erskine Hannay

LFCS, Division of Informatics, University of Edinburgh, Scotland, U.K.
joh@dcs.ed.ac.uk

Abstract. Essential concepts of algebraic specification refinement are
translated into a type-theoretic setting involving System F and Reynolds’
relational parametricity assertion as expressed in Plotkin and Abadi’s
logic for parametric polymorphism. At first order, the type-theoretic set-
ting provides a canonical picture of algebraic specification refinement.
At higher order, the type-theoretic setting allows future generalisation
of the principles of algebraic specification refinement to higher order and
polymorphism. We show the equivalence of the acquired type-theoretic
notion of specification refinement with that from algebraic specification.
To do this, a generic algebraic-specification strategy for behavioural re-
finement proofs is mirrored in the type-theoretic setting.

1 Introduction

This paper aims to express in type theory certain essential concepts of algebraic
specification refinement. The benefit to algebraic specification is that inherently
first-order concepts are translated into a setting in which they may be generalised
through the full force of the chosen type theory. Furthermore, in algebraic spec-
ification many concepts have numerous theoretical variants. Here, the setting of
type theory may provide a somewhat sobering framework, in that type-theoretic
formalisms insist on certain sensibly canonical choices.

On the other hand, the benefit to type theory is to draw from the rich source
of formalisms, development methodology and reasoning techniques in algebraic
specification. See [7] for a survey and comprehensive bibliography. One of the
most appealing and successful endeavours in algebraic specification is that of
stepwise specification refinement, in which abstract descriptions of processes and
data types are methodically refined to concrete executable descriptions, viz. pro-
grams and program modules. In this paper we base ourselves on the description
in [31,30], and we highlight three essential concepts that make this account of
specification refinement apt for real-life development. These are so-called con-
structor implementations, behavioural equivalence and stability. We will express
this refinement framework in a type-theoretic environment comprised of Sys-
tem F and the assumption of relational parametricity in Reynolds’ sense [27, 18],
as expressed in Plotkin and Abadi’s logic for parametric polymorphism [24]. Ab-
stract data types are expressed in the type theory as existential types.

The above concepts of specification refinement fall out naturally in this set-
ting. In this, relational parametricity plays an essential role. It gives the equiv-
alence at first order of observational equivalence to equality at existential type.

In algebraic specification there is a generic proof strategy formalised in [6, 4, 5]
for proving observational refinements. This considers axiomatisations of so-called
behavioural (partial) congruences. As also observed in [25], Plotkin and Abadi’s
logic is not sufficient to accommodate this proof strategy. Inspired by [25], we
choose the simple solution of adding axioms stating the existence of quotients
and sub-objects. This is justified by the soundness of the axioms w.r.t. the para-
metric PER-model [3] for Plotkin and Abadi’s logic. In this paper we import the
proof strategy into type theory to show a correspondence between two notions
of refinement. But this importation is also interesting in its own right, and our
results complement those of [25] in that we consider also partial congruences.

Other work linking algebraic specification and type theory includes [17] en-
coding constructor implementations in ECC, [26] expressing module-algebra
axioms in ECC, [23] encoding behavioural equalities in UTT, [2] treating the
specification language ASL+, [35] using Nuprl as a specification language, and
[34] promoting dependent types in specification. Only [25] utilises relational
parametricity. There are also non-type-theoretic higher-order approaches using
higher-order universal algebra [20], and other set-theoretic models [16].

The next section outlines algebraic specification refinement, highlighting the
three essential concepts above. Then, the translation of algebraic specification
refinement into a System F environment is presented, giving a type-theoretic no-
tion of specification refinement. The main result of this paper is a correspondence
at first-order between algebraic specification refinement and the type-theoretic
notion of specification refinement. This sets the scene for generalising the refine-
ment concepts now implanted in type theory to higher order and polymorphism.

2 Algebraic Specification Refinement

Let X = (S, 2) be a signature, consisting of a set S of sorts, and an S* x S-
sorted set {2 of operator names. We write profiles f: sy x--- x5, = s € (2,
meaning f € 2, .5, A X-algebra A = ((A)scs, F) consists of an S-sorted
set (A)ses of non-empty carriers and a set F containing a total function f4 €
(Agy X---x A — Ay) for every fis1X---Xs, = s € {2. The class of Y-algebras
is denoted by XYAlg. Given a countable S-sorted set X of variables, the free
X-algebra over X is denoted T'x;(X) and for s € S the carrier Tx(X), contains
the terms of sort s. We consider sorted first-order logic with equality. A formula
p is a Y-formula if all terms in ¢ are of sorts in S. Let @ be a set of closed X-
formulae. Then SP = (X, ®) is a basic algebraic specification, and its semantics
[SP] is Mod5;(®), the class of X-algebras that are models of @.

Example 1. The following specification specifies stacks of natural numbers.

spec Stack is
sorts nat, stack
operators empty : stack, push : nat x stack — stack,
pop : stack — stack, top : stack — nat
axioms Psyack : pop(push(z, s)) = s
top(push(z, s)) =z

We omit universal quantification over free variables in examples. The semantics
of a data type (in a program) is an algebra. Wide-spectrum specification lan-
guages e.g. Extended ML [14], allow specifications and programs to be written
in a uniform language, so that specifications are abstract descriptions of a data
type or systems of data types, while program modules and programs are con-
crete executable descriptions of the same. A refinement process seeks to develop
in a sound methodical way the latter from the former, and a program is then
a full refinement or realisation of an abstract specification. The basic definition
of refinement we adopt here is given by the following refinement relation ~ on
specifications of the same signature [30,32]: SP;~ SP; 11 <% [SP;] D [SPj+1]-

There are two indispensable refinements as it were, of the refinement relation.
One introduces constructors, the other involves behavioural abstraction.

A refinement process involves making decisions about design and implemen-
tation detail. At some point a particular function or module may become com-
pletely determined and remain unchanged throughout the remainder of the re-
finement process. It is convenient to lay aside the fully refined parts and continue
development on the remaining unresolved parts only. Let k be a parameterised
program [9] with input interface SP;1, and output interface SP;. Given a pro-
gram P that is a full refinement of SP;;, the instantiation x(P) is then a
full refinement of SP;. The semantics of a parameterised program is a function
[x] € (¥sp,,,Alg = Ysp,Alg) called a constructor. Constructor implementa-
tion is then defined [30] as SP; v SPjy1 <% [SP;] 2 [£]([SP;41])- The pa-
rameterised program k is the fully refined part of the system which is set aside,
and SP ;4 specifies the remaining unresolved part that needs further refinement.

A major point in algebraic specification is that an abstract specification really
is abstract enough to give freedom of implementation. The notion of behavioural
abstraction captures the concept that two programs are considered equivalent if
their observable behaviours are equivalent. Algebraically one assumes a desig-
nated set Obs C S of observable sorts, and a designated set In C S of input sorts.
Observable computations are represented by terms in T's (X ™), for s € Obs and
where X" = X, for s € In and @ otherwise. Two Y-algebras A and B are ob-
servationally equivalent w.r.t. Obs,In, written A =ops,1n B, if every observable
computation has equivalent denotations in A and B [29]. However, the seman-
tics [SP] is not always closed under behavioural equivalence. For example, the
stack-with-pointer implementation of stacks of natural numbers does not satisfy
pop(push(z,s)) = s and is not in [Stack], but is behaviourally equivalent w.r.t.
Obs = In = {nat} to an algebra that is. To capture this, one defines the se-
mantics [SP]oss.1n = {B | A € [SP] . B =0bs,m A}, and defines refinement
up to behavioural equivalence [30] as (SPj, Obs,In) <> (SPji1, Obs', In') &L
[SP;lobs,in 2 [KI([SPj+1llobs',in')- Why do we want designated input sorts?
One extremal view would be to say that all observable computations should be
ground terms, i.e. proclaim In = (). But that would be too strict in a refinement
situation where a data type depends on another as yet undeveloped data type.
On the other hand, letting all sorts be input sorts would disallow intuitively fea-
sible behavioural refinements as illustrated in the following example from [10].

Example 2. Consider the following specification of sets of natural numbers.

spec Set is
sorts nat, set
operators empty : set, add : nat x set — set
in : nat x set — bool, remove : nat x set — set
axioms add(z,add(z,s)) = add(z, s)
add(z, add(y, s)) = add(y, add(z, s))
in(z, empty) = false
in(z,add(y, s)) = if £ =qat y then true else in(z, 5)
in(z, remove(z, s)) = false

Consider the Yse-algebra ListImpl (LI) whose carrier Llg is the set of finite
lists over the natural numbers; empty”! gives the empty list, add! appends a
given element to the end of a list only if the element does not occur already, in%!
is the occurrence function, and remove’! removes the first occurrence of a given
element. Being a Yse-algebra, LI allows users only to build lists using empty’!
and add”! , and on such lists the efficient remove’! gives the intended result.
However, LI ¢ [[Set]lobs,im, for Obs = {bool,nat} and In = {set,bool, nat},
because the observable computation in(x, remove(z, s)) might give true, since s
ranges over all lists, not only the canonical ones generated by empty’! and add™.
On the other hand, LI € [[Set]oss,im for In = Obs = {bool, nat}, since now the
use of set-variables in observable computations is prohibited. o)

In this example, the correct choice was In = Obs. In fact In = Obs is virtually
always a sensible choice, and a very reasonable simplifying assumption.
Behavioural refinement steps are in general hard to verify. A helpful concept is
stability [33]. A constructor [] is stableif A =pps', 1’ B = [£](A) =0bs,m [£](B).
Under stability, it suffices for proving (SP;, Obs, In) < (SPji1, Obs',In'), to
show that [[SP;]obs,in 2 [£]([SPj+1])- The following contrived but short ex-
ample from [31] illustrates the point. See e.g. [33] for a more realistic example.

Example 3. Consider the specification

spec Triv is
sorts nat
operators id : nat x nat x nat — nat
axioms @1y, : id(z,n,2) =2

Define the constructor Tr € (XsaaAlg = ItiAlg) as follows. For A € YsiaaAlg,
define multipush , € (Nx N x A — A) and multipop, € (Nx A — A) by

a, n=>0
pushA(z, multipush 4(n — 1,2+ 1,a)), n>0
a, n=20
multipop 4(n — 1,pop“(a)), n >0

multipush 4(n, z,a) = {
multipop 4(n,a) =

Then Tr(A) is the Triv-algebra whose single operator is given by

id(z,n, z) = top” (multipop 4(n, multipush 4 (n, z, push® (z, empty4)))).

We have [Triv]inaty,;m 2 Tr([Stack]l{nat},m), but to prove this only assuming
membership in [Stack]{nat},mm is not straight-forward. However, Tt is in fact
stable. So it suffices to show [Triv]{nat},m 2 Tr([Stack]), and the proof of this
is easy [31]. In particular, one may now hold pop(push(z,s)) = s among ones
assumptions, although this formula is not valid for [Stack]{nat}, - o

One still has to prove the stability of constructors. However, since constructors
are given by concrete parameterised programs, this can be done in advance for
the language as a whole. A key observation is that stability is intimately related
to the effectiveness of encapsulation mechanisms in the language.

Example 4 ([31]). Consider the constructor Tr' € (ZsaAlg — ZriAlg)
such that Tr'(A) is the Triv-algebra whose single operator is given by

id(z.n,z) = | @ Pop(push”(z, empty”)) = empty
777 1 2, otherwise

Then for A the array-with-pointer algebra, we get Tr'(A) & [Triv]aat},m and
so [Trivlitnaty,;m 2 Tr'([Stack]fnat},im)- Tr' is not stable, and Tr' breaches the
abstraction barrier by checking equality on the underlying implementation. ©

Algebraic specifications may be complex, built from basic specifications using
specification building operators, e.g. [36,32,37]. But as a starting point for the
translation into type theory, we only consider basic specifications.

3 The Type Theory

We now sketch the logic in [24,19] for parametric polymorphism on System F. It
is this accompanying logic that bears an extension rather than the type theory.
See [1] for a more internalised approach. System F has types and terms as follows.

T:=X|T->T|VX.T to=x | ATt | tt| AX.t | tT

where X and z range over type and term variables resp. However, formulae are
now built using the usual connectives from equations and relation symbols.

pu=(t=au) | R(t,u)| -+ | VRCAXxB.¢ | IRCAXB.¢

where R ranges over relation symbols. We write a[R, X, z] to indicate possi-
ble occurrences of R, X and z in a, and may write a[p, A, t] for the result of
substitution, following the appropriate rules concerning capture.

Judgements for type and term formation and second-order environments with
term environments depending on type environments, are as usual. But formula
formation now involves relation symbols, so second-order environments are aug-
mented with relation environments, viz. a finite sequence 1" of relational typings
R C Ax B of relation variables, depending on the type environment, and obeying

standard conventions for environments. The formation rules for atomic formulae
consists of the usual one for equations, and now also one for relations:

I'FtA TI'+twB, I'FY, T-HRCAxB
'Y+ R(t,u) Prop (also written tRu)

The other rules for formulae are as expected. Relation definition is accommodated:

Iz:A,y:B + ¢ Prop
I'' b (:A,y:B) . ¢ C AxB

For example eqy = (2:4,y: A).(x =4 y).
If pCAXB, pCA'xB'" and p"[R]C A[Y]x B[Z], then complex relations are
built by p = p' € (A = A")x (B — B') where

(p—=p)Z (f:A— A',g:B - B').(Vo: AV2": B.(zpzx' = (fz)p'(g92')))
and V(Y, Z, RCY x Z)p"[R] C (VY.A[Y]) x (VZ.B[Z]) where
V(Y,Z,RCYxZ)p" & (y:VY.A[Y], 2:VZ.B[Z]).(VYVZVR C YxZ.((yY)p"[R] (2 Z)))

One can now acquire further definable relations by substituting definable re-
lations for type variables in types. For X = X4,...,X,, B = By,...,B,,
C=0C,...,Chand p=p1,...,pn, where p; C B;xC;, we get T[p] CT[B]xT'[C],
the action of T[X] on p, defined by cases on T[X] as follows:

T[X] =X, : T[p] = pi
T[X] = T'[X] - T"[X] : T[p] = T'[p] — T"[p]
T[X]=VX'T'[X,X']: Tlp]=V(Y,Z,RCY xZ).T'[p, R]

The proof system is natural deduction over formulae now involving relation
symbols, and is augmented with inference rules for relation symbols, for example
we have for @ a finite set of formulae:

@ b1 reaxs O[R) é+rVRCAxB.GR], '+ pCAxB
S +r VRCAXB . ¢[R) @ Fr dlp]

One also has axioms for equational reasoning and (n equalities. Finally, the
following parametricity axiom schema is asserted:

PARAM : bg VYi,.. ., VYo Vu: (VX T[X, Y3, ..., Y,]) . w(VX.T[X, eqy,, .. ., eqy |)u

To understand, it helps to ignore the parameters Y; and expand the definition
to get Vu: (VX.T[X]) VYVZVRCY xZ . u(Y) T[R] u(Z) i.e. if one instantiates
a polymorphic inhabitant at two related types then the results are also related.
One gets

Fact 1 (Identity Extension Lemma [24]). For any T[Z], the following se-
quent is derivable using PARAM.

Fo VZVu,v:T . (uT[eqz] v & (u=r1v))

Encapsulation is provided by the following encoding of existential types and
the following pack and unpack combinators.

IXTX] EVW.(VX.(T[X] = Y) = Y)

packyx: VX.(T[X] — 3X.T[X])
packyyx1(A)(impl) £ AYAf:VX.(T[X] = Y).f(A)(impl)

unpackyxy: (FX.T[X]) - VY.(VX.(T[X] - Y) = Y)
unpacky x)(package)(B)(client) = package(B)(client)

We omit subscripts to pack and unpack as much as possible. Operationally, pack
packages a data representation and an implementation of operators on that data
representation. The resulting package is a polymorphic functional that given a
client and its result domain, instantiates the client with the particular elements
of the package. And unpack is the application operator for pack.

Fact 2 (Characterisation by Simulation Relation [24]). The following se-
quent schema is derivable using PARAM.

o VZ Yu, v:3X.T[X, Z] .
U =3X.T[X,Z] V =4 ElA,BElaT[A,Z],bT[B,Z]ERCAXB .
u = (packAa) A v = (packBb) A a(T[R,eqz])b

The sequent in Fact 2 states the equivalence of equality at existential type with
the existence of a simulation relation in the sense of [21]. From this we also get

o VZ.Vu:AX.T[X, Z).3A.3a:T[A, Z] . u = (packA a)

Weak versions of standard constructs such as products, initial and final
(co-)algebras are encodable in System F [8]. With PARAM, these constructs are
provably universal constructions. We can e.g. freely use product types. Given
pC AxB and p' C A'xB’, (px p) is defined as the action (X x X')[p, p]. One derives
Vu: AXA' v: BXB' . u(pxp')v & (fst(u) p fst(v) A snd(u) p snd(v)). We also use
the abbreviations bool £ YX.X — X — X and nat £ VX.X - (X = X) — X;
which are provably initial constructs.

Finally, this logic is sound w.r.t. to the parametric PER-model of [3].

4 The Translation

We now define a translation 7 giving an interpretation in the type theory and
logic outlined in Sect. 3, of the concept of algebraic specification refinement
(SPj, Obs, In)~> (SPj41, Obs', In'"). We will use inhabitants of existential types
as analogues to algebras, and then existentially quantified variables will corre-
spond to non-observable (behavioural) sorts.

To keep things simple, we will at any one refinement stage assume a single
behavioural sort b; methodologically this means focusing on one data type at a

time, and on one thread in a development. Thus we can stick to existential types
with one existentially quantified variable. It is straight-forward to generalise to
multiple existentially quantified variables [21].

In algebraic specification, there is no restraint on the choice of input sorts and
observable sorts within the sorts S of a signature. In the type-theoretic setting,
we will see that we have only one choice for the corresponding notion of input
types, namely the collection of all types. Since a behavioural sort corresponds to
an existentially quantified type variable, this automatically caters for situations
which in algebraic specification correspond to crucially excluding the behavioural
sort from the input sorts (Example 2). In algebraic specification, conforming
to this type-theoretic insistence means assuming In = S \ b, which probably
covers all reasonable examples of refinement. Thus, the type-theoretic formalisms
inherently select a sensible choice.

For observable types on the other hand, we seem to have some choice. Our
assumption of at most one behavioural sort means Obs = S\ b, hence Obs = In,
in the algebraic specification setting. In type theory we could therefore let all
types be observable types, as we must for input types. However, since ‘observable’
should mean ‘printable’, we limit the observable types by letting Obs denote also
observable types; we assume that for every sort s € Obs there is an obvious closed
type given the name s, for which the Identity Extension Lemma (Fact 1) gives
z(s[p])y & x =sy. Examples are bool and nat.

Note that the assumption of Obs = In means that it suffices to write algebraic
specification refinement as (SP;, Obs) > (SP 11, Obs').

In the following we use record type notation as a notational convenience.

Definition 1 (Translation and Type Theory Specification).
Let SP = (X, ®) where X = (S, 2). Define the translation T by

T(SP, Obs) = {{Sigsp,Osp), Obs)

where Siggp = IX . Profgp,
where Profsp = Record(fi:511X- - X815, = 81, - 5 [k Sk1X - XSpp, — Sk)[X/D],
for fizsip X ==+ X 84, = 8; € {2,
and where Ogp(u) = 3X.3x: Profsp . u = (packXr) A &[X,1].
Here, [X, 1] indicates the conjunction of &, where X substitutes b, and every
operator symbol in ® belonging to (2 is prefized with x. We call T(SP, Obs) a type
theory specification. If Ogp(u) is derivable then u is a realisation of T(SP, Obs).

Example 5. For example, 7 (Stack, {nat}) = ((Sigsisck> Ostack), {nat}), where
SigStack = EI‘Xv'pro-fStackJ
Profs,,« = Record(empty: X, push:nat x X — X, pop: X — X, top: X — nat)
Ostack(u) = IX.3x: Profe,er - v = (packXz) A
Vz:nat,s: X . r.pop(z.push(z, s))

=s A
Vz:nat,s: X . r.top(x.push(z, s)) =z

O

Henceforth, existential types arise from algebraic specifications as in Def. 1. We
do not consider free type variables in existential types since this corresponds to
parameterised algebraic specifications, which is outside this paper’s scope.

The type theory specification of Def. 1 is essentially that of [17]. The impor-
tant difference is that with parametricity, equality of data type inhabitants is
inherently behavioural, so implementation is up to observational equivalence.

In algebraic specification we said that two X-algebras A and B are ob-
servationally equivalent w.r.t. Obs and In iff for any observable computation
t € Tx(X™m),, s € Obs the interpretations ¢4 and t® are equivalent. Analo-
gously, and in the style of [21], we give the following definition of type-theoretic
observational equivalence.

Definition 2 (Type Theory Observational Equivalence). For any u,v:
AX.T[X], we say u and v are observationally equivalent w.r.t. Obs iff the fol-
lowing sequent is derivable.

Fr 3A,B.3a:T[A],b:T[B] . u = (packAa) A v = (packBb) A
Noeows VVX(T[X] = C) . (fAa) = (fBY)

Notice that there is nothing hindering having free variables in an observable
computation f:VX.(T[X] — C). Importantly, though, these free variables can
not be of the existentially bound type.

Example 6. Recalling Example 2, for ListImpl to be a behavioural implemen-
tation of Set, it was essential that the input sorts did not include set, as then
the observable computation in(x, remove(z,s)) would not have the same deno-
tation in ListImpl as in any algebra in [Set]. In our type-theoretic setting, the
corresponding observable computation is AX.Ar: Profge, - r.in(z, r.remove(z, g)).
Here g must be a term of the bound type X. The typing rules insist that g can
only be of the form r.add(---z.add(z.empty) - - -) and not a free variable. e}

Our first result is essential to understanding the translation.

Theorem 3. Suppose AX.T[X] = Siggp in T(SP, Obs) for some basic alge-
braic specification SP and set of observable sorts Obs. Then, assuming PARAM,
equality at existential type is derivably equivalent to observational equivalence,
i.e. the following sequent is derivable in the logic.

Fg Vu,v:3X.T[X] .
U =3x.T[X]|V <
JA,B.3a:T[A],b0:T[B] . u = (packAa) A v = (packBb) A
ANccops VEVX.(T[X] = C) . (fAa) = (fBb)

Proof: This follows from Fact 2 and Lemma 4 below. O

Lemma 4. Let 3X.T[X] = Siggp be as in Theorem 3. Then, assuming PARAM,
the existence of a simulation relation is derivably equivalent to observational
equivalence, i.e. the following sequent is derivable.

o VA, BNa:T[A],b:T[B] .
JRCAXB . a(T[R)b & Accops V/:VX.(T[X] = C) . (fAa) = (fBb)

Proof: =-: This follows from PARAM.

<: We must exhibit an R such that a(T[R])b. Semantically, [22,33] define
a relation between elements iff they are denotable by some common term. We
mimic this: Give R = (a: A,b: B).(3f:VX.(T[X] = X).(fAa) =a A (fBb) = b).
We must now derive a(T'[R])b, i.e. for every component (g:s1 X - - - X 8, — 8)[X/b]
in T[X], we must show that

Yui:s1[A], . .., Yop:su[A],Ywi:s1[B], ..., Yw,: s, [B] .
vr si[Rlwr A -+- A vy $p[R] wy
= a.g(vi,...,v,) s[R] b.g(wy,...,wy)

Under our present assumptions, any s; in the antecedent is either b or else an
observable sort. If s; is b then the antecedent says v; R w; hence we may assume
Af;VX(T[X] = X).(f;Aa) =v; A (f;Bb) =w;j.If s; is an observable sort we
may by Fact 1 assume v; = w;. Consider f “AX TX] - z9(ut,...,up),
where u; is (f;Xt) if s; is b, and u; = v; otherwise.

Suppose now the co-domain sort s is an observable sort. Then by assumption
we have (fA a) = (fBb) and by S-reduction we are done. Suppose the co-domain

sort s is b. Then we need to derive a.g(vy,...,v,) R b.g(wy,...,wy), i.e. that
Af:VX.(TX] = X).(fAa) = a.g(v1,...,vn) A (fBb) =b.g(wy,...,w,). But
then we exhibit our f above, and we are done. m|

This proof does not in general generalise to higher order 7. The problem lies in
exhibiting a simulation relation R.

Given Theorem 3, @gsp(u) of translation 7 expresses “u is observationally
equivalent to a package (packXr) that satisfies the axioms ¢”. Therefore:

Definition 3 (Type Theory Specification Refinement). A type theory spec
ification ’T(SP', Obs'> is a refinement of a type theory specification T (SP, Obs),
with constructor F: Siggpr — Siggp iff Fr Yu: Siggpr . Ogpr(u) = Ogp(Fu)
is derivable. We write T(SP, Obs) & T(SP', Obs'> for this fact.

Any constructor F': Siggp: — Siggp is by Theorem 3 inherently stable under
parametricity: Congruence gives Vu, v: Siggp -4 =sig,, v = F(u) =sig,, F(v).
But equality at existential type is of course observational equivalence.

Example 7. The constructor Tr of Example 3 is expressed in this setting as
Au: Sigsiaci-unpack(w) (Sig iy) (AX . Ax: Profgiae. - (PackX record(id =
Az, n, z:nat . r.top(multipop(n, multipush(n, z, r.push(z,z.empty))))))) ©

Note that we automatically get the proof simplification due to stability that we
have in algebraic specification. Since observational equivalence is simply equality
in the type theory, it is sound to substitute any package with an observationally
equivalent package that satisfies the axioms of the specification literally.
Observe that the non-stable constructor Tr' from Example 4 is not express-
ible in the type theory, because x =x y Prop is not allowed in System F terms.

5 A Correspondence at First Order

We seek to establish a formal connection between the concept of algebraic spec-
ification refinement and its type-theoretic counterpart as defined in Def. 3, i.e.

(SP, Obs)~» (SP', Obs'y & T(SP, Obs) > T(SP', Obs')

where k and F}; are constructors that correspond in a sense given below.

Now, that u is a realisation of a type theory specification {(Sigsp, @sp), Obs)
can in general only be proven by exhibiting an observationally equivalent package
u' that satisfies gp. For any particular closed term g: Siggp, one can attempt
to construct such a g’ perhaps ingeniously, using details of g. But to show that
a specification is a refinement of another specification we are asked to consider
a term (packAa) where we do not know details of A or a. We therefore need
a universal method for exhibiting suitable observationally equivalent packages.
It also defies the point of behavioural abstraction having to construe a literal
implementation to justify a behavioural one.

In algebraic specification one proves observational refinements by first con-
sidering quotients w.r.t. a possibly partial congruence = ops, 1, induced by Obs
and In [5], and then using an axiomatisation of this quotienting congruence to
prove relativised versions of the axioms of the specification to be refined. In
the case that this congruence is partial, clauses restricting to the domain of
the congruence must also be incorporated [6,4]. The quotients are of the form
dom A (R 0bs,) /R Obs, In, Where dom a(Xobs,1m)s = {a € As | a X ops,1n a}-

This proof method is not available in the type theory and logic of [24]. One
remedy would be to augment the type theory by quotient types, e.g. [11], and
subset types. However, for its simplicity and because it complies to existing proof
techniques in algebraic specification, we adapt an idea from [25] where the logic is
augmented with an axiom schema postulating the existence of quotients (Def. 4).
In addition, we need a schema asserting the existence of sub-objects (Def. 5) for
dealing with partial congruences. The justification for these axioms lies in their
soundness w.r.t. the parametric PER-model [3] that is one justification for the
logic of [24]. These axioms are tailored to suit refinement proof purposes. One
could alternatively derive them from more fundamental and general axioms.

Definition 4 (Existence of Quotients (QuoOT) [25]).
Fo VXVuET[X]VRCXXxX . (T[R)r A equiv(R)) =
AQ.3q:T[Q]-Fepi: X — Q . Vz,y: X . xRy & (epiz) =¢ (epiy) A
Vg:Q.3z: X . q =¢ (epix) A
¥ (T[(z: X, ¢:Q)-((epiz) =@ 9)]) 4
where equiv(R) specifies R to be an equivalence relation.
Definition 5 (Existence of Sub-objects (SUB)).

Lo VXVuT[X]VRCXxX . (T[R]1) =
3S.3s:T[S].AR' C Sx S.3mono: S — X ¢ (T[(z: X, s:5).(x =x (monos))]) s A
Vs.s"S.sR' s & (monos) R (monos') A
Vs:S .s R s

Algebraic specification uses classical logic, while the logic in [24] is construc-
tive. However, formulae may be interpreted classically in the parametric PER-
model, and it is sound w.r.t. this model to assume the axiom of excluded middle
[24]. For our comparison with algebraic specification, we shall do this.

We can now show our desired correspondence. We first do this for refinements
without constructors. We must assume that specifications are behaviourally closed
W.T.E. R Obs, In, i-- {dom A (R obs,im) /R 0bs,m | A € [SP]} C [SP]. This is method-
ologically an obvious requirement for behavioural specification [6, 5].

Theorem 5. Let SP = (X,®) and SP' = (X,®') be basic algebraic specifica-
tions, with X = (S, 2). Assume one behavioural sort b, and assume Obs = In =
S\ b. Assume behavioural closedness w.r.t. =ops,m- Then

(SP, Obs) ~ (SP', Obs) < T(SP, Obs)~> T(SP', Obs)

Proof: =: We must show the derivability of b Yu: Siggp: - Ospr(u) = Ogp(u).
We can obtain proof-theoretical information from (SP, Obs) ~ (SP', Obs). By
behavioural closedness, there exists a sound and complete calculus b for be-
havioural refinement, based on a calculus k7, for structured specifications [6].
By syntax directedness, we must have had SP'/%Obs, m g @, where the se-
mantics of SP' [~ ops,m 8 {dom A(Robs,1n) /R obs,in | A € [SP']}. For our basic
specification case, this boils down to the predicate logic statement of

&, Ax(~) F L(2) ()

Here ~ stands for a new symbol representing = ops,1m at the behavioural sort
de, £

b, and L(®) £ {L(9) | ¢ € 8}, for L(9) = (A yervy() ¥ ~y) = ¢° where

FVy(9) is the set of free variables of sort b in ¢, and where inductively

@ (w=pv)" Lu~o,

) (~¢)" 2 ~(6%) and (¢ A ¥)" 2 ¢* Ay,
¢) (Va:b.9)* LVab(z ~z = ¢*),

d) ¢* 2 ¢, otherwise.

and Az(~) £ Vz,y:b.(x ~y < Behy(z,y)), where Behy(z,y) is an axiomati-
sation of R ops,im at b [4]. (At s € Obs = In, =ops, I is just equality.)

Using this we derive our goal as follows. Let u: Siggp: be arbitrary. Let T
denote Profgp: (= Profgp). We must derive 3B.3b:T[B].(packBb) = u A $[B, b]
assuming JA.Ja: T[A].(packAa) = u A ?'[A, a]. Let a and A denote the witnesses
projected out from that assumption.

Now, Beh is in general infinitary. However, with higher-order logic one gets
a finitary Beh™ equivalent to Beh [12]. Thus we form ~ type-theoretically by
~ 2 (a:A,d': A).(Beh* (a,a')). Since ~ is an axiomatisation of a partial con-
gruence, we have a T[~] a. We use SUB to get S4, s, and ~'C Sy4xS4 and
mono:S4 — A s.t. we can derive

(s1) a (T[(a: A,5:54).(a =4 (mono s))]) sq

(s2) Vs.8":54 . s ~'s' & (monos) ~ (monos')
(s3)Vs:Sa.s ~' s

By (s2) we get 54 T[~'] 54. We also get equiv(~') by (s3). We now use QUOT
to get Q and q:T[Q] and epi:Sa — @Q s.t.

(ql) Vs,s:Sa . s~'s'" & (epis) =q (epis')
(@2)Vg:Q.35:54 . ¢ =q (epi s)
(¢3) sa (T[(5:S4,4:Q)-((epi 5) =q)]) q

We exhibit @ for B, and ¢ for b; it remains to derive 1. (pack@Qq) = (packAa)
and 2. [, q]. To show the derivability of (1), it suffices to observe that, through
Fact 2, (s1) and (¢3) give (packAa) = (packSas,) = (pack@q). For (2) we must
show the derivability of ¢[Q, q] for every ¢ € $. We induce on the structure of ¢.

(a) ¢ is u = v. We must derive u[q] =¢ v[q]. For any variable ¢;: Q in u[q] or
v[q], we may by (¢2) assume an s4,:S4 s.t. (epi sq;) = g;- From () we can derive
A i(mono s4,) ~ (mono s,,)) = ufal[- - (mono s,,) -] ~ vlall- -~ (mono s,,) -,
but by (s2) and (s1) this is equivalent to A ;(sq; ~' S¢;) = u[sd][--- g !
v[8q][- - - 8¢; - - -], which by (s3) is equivalent to u[sq][- - - Sq; - - -] ~' V[8a][- - 8q; -]

Then from (¢q1) we can derive (epiu[sq][---sq ---]) =@ (epiv[sa][- - Sq: -+])-
By (g3) we then get (epi ulsq][- sy, -) = uld] and (epi vfsall- 54, - 1) = v[dl.

(b) Suppose ¢ = —¢'. By negation n.f. convertibility it suffices to consider
¢' an atomic formula. The case for ¢’ as (a) warrants a proof for —¢' similar to
that of (a). Suppose ¢ = @' A ¢". This is dealt with by i.h. on ¢' and ¢".

(c) ¢ =Va:B.¢'. This is dealt with by i.h. on ¢'.

(d) This covers the remaining cases. Proofs are similar to those above.

<: Observe that to show #[Q, q] we must either use ¢'[Q, q] and the definition
of ~, or else §[Q, q] was a tautology; in both cases we get (}). O

]N

We can easily extend Theorem 5 to deal with constructors. Dealing with
constructors in full generality, requires specification building operators, which is
outside the scope of this paper. However, consider simple type theory construc-
tors F: Siggpr — Siggp of the form

Au: Sig gpr .unpack(u) (Siggp) (AX . \x: Profspi [X] . (packXY'))

for some r': Profsp[X]. The concept of algebraic specification of algebras is
extended in [28] to algebraic specifications of constructors. In the simple case,
we can extend our translation in Def. 1 to this framework.

Example 8. An algebraic specification of Example 3’s Tr, can be given by
I1S:Stack.Triv'[S] where Triv'[S] is

hide multipush, multipop in
operators multipush: nat x nat x S.stack — S.stack,

multipop: nat x S.stack — S.stack, id:nat X nat x nat — nat
axioms @7 : multipop(n, multipush(n, z,5)) = s

id(z,n, z) = S-top(multipop(n, multipush(n, z, S.push(z, S.empty))))

We can give a corresponding type theory specification 7 (ITS: Stack.Triv') by
. . def . .
(SZgHS:Stack.Triv'J@HS:StQCk-TriV'>a where SZgHS:Stack.Triv’ = ST’gStack - Sngriv and

O s:stack. Triv' (u,v) = AX Iy Profs,sc-3Y-3y: Prof+y, -
(packXy) =u A (packYp)=v A ... A
Vzx,n,z:nat . y.id(x, n, z) = r.top(multipop(n, multipush(n, z, r.push(z, .empty))))

whereby F is a realisation of, or satisfies, 7 (I S: Stack.Triv') if one can derive
Vu: Sigsrack - Ostack(¥) = Opns:siack. v’ (4, Fu). o

We now want to show (SP, Obs) 2z (SP', Obs') < T(SP, Obs) T(SP', Obs')
where kp is a realisation of a specification SPy that maps to a specification
T (SPF) for which F, a simple constructor, is a realisation, and where the axioms
of SPr and T(SPF) are given by &r. We have to show the derivability of
Fr Yu: Siggpr . Ogpr(u) = Ogp(Fu), supposing (SP, Obs) 2z (SP', Obs').
Similarly to the proof of Theorem 5, we get &', Az(~),Pr b L(P) () We need
to exhibit a B and b s.t. 1. packBb = F'(packAa) and 2. $[B, b]. We construct @
and q from F(packAa) = packAd', for a’: Profgp[A], as in the proof of Theorem 5,
and (1) follows as before. Then for (2), to show $[Q, q], and also for the converse
direction, use (f) in place of ().

Finally and importantly, the ‘=’ direction of the proof of Theorem 5 displays
a reasoning technique in its own right for type theory specification refinement.
This extends the discussion in [25] to deal also with partial congruences.

6 Final Remarks

In this paper we have expressed an account of algebraic specification refinement
in System F and the logic for parametric polymorphism of [24]. We have seen in
Sect. 4 how the concepts of behavioural (observational) refinement, and stable
constructors are inherent in this type-theoretic setting, because at first order,
equality at existential type is exactly observational equivalence (Theorem 3). We
have shown a correspondence (Theorem 5) between refinement in the algebraic
specification sense, and a notion of type theory specification refinement (Def. 3).
We have seen how a proof technique from algebraic specification can be mirrored
in type theory by extending the logic soundly with axioms QuUOT and SUB, the
latter also extending the discussion in [25].

The stage is now set for type-theoretic development in at least two directions.
First, algebraic specification has much more to it than presented here. An obvious
extension would be to express specification building operators in System F. This
would also allow a full account of specifications of parameterised programs and
also parameterised specifications [28].

Secondly, we can use our notion of type theory specification refinement and
start looking at specification refinement for higher-order polymorphic function-
als. In this context one must resolve what observational equivalence means, since
the higher-order version of Theorem 3 is an open question. However, there are
grounds to consider an alternative notion of simulation relation that would re-
establish a higher-order version of Lemma 4. Operationally, the only way two
concrete data types (packAa): T[A] and (packBb): T[B] can be utilised, is in
clients of the form AX. Ax:T[X] . r.t. Such a client cannot incite the application

of functionals a.f and b.f whose domain types involve the instantiations A and
B of the existential type variable, to arbitrary terms of appropriate instanti-
ated types, but only to terms definable in some sense by items in the respective
implementations a and b. However, the usual notion of simulation relation con-
siders in fact arbitrary terms. At first order, this does not matter, because one
can exhibit a relation that explicitly restricts arguments to be definable, namely
the relation R in the proof of Lemma 4. At higher-order, one could try altering
the relational proof criteria by incorporating explicit definability clauses. This
is reminiscent of recent approaches on the semantical level [15,13].

Acknowledgements Thanks are due to Martin Hofmann, Don Sannella, and
the referees for helpful comments and suggestions. This research has been sup-
ported by EPSRC grant GR/K63795, and NFR (Norwegian Research Council)
grant 110904 /41.

References

1. M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 121:9-58, 1993.

2. D. Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
University of Edinburgh, 1998.

3. E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35—64, 1990.

4. M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 165:3-55, 1996.

5. M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifica-
tions. Science of Computer Programming, 25:149-186, 1995.

6. M. Bidoit, R. Hennicker, and M. Wirsing. Proof systems for structured specifica-
tions with observability operators. Theoretical Computer Sci., 173:393-443, 1997.

7. M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella (eds.). Alge-
braic System Specification and Development: A Survey and Annotated Bibliography,
volume 501 of LNCS. Springer, 1991.

8. C. Bohm and A. Beraducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

9. J.A. Goguen. Parameterized programming. IEEE Transactions on Software Engi-
neering, SE-10(5):528-543, 1984.

10. R. Hennicker. Structured specifications with behavioural operators: Semantics,
proof methods and applications. Habilitationsschrift, LMU, Miinchen, 1997.

11. M. Hofmann. A simple model for quotient types. In Proc. TLCA’95, volume 902
of LNCS, pages 216—234. Springer, 1995.

12. M. Hofmann and D. Sannella. On behavioural abstraction and behavioural satis-
faction in higher-order logic. Theoretical Computer Science, 167:3-45, 1996.

13. F. Honsell and D. Sannella. Pre-logical relations. In Proc. CSL’99, LNCS, 1999.

14. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle
introduction. Theoretical Computer Science, 173:445-484, 1997.

15. Y. Kinoshita, P.W. O’Hearn, A.J. Power, M. Takeyama, and R.D. Tennent. An
axiomatic approach to binary logical relations with applications to data refinement.
In Proceedings of TACS’97, volume 1281 of LNCS, pages 191-212. Springer, 1997.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

H. Kirchner and P.D. Mosses. Algebraic specifications, higher-order types, and
set-theoretic models. In Proc. AMAST’98, volume 1548 of LNCS, pages 378-388.
Springer, 1998.

Z. Luo. Program specification and data type refinement in type theory. Math.
Struct. in Comp. Sci., 3:333-363, 1993.

Q. Ma and J.C. Reynolds. Types, abstraction and parametric polymorphism, part
2. In Proc. 7th MFPS, volume 598 of LNCS, pages 1-40. Springer, 1991.

H. Mairson. Outline of a proof theory of parametricity. In ACM Symposium on
Functional Programming and Computer Architecture, volume 523 of LNCS, pages
313-327. Springer, 1991.

K. Meinke. Universal algebra in higher types. Theoretical Computer Science,
100:385-417, 1992.

J.C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 305-330. Academic Press, 1991.

J.C. Mitchell. Foundations for Programming Languages. Foundations of Comput-
ing Series. MIT Press, 1996.

N. Mylonakis. Behavioural specifications in type theory. In Recent Trends in Data
Type Spec., 11th WADT, volume 1130 of LNCS, pages 394-408. Springer, 1995.
G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. of TLCA
93, volume 664 of LNCS, pages 361-375. Springer, 1993.

E. Poll and J. Zwanenburg. A logic for abstract data types as existential types. In
Proc. TLCA’99, volume 1581 of LNCS, pages 310-324, 1999.

B. Reus and T. Streicher. Verifying properties of module construction in type
theory. In Proc. MF(CS’98, volume 711 of LNCS, pages 660-670, 1993.

J.C. Reynolds. Types, abstraction and parametric polymorphism. Information
Processing, 83:513-523, 1983.

D. Sannella, S. Sokotowski, and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: parameterisation revisited. Acta Inform.,
29:689-736, 1992.

D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150-178, 1987.

D. Sannella and A. Tarlecki. Toward formal development of programs from alge-
braic specifications: Implementations revisited. Acta Inform., 25(3):233-281, 1988.
D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229-269, 1997.

D. Sannella and M. Wirsing. A kernel language for algebraic specification and
implementation. In Proc. 1983 Intl. Conf. on Foundations of Computation Theory,
volume 158 of LNCS, pages 413-427. Springer, 1983.

O. Schoett. Data Abstraction and the Correctness of Modular Programming. PhD
thesis, University of Edinburgh, 1986.

T. Streicher and M. Wirsing. Dependent types considered necessary for specifica-
tion languages. In Recent Trends in Data Type Spec., volume 534 of LNCS, pages
323-339. Springer, 1990.

J. Underwood. Typing abstract data types. In Recent Trends in Data Type Spec.,
Proc. 10th WADT, volume 906 of LNCS, pages 437-452. Springer, 1994.

M. Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Logic and Algebra of Specification, pages 411-442. Springer, 1993.

M. Wirsing. Algebraic specification languages: An overview. In Recent Trends in
Data Type Specification, volume 906 of LNCS, pages 81-115. Springer, 1994.

