
Abstraction Barrier-Observing Relational

Parametricity

Jo Hannay

Department of Software Engineering,
Simula Research Laboratory, Pb. 134, NO-1325 Lysaker, Norway

jo@simula.no

Abstract. A concept of relational parametricity is developed taking into
account the encapsulation mechanism inherent in universal types. This
is then applied to data types and refinement, naturally giving rise to a
notion of simulation relations that compose for data types with higher-
order operations, and whose existence coincides with observational equiv-
alence. The ideas are developed syntactically in lambda calculus with a
relational logic. The new notion of relational parametricity is asserted
axiomatically, and a corresponding parametric per-semantics is devised.

1 Introduction

Information hiding is essential in software development. It allows on the one
hand, clients of a module to disregard irrelevant detail of the module; this is the
abstraction aspect of information hiding, and on the other hand it protects the
module from unauthorised access to inner workings; this is the encapsulation
aspect. Thus, information hiding is a prerequisite for the plugability and inter-
changeability of software components. Information hiding is achieved through
interfaces by raising appropriate abstraction barriers, and the fundamental the-
oretical device for this is the concept of data type, consisting of an encapsulated
data representation and operations on that data representation.

A measure for interchangeability is observational equivalence; two data types
are interchangeable if they exhibit equivalent observable behaviours. Observa-
tional equivalence is generally hard to show, and a simpler strategy is to show
the existence of a simulation relation, i.e., a relation between the data represen-
tations of the data types, which the respective data-type operations preserve.
The existence of a simulation relation must coincide with observational equiv-
alence for this to be a valid method, and for the sake of constructive stepwise
refinement, simulation relations should compose. For data types with first-order
operations, this is the case, but when higher-order operations are involved, both
these properties break down in general. Several remedies to this have been found;
on the semantic level we have pre-logical relations [14, 13], lax logical relations
[26, 16], and L-relations [15]. On the logical level we have abstraction barrier-
observing simulation relations [9, 10]. The latter, developed in the setting of
System F and a relational logic [25] with the assertion of relational parametric-
ity [28], are directly motivated by the information-hiding mechanism in data



types, in that they reflect the way data-type operations are used by clients.
Ultimately, these techniques apply in stepwise refinement processes producing
certified components, e.g., [30, 13, 1, 23, 10, 7, 8].

Abstraction barrier-observing simulation relations were designed specifically
to solve the above issues regarding observational equivalence, and to remedy
the lack of composability. However, the main ingredient in this new notion of
simulation relation, namely respecting an abstraction barrier; and in fact the
abstraction barrier itself, both originate from considerations on universal types.

This paper therefore goes back to basic principles and develops abstraction
barrier-observing relations fundamentally at universal types. The first step is to
define the appropriate family of relations, mirroring how polymorphic function-
als may be used according to the abstraction barrier inherent in universal types.
We argue that this is the correct relational concept for universal types. Then
we go on and use this concept in asserting abstraction barrier-observing rela-
tional parametricity. If we insist on using abstraction barrier-observing relations
for universal types, we must also assert the corresponding notion of relational
parametricity, if we are to keep the parametricity principal or have any hopes
of retaining proof power. The third step is to give a model for the logic and the
abstraction barrier-observing relational parametricity axiom schema.

With this in place, abstraction barrier-observing simulation relations are a
direct application of the abstraction barrier-observing relational concept for uni-
versal types, mirroring data-type abstraction barriers.

Besides the aesthetical benefit gained from developing the new notion of
simulation relations as a natural consequence of basic considerations, we get a
substantial simplification of formalism compared to [9, 10], where one only asserts
specialised instances of abstraction barrier-observing relational parametricity. In
[9, 10], the logical language and the calculus is augmented in order to present
a non-syntactic model for these instances. With abstraction barrier-observing
relational parametricity this is not necessary.

2 Type Theory and Logic

We review relevant formal aspects. For full accounts, see [3, 21, 6, 25, 2].
The second-order lambda-calculus F2, or System F, has abstract syntax

(types) T ::= X | (T →T ) | (∀X.T )
(terms) t ::= x | (λx :T.t) | (tt) | (ΛX.t) | (tT )

where X and x range over type and term variables respectively. For simplicity,
we obey Barendregt’s variable convention; bound variables are chosen to differ in
name from free variables in any type or term. The main syntactic feature of Sys-
tem F is polymorphic functionals. For example, a general function-composition
operator is achieved by comp def= ΛX, Y, Z.λf : X → Y.λg : Y → Z.λx : X.g(fx).
One can also define inductive types [4], e.g., Nat

def= ∀X.X→(X→X)→X . The
inductive inhabitants are the closed terms. It is easy to program constructors,
as well as destructors and conditionals, since iteration is built in. We shall use



inductive types Nat, Bool, and ListU , and various self-explanatory terms such as
0, succ, true, false, cons, cond :∀Y.Bool→Y →Y →Y , isnil, etc. Binary products
are encoded in System F as inductive types by U×V

def= ∀X.((U →V →X)→X),
where U and V have no free X , with constructor pairU,V :U →V →U × V , and
also destructors proj1U,V : U × V → U and proj2U,V : U × V → V , defined by
pairU,V uv

def= ΛX.λf : U → V → X.fuv, proj1U,V (x) def= xU(λx : U.λy : V.x), and
proj2U,V (x) def= xV (λx :U.λy :V.y). This generalises to n-ary products.

Consider a computation f = ΛX.λx :U [X ].t[X, x]. We refer to X as a virtual
data representation, x as a collection of virtual operations, and the whole com-
putation as a virtual computation. Any instance (fAa) of the computation with
an actual data representation A, and actual operations a then gives an actual
computation. A crucial observation which will determine future development, is
now embodied in the following obvious statement.

Abs-Bar1 : A virtual client computation ΛX.λx : T [X ].t[X, x] cannot have free
variables of types involving the virtual data representation X .

For data types, encapsulation is provided in the style of [22] by the following
encoding of existential (abstract) types and pack and unpack combinators.

∃X.T [X ] def= ∀Y.(∀X.(T [X ]→Y )→Y ), Y not free in T

packT [X] :∀X.(T [X ]→∃X.T [X ])
packT [X](A)(opns) def= ΛY.λf :∀X.(T [X ]→Y ).f(A)(opns)

unpackT [X] : (∃X.T [X ])→∀Y.(∀X.(T [X ]→Y )→Y )
unpackT [X](package)(B)(client ) def= package(B)(client)

Operationally, pack packages a data representation and an implementation of
operations on that data representation to give a data type of the existential
type. The resulting package is a polymorphic functional that given a client
computation and its result domain, instantiates the client with the particu-
lar elements of the package. The unpack combinator is merely the application
operator for pack. An abstract type for stacks of natural numbers could be
∃X.(X × (Nat → X → X) × (X → X) × (X → Nat)). A data type of this type
is, e.g., (pack ListNat l), where (proj1 l) = nil, (proj2 l) = cons, (proj3 l) = λl :ListNat.
(cond ListNat (isnil l) nil (cdr l)), and (proj4 l) = λl :ListNat.(condNat (isnil l) 0(car l)).
For convenience we use a labelled product notation; ∃X.TSTACKNat

[X ], where
TSTACKNat

[X ] def= (empty : X, push : Nat → X → X, pop : X → X, top : X → Nat).
We call each fi :Ti[X ] a profile of the existential type.

Existential types together with the pack and unpack combinators embody an
abstraction barrier composed of three components.

First of all, Abs-Bar1 says that a client computation ΛX.λx : T [X ].t[X, x]
cannot have free variables of types involving the virtual data representation X ,
e.g., by Barendregt’s variable convention, y :X � ΛX.λx :TSTACKNat

.(x.push n y)
is ill-formed. A client computation may compute over types containing the vir-
tual data representation X only by accessing virtual operations in the supplied
collection x, as in e.g., ΛX.λx :TSTACKNat

. x.top(x.push n x.empty).



In large, up to βη-equivalence, package operations may only be applied to
arguments definable by package operations. This aspect is essential in restricting
access to the underlying data representation, which may contain invalid values.
Note that a supplied package operation might itself make calls involving argu-
ments of types over the actual data representation, which are not expressed in
terms of package operations. In this case, it is not true that package operations
will only be applied to definable arguments, but crucially, this is at the discretion
of the package implementor, and not due to direct user application.

There are two other aspects of the abstraction barrier inherent in the en-
coding of existential types. The next one, a prerequisite for plugability, is the
already stated condition in the definition of the encoding of existential types.

Abs-Bar2 : The type Y does not occur in T in the encoding
∃X.T [X ] def= ∀Y.(∀X.(T [X ]→Y )→Y ).

This ensures that data types do not depend on their environment of usage, other
than via explicitly given parameters if ∃X.T [X ] has free types.

The third aspect arises from the fact that when using a data type, i.e., a
package of existential type, the user must provide the result type of the client
computation. This entails the following.

Abs-Bar3 : Client computations f : ∀X.(T [X ] → Y ) cannot have a result type
containing the virtual data representation, i.e., the bound type variable X .

For example, f
def= ΛX.λx : TSTACKNat

.(x.push n x.empty) : ∀X.(TSTACKNat
→ X) is

not a possible client; in order to use a package (packAa) in f , we must do
(packAa)(C)(f), where C is the result type of f , which in this case is the inac-
cessible virtual data representation X . Due to Abs-Bar3, the only way a package
can be used is via client computations adhering to the above. This then fixes how
packages may be used in actual computations, since all actual computations are
uniform in that they inherit the form of the virtual computation from which they
stem. We will refer to Abs-Bar1, Abs-Bar2, and Abs-Bar3 jointly as Abs-Bar.

The logic we shall use as a starting point is the logic for parametric poly-
morphism due to [25]. This logic is essentially a second-order logic augmented
with relation symbols and a syntax for relation definition, and the assertion of
relational parametricity as an axiom schema. See also [18, 33].

The logic in [25] has formulae built using the standard connectives, but now
basic predicates are not only equations, but also relation membership statements,

φ ::= (t =A u) | t R u | · · · | ∀R⊂A×B.φ | ∃R⊂A×B.φ

where R ranges over relation variables. We write α[ξ] to indicate possible occur-
rences of variable ξ in type, term or formula α, and write α[β] for the substitution
α[β/ξ], following the appropriate rules regarding capture.

Judgements for formula formation involve relation symbols, so contexts are
augmented with relation variables, depending on type context, and obeying stan-
dard conventions. Relation definition is accommodated by the following syntax,

Γ, x :A, y :B � φ

Γ � (x :A, y :B) . φ ⊂ A×B



where φ is a formula. For example eqA
def= (x :A, y :A).(x =A y).

We now build complex relations using type formers. We get the arrow-type
relation ρ→ρ′ ⊂ (A→A′)×(B→B′) from ρ⊂A×B and ρ′⊂A′×B′ by

(ρ→ρ′) def= (f :A→A′, g :B→B′) . (∀x :A.∀y :B . (xρy ⇒ (fx)ρ′(gy)))

i.e., f and g are related if they map ρ-related arguments to ρ′-related values.
The universal-type relation ∀(Y, Z, R⊂Y ×Z)ρ[R] ⊂ (∀Y.A[Y ])×(∀Z.B[Z]) is
defined from ρ[R]⊂A[Y ]×B[Z], where Y , Z and R⊂Y ×Z are free, by

∀(Y, Z, R⊂Y ×Z)ρ[R] def=
(y :∀Y.A[Y ], z :∀Z.B[Z]) . (∀Y.∀Z.∀R⊂Y ×Z . ((yY )ρ[R](zZ)))

i.e., two y and z are related at universal type if all instances yY and zZ are
related in ρ[R], whenever R relates Y and Z.

One defines the action of types on relations, by substituting relations for
type variables in types. For X = X1, . . . , Xn, A = A1, . . . , An, B = B1, . . . , Bn

and ρ = ρ1, . . . , ρn, where ρi⊂Ai×Bi, we get T [ρ]⊂T [A]×T [B], the action of
T [X] on ρ, defined by cases on T [X] as follows:

T [X] = Xi : T [ρ] = ρi

T [X] = T ′[X]→T ′′[X] : T [ρ] = T ′[ρ]→T ′′[ρ]
T [X] = ∀X ′.T ′[X, X ′] : T [ρ] = ∀(Y, Z, R⊂Y ×Z)T ′[ρ, R]

The proof system is natural deduction, intuitionistic style, over formulae now
involving relation symbols, and is augmented with inference rules for relation
symbols in the obvious way. There are standard axioms for equational reasoning
and βη-equalities. These imply extensionality for arrow and universal types.

Parametric polymorphism promotes all instances of a polymorphic functional
to exhibit a uniform behaviour. Of various notions [32, 2]; we adopt relational
parametricity [28, 17], where uniformity is defined by saying that if a polymorphic
functional is instantiated at two related domains, the resulting instances should
be related as well. In [25] this is directly asserted by the axiom schema,

Param : ∀Z.∀u : (∀X.U [X, Z]) . u (∀X.U [X, eqZ ]) u

The logic with Param is sound w.r.t. the parametric per -model of [2] and
also w.r.t. the syntactic parametric models of [11].

The assumption of Param yields interesting results. The following Identity
Extension Lemma is fundamental and follows from Param and extensionality.

∀Z.∀u, v :U [Z] . (u U [eqZ ] v ⇔ (u =U [Z] v))

Weak versions of constructs such as products, sums, initial and final (co-)algebras
are encodable in System F [4]. With Param, these constructs become provably
universal constructions. For example, we can derive with Param,

∀U, V.∀z :U×V . pair(proj1z)(proj2z) = z

∀u :A×A′, v :B×B′, ρ⊂A×B, ρ′⊂A′×B′ .
u(ρ×ρ′)v ⇔ (fst(u) ρ fst(v) ∧ snd(u) ρ′ snd(v))

where ρ × ρ′ is obtained by the action (X × X ′)[ρ, ρ′].



3 Abstraction Barrier-Observing Relations

Abs-Bar says that function arguments in computations are bounded by formal
parameters, e.g., in the closed computation f

def= ΛX.λx : Xλs : X →X.t[x, s], s
will only be applied to arguments built from formal parameters x and s. This
transfers to instances fA and fB. Relationally for R ⊂ A×B, we would like
e.g., sA (R→R) sB to reflect this, in that only those x, y are considered for the
antecedent x R y, that are admissible in the computations; we want something
like ∀x :A, y :B . x R y ∧Dfnbl(x, y) ⇒ sAx R sBy. Although the idea is based
on observing closed terms, we neither can, nor wish to be that specific formalis-
tically. Thus if A, B, a, b, sA, sB are actual parameters to f , we set Dfnbl(x, y) to
stand for ∃fX :∀X.X→ (X→X)→X . fXAasA = x ∧ fXBbsB = y. For closed
computations ΛX.t in particular, this mirrors precisely application in t.

The abo-relation we now define formalises this idea. The full definition is
complicated by universal-type nesting, and by the need to keep track of which
actual parameters have (not) been received. Above, a, b, sA, sB are all received
at the stage when Dfnbl(x, y) is defined, but consider what needs to be done
for ΛX.λs : (X→X).λx :X.t[s, x]. The various rôles universal types may assume
complicate matters further. The instrumental aspect is however simple argument
definability. Example 1 below illustrates abo-relations. In Sect. 4 we use abo-
relations to devise abstraction barrier-observing simulation relations.

Definition 1 (abo-Relation). For any type U [Z], we define the abstraction
barrier-observing relation U [eqZ ]abo as follows.

U [eqZ ]abo def= U [eqZ ] if U is not a universal type.

(∀X.U [X, eqZ ])abo def= (∀X.U [X, eqZ ])σ0l0abo

where (∀X.U [X, eqZ ])σ0l0abo is given by the following. Regard ∀X.U according to
outermost arrow structure and universal quantifier nesting. For the mth nesting,
write ∀Xm.Um = ∀Xm.Um1 →· · ·→Umnm

→Umc, where Umc is not an arrow
type, but possibly a universal type ∀Xm+1.Um+1. Setting ∀X.U

def= ∀X1.U1 as the
first nesting, let N be the number of nestings in ∀X.U . Define

(∀Xm.Um[R, Xm, eqZ ])σm−1lm−1abo def=
(f :∀Xm.Um[A, Xm], g :∀Xm.Um[B, Xm]) .

(∀Am, Bm, Rm⊂Am×Bm . fAm (Um[R, Rm, eqZ ]σmlm〈Am,Bm〉
� ) gBm)

Define sequences σm and lm as follows. Set σ0 = l0
def= ε. If Um has no free vari-

ables from σm−1, then σm
def= 〈Xj , 〈Umi〉nm

i=1〉qj=m, q ≤ N , where ∀Xq+1.Uq+1 is
the first nesting within the mth with no free occurrences of any Xj, 1 ≤ j ≤ q. Set
lm

def= ε. If on the other hand, Um has free variables from σm−1 then σm
def= σm−1,

and lm
def= lm−1. The sequence lm will now be the basis for sequences lmk at each

Umk with further items. These will have the format 〈〈Aj , Bj〉
〈
aji, bji

〉kj

i=1
〉mj=p,

where p is the index of the first item in σm, and 1 ≤ kj ≤ nj. We write l〈α, β〉
to indicate the implicit insertion of 〈α, β〉 format-correctly in l. In general, we
expand U [R, eqZ ]σl

� through the following definitions.



(U ′[R, eqZ ]→U ′′[R, eqZ ])σl
�

def=
(f :U ′[A]→U ′′[A], g :U ′[B]→U ′′[B]) .

(∀a :U ′[A], b :U ′[B] . a (U ′[R, eqZ ])σl〈a,b〉 b

⇒ (fa) (U ′′[R, eqZ ])σl〈a,b〉
� (gb))

U [R, eqZ ]σl
�

def= U [R, eqZ ]σlabo, if U is a universal type

U [R, eqZ ]σl
�

def= U [R, eqZ ]σl, otherwise

Then, U [R, eqZ ]σl, is defined by

Ri
σl def= Ri

eqZi

σl def= eqZi

(U ′[R, eqZ ]→U ′′[R, eqZ ])σl def= (f :U ′[A]→U ′′[A], g :U ′[B]→U ′′[B]) .
(∀σ−l.∀x :U ′[A], y :U ′[B] .

(x U ′[R, eqZ ]σl(σ−l) y ∧ Dfnbl
σl(σ−l)
U ′ (x, y))

⇒ (fx) U ′′[R, eqZ ]σl(σ−l) (gy))

where ∀σ−l
def= ∀{Aj, Bj , aji :Uji[A], bji :Uji[B] |

1 ≤ j ≤ N, 1 ≤ i ≤ nj, 〈Aj , Bj〉, aji, bji �∈ l ∧ Xj , Uji ∈ σ}
and l(σ − l), is l appended format-correctly with the ∀σ−l quantified items, and

Dfnbl
σl(σ−l)
U ′ (x, y) def=

∃fU ′ :∀Xp.(Up1→· · ·→Upnp
→· · ·→(∀Xq.Uq1→· · ·→Uqnq

→U ′)) .

(fU ′Apap1 · · · apnp
· · ·Aqaq1 · · · aqnq

) = x ∧
(fU ′Bpbp1 · · · bpnp

· · ·Bqb1q · · · b1nq
) = y

where p is the index of the first item in σ. The functional fU ′ receives as argu-
ments in proper order, the types and terms in l, and then in place of missing
actual arguments, the “hypothetical” arguments given by the quantification ∀σ−l.

Finally, the relation (∀Y.U ′[R, Y, eqZ ])σl at universal type within some Umk

reflects various rôles terms in this position may play. First we define, if ∀Y.U ′

is internal, i.e., is not equal to some ∀Xr.Ur, m < r ≤ q, nor closed, then

(∀Y.U ′[R, Y, eqZ ])σl def= (f ′ :∀Y.U ′[A], g′ :∀Y.U ′[B]) .
(
∧

V [X] f ′V [A] (U ′[R, V [R, eqZ ], eqZ ])σl g′V [B]

and if ∀Y.U ′ is not internal, and occurs only negatively within some Umk,

(∀Y.U ′[R, Y, eqZ ])σl def= (∀Y.U ′[R, Y, eqZ ]))σlabo

and otherwise,

(∀Y.U ′[R, Y, eqZ ])σl def= (f ′ :∀Y.U ′[A], g′ :∀Y.U ′[B]) .
(
∧

V [X] f ′V [A] (U ′[R, V [R, eqZ ], eqZ ])σl g′V [B] ∧
f ′ (∀Y.U ′[R, Y, eqZ ]))σlabo g′)

This concludes the definition.



Example 1. Consider the type Nat
def= ∀X.X → (X →X)→X . Observing the

abstraction barrier in this universal type, we have for n :Nat,

n (∀X.X→(X→X)→X)abo n
def⇔ ∀A, B, R⊂A×B . nA (R→(R→R)→R)〈A,B〉

� nB

omitting the superscript σ = X, X, (X→X). This expands to

∀A, B, R⊂A×B .
∀a :A, b :B . a R〈A,B〉〈a,b〉 b ⇒

∀s :A→A, s′ :B→B . s (R→R)〈A,B〉〈a,b〉〈s,s′〉 s′ ⇒ nAas R nBbs′

Here, R〈A,B〉〈a,b〉 is simply R, and s (R→R)〈A,B〉〈a,b〉〈s,s′〉 s′ expands to

∀x :A, y :B . x R y ∧
(∃fX :∀X.X→(X→X)→X . fXAas = x ∧ fXBbs′ = y)

⇒ sx R s′y

The definability clause here reflects that s and s′ can be applied only to x and y
admissible in virtual computations. For instance, if n were a closed computation,
this would mean x and y built from a, s, and b, s′. Moreover, x and y are uniform,
since they arise from the same virtual computation n.

Now, consider the type Nat′ def= ∀X.(X →X)→X →X , where the successor
argument is received prior to the zero argument. Now we have

n (∀X.(X→X)→X→X)abo n
def⇔ ∀A, B, R⊂A×B . nA ((R→R)→R→R)〈A,B〉

� nB

omitting the superscript σ = X, (X→X), X . This expands to

∀A, B, R⊂A×B .

∀s :A→A, s′ :B→B . s (R→R)〈A,B〉〈s,s′〉 s′ ⇒
∀a :A, b :B . a R〈A,B〉〈s,s′〉〈a,b〉 b ⇒ nAsa R nBs′b

Here, R〈A,B〉〈s,s′〉〈a,b〉 is simply R, but s (R→R)〈A,B〉〈s,s′〉 s′ expands to

∀a :A, b :B . ∀x :A, y :B .
x R y ∧ (∃fX :∀X.(X→X)→X→X . fXAsa = x ∧ fXBs′b = y)

⇒ sx R s′y

At the point when the successor arguments s and s′ are received by n there is no
knowledge of what the zero arguments will be. Therefore, the definability clause
for the successor arguments is prepared for arbitrary zero arguments a, b.

To illustrate nesting, consider

f (∀X.X→(X→X)→(∀Y.(Y →X)→(X→Y )→X))abo f

Omitting σ = X, X, (X→X), Y, (Y →X), (X→Y ), this expands to



∀A, B, R⊂A×B .
∀a :A, b :B . a R〈A,B〉〈a,b〉 b ⇒
∀s :A→A, s′ :B→B . s (R→R)〈A,B〉〈a,b〉〈s,s′〉 s′ ⇒

∀A′, B′, R′⊂A′×B′ .

∀r :A′→A, r′ :B′→B . r (R′→R)〈A,B〉〈a,b〉〈s,s′〉〈A′,B′〉〈r,r′〉 r′ ⇒
∀q :A→A′, q′ :B→B′ . q (R→R′)〈A,B〉〈a,b〉〈s,s′〉〈A′,B′〉〈r,r′〉〈q,q′〉 q′

⇒ fAasA′rq R〈A,B〉〈a,b〉〈s,s′〉〈A′,B′〉〈r,r′〉〈q,q′〉 fBbs′B′r′q′

Here, s (R→R)〈A,B〉〈a,b〉〈s,s′〉 s′ expands to

∀A′, B′.∀r :A′→A, r′ :B′→B, q :A→A′, q′ :B→B′ . ∀x :A, y :B .
x R y ∧ (∃fX :∀X.X→(X→X)→(∀Y.(Y →X)→(X→Y )→X) .

fXAasA′rq = x ∧ fXBbs′B′r′q′ = y)
⇒ sx R s′y

This reflects that arguments to s and s′ may be defined also in terms of future
r, q, r′, and q′, besides a, b, s, s′. For example if f were closed, we could have
f = ΛX.λx :X, s :X→X.ΛY.λr :Y →X, q :X→Y . s(r(qx)).

To illustrate the situation for universal types within some Umk, consider

f (∀X.X→(∀Y.Y →X)→(X→Bool→Nat)→Nat)abo f

We get for σ = X, X, (∀Y.Y →X), (X→Bool→Nat),

∀A, B, R⊂A×B . ∀a, b . a R b ⇒
∀q, q′ . q (∀Y.Y →R)σ〈A,B〉〈a,b〉〈q,q′〉 q′ ⇒
∀r, r′ . r (R→Bool→Nat)σ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉 r′

⇒ fAaqr Natσ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉abo fBbq′r′

Here, ∀Y.Y → X is inner, i.e., does not occur as a nesting, and is not closed.
So for every type V , V →X is just a local profile within the type of f . Thus,
q (∀Y.Y →R)σ〈A,B〉〈a,b〉〈q,q′〉 q′ says

∧
V qV [A] (V [R]→R)σ〈A,B〉〈a,b〉〈q,q′〉 q′V [B],

reflecting that q, q′ may only be used internally. In contrast, Nat is not inner,
since it is indeed a nesting, and is also closed. In a computation, terms of this
type may be used in two ways; internally, and also externally; the use of fAaqr
and fBbq′r′ of type Nat is no longer bound by arguments to f . Thus, we have

x Natσ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉 y
def⇔∧

V [X] xV [A] ((V [R]→(V [R]→V [R])→V [R])σ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉 yV [B]
∧ x Natσ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉abo y

Since Nat has no free occurrences of X , n Natσ〈A,B〉〈a,b〉〈q,q′〉〈r,r′〉abo m expands
to the same as Natabo. Finally, Bool occurs only negatively in X →Bool→Nat
and the relation is here only Boolabo, since any term in this position will not be
used the internal way. All this reflects Abs-Bar1. Consider for example the closed
computation f = ΛX.λx :X, q :∀Y.Y →X, r :X→Bool→Nat . r(qXx)true. �



Example 1 illustrates abo-relations reflexively. If two computations, n, m : Nat
for the example above, are involved, the uniformity aspect is not appropriate.
The reason Def. 1 ignores this, is that it is geared toward abo-identity extension.
Thus, if for example n (∀X.X → (X→X)→X)abo m, then we shall get n = m,
so in this context, there is only one computation involved after-all.

The abstraction barrier-observing formulation of relational parametricity is
now given by the following axiom schema.

Definition 2 (abo-Parametricity).

abo-Param : ∀Z.∀u : (∀X.U [X, Z]) . u (∀X.U [X, eqZ ])abo u

The abo-version of the identity extension lemma does not follow from abo-
Param, because we can no longer use extensionality. Nevertheless, in the spirit
of observing abstraction barriers, we argue that in virtual computations, it suf-
fices to consider extensionality only w.r.t. function arguments that will actually
occur. The simplest way to capture this is in fact by asserting identity extension.

Definition 3 (abo-Identity Extension for Universal Types).

abo-Iel : ∀Z.∀u : (∀X.U [X, Z]) . u (∀X.U [X, eqZ ])abo v ⇔ u = v

Both abo-Param and abo-Iel will be shown to hold in the abo-parametric per -
model. Regular parametricity, Param, will not hold in this model; in fact any
logic containing both of Param and abo-Param is inconsistent. Note that abo-
Iel implies abo-Param. Nevertheless, we choose to display both. We get,

Theorem 1 (abo-Identity Extension). With abo-Iel, we have

∀Z.∀u, v :U [Z] . u U [eqZ ]abo v ⇔ (u =U [Z] v)

Proof: Easy induction. �

There is an inner aspect of abo-identity extension as well.

Theorem 2 (abo-Identity Extension (Inner Aspect)). Let U be a type
with no occurrences of Xj in σ. Then we derive with abo-Iel,

∀u, v :U [Z] . u U [eqZ ]σl v ⇔ u =U [Z] v

Proof: Induction on the structure of U . �

We also get

Theorem 3. With abo-Param and abo-Iel, we derive

∀U, V.∀z :U×V . pair(proj1z)(proj2z) = z

Proof: First show ∀U, V, z :U×V . z = z(U×V )pair. Use Theorem 2. �



Theorem 4. With abo-Param and abo-Iel, we derive

∀u, v :T1 × T2 . u (T1[eqZ ]×T2[eqZ ])abo v
⇔ (proj1u) T1[eqZ ]abo (proj1v) ∧ (proj2u) T2[eqZ ]abo (proj2v)

∀A, B, R⊂A × B . ∀u :T1[A] × T2[A], v :T1[B] × T2[B] .

u (T1[R, eqZ ]×T2[R, eqZ ])T [X]〈A,B〉〈u,v〉 v
⇔ (proj1u) T1[R, eqZ ]T [X]〈A,B〉〈u,v〉 (proj1v) ∧

(proj2u) T2[R, eqZ ]T [X]〈A,B〉〈u,v〉 (proj2v)

Proof: Use Theorem 3. �

4 Refinement

Consider now the issue of when two packages are interchangeable in a program.
We view observational equivalence as the conceptual description of interchange-
ability, and simulation relations as part of a method for showing observational
equivalence. We want the two notions to be equivalent. For data types with first-
order operations, this equivalence is a fact under relational parametricity. At
higher-order this is not the case. Also, the composability of simulation relations
fails at higher order, compromising the constructive composition of refinement
steps. We now show that by using abo-relations and abo-parametricity, we get
the equivalence as well as composability, at any order.

To each refinement stage, a set Obs of observable types is associated, assumed
to contain closed inductive types, such as Bool or Nat, and also any parameters.
Two data types are interchangeable if their observable properties are indistin-
guishable, i.e., packages should be observationally equivalent if it makes no dif-
ference which one is used in computations with observable result types. Thus,

Definition 4 (Observational Equivalence). For A, B, a :T [A], b :T [B], Obs,
∧

D∈Obs

∀f :∀X.(T [X ]→D) . (fA a) = (fB b)

For example, an observable computation on natural-number stacks could be
ΛX.λx :TSTACKNat

[X ] . x.top(x.push n x.empty).
Simulation relations arise from the concept of data refinement [12, 5] and the

use of relations to show representation independence [19, 31, 28, 27], leading to
logical relations for lambda calculus [20, 21, 34, 24]. In our logic one can use the
action of types on relations to define a syntactic mirror of the above ideas. Two
data types are related by a simulation relation if there exists a relation on their
data representations that is preserved by their corresponding operations.

Definition 5 (Simulation Relation). For A, B, a :T [A], b :T [B],

∃R⊂A×B . a(T [R, eqZ ])b



For specification refinement one wants to establish observational equivalence
using simulation relations. The problem at higher order is that there might not
exist a simulation relation, even in the presence of observational equivalence.

Example 2. Consider SigSetCE
def= ∃X.TSetCE[X ], where

TSetCE[X ] def= (empty :X, add :Nat→X→X, remove :Nat→X→X,
in :Nat→X→Bool, crossover : (Nat→X→X)→Nat→Bool)

and consider (pack ListNat a) :SigSetCE and (pack ListNat b) :SigSetCE, where

a
def= (empty = nil,

add = cons-uniquesorted def= λx :Nat.λl :ListNat .
return l′ that is l with x uniquely inserted before first y > x,

remove = del-first def= λx :Nat.λl :ListNat .
return l′ that is l with first occurrence of x removed ,

in = in def= λx :Nat.λl :ListNat . return true if x occurs in l, false otherwise ,
crossover

def= λf : (Nat→ListNat→ListNat).λn :Nat .
in(n)(f(n)(1 :: 0 :: nil))) )

Here we use the infix symbol :: to denote cons. Furthermore,

b
def= (empty = nil,

add = cons-uniquesorted,
remove = del-all def= λx :Nat.λl :ListNat .

return l′ that is l with all occurrences of x removed ,
in = in,
crossover

def= λf : (Nat→ListNat→ListNat).λn :Nat .
in(n)(f(n)(1 :: 1 :: 0 :: nil))) )

In the parametric minimal model of [11], all elements of the interpretation of
ListNat and Bool are in correspondence with closed normal forms, and the ω-rule
holds. Then observational equivalence holds between a and b, but the existence
of a simulation relation does not, because any simulation relation R demands

a.crossover ((eqNat→R→R)→eqNat→eqBool) b.crossover

meaning that a.crossover(del-all)(1) and b.crossover(del-first)(1) are to be con-
sidered. Note that del-all really belongs to b and del-first belongs to a.

For failure of composability, in addition to (pack ListNat a) and (pack ListNat b)
above, consider (pack ListNat d) :SigSetCE, where

d
def= (empty = nil,

add = cons,
remove = del-all
in = in,
crossover

def= λf : (Nat→ListNat→ListNat).λn :Nat .
in(n)(f(n)(1 :: 1 :: 0 :: nil))) )

Then the existence of simulation relations holds between a and d, and between
d and b, but as before, not between a and b. �



Thus the standard concept of simulation relation is not adequate. For us,
the reason for this is rooted in the encapsulation issue for universal types. The
interchangeability of data types in a program translates to interchangeability
of packages in virtual computations. Hence, the relevant context is that of any
given computation, and therefore simulation relations should account for the
encapsulation inherent in such computations. We therefore define,

Definition 6 (abo-Simulation Relation). For A, B, a :T [A], b :T [B],

∃R⊂A×B . a (T [R, eqZ ])T [X]〈A,B〉〈a,b〉 b

Example 2. (continued) We now have

a.crossover ((eqNat→R→R)→eqNat→eqBool)
TSetCE〈ListNat,ListNat〉〈a,b〉 b.crossover

Only γ, δ :Nat→ListNat→ListNat such that Dfnbl
TSetCE〈ListNat,ListNat〉〈a,b〉
Nat→X→X (γ, δ), i.e.,

∃f :∀X.TSetCE[X ]→(Nat→X→X) . (f ListNat a) = γ ∧ (f ListNat b) = δ

are considered. This excludes e.g., the cross-over pair (del-all, del-first). �

In the following, using abo-simulation relations we establish the essential
properties that do not hold for standard simulation relations. In the context of
data types, we adhere to the following reasonable assumption.

HADTObs: Every profile Ti[X ] = Ti1[X ]→ · · ·→ Tni [X ]→ Tci [X ] of an abstract
type ∃X.T [X ] is such that Tci[X ] is either X or some D ∈ Obs .

Theorem 5. Assuming HADTObs for T [X ], we get with abo-Param and abo-Iel,

∀A, B.∀a :T [A], b :T [B] .
∃R⊂A×B . a T [R, eqZ ]T [X]〈A,B〉〈a,b〉 b

⇔ ∧
D∈Obs ∀f :∀X.(T [X ]→D) . (fA a) = (fB b)

Proof: ⇒: By abo-Param f (∀X.T [X, eqZ ]→D)abo f and Theorem 2.
⇐: Let s

def= T [X ]〈A, B〉〈a, b〉. We must derive ∃R⊂A×B . a(T [R, eqZ ]s)b.
We exhibit R

def= (a :A, b :B) . (DfnblsX(a, b)). By Theorem 4, we must for every
component g :U1→· · ·→Ul→Uc in T [X ], show the derivability of

∀x1 :U1[A], . . . , xl :Ul[A] . ∀y1 :U1[B], . . . , yl :Ul[B] .∧
1≤i≤l(xi Ui[R, eqZ ]s yi ∧ DfnblsUi

(xi, yi))
⇒ (a.g x1 · · ·xl) Uc[R, eqZ ]s (b.g y1 · · · yl)

We get ∃fUi : ∀X.(T [X ] → Ui[X ]) . (fUiA a) = xi ∧ (fUiB b) = yi from the
antecedent DfnblsUi

(xi, yi). Let f
def= ΛX.λx :T [X ] . (x.g(fU1Xx) · · · (fUl

Xx)).
Uc = D ∈ Obs : By Theorem 2 it suffices to derive a.g x1 · · ·xl =D b.g y1 · · · yl.

The assumption gives (fA a) =D (fB b), which gives the result.
Suppose Uc = X : We must then derive

∃f :∀X.(T [X ]→Uc[X ]) . (fA a) = (a.g x1 · · ·xl) ∧ (fB b) = (b.g y1 · · · yl)

For this we display f above. �



Theorem 6. Assuming HADTObs for T [X ], we get with abo-Param and abo-Iel,

∀A, B, C, R⊂A×B, S⊂B×C, a :T [A], b :T [B], c :T [C].
a(T [R, eqZ ]T [X]〈A,B〉〈a,b〉)b ∧ b(T [S, eqZ ]T [X]〈B,C〉〈b,c〉)c

⇒ a(T [S ◦ R, eqZ ]T [X]〈A,C〉〈a,c〉)c

Proof: The goal is to derive for every component g :U1→· · ·→Ul→Uc in T ,

∀x1 :U1[A], . . . , xl :Ul[A] . ∀z1 :U1[C], . . . , zl :Ul[C] .∧
1≤i≤l(xi Ui[S ◦ R, eqZ ]T [X]〈A,C〉〈a,c〉 zi ∧ Dfnbl

T [X]〈A,C〉〈a,c〉
Ui

(xi, zi))
⇒ (a.g x1 · · ·xl) Uc[S ◦ R, eqZ ]T [X]〈A,C〉〈a,c〉 (c.g z1 · · · zl)

Dfnbl
T [X]〈A,C〉〈a,c〉
Ui

(xi, zi) gives an f
def= ΛX.λx :T [X ] . (x.g(fU1Xx) · · · (fUl

Xx)).
Uc = D ∈ Obs: By assumption and Theorem 5, (fA a) = (fB b) = (fCc),

and a.g x1 · · ·xl = (fA a) and (fCc) = c.g z1 · · · zl.
Uc = X : We must show ∃b :Uc[B, Z] . (a.g x1 · · ·xl) R b ∧ b S (c.g z1 · · · zl).

Exhibit fB b = (b.g(fU1Bb) · · · (fUl
Bb)) for b. �

Conventional simulation relations and relational parametricity do not give cor-
responding results to Theorem 5; the coincidence of the existence of simulation
relations with observational equivalence, and Theorem 6; the composability of
simulation relations, except for data types with first-order operations.

5 abo-Semantics

We present a per -model for the relational logic with abo-Param and abo-Iel.
Just as the parametric per -model [2] is defined directly according to Param, the
abo-parametric per -model will be defined according to abo-Param.

We use an obvious shorthand notation and simply write things like U [A, Z ]
instead of [[A, Z � U [A, Z]]][A �→A,Z �→Z], and also things like U [R, Z ]σ〈A,B〉 for
[[A, B, R⊂A×B, Z � U [R, eqZ ]σ〈A,B〉]][A �→A,B �→B,Z �→Z,R�→R].

First, the semantics of a universal type ∀X.U in the pure parametric per -
model, e.g., [29], is (∩A∈per[[U [A]]]). This gives Strachey’s parametricity. In
the relational parametric per -model, the semantics (∩AU [A, Z])� is obtained by
including only those elements which satisfy relational parametricity, thus

n (∩AU [A, Z])� m
def⇔ ∀A,B ∈ per, saturated R ⊂ Dom(A) × Dom(B) .

n U [A, Z] m ∧ n U [B, Z] m ∧
n U [R, Z] n ∧ m U [R, Z] m

Alternatively, we may give the following definition, since relational parametricity
is equivalent to identity extension at universal type.

n (∩AU [A, Z])� m
def⇔ ∀A,B ∈ per, saturated R ⊂ Dom(A) × Dom(B) .

n U [R, Z] m



A model satisfying abo-Param and abo-Iel is then obtained by defining

n (∩AU [A, Z ])�abo

m
def⇔ ∀A,B ∈ per, saturated R ⊂ Dom(A) × Dom(B) .

n U [R, Z ]σ〈A,B〉
� m

where σ depends on U according to Def. 1. The rest of the semantics is stan-
dard per -semantics, see e.g., [29, 2]. We must now show that this abo-parametric
structure is a model for System F; every closed term has an interpretation. Intu-
itively, this should be so, since abo-relations are defined according to Abs-Bar1,
which in particular captures what closed polymorphic functionals look like.

Theorem 7. Every closed term of System F has an interpretation in the abo-
parametric per-structure.

Proof: The interesting part of this is the semantics for universal types. Thus,
show for every closed f :∀X.U , that f (∀X.U [X ])abo f holds in the structure. �

6 Final Remarks

We have provided a notion of relational parametricity that takes into account the
abstraction barrier-observing (abo) mechanism in universal types. We showed
how this then gives the notion of abo-simulation relation from [9, 10], which
resolves serious well-known problems for simulation relations in the framework
of stepwise refinement. Furthermore, we introduced, asserted, and validated abo-
relational parametricity. This massively simplifies both our task as formalists, as
well as decreases the amount of reasoning to which a developer needs to commit,
when using abo-simulation relations for refinement.

There is a link under abo-relational parametricity between abo-simulation
relations and equality at existential type. This link exists for standard simulation
relations under standard relational parametricity [25], but in that case there is a
slightly annoying circularity issue. This issue is not present in the abo case. This
is a consequence of Theorem 5. Also, relational parametricity gives induction,
e.g., on Nat, and so does abo-relational parametricity.

There are lots of further questions, e.g., does the abo-parametric per -model
have polymorphic functionals that are not closed-term denotable, and what else
can be shown using abo-parametricity that cannot be analogously shown using
regular parametricity; and vice versa, in particular w.r.t. universal construc-
tions. Present research includes a comparison of abo-simulation relations to the
prelogical relations of [14].
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