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Abstract. Axiomatic criteria are given for the existence of higher-order maps over sub-
objects and quotients. These criteria are applied in showing the soundness of a method for
proving specification refinement up to observational equivalence. This generalises the method
to handle data types with higher-order operations, using standard simulation relations. We
also give a direct setoid-based model satisfying the criteria. The setting is the second-order
polymorphic lambda calculus and the assumption of relational parametricity.

1 Introduction

As a motivating framework for the results in this paper, we use specification refinement. We address
specifications for data types whose operations may be higher order.

A stepwise specification refinement process transforms an abstract specification into one or more
concrete specifications or program modules. If each step is proven correct, the resulting modules will
be correct according to the initial abstract specification. This then describes a software development
technique for producing small-scale certified components. Theoretical aspects to this idea have been
researched thoroughly in the field of algebraic specification, see e.g., [31,6].

When data types have higher-order operations, taking functions as arguments, several things
in the refinement methodology break down. Most well-known perhaps, is the lack of correspond-
ence between observational equivalence and the existence of simulation relations for data types,
together with the lack of composability. The view is that standard notions of simulation relation
are not adequate, and several remedies have been proposed; pre-logical relations [18,17], lax logical
relations [28,20], L-relations [19], and abstraction barrier-observing simulation relations [11,12,13].
The latter, developed for System F in a logic [27] asserting relational parametricity [30], are directly
motivated by the information-hiding mechanism in data types. Relational parametricity is in this
context the logical assertion of the Basic Lemma [25,18] for simulation relations.

In this paper, we address a further issue. A general proof strategy for proving specification
refinement up to observational equivalence is formalised in [4,3]. For data types with first-order
operations, the strategy is expressed in the setting of System F and relational parametricity by
axiomatising the existence of subobjects and quotients [29,36,9,12]. The axioms are sound w.r.t.
the parametric per model of [1] which is a model for the logic in [27]. At higher order, more work is
required, because in order to validate the axioms, one has to find a model which has higher-order
operations over subobjects and quotients. Our solution is the core technical issue of this paper.
First, we use a setoid-based semantics based on work on the syntactic level in [16]. Then we present
general axiomatic criteria for the existence of higher-order functions over subobjects and quotients,
and the setoid model is then an instance of this general schema. We think the axiomatic criteria
are of general interest outside refinement issues. The results also answer the speculation in [36]
about the soundness of similar axioms postulating quotients and subobjects at higher order.

Since simulation relations express observational equivalence, they play an integral part in the
above proof strategy. At higher order, it is still possible to use standard simulation relations,



because the strategy relies on establishing observational equivalence from the existence of simu-
lation relations. In this paper, we exploit this fact and devise the axiomatic criteria for standard
simulation relations. For the strategy to be complete however, one must utilise one of the above
alternative notions of simulation relation, since there may not exist a standard simulation relation
even in the presence of observational equivalence. To this end, abstraction barrier-observing (abo)
simulation relations were used in [10,12], together with abo-relational parametricity, and a special
abo-semantics. That approach does indeed yield higher-order operations over quotients and sub-
objects, but to devise general axiomatic criteria for the existence of higher-order functions over
subobjects and quotients with alternative notions of simulation relations, is ongoing research.

2 Syntax

We review relevant formal aspects. For full accounts, see [2,25,8,27,1].
The second-order lambda-calculus F5, or System F, has abstract syntax

(types) T ==X | (T—T) | (VX.T)
(terms) t ==z | (Az:T.t) | (tt) | (AX.t) | (tT)

where X and x range over type and term variables respectively. This provides polymorphic func-
tionals and encodings of self-iterating inductive types [5], e.g., Nat YVX.X - (X —>X)— X, with
constructors, destructors and conditionals. Products U; X --- x U, encode as inductive types.
We use the logic for parametric polymorphism due to [27]; a second-order logic augmented with
relation symbols, relation definition, and the axiomatic assertion of relational parametricity. See

also [22,34]. Formulae now include relational statements as basic predicates and quantifiables,
pu=(t=au)|tRu| -+ |VRCAXB.¢|3IRCAXB . ¢
where R ranges over relation variables. Relation definition is accommodated by the syntax,
I'>(x:Ay:B).¢ CAXB

where ¢ is a formula. For example eq, = (z:A4,y: A).(x =4 y).

We write a[¢] to indicate possible occurrences of variable ¢ in type, term or formula «, and
write aff] for the substitution «[3/€], following the appropriate rules regarding capture.

We get the arrow-type relation p—p’' C (A— A’)x(B— B’) from pC Ax B and p' C A’x B’ by

(p—p) 2 (ftA— A g:B—DB') . (Ve:AVy:B . (zpy = (fz)p'(gv)))

The universal-type relation Y(Y,Z,R CY x Z)p[R] < (VY.A[]Y])x (VZ.B[Z]) is defined from
p|R]C A[Y]x B[Z], where Y, Z and RCY X Z are free, by

V(Y. Z,RCY x Z)p[R] “ (y:VY.A[Y], 2:YZ.B[Z]) . (WYNZNRCY xZ . (yY)p[R)(22)))
For n-ary X, A, B, p, where p; C A; X B;, we get T[p] CT[A]xT[B], the action of T[X] on p, by
T[X] = X; : T

T[X] = T'[X] - T"[X] : T|p]
T[X] =VX'.T'[X,X']: T|p|

Pi
Pl —=T"1p]
Y(Y,Z,RCY x Z)T'[p, R]

XX

The proof system is intuitionistic natural deduction, augmented with inference rules for rela-
tion symbols in the obvious way. There are standard axioms for equational reasoning implying
extensionality for arrow and universal types.



Parametric polymorphism prompts all instances of a polymorphic functional to exhibit a uni-
form behaviour [33,1,30]. We adopt relational parametricity [30,21]; a polymorphic functional in-
stantiated at two related domains, should give related instances. This is asserted by the schema

PARAM : VZ.Yu:(VX.U[X, Z]) . u (VX.U[X,eqy]) u

The logic with PARAM is sound; we have the parametric per-model of [1] and the syntactic models
of [14]. Relational parametricity yields the fundamental Identity Fxtension Lemma:

VZ Yu,v:T[Z] . (uTleqz] v & (u=r(z v))

Constructs such as products, sums, initial and final (co-)algebras are encodable in System F [5].
With PARAM, these become provably universal constructions.

3 Specification Refinement

A specification determines a collection of data types realising the specification. A signature provides
the desired namespace, and a set of formulae give properties to be fullfilled. Depending on refine-
ment stage, these range from abstract to concrete implementational. A data type consists of a
data representation and operations. In the logic, these are respectively a type A, and a term
a: T[A], where T[X] plays the role of a signature. For instance, using a labeled product nota-
tion, TsTACKy, [X] o (empty: X, push:Nat— X — X, pop: X — X, top: X — Nat). Each f;: T;[X] is
a profile of the signature. Abstract properties are e.g., Vo : Nat,s : X . r.pop(r.pushz s) = s
A p.top(z.pushz s) = z. A data type realising this stack specification, consists e.g., of inductive type
Listnat and [, where l.empty = nil, l.push = cons, [.pop = Al: Listnat.(cond Listnat (isnil 1) nil (cdr1)),
and l.top = Al : Listnat.(cond Nat (isnil 1) 0 (carl)). For encapsulation, data types would be given as
packages of existential type, but our technical results are on the component level, so we omit this.
To each refinement stage, a set Obs of observable types is associated, containing inductive types,
and also parameters. Two data types are interchangeable if it makes no difference which one is used
in an observable computation. For example, an observable computation on natural-number stacks
could be AX . A\r:Tstacky, [X] - r-top(r.pushn r.empty). Thus, for A, B, a:T[A],b:T[B], Obs,

Observational Equivalence: A, Vf:VX.(T'[X]—=D) . (fAa) = (fBb)

Observational equivalence can be hard to prove. A more manageable criterion for interchange-
ability lies in the concept of data refinement [15,7] and the use of relations to show representation
independence [23,32,30], leading to logical relations for lambda calculus [24,25,35,26]. In the re-
lational logic of [27] one uses the action of types on relations to express the above ideas. Two
data types are related by a simulation relation if there exists a relation R on their respective data
representations that is preserved by their corresponding operations:

Existence of Simulation Relation: IRCAx B . a(T[R])b
With relational parametricity we get a connection to observational equivalence.

Theorem 1. The following is derivable in the logic using PARAM.

VA, BN¥a:T[A],b:T[B] . 3BRC Ax B . a(T[R])b
= Npeops VW VX(T[X]—=D) . (fAa) = (fBb)

Proof: This follows from the PARAM-instance VY.Vf:VX.(T[X]—=Y) . f(VX.T[X]—eqy)f. O

Consider the assumption that T[X] has ouly first-order function profiles:



FADTopst Every profile T;[X] = T;1[X] — - — T, [X] — T¢,[X] of T[X] is first order, and such
that T, [X] is either X or some D € Obs.

Assuming FADT ops for T[X], Theorem 1 becomes a two-way implication [11,12].

For data types with higher-order operations, we only have Theorem 1 in general. More apt rela-
tional notions for explaining interchangeability of data types have been found; prelogical relations
[18,17], lax logical relations and L-relations [28,20,19], and abo-simulation relations [11,12,13].

For specification refinement one is interested in establishing observational equivalence. For this
it suffices to find a simulation relation and then use Theorem 1. The problem at higher order is
that there might not exist a simulation relation, even in the presence of observational equivalence.

Nonetheless, it is in many cases possible to find simulation relations at higher order. It is
worthwhile to utilise this, since it is harder to deal with the alternative notions in practice; prelogical
relations involve an infinite family of relations, abo-relations involve definability. Therefore, this
paper establishes a proof strategy for refinement at higher order using standard simulation relations.

The strategy for proving observational refinement formalised by Bidoit et al [4,3], expresses
observational abstraction in terms of a congruence. Using this congruence, one quotients over the
data representation. Additionally, it may be necessary to restrict the data representation before
quotienting, and in that case one also needs to construct subobjects. For example, sets might be
implemented using lists for data representation, but the operations may be optimised, and otherwise
fail, by assuming sorted lists. Since lists represent the same set up to duplication of elements, the
list algebra is quotiented by a partial congruence that equates lists modulo duplicates, and which
is defined only on sorted lists. This strategy is implemented in the type-theoretical setting by
extending the logic with the following axiom schemata. They are tailored specifically for refinement.

Definition 1 (Existence of Subobjects (SuB) [9]).

SUB: VX .Vi:T[X].VRCXxX . (T[Rlt) N &t T[Pr]ly) =
35 .3s:T[S].3R'CSxS.Imono: S— X .
Vs:S . s R s A
Vs,s':8 . s R's’ & (monos) R (monos’) A
t (T[(z:X,s:8) . (x =x (monos))]) s

def

where Pp = (2:X,y:X) . (x =x y Az R x). Intuitively, this essentially states that for any data
type (X, 1), if R is a relation that is compatible with the signature T'[X], then there exists a data
type (S, s), a relation R’, and a monomorphism from (S, s) to (X, ), such that R’ is total on (S, s)
and a restriction of R via mono, and such that (S,s) is a subalgebra of (X, ).

Definition 2 (Existence of Quotients (QuoT) [29]).

QuoT : VX .Vi:T[X].VRCXxX . (rT[R] tAequiv(R)) =
3Q . 3q:T[Q] . Fepi: X —Q .
Ve,y:X . xRy & (epix) =q (epiy) A
Vg:Q.3x:X . g =¢ (epiz) A
r (T[(z:X,q:Q).((epiz) =q 9)]) q

where equiv(R) specifies R to be an equivalence relation.

Intuitively, this states that for any data type (X,r), if R is an equivalence relation on (X, ), then
there exists a data type (Q,q) and an epimorphism from (X,r) to (@, q), such that (Q,q) is a
quotient algebra of (X, ).

Theorem 2. SUB, QUOT hold in the parametric per-model of [1]|, under FADTops.

The proof of this theorem [12] relies on the model’s ability to provide subobjects and quotients,
and maps over these for any given morphism.



4 Higher-Order Quotient and Subobject Maps

In the per-model, first-order maps over subobjects and quotients are constructed from a given map
by reusing the realiser. This does not work at higher order, since for functional arguments we have
to contravariantly do this in reverse.

Consider e.g., sequences over N, whose encodings in N we write as the sequences themselves.
Consider a function rfi on N that given a sequence, returns the sequence with the first item
repeated. Define the pers Lfist, Bag, and Set by

n List m < n and m encode the same list
n Bagm < n and m encode the same list, modulo permutation
n Set m < n and m encode the same list, modulo permutation and repetition

Here, rfi is a realiser for a map f5:Set— Set, but is not a realiser for any map in Bag— Bag, i.e.,
we have rfi (Set— Set) rfi but not rfi (Bag— Bag) rfi.

In fact, the general problem is that there may not be a suitable function at all, let alone one
sharing the same realiser.

In the following we sketch a setoid model based on ideas in [16]. This allows the construction
of subobject and quotient maps by reusing realisers, also at higher order. Then we give axiomatic
criteria for the construction of subobject and quotient maps at higher order. The setoid model
fulfils these criteria.

We will work under the following reasonable assumption.

HADT opst Every profile T;[X]| = T;1[X] — -+ — T3, [X] — T¢,[X] of signature T'[X] is such that
T; ;[ X] has no occurrences of universal types other than those in Obs, and T¢,[X] is either X
or some D € Obs.

4.1 A Setoid Model

Types are now interpreted as setoids, i.e., pairs (A, ~ 4), consisting of a per A and a per ~4
on A, i.e., a saturated per on Dom(A) x Dom(A), giving the desired equality on the interpreted
type. Given setoids (A, ~4) and (B, ~g), we form a setoid (A, ~4) — (B,~5) £ (A — B,~4_5),
where ~ 4,5 is the saturated relation ~4 —~g C Dom(A — B)x Dom(A — B). Saturation of ~
is the condition (m An A n ~ n’ A n Bm') = m ~ m.

A relation R between setoids (A, ~_4) and (B,~pg) is now given by a saturated relation on
Dom(~_4) x Dom(~g). Complex relations are defined as one would expect. The setoid definition
of subobjects and quotients go as follows.

Definition 3 (Subobject Setoid). Let P be a predicate on setoid (X,~x), meaning that P
fulfils the unary saturation condition P(x) Ax ~x y = P(y). Define the relation, also denoted
P, on (X, ~x) byx Py& a~xyAP(x). Then the subobject Rp((X, ~x)) of (X, ~x) restricted
on P, is defined by (X, P).

Definition 4 (Quotient Setoid). Let R be a equivalence relation on setoid (X, ~x). Define the
quotient (X, ~x)/R of (X¥,~x) wr.t. R by (¥, R).

Theorem 3. Suppose T[X] adheres to HADTops. Then SUB and QUOT hold in the setoid model
indicated above.

With setoids we may construct quotient maps from a given map and vice versa by reusing real-
isers, since the original domain inhabitation is preserved by subobjects and quotients. However,
Theorem 3 is given as a corollary to a general result of the axiomatic criteria in the next section.



4.2 Axiomatic Criteria for Subobject and Quotient Maps

We now develop a general axiomatic scheme for obtaining subobject and quotient maps. The setoid
approach in the previous section is an instance of this scheme.

For quotients, the general problem is that for a given map f : X/R — X/R, there need not
exist a map ¢g: X — X such that for all z: X, [g(x)] = f([z]), i.e., epi(g(x)) = f(epi(x)), where
epi : X — X /R maps an element to its equivalence class. This is the case for the per-model. The
axiom of choice (AC) gives such a map g, because then epi has an inverse, and the desired g is
given by A\z: X.epi~'(fepi(x)). AC does not hold in the per-model, nor does it hold in the setoid
model of the previous section. In this section, we develop both a weaker condition sufficient to give
higher-order quotient maps, and a condition for obtaining higher-order subobject maps.

According to HADT oy, we consider arrow types over types Uy, Uy, . .., where any U; is either X
or some D € Obs. For this, define families U? by

Ul =10
Ui+1 — (Uz)_> i1

For example, U% = ((Uy— Uy) — Us).

Quotient Maps For U = U", define Q(U)? for any equivalence relation R,

QW) =U
Q(U)l = Uo/R—>U1
QU)T = (QU) ™ =Ui/R)—=Uiy1,1 <i<n-—1

where, U; /R = X/R,if U, is X,and U; /R = D, if U; is D € Obs, e.g., Q(U?)? = ((Uy— U1 /R) — Us).
In any Q(U)?, quotients U; /R occur only negatively.

Given Q(U)", we get derived relations, functions and types by the substitution operators
QU)™E]T and Q(U)™[€]~, according to ¢ being a relation, function or type; Q(U)™[£]" substitutes
¢ for positive occurrences of X in Q(U)™, and Q(U)"[£]~ substitutes £ for every (negative) occur-
rence of X/R in Q(U)™. Relational and functional identities are then denoted by their domains.

Thus for U = U™ and the equivalence relation R, we can define the relation

R(U)" = Q)"[R]*

In any R(U)?, R occurs positively, and identities U; /R occur only negatively. The point of all this
is that, if R is an equivalence relation on X, then R(U)® is an equivalence relation on Q(U)®. This
means that we may form the quotient Q(U)*/R(U)!. For example, consider U = U! = X — X.
Then Q(U)! = X/R— X and R(U)! = X/R — R, and X/R — R is an equivalence relation on
X/R— X. In contrast, R— X /R is not necessarily an equivalence relation on X — X/R. However,
(R— X/R) — R is an equivalence relation on (X — X/R) — X, that is, R(U?)? is an equivalence
relation on Q(U?)?, for U? = (X - X)— X.

Now consider the relation graph(epi) < (z : X,q : X/R) . ((epiz) =x/r q) where the map
epi : X — X/R maps elements to their R-equivalence class. A sufficient condition for obtaining
higher-order functions over quotients is now

Quot-Arr: For R an equivalence relation on X, and any given U = U™,

QU)"/RU)" = QU)"[X/R|"

where the isomorphism iso: Q(U)"[X/R|T — Q(U)"™ /R(U)™ is such that any f in the equivalence
class iso(f3) is such that f (Q(U)"[graph(epi)]™) B.



Note that Quot-Arr is not an extension to our logic; we do not have quotient types. Rather,
Quot-Arr is a condition to check in any relevant model, in which the terminology concerning
quotients is well defined. In [16], guot-4rr is expressible in the logic, and Quot-Arr is shown
strictly weaker than the axiom of choice.

Let us exemplify why guot-4rr suffices. The challenge of this paper is higher-order operations
in data types, and then the soundness of QUOT and SUB where T[X] has higher-order operation
profiles. To illustrate the use of guot-Arr in semantically validating QUOT, suppose T[X] has
a profile g: (X — X) — X and that R C X x X is an equivalence relation. Consider now any
r:T[X]. Assuming ¢ (T[R]) r, we must produce a q: T[X/R], such that ¢ (T'[graph(epi)]) q. For
r.g: (X — X)— X, this involves finding a q.¢9:(X/R— X/R)— X /R, such that

r.g ((graph(epi) — graph(epi)) — graph(epi)) 9.9 (1)
Consider now the following instance of Quot-A4rr.
Quot-Arr;: (X/R—X)/(X/R—R) = (X/R— X/R)
With guot-4rr; we can construct the following commuting diagram.
epi— X epi

(X/R— X) x-x)& . x

X/R

epiX/RHX

(X/R—X)/[(X/R—R)

A

iso

X/R—X/R

where epi— X maps any f: X/R— X to Az:X.f(epix), and iso is so that any f in the equivalence
class iso((3) satisfies f (eqy/z — graph(epi)) 8. The desired q.g:(X/R— X/R)— X/R is given by

lift(epior.g o (epi— X)) oiso

Here lift is the operation that lifts any v: Z —Y to lift(y): Z/~—Y, given an equivalence relation ~
on Z, provided that v satisfies x ~y = ~x =y for all z,y:Z. Then, lift(7) is the map satisfying
lift (y)oepi = ~y. To be able to lift epior.go(epi— X) in this way, we must check that epiog.go(epi— X)
satisfics f (eqy/n — R) [ = (epior.go (epi— X))(f) —x/n (€pior.g0 (epi — X))(f"), for all
[ f(X/R— X). Assuming f (eqy,p — R) f', we get (epi— X)(f) (R— R) (epi— X)(f’). Then
by ¢ T[R] r, the result follows. This warrants the construction of ¢.g.

To show that q.g is the desired function, we must check that it satisfies (1). This cannot be
read directly from the above diagram; for instance, although ¢.¢g is constructed essentially in terms
of r.g, it is clear that epi— X maps only to those o in X — X that do not discern between input of
the same R-equivalence class, and these a might not cover the domain of inputs giving all possible
outputs. Intuitively though, this suffices since R-equivalence is really all that matters.

More formally, suppose a: X — X and (3:X/R— X /R are such that

a (graph(epi) — graph(epi)) [ (2)

We want (r.g «) graph(epi) (q.g 8). First show for any «: X — X, there exists f,: X/R— X, s.t.
(epi—X)foa (R—R) o andiso(B) = epiy/p_ x(fa), i-e.,

Az:X.fo(epiz)) (R—R) « (3)



iso(B) = [falx/m—R (4)
The assumption on iso in uot-A4rr; is that any f in the equivalence class iso(3) is such that
f (eqX/R—>gmph(epi)) B (5)

so any of these f are candidates for f,. For such an f we showa Ra’ = (Az:X.f(epiz)a) R ad,
i.e., [a] = [a'] = [fla]] = [ad’]. We have from (5), [a] = [a'] = [f[a]] = B[d’], and by (2), we
have [a] = [@'] = [aa] = B[a’]. Together, this gives the desired property for f, so we have the
existence of f, satisfying (3) and (4). From (2) and (5) we also get

Mz: X.fo(epiz) (graph(epi)— graph(epi)) 3

From the above diagram, and (3) and (4), this gives (r.g (Az: X.fo(epix))) graph(epi) (g.98). By
t T[R] r, and since we have « (R— R) (A\x:X.f,(epix)), we thus get (r.g ) graph(epi) (q.9 3).
The general form of this diagram for any given U = U™ and U,, is

epi(U)™

v, 8 epi

U./R

iso

U[(Ui/R) /U]

where for a given U = U™, we define the function epi(U)" = Q(U)"[epi]~.

Subobject Maps A similar story applies to subobjects. For any predicate P on X, we write
Rp(X) for the subobject of X classified by those x: X such that P(x) holds. Let the monomorphism
mono:Rp(X)— X map elements to their correspondents in X. For use in arrow-type relations, we
construct a binary relation from P, also denoted P, by

PE (z:X,y:X). (x=xy A I :Rp(X) .y = (monoy’))
Now for a given U = U™, define S(U)" for some P as follows

S(U)° = Rp(Uy)
S(U)l = UQ—>RP(U1)
S(U)+t = (SU)'—=U;))=Rp(Ui41),1 <i<n—1

where, if U; is X then Rp(U;) = Rp(X), and if U; is D € Obs then Rp(U;) = D. For example
S(U%)? = ((Rp(Uy) —Uy) = Rp(Us)). In any S(U)?, subobjects Rp(U;) occur only positively. For
any U = U™ and some P, define the relation

PU)" = S(U)"[P]”

The substitution operators S(U)"[£]~ and S(U)"[¢]T are analogues to Q(U)™[¢]~ and Q(U)™[¢]T.
Identities are denoted by their domains.

Intuitively, one would think that for any given U = U™, we should now postulate an isomorph-
ism between Rpny (S(U)™) and S(U)"[(Rp(X))]~. This would be in dual analogy to guot-Arr.



However, this isomorphism does not exist even in the setoid model. For example, we will not be
able to find an isomorphism between Rp_g,x)(X —Rp(X)) and Rp(X) — Rp(X). However, it
turns out that we can in fact use an outermost quotient instead of subobjects for the isomorphism,
in the same way as we did for guot-4rr.

Thus, if P is a predicate on X, then P(U)! is an equivalence relation on S(U)?. This means
that we may form the quotient S(U)*/P(U)¢, e.g., if U = U! = X — X, then S(U)! = X -Rg(X)
and P(U)! = P — Rp(X), and P — Rp(X) is an equivalence relation on X — Rp(X). Again,
in contrast, Rp(X) — P is not necessarily an equivalence relation on Rp(X) — X. However,
(Rp(X)— P)—Rp(X) is an equivalence relation on (Rp(X)— X)—Rp(X), that is, P(U?)? is an
equivalence relation on S(U?)?, for U? = (X - X)— X.

For the relation graph(mono) = (z:X,s:Rp(X)) . (z =x (monos)), a sufficient condition for
obtaining higher-order functions over subobjects is,

Sub-Arr: For P a predicate on X, and any given U = U",
SWU)"/PU)" = SU)"[(Rp(X))]™

where the isomorphism iso : S(U)"[(Rp(X))]” — S(U)"/P(U)™ is such that any f in the
equivalence class iso(f3) is such that f (S(U)™[graph(mono)]™) (.

Again, Sub-Arr is not an axiom in our logic, but is a condition that we can check for models in
which the terminology in Sub-A4rr has a well-defined meaning.

To illustrate Sub-4rr, suppose T[X] has a profile g: (X — X) — X. For any r:T[X], assume
t T[P] r. We must exhibit a s: T[Rp(X)], such that ¢ T[graph(mono)] s. For r.g: (X - X) — X,
this means finding a s5.g: (Rp(X)—Rp(X))—Rp(X), s.t.

t.g ((graph(mono) — graph(mono)) — graph(mono)) s.g (6)
Consider now the following instance of Sub-4rr.
Sub-Arr;: For a predicate P on X,
(X =Rp(X))[(P—Rp(X)) = Rp(X)—Rp(X)
Using Sub-4rry, we can construct the following commuting diagram.

X .
(X > Rp(X)) — mono (X —X) L9 x L_mono Rp(X)

ePix _Rp(X)
(X —=Rp(X)AP—Rp(X))

iso

Rp(X)—Rp(X)

Then, s5.g: (Rp(X)—Rp(X))—Rp(X) is given by lift(r.g o (X — mono)) oiso. To justify the lifting
of r.g o (X — mono), we must show for all f, f': X — Rp(X) satisfying f (P — Rp(X)) f’, that
r.go(X —mono)(f) =x r.go(X —mono)(f’). Note that lift(r.go (X — mono)) then maps to X, so in
addition we must show that lift(r.go (X — mono)) in fact maps to Rp(X). Now, if f (P—Rp(X)) f’,
we get (X — mono)(f) (P— P) (X —mono)(f’). By assumption, we have ¢ T[P] r, in particular
t.g (P — P) — P) r.g, and the result follows. If for some y, 3y’ : Rp(X) . monoy’ = y, we



assume that it is elementary to find such a g’. Thus, since mono is a monomorphism, we may map
lift(r.g o (X — mono)) to Rp(X), and so we have a function s.g: ((Rp(X)—Rp(X))—Rp(X)).

To show that s.g is the desired function, we must check that it satisfies (6). Suppose a: X — X
and B:Rp(X)—Rp(X) are such that

a (graph(mono) — graph(mono)) S (7)

We want (r.g @) graph(mono) (s.g 8). First show for any a: X — X, there exists f,: X —Rp(X),
such that (X —mono)f, (P—P) «a and iso(8) = epix_r,(x)(fa) i-e.,

Az: X.mono(fax) (P—P) « (8)
iso(f) = [falP—rp(x) 9)

The assumption on iso in Sub-4rr; is that any f in the equivalence class iso(3) is such that

f (graph(mono)*)equ(X)) B (10)

so any of these f are candidates for f,. For such an f, show (8), i.e., a = a’ A 3a” .monod” = o’

= mono(fa) = aa’ A3b . monob = aa’. We have from (10), a = mono ¢’ = fa = a”, and
by assumption on « and 3, we have a’ = mono ¢’ = «aa’ = mono(Ba”). This gives the desired
property for f, so we have the existence of f,, satisfying (8) and (9). From (10) we also get

Az: X.mono(fax) (graph(mono)— graph(mono)) [

From the above diagram, and (8) and (9), this gives (r.g (Az: X.mono(f,x))) graph(mono) (s.g ).
By ¢ T[P] 1, and since @« (P—P) Az:X.mono(f,z), we thus get (r.ga) graph(mono) (s.gpf).
Here is the general form of this diagram for any given U = U™ and U, is

r.g UC . mono RP(UC)

iso

Ul(Rp(U;))/Ui]

where for a given U = U™, we define the function mono(U)™ = S(U)"[mono] .

This schema is more general than what is called for in the refinement-specific SUB. In SUB,
the starting point is a relation R, and the predicate with which one restricts the domain X, is
Pr(z) 2 z R x. The corresponding binary relation is then Pr = (z:X,y:X) . (zx =x yAz R z)).

In closing, we mention that the per model, parametric or not, does not satisfy Quot-4rr nor
Sub-4rr. We summarise:

Theorem 4. Suppose T[X] adheres to HADTpps. Then SUB and QUOT hold in any model that
satisfies Sub-Arr and Quot-Arr.

Theorem 5. The setoid model satisfies Quot-Arr and Sub-Arr, by the isomorphism being denota-
tional equality.

Proof: See [12]. O

Corollary 6. SUB and QUOT hold in the setoid model indicated above.
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Final Remarks

We have devised and validated a method in logic for proving specification refinement for data types
with higher-order operations. The method is based on standard simulation relations, accommodat-
ing the fact that these are easier to deal with than alternative notions when performing refinement.
In general however, there may not exist standard simulation relations at higher order, even in the
presence of observational equivalence. It is possible to devise specialised solutions to this using
abstraction barrier-observing simulation relations [10,12], or pre-logical relations expressed in Sys-
tem F. Beyond that, it is desirable to find general axiomatic criteria analogous to Sub-4rr and
Quot-Arr, using alternative notions of simulation relations. This is currently under investigation.

Acknowledgments Martin Hofmann has contributed with essential input.
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