A Higher-Order Simulation Relation for System F

Jo Erskine Hannay

LFCS, Division of Informatics, University of Edinburgh
joh@dcs.ed.ac.uk

Abstract. The notion of data type specification refinement is discussed
in a setting of System F and the logic for parametric polymorphism
of Plotkin and Abadi. At first order, one gets a notion of specification
refinement up to observational equivalence in the logic simply by us-
ing Luo’s formalism. This paper generalises this notion to abstract data
types whose signatures contain higher-order and polymorphic functions.
At higher order, the tight connection in the logic between the existence
of a simulation relation and observational equivalence ostensibly breaks
down. We show that an alternative notion of simulation relation is suit-
able. This also gives a simulation relation in the logic that composes at
higher order, thus giving a syntactic logical counterpart to recent ad-
vances on the semantic level.

1 Introduction

The idea behind formal specification refinement is that a program is the end-
product of a step-wise refinement process starting from an abstract high-level
specification. At each refinement step some design decisions and implementa-
tion issues are resolved, and if each refinement step can be proven correct, the
resulting program is guaranteed to satisfy the initial specification.

There are several frameworks in which to do this and several ideas of what it is
for one specification to be a refinement of another. A prominent framework is that
of algebraic specification; see [9] for a survey and comprehensive bibliography.
But there has been substantial development in other fields as well, notably in
type theory, where also ideas from algebraic specification have been expressed.

This paper investigates specification refinement in a setting consisting of
System F and relational parametricity in Reynolds’ sense [35,23] as expressed
in Plotkin and Abadi’s logic for parametric polymorphism [31]. This setting
allows an elegant formalisation of abstract data types as existential types [27].
Moreover, the relational parametricity axiom enables one to derive in the logic
that two concrete data types, i.e. inhabitants of existential type, are equal if
and only if there exists a simulation relation [16] between their implementation
parts. Together with the fact that at first order, equality at existential type is
derivably equivalent to a notion of observational equivalence, this formalises the
semantic proof principle of Mitchell [25]. This lifts the type-theoretic formalism

of refinement due to Luo [22] to a notion in the logic of specification refinement
up to observational equivalence; a key issue in program development.

In this paper, we discuss the above type-theoretic notion of specification
refinement in more generality, i.e. we treat data types whose operations may
be higher order and polymorphic. At higher order, the formal link between the
existence of a simulation relation and observational equivalence breaks down.
Our solution in the logic is to use an alternative notion of simulation relation
based on a weaker arrow-type relation. This notion composes at higher-order,
thus relating the syntactic level to recent and on-going work on the semantic level
remedying the fact that logical relations traditionally used to describe refinement
do not compose at higher order [17,18,21,20,32].

In [12] an account of algebraic specification refinement [38,37] is mapped to
the first-order type-theoretic refinement notion, and the two accounts of refine-
ment are shown to coincide. Important issues in algebraic specification refine-
ment, such as the choice of input sorts [36] and the stability of constructors [39,
37,10], are automatically resolved in the type-theoretic setting. Other work link-
ing algebraic specification and type theory includes [28,34,2,41,40]. Relevant
work using System F and parametricity includes [29, 30] showing that the intro-
duction of non-terminating recursion also breaks down the tight correspondence
between the existence of a simulation relation and observational equivalence.

In [12] a proof method from algebraic specification for proving observational
refinements [5,4, 6] is imported into the type-theory logic by adding axioms
postulating the existence of quotients and sub-objects. Work related to this is
[33,42]. The higher-order generalisation of this is to be found in [13].

Section 2 outlines the type theory. In Sect. 3 refinement is introduced in a
first-order setting, and Sect. 4 generalises to higher-order and polymorphism.

2 System F and the Logic for Parametric Polymorphism

We briefly recall the parametric A-calculus System F, and sketch the accompa-
nying logic of [31,24] for relational parametricity on System F. It is this accom-
panying logic that bears a relational extension rather than the A-calculus. See [1]
for a more internalised approach. System F has types and terms as follows:

T:=X|T->T|VXT tu=o | AnTd | tt | AX| T

where X and z range over type and term variables resp. However, formulae are
now built using the usual connectives from equations and relation symbols:

pu=(t=au) | R(t,u)| -+ | VRCAxB.¢ | IRCAXB.¢

where R ranges over relation symbols. We write a[R, X, z] to indicate possible
and all occurrences of R, X and z in «, and may write a[p, A,] for the result
of substitution, following the appropriate rules concerning capture.

A second-order environment consists of a type environment A and a term-
environment I depending on A as usual. For notational convenience we will
amalgamate environments into a single environment I". Judgements for type and

term formation are as usual. However, formula formation now involves relation
symbols, and we therefore employ relation environments, viz. a finite sequence
T of relational typings R C A x B of relation variables, depending on A, and
obeying standard conventions for environments. The formation rules for atomic
formulae consists of the usual one for equations, and now also one for relations:

I'FtA TI'twB, I'FY, T-HRCAxB
'Y+ R(t,u) Prop (also written tRu)

The other formation rules for formulae are as one would expect. Relation envi-
ronments will also be amalgamated into I'. Relation definition is accommodated:
Iz:A,y:B + ¢ Prop
I'' b (:A,y:B).¢ C AxB

For example eq4 < (2:4,y: A).(x =4 y).
If pCAxB, pCA'xB" and p"[R]C A[Y]x B[Z], then complex relations are
built by p — p' C (A —» A")x (B — B') where

(p—=p)Z(f:A—- A, g:B - B').(V: AVz": B.(zpz' = (fz)p'(gz")))
and V(Y, Z,RCY x Z)p"[R] C (VY.A[Y]) x (VZ.B[Z]) where
(Y, Z, RCYXZ)p" 2 (y:VY.A[Y], 2V Z.B[Z]).(VYVZYR C YXZ.((yY)" [R](22)))

One can now acquire further definable relations by substituting definable re-
lations for type variables in types. For X = X;,...,X,,, B = By,...,B,,
C=0C,...,Chand p = p1,...,pn, where p; C B;xC;, we get T[p] CT[B]xT'[C],
the action of T[X] on p, defined by cases on T[X] as follows:

T[X] = X;: T[p] = pi
T[X] = T'[X] - T"[X] : T[p] = T'[p] — T"[o]
T[X]=VX'T'[X,X': Tlp]=V(Y,Z,RCY xZ).T'[p, R]

The proof system giving the consequence relation of the logic is natural de-
duction over formulae now involving relation symbols, and is hence augmented
with inference rules for relation symbols, for example we have for & a finite set
of formulae:

& 1, reaxe O[R] S+-r VRCAXB.9[R], ' pCAxB
¢ +r VRCAXB . ¢[R) @ Fr dlp]

We will usually conveniently omit the sequent symbol -y henceforth. One also
has axioms for equational reasoning and (n equalities. Finally, the following
parametricity axiom schema is asserted:

PARAM : VYi,..., VY, Vu: (VX.T[X,Y1,...,Y,]) . u(VX.T[X,eqy,,...,eqy.)u

To understand, it helps to ignore the parameters Y; and expand the definition
to get Vu: (VX.T[X]) VYVZVRCY xZ . uw(Y) T[R] u(Z) i.e. if one instantiates
a polymorphic inhabitant at two related types then the results are also related.
This logic is sound w.r.t. to the parametric PER-model of [3] and the syntactic
parametric models of [14]. Crucially, we have the following link to equality:

Fact 1 (Identity Extension Lemma [31]). For any T[Z], the following se-
quent is derivable using PARAM.

VZYu,v:T . (uTleqz]l v & (u=r1v))

Encapsulation is provided by the following encoding of existential types and
the following pack and unpack combinators.

IXTX] E VY. (VX.(T[X] = Y) = Y)

packyyx: VX .(T[X] — 3X.T[X])
packyx (A)(impl) £ AYAf:VX.(T[X] = Y).f(A)(impl)

unpacky;xj: GX.T[X]) = VY.(VX.(T[X] » V) = Y)
unpackyy xj(package)(B)(client) = package(B)(client)

We omit subscripts to pack and unpack as much as possible. Operationally, pack
packages a data representation and an implementation of operators on that data
representation. The resulting package is a polymorphic functional that given a
client and its result domain, instantiates the client with the particular elements
of the package. And unpack is the application operator for pack.

Fact 2 (Characterisation by Simulation Relation [31]). The following se-
quent schema is derivable using PARAM.

VZ.Yu,v:3XT[X, Z] .
U =3X.T[X,Z] V =4 ElA,BElaT[A,Z],bT[B,Z]HRCAXB .
u = (packAa) A v = (packBb) A a(T[R,eqz])b

The sequent in Fact 2 states the equivalence of equality at existential type with
the existence of a simulation relation in the sense of [25]. From this we also get

VZNu:3X.T[X,Z).3A3a:T[A, Z] . u = (packAa)

Weak versions of standard constructs such as products, initial and final
(co-)algebras are encodable in System F [7]. With PARAM, these constructs are
provably universal constructions. We can e.g. freely use product types. Given
pCAxB and p' CA'xB’', (p x p) is defined as the action (X x X')[p, p']. One
derives Yu: AXA',v: BXxB' . u(pxp')v < (fst(u) p fst(v) A snd(u) p snd(v)). We
use the abbreviations bool £ VX.X - X — X, nat £ VX.X - (X = X) — X,
and list(A) £ VX.X — (A - X — X) — X. These inductive types are provably
initial constructs.

3 Data Type Specification and First-Order Results

Existential types provide a nice way of specifying abstract data types [27]. In
System F and the accompanying logic of [31], this mode of specification leads to

specification up to observational equivalence, where the latter is defined w.r.t.
some given finite set Obs of closed inductive types for which the Identity Exten-
sion Lemma (Fact 1) gives z (Clp])y < =z =¢ y. Examples are bool and nat.
In the following we shall use record type notation as a notational convenience.

Definition 1 (Abstract Data Type Specification). An abstract data type
specification SP is a tuple

<<SigSP7 @SP>a Obs)

where Siggp = 3X.Zsp[X], for Tsp[X] = Record(f1:T1, --. , fu:Tk),
and where Ogp(u) = IX. I Tsp[X] . u = (packXr) A Psp[X,1].
If Osp(u) is derivable, then u is said to be a realisation of SP.

Example 1. For example Stack Z ((Sigg,ock, Ostack), {nat}), where
SigStack = HX'TStGCk[XL
Tstack[X] = Record(empty: X, push:nat x X — X, pop: X — X, top: X — nat),
Ostack (1) = IX.Fr: Tspack[X] - u = (packX1) A
Vz:nat,s: X . r.pop(z.push(z,s)) =s A
Vz:nat,s: X . r.top(z.push(z, s)) = = o
We reserve €[X] for the function-profile part of abstract data types 3X.%[X].
For brevity, in this paper we do not consider parameterised specifications and
so assume X to be the only free type variable in Z[X].

The notion of specification of Def. 1 resembles that of [22]. However, as we
are about to see, the important difference is that here equality of data-type
inhabitants is inherently behavioural, and implementation is up to observational
equivalence. In analogy to the meta-level notion in [25], we define observational
equivalence in terms of observable computations in the logic as follows.

Definition 2 (Observational Equivalence (ObsEq)). Define observational
equivalence ObsEq w.r.t. Obs in the logic by

ObsEq Z (u:3X.F[X],v:3X.Z[X]).
(34, B.3a:%[A],b:%[B] . u = (packAa) A v = (packBb) A
Nceops VIVX(T[X] = C) . (fAa) = (fBb))

The first result is essential to understanding the notion of specification in Def. 1.
It is a syntactic counterpart to a semantic result in [25, 26].

Theorem 3 ([12]). Suppose ((IX.Z[X], O), Obs) is an abstract data type speci-
fication such that T[X] only contains first-order function profiles. Then, assum-
ing PARAM, equality at existential type is derivably equivalent to observational
equivalence, i.e. the following is derivable in the logic.

Vu,v:IX.Z[X] . u =3x gxjv ¢ u ObsEqu

Proof: This follows from Fact 2 and Theorem 4 below. |

Theorem 4 ([12]). Let 3X.%[X] be as in Theorem 3. Then, assuming PARAM,
the existence of a simulation relation is derivably equivalent to observational
equivalence, i.e. the following is derivable.

VA, BNa:%[A],6:X[B] .
JRCAXB . a(Z[R))b & Accop, VVX.(Z[X] = CO) . (fAa) = (fBb)

Proof: =»: This follows from PARAM.

<: We must exhibit an R such that a(%[R])b. Semantically, [25,26, 39] relate
elements iff they are denotable by some common term. We mimic this: For R
give Dfnbl £ (a: A, b: B).(3f:VX.(3[X] = X).(fAa) =a A (fBb) =b). O

Given Theorem 3, ©gp(u) of Def. 1 expresses “u is observationally equivalent to
a package (packXy) that satisfies the axioms $sp” . Hence specification according
to Def. 1 is up to observational equivalence.

Notice that there is nothing hindering having free variables in an observable
computation f:VX.(T[X] — C). Importantly, though, these free variables can
not be of the existentially bound type.

Example 2 ([15]). Consider specification Set = ((Sigse;, Oset), {bool, nat}), for
Sigse = IX TsuX],
Tset[X] = Record(empty: X, add: natx X —X, remove: natx X —X, in: natx X —bool),
Oser(u) = IX A Tset[X] - u = (packXy) A
Va:nat,s: X . r.add(z,r.add(z, s)) = r.add(z,s) A
Vz,y:nat,s: X . p.add(z, r.add(y, s)) = r.add(y,r.add(z, s)) A
Vax:nat . r.in(z,r.empty) = false A
Vz,y:nat,s: X . r.in(z,r.add(y, s)) = if £ =na y then true else r.in(z,s) A
Vz:nat,s: X . p.in(z,z.remove(z, s)) = false

Consider the data type LI = (pack list(nat) [): Sigs,;, where [.empty gives the
empty list, [.add adds a given element to the end of a list only if the element does
not occur in the list, Lin is the occurrence function, and [.remove removes the first
occurrence of a given element. Typing allows users of LI to only build lists using
[.empty and [.add, and on such lists the efficient [.remove gives the intended result.
Crucially, any closed observation f:VX.(Tset[X] = C), C € Obs can only refer
to lists built using [.empty and [.add. For example, in the observable computation
AX Ap:Tse[X] - x.in(z, r.remove(z, g)), where g is a term of the bound type X,
the typing rules insist that g can only be of the form p.add(- - - x.add(x.empty) - - -)
and not a free variable. This implies through Theorem 3 that LI is a realisation
of Set according to Def. 1.

In the world of algebraic specification, there is no formal restriction on the
set In of so-called input-sorts. Thus, if one chooses the set of input sorts to
be In = {set,bool,nat}, then in(z,remove(z,s)) where s is a variable, is an
observable computation. This computation might give true, since s ranges over
all lists. In algebraic specification one has to explicitly restrict input sorts to not
include the abstract sort, in this case set, when defining observational equivalence
[36], whereas the type-theoretic formalism deals with this automatically. o

The idea of specification refinement up to observational equivalence can now
be expressed straight-forwardly by simply using the notion of refinement in [22].

Definition 3 (Type Theory Specification Refinement). A specification
SP' is a refinement of specification SP, via constructor F: Siggp — Sigsp if

Yu: Siggpr - Ogpr(u) = Ogp(Fu)

is derivable. We write SP ~> SP' for this fact.

The notion of constructor F': Siggpr — Siggp in Def. 3 is based on the notion
of parameterised program [10]. Given a program P that is a realisation of SP’,
the instantiation F'(P) is then a realisation of SP. Constructors correspond to
refinement maps in [22]. It is evident that the refinement relation of Def. 3 is in
a sense transitive, i.e. we have vertical composability [11]:

SP~» SP' and SP'~» SP" = SP2,SP"

FoF!

where F o F' & \u: Siggpi.F(F'u). In terms of algebraic-specification, any con-
structor F: Siggp: — Siggp is by Theorem 3 inherently stable under parametric-
ity: Congruence gives Yu,v: Siggp: . u =sig,,, v = F(u) =sig,, F(v). And
equality at existential type is of course observational equivalence.

Relating data types by simulation relations is often called data refinement.
There are thus two refinement dimensions; one concerning specifications, and
within each stage of this refinement process, a second dimension concerning ob-
servational equivalence, i.e. simulation relations, i.e. data refinement. At first
order, theorems 3 and 4 give the essential property that the existence of simula-
tion relations is transitive, but we can actually give a more constructive result:

Theorem 5 (Composability of Simulation Relations). Suppose T[X] only
contains first-order function profiles. Then we can derive

VA,B,G,RCAxB,SCBxG,a:%[A],b:%[B], :%[G].
a(Z[R])b A b(Z[S])g = a(Z[SoR])g

4 Higher Order

If T[X] has higher-order function profiles, Theorem 4 fails due to Dfnbl not
extending to a logical relation. Theorem 5 fails as well, and indeed we cannot
even derive that the existence of simulation relations is transitive.

The solution we present here is based on an alternative notion of simu-
lation relation, and is motivated as follows. Consider the higher-order signa-
ture 3X.Record(f: (X — X) — nat,g: X — X). One requirement for an
R C AXx B to be respected in the standard sense by two implementations a
and b, is that V6: A - AVy: B = B . (R — R)y = a.f(6) =nat b.f(7).
But since f is defined within a package, f should be specific to that pack-
age, and f’s behaviour on elements outside the package should be irrelevant.
Therefore the proof obligation should not have to consider the behaviour of

a.f and b.f on arbitrary operators 6: A — A and v: B — B as long as their
behaviour satisfies the requirement for operators defined in terms of a.g and
b.g and operators of globally accessible types. This view is partly what the type
system promotes through existential types: Operationally, the only way two con-
crete data types (packAa) and (packBb) can be used is in clients of the form
AX Ar: Record(f: (X — X) — nat,g: X — X) . t. Such a client can incite the
application of a.f and b.f to a.g and b.g resp., but not to arbitrary §: A — A and
v: B — B. Existential types therefore provide an abstraction barrier to which
the standard definition of type relations is in a certain sense oblivious, and we
suggest altering the relational proof criteria accordingly.

As before ¥[X] denotes the body of an abstract data type 3X.%[X], now
possibly with higher-order and polymorphic profiles. We shall assume that

adt: ¥[X] = Record(f1:T1[X],..., fx:Tk[X]), where each f;: T;[X] is in uncur-
ried form, é.e. T;[X] is of the form T} [X] x - -+ x Ty, [X] = T¢,[X], where
T.;[X] is not an arrow type. If T,,[X] is a universal type, then T,[X] € Obs.

4.1 The Alternative Simulation Relation

For brevity we will abuse vector notation. For a k-ary vector Y, we write e.g.
VY for the string VY;.VY5. ... VY, and similarly for AY . If ¥ = 0 then the above
all denote the empty string. The first components of Y are denoted by Y|;.

Definition 4 (Data Type Relation). For ¥[X], for k-ary Y, l-ary, | > k,
E,F,pCExF, A, B, RCAxB, a:%[A], b: ¥[B], we define the data type
relation Ulp, R]* inductively by

U=X :Ulp,R* £ R

U=Y, :Ulp, R < p;

U=VX'U[Y,X' X]:Ulp,R* £

Y(Eit1, Fi1, pro1 C B X Fiy1) (U' [, pr4a, RI*)
U=U"-U" :Ulp, R]* £
(g:U'|E, Al —» U"|E, A], h:U'[F,B] - U"[F,B)) . V=:U'[E, A],Vy:U'[F, B] .
(z U'lp, RI*y A Dfablgyy xi(z,9)) = (92) U"[p, R]* (hy))

where

def

Dfnbly;, [v,X] (z,9)
Af:VY VX. (R X] > U'[Y,X]) . (fE|rAa)=z AN (fF|xBb) =y

We usually omit the type subscript to the Dfnbl* clause.

The essence of Def. 4 is that the arrow type relation is weakened with the Dfnbl*
clause. This clause is an extension of the relation exhibited for the proof of
Theorem 4. We have conveniently:

Lemma 6. For S[X] satisfying adt, we can derive

a(T[R]*)b & Ni<i<k a.f; (Ti[R]*) b.f;

We also want the data type relation of Def. 4 to retain the property of being the
equality over types in Obs. This is not derivable, but since Obs contains only
inductive types, we get a semantic justification for this property.

Lemma 7. With respect to the parametric PER-model of [3] it is sound to assert
the following axiom schema for C' € Obs.

IDENT: Vz,y:C .z =cy < z(Clp]*)y

Now with the alternative notion of simulation relation ¥[R]* obtained from
Def. 4, we obtain variants of Theorem 4 valid also for higher-order function pro-
files (theorems 9 and 15). However, this comes at a price, since we here choose
not to alter the parametricity axiom schema. Consequently, we loose proof power
when considering the alternative simulation relation in universal type relations,
and we can no longer rely directly on parametricity, as in Lemma 4, when de-
riving observational equivalence from the existence of a simulation relation.

4.2 Special Parametricity

Our solutions to this is to validate semantically special instances of alternative
parametricity sufficient to reinstate the necessary proof power.

The special instances come in two variants, both based on the notion of
closed observations. In shifting attention from general observable computations
as proclaimed in Def. 2, to a notion of closed observations, we must now specify
the collection In of input types in observations. (Compare this to the discussion
around Example 2.) A sensible choice is to regard all types in Obs as input types,
and henceforth In is assumed to contain this.

In the following we write for instance (VX.Z[X]* — U[X]*), meaning the
relation V(A, B, RC Ax B)(%[R]* — U[R]*).

Lemma 8. For [X] adhering to adt, for f:VX.(T[X] — U[X]), for any U[X],
and where free term variables of f are of types in In, we can derive

f (VXZ[X = UX]) f

By Lemma 8, the following axiom schema is sound w.r.t. any model whose inter-
pretations of all f:VX.(¥[X] — U[X]) are denotable by terms whose only free
variables are of types in In. For ¥[X] adhering to adt, for any U[X],

spPArRAM: Vf:VX.(R[X] - U[X]) . f VXZI[X]* > U[X]") f
And then using SPPARAM we get a general version of Theorem 4:

Theorem 9. Given SPPARAM, for ¥[X]| adhering to adt, the existence of a
stmulation relation coincides with observational equivalence, i.e. we can derive

VA, BNVa:T[A],b:3[B] .
JRCAXB . aZ[R]N)b & Apcop, V:VX.(Z[X] = C) . (fAa) = (fBD)

Proof: =: This follows from SPPARAM and IDENT.

<: We have to show that 3R C Ax B . a(%[R]*)b is derivable. We ex-
hibit R < (a: A,b: B).(Dfnbl*(a,b)). Due to the assumption adt, it suffices
by Lemma 6 to show for every component g:U — V in T[X] the derivability of

Vz:U[A,Vy:U[B] . (z U[R]*y A Dfnbl*(z,y)) = (a.gz) V[R]* (b.gy)

where V[X] is either some C' € Obs, whence we recall IDENT, or the variable X.
Now Dfnbl*(z,y) gives fy:VX.(T[X] = U[X]) . (fuAa) =2 A (fuBb) =y.
Let f £ AX \:%[X] . (r-9(fuX7))
V[X] = C € Obs: We may show that a.gz =¢ b.gy is derivable. The as-
sumption gives (fAa) =¢ (fBb) which by S-reduction gives the desired result.
VIX] = X: We must derive 3f: VX.(3[X] — V[X]) . (fAa) = (a.gz) A
(fBb) = (b.gy). For this we display f above. O

We also regain not only transitivity of the existence of simulation relations, but
also composability of simulation relations. This relates the syntactic level to
recent and on-going work on the semantic level, namely the pre-logical relations
of [17,18], the laz logical relations of [32,21], and the L-relations of [20].

Theorem 10 (Composability of Simulation Relations). Given SPPARAM,
for T[X] adhering to adt, we can derive

VA,B,G,RC AxB,SCBxG,a:%[A], b:3[B], g: ¥[G].
a(T[R])b A b(E[S[)g = a(T[So R])g

Proof: Assuming a(Z[R]*)b A b(Z[S]*)g, the goal is to derive for every compo-
nent g:U — V in T[X]

Vz:U[A],V2:U[G] . (z U[SoR]* = A Dfnbl*(z,z)) = (a.gz) V[SoR]* (g.92)

By Dfnbl*(z, z) we construct f £ AX\:%[X] . (r.9(fuXy)).

V[X] = C € Obs: By assumption and Theorem 9 (fAa) = (fBb) = (fGy),
and a.gz = (fAa) and (fGg) =g.92

V[X] = X: We must show 3b:U[B] . (a.gz) Rb A b S (g.92). Exhibit
fBb = (b.g(fuBb)) for b. To show e.g. (a.gx) R (b.g(fuBb)) it suffices by
assumption to show z U[R]* (fuBb) A Dfnbl*(z, (fuBb)). But = = (fy Aa), so
Dfnbl*(z, (fu Bb)) is trivial and (fuAa) U[R]* (fuBb) follows by sSPPARAM. O

As far as we know, it is not known whether or not the parametric PER-model
of [3] satisfies SPPARAM, even for U[X] = C, C' € Obs. We can however validate
SPPARAM in the polymorphic extensionally collapsed syntactic models of [8] or
the parametric term models of [14].

4.3 Sticking to the Parametric PER-Model

However, in this paper our preference is to continue to seek validation under the
non-syntactic parametric PER-model of [3]. Semantically, observational equiva-
lence is usually defined w.r.t. contexts that when filled, are closed terms. Thus a

reasonable alternative definition in the logic of observational equivalence is the
following.

Definition 5 (Closed Context Observational Equivalence (ObsEqC)). De-
fine closed context observational equivalence ObsEqC w.r.t. Obs in the logic by

ObsEqC & (u:3X.F[X],v:IX.Z[X]).
(34, B3a:X[A],6:X[B] . u = (packAa) A v = (packBb) A
Acecows VVX(Z[X] = C) . Closedpn(f) = (fAa) = (fBb))

where Closed . (f) is derivable iff '™ F f.

The idea is that closedness is qualified by a given context I''™ so as to allow for
variables of input types in observable computations. Note that this was auto-
matically taken care of in the notion of observational computations of Def 2.

The task is now to determine what the predicate Closedm (f) should be. This
is intractable in the existing logic, but we can easily circumvent this problem
by introducing Closed;» as a family of new basic predicates together with a
predefined semantics as follows.

Definition 6. The logical language is extended with families of basic predicates
Closed(T') ranging over types T, and Closed(t,T) ranging over terms t: T,
both relative to a given environment I'. This new syntax is given a predefined
semantics as follows. For any type I' = T, term I' - t: T, and evaluation vy € [I'],

Er,, Closed +(T) & exists some type '+ A, some 4 € [T)
st [[FT], =[['F Al

=r, Closed(t,T) & exists some type I'HA termI'FaA, some ¥ e [[f“]]
st. ['FT), =[I"F Ay and [I"F ¢:T], = [I'F a: A]5

Lemma 11. It is easily seen that the following axiom schemata are sound.

tr Closedz x(X)

Fr Closed(U) A Closed; (V) = Closedp(U = V)
Fr Closedy. (U) = Closed(VX.U)

Fr Closed;. 1/ (z,U)

Fp Closeds ., (t,V) = Closeds(Az:Ut,U = V)

Fr Closed;(9,U = V) A Closed(t,U) = Closed;(gt,V)
Fr Closeds (t,U) = Closed(AX.t,VX.U)

)

Fr Closedq(f,VX.U[X]) A Closedz(A) = Closed;(fA,U[A])

© % RSIT™ L~

Fr Closed(T) = Closedy, (T), rcr
Fr Closeds(t,T) = Closedp, (¢,7), I'CI"

~
S

We will usually omit the type argument in the term family of Closed. Intuitively,
we should now be able to use Lemma 8 to show the necessary special parametric-
ity instance. However, to make the induction spiral work, we have to strengthen
lemmas 8 and 6, by incorporating Closed into the Dfnbl* clause.

Definition 7 (Data Type Relation by Closed Observers). Define the data

type relation by closed observers U[p, R|¢ as the data type relation U[p, R]* of
Def. 4, but where we use

DfnblCyy xy(x,y) £ 3f:VY VX.(T[X] - U[Y, X)) .
Closedrn(f) A (fE|gAa)=2 A (fF|yBb)=y

in place of Dfnblyyy x, for ' = 20:Us, ..., 2 Up, Ui €In, 1 < i <m.
Lemma 12. For T[X] satisfying adt, we have the derivability of

a(F[RIQ)b & Aicick o.fi (T[R]S) b.f;
Lemma 13. With respect to the parametric PER-model of [3] it is sound to
assert the following axiom schema for C' € Obs.

IDENTC: Vz,y:C .z =cy < z(Clplt)y

Lemma 14. For %[X] adhering to adt, for f:VX.(R[X] — U[X]), for any
U[X], and where free term variables of f are of types in In, we can derive

f (YXSX]e = UXTo) f

By Lemma 14 it is sound w.r.t. the parametric PER-model to postulate the
following axiom schema. For T[X] adhering to adt , for ' = z1: Uy, ..., 2 Uy,
U; € In, 1 <i < m, for any U[X],

CsPPARAM: V/:VX.(T[X] = U[X]) . Closed . (f) = f (VX.S[X]s — UIX]) f

We can now show the higher-order polymorphic generalisation of Theorem 4 now
validated w.r.t. the parametric PER-model:

Theorem 15. Extending the language with the predicates Closed of Def. 6, given
CsPPARAM, for %[X] adhering to adt, for '™ = z1:Uy, ..., 20 Up, U; € In,
1 <i < m, the following is derivable.

VA, BVYa:%[A], 0:X[B] .
JRCAXB . a(%[Rlg)b &
Acecows VEVX(Z[X] = C) . Closedrn(f) = (fAa)=(fBb)

Proof: =: This follows from CsPPARAM and IDENTC.

<: Along the lines of the proof of Theorem 9, and using Lemma 11 to obtain
Closedrm (f) from Closedrm (frr), and using Lemma 12 and IDENTC in place of
Lemma 6 and IDENT. i

We now get composability validated w.r.t. the parametric PER-model:

Theorem 16 (Composability of Simulation Relations). Given CSPPARAM,
for T[X] adhering to adt, we can derive

VA,B,G,RC AxB,SC BxG,aT[A],b:T[B],g:T[G].
a(Z[R]R)b A b(Z[S])g = a(T[S o R[¢)g

Proof: As for Theorem 10, but using CSPPARAM instead of SPPARAM. O

Finally we retrieve the notions of specification refinement. We have estab-
lished the coincidence of observational equivalence and the existence of a simula-
tion relation at higher order, but in this paper we do not tie the link to equality
at existential type. This is of minor importance because we can simply redefine
our notions in terms of ObsEqC (or ObsEq) instead of equality: The realisation
predicate of Def. 1 then reads Ogp(u) = 3X.Ir:Tsp[X] . u ObsEqC (packXx) A
@sp[X,r]. Note that we now have to show the stability of constructors explicitly.

5 Final Remarks and Discussion

This paper has addressed specification refinement up to observational equiva-
lence with System F using Plotkin and Abadi’s logic for parametric polymor-
phism. At first order, specification refinement up to observational equivalence
can be defined in the logic using Luo’s formalism, because equality at existential
type coincides (Theorem 3) with observational equivalence ObsEq (Def 2).

At higher order, i.e. when the data type signature has higher-order function
types, we ostensibly loose the correspondence in the logic between observational
equivalence and the existence of a simulation relation. We argued that at higher-
order the usual notion of simulation relation is too strict, since it for function
types requires that one consider arbitrary arguments, which might be other than
those actually accessible in computations.

Thus an alternative simulation relation ¥[R]* was proposed based on the
Dfnbl* clause and data type relation (Def. 4). Then a correspondence in the
logic between observational equivalence and the existence of this alternative
simulation relation is re-established in any model in which the axiom schema
SPPARAM is valid (Theorem 9). For the parametric PER-model, we also achieve
the correspondence (Theorem 15) by extending the logical language with basic
predicates Closed ., defining a second alternative simulation relation T[R]¢, and
validating the axiom schema CSPPARAM w.r.t the parametric PER-model. Fi-
nally, we achieve a simulation relation in the logic that composes at higher-order
(theorems 10 and 16). This relates to on-going work on the semantic level.

The approach taken in this paper is conservative in that we in the outset do
not want to alter either the type theory nor the parametricity axiom schema.
This is motivated by the view that it is the relational proof criteria specifically
for abstract data types that need amending, not the type theory itself. The
parametricity axiom is left alone in order to relate to established models for
relational parametricity. However, there seem to be other interesting approaches
worth looking into. One alternative would be to alter the type system so as
to isolate separate types for use in abstract data types, and then extend the
parametricity axiom schema to deal with these types. A very promising approach
to finding a non-syntactic model satisfying SPPARAM seems to be to work along
the lines of Jung and Tiuryn [19], and define a non-standard Kripke-like model
to validate the logic.

Acknowledgements Thanks to Martin Hofmann, Don Sannella, Furio Honsell,
Gordon Plotkin and Martin Wehr for helpful discussions. Thanks to the referees
for very helpful comments. This research has been supported by EPSRC grant
GR/K63795, and NFR (Norwegian Research Council) grant 110904/41.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 121:9-58, 1993.

D. Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
University of Edinburgh, 1998.

E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35—64, 1990.

. M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural

properties. Theoretical Computer Science, 165:3-55, 1996.

M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifica-
tions. Science of Computer Programming, 25:149-186, 1995.

M. Bidoit, R. Hennicker, and M. Wirsing. Proof systems for structured specifica-
tions with observability operators. Theoretical Computer Sci., 173:393-443, 1997.
C. Bohm and A. Beraducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. The-
oretical Computer Science, 59:85-114, 1988.

M. Cerioli, M. Gogolla, H. Kirchner, B. Krieg-Briickner, Z. Qian, and M. Wolf.
Algebraic System Specification and Development. Survey and Annotated Bibliogra-
phy, 2nd Ed., volume 3 of Monographs of the Bremen Institute of Safe Systems.
Shaker, 1997. 1st edition available in LNCS 501, Springer, 1991.

J.A. Goguen. Parameterized programming. IEEE Transactions on Software Engi-
neering, SE-10(5):528-543, 1984.

J.A. Goguen and R. Burstall. CAT, a system for the structured elaboration of
correct programs from structured specifications. Tech. Rep. CSL-118, SRI Inter-
national, 1980.

J.E. Hannay. Specification refinement with System F. In Proc. CSL’99, volume
1683 of LNCS, pages 530-545, 1999.

J.E. Hannay. Specification refinement with System F, the higher-order case. Sub-
mitted for publication, 2000.

R. Hasegawa. Parametricity of extensionally collapsed term models of polymor-
phism and their categorical properties. In Proc. TACS’91, volume 526 of LNCS,
pages 495-512, 1991.

R. Hennicker. Structured specifications with behavioural operators: Semantics,
proof methods and applications. Habilitationsschrift, LMU, Miinchen, 1997.
C.A.R. Hoare. Proofs of correctness of data representations. Acta Inform., 1:271—
281, 1972.

F. Honsell, J. Longley, D. Sannella, and A. Tarlecki. Constructive data refinement
in typed lambda calculus. In Proc. FOSSACS 2000, LNCS, 2000.

F. Honsell and D. Sannella. Pre-logical relations. In Proc. CSL’99, volume 1683
of LNCS, pages 546-561, 1999.

A. Jung and J. Tiuryn. A new characterization of lambda definability. In Proc. of
TLCA 93, volume 664 of LNCS, pages 245257, 1993.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Y. Kinoshita, P.\W. O’Hearn, A.J. Power, M. Takeyama, and R.D. Tennent. An
axiomatic approach to binary logical relations with applications to data refinement.
In Proc. of TACS’97, volume 1281 of LNCS, pages 191-212, 1997.

Y. Kinoshita and A.J. Power. Data refinement for call-by-value programming
languages. In Proc. CSL’99, volume 1683 of LNCS, pages 562-576, 1999.

Z. Luo. Program specification and data type refinement in type theory. Math.
Struct. in Comp. Sci., 3:333-363, 1993.

Q. Ma and J.C. Reynolds. Types, abstraction and parametric polymorphism, part
2. In Proc. Tth MFPS, volume 598 of LNCS, pages 1-40, 1991.

H. Mairson. Outline of a proof theory of parametricity. In ACM Symposium on
Functional Programming and Computer Architecture, volume 523 of LNCS, pages
313-327, 1991.

J.C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 305-330. Academic Press, 1991.

J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans.
on Programming Languages and Systems, 10(3):470-502, 1988.

N. Mylonakis. Behavioural specifications in type theory. In Recent Trends in Data
Type Spec., 11th WADT, volume 1130 of LNCS, pages 394-408, 1995.

A .M. Pitts. Parametric polymorphism and operational equivalence. In Proc. 2nd
Workshop on Higher Order Operational Techniques in Semantics, volume 10 of
ENTCS. Elsevier, 1997.

A M. Pitts. Existential types: Logical relations and operational equivalence. In
Proc. ICALP’98, volume 1443 of LNCS, pages 309-326, 1998.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. of TLCA
98, volume 664 of LNCS, pages 361-375, 1993.

G.D. Plotkin, A.J. Power, and D. Sannella. A compositional generalisation of
logical relations. Submitted for publication, 2000.

E. Poll and J. Zwanenburg. A logic for abstract data types as existential types. In
Proc. TLCA’99, volume 1581 of LNCS, pages 310-324, 1999.

B. Reus and T. Streicher. Verifying properties of module construction in type
theory. In Proc. MFCS’93, volume 711 of LNCS, pages 660-670, 1993.

J.C. Reynolds. Types, abstraction and parametric polymorphism. Information
Processing, 83:513-523, 1983.

D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150-178, 1987.

D. Sannella and A. Tarlecki. Toward formal development of programs from alge-
braic specifications: Implementations revisited. Acta Inform., 25(3):233-281, 1988.
D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229-269, 1997.

O. Schoett. Data Abstraction and the Correctness of Modular Programming. PhD
thesis, University of Edinburgh, 1986.

T. Streicher and M. Wirsing. Dependent types considered necessary for specifica-
tion languages. In Recent Trends in Data Type Spec., volume 534 of LNCS, pages
323-339, 1990.

J. Underwood. Typing abstract data types. In Recent Trends in Data Type Spec.,
Proc. 10th WADT, volume 906 of LNCS, pages 437-452, 1994.

J. Zwanenburg. Object-Oriented Concepts and Proof Rules: Formalization in Type
Theory and Implementation in Yarrow. PhD thesis, Technische Universiteit Eind-
hoven, 1999.

