

Evidence-based Software Engineering

 Barbara A. Kitchenham1,3 Tore Dybå2,4 Magne Jørgensen2
 barbara@cs.keele.ac.uk tore.dyba@sintef.no magnej@simula.no

1National ICT Australia, Locked Bag 9013 Alexandria, NSW 1435, Australia
2Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

3Dept. of Computer Science, Keele University, Staffordshire ST5 5BG, UK
4Dept. of Software Engineering, SINTEF ICT, NO-7465 Trondheim, Norway

Abstract

Objective: Our objective is to describe how software

engineering might benefit from an evidence-based
approach and to identify the potential difficulties
associated with the approach.
Method: We compared the organisation and technical

infrastructure supporting evidence-based medicine
(EBM) with the situation in software engineering. We
considered the impact that factors peculiar to software
engineering (i.e. the skill factor and the lifecycle factor)
would have on our ability to practice evidence-based
software engineering (EBSE).
Results: EBSE promises a number of benefits by

encouraging integration of research results with a view to
supporting the needs of many different stakeholder
groups. However, we do not currently have the
infrastructure needed for widespread adoption of EBSE.
The skill factor means software engineering experiments
are vulnerable to subject and experimenter bias. The
lifecycle factor means it is difficult to determine how
technologies will behave once deployed.
Conclusions: Software engineering would benefit from

adopting what it can of the evidence approach provided
that it deals with the specific problems that arise from the
nature of software engineering.

1. Introduction

In the last decade, medical research had changed
dramatically as a result of adopting an evidence-based
paradigm. In the late 80s and early 90s, studies showed
on the one hand that failure to organise medical research
in systematic review could cost lives [5] and on the other
hand that the clinical judgement of experts compared
unfavourably with the results of systematic reviews [1].
Since the publication of these influential papers, many

medical researchers have adopted the evidence-based
paradigm. Sackett et al. [14] point out that since 1992, the
number of articles about evidence-based practice has
grown from 1 publication in 1992 to about a thousand in
1998 and international interest has led to the development
of 6 evidence-based journals specialising in systematic
reviews.

The success of evidence-based medicine has prompted
many other disciplines that provide services to, or for,
members of the public to attempt to adopt a similar
approach, including for example psychiatry1, nursing2,
social policy3, and education4. We do not suggest that
software engineers should adopt a new practice just
because “everyone else is doing it”, particularly since the
evidence-based movement has its critics. For example,
Hammersley points out that research is fallible, relies on
generalisations that may be difficult to interpret, and is
often insufficient for determining appropriate means for
delivering best practice [6]. However, we believe that a
successful innovation in a discipline that, like software
engineering, attempts to harness scientific advances for
the benefit of society, is worth investigating.

Thus, in this paper we discuss the possibility of
evidence-based software engineering using an analogy
with medical practice. We describe the scientific and
technical infrastructure needed to support EBSE. We also
identify two areas where the analogy with medicine
breaks down. This allows us to identify a number of
serious problems that need to be resolved if EBSE is to
become a reality.

1 www.med.nagoya-cu.ac.jp/psych.dir/ebpcenter.htm
2 www.york.ac.uk/healthsciences/centres/evidence/cebn.htm
3 www.evidencenetwork.org
4 cem.dur.ac.uk/ebeuk/EBEN.htm

2. Why evidence is important in software
engineering

Initially it is worthwhile considering why evidence
would be beneficial to software developers, users and
other stakeholders e.g. public purchasing bodies,
certification bodies and the general public. EBSE is
potentially important because of the central place
software intensive systems are starting to take in everyday
life. For example, current plans for advanced life-critical
systems such as drive-by-wire applications for cars and
wearable medical devices have the potential for immense
economic and social benefit but can also pose a major
threat to industry, to society, and to individuals. If
systems are reliable, usable and useful, the quality of life
of individual citizens will be enhanced. However, there
are far too many examples of systems that have not only
wasted large amounts of public money but have also
caused harm to individual citizens (e.g. the automated
command and control system for the London Ambulance
Service). Individual citizens have a right to expect their
governments to properly administer tax revenues used to
commission new software systems and put in place
controls to minimise the risk of such systems causing
harm.

There are many strategies to improve the dependability
of software involving the adoption of “better” software
development procedures and practices. At a high level,
the Capability Maturity Model and SPICE suggest
procedures for improving the software production
process. In addition, the professional bodies are
establishing procedures for certification of individual
software engineers. However, the high level process and
the individual engineers are constrained by the specific
technologies (methods, tools and procedures) they use. In
most cases software is built with technologies for which
we have insufficient evidence to confirm their suitability,
limits, qualities, costs, and inherent risks. Thus, it is
difficult to be sure that changing software practices will
necessarily be a change for the better. It is possible that
EBSE can provide the mechanisms needed to assist
practitioners to adopt appropriate technologies and to
avoid inappropriate technologies.

3. The goal of EBSE

The goal of evidence-based medicine (EBM) is “the
integration of best research evidence with clinical
expertise and patient values” [14]. By analogy, we
suggest that the goal of evidence-based software
engineering (EBSE) should be:

to provide the means by which current best
evidence from research can be integrated with

practical experience and human values in the
decision making process regarding the development
and maintenance of software.

Thus EBSE would provide:

• A common goal for individual researchers and
research groups to ensure that their research is
directed to the requirements of industry and other
stakeholder groups.

• A means by which industry practitioners can make
rational decisions about technology adoption.

• A means to improve the dependability of software
intensive systems, as a result of better choice of
development technologies.

• A means to increase the acceptability of software-
intensive systems that interface with individual
citizens.

• An input to certification processes.

4. Practising EBSE

Sackett et al. [14] identify 5 steps that are needed to

practice evidence-based medicine. These steps are shown
in the second column of Table 1. Although there are some
detailed medical references, it is easy to reformulate the
steps to address evidence-based software engineering (see
column 3 of Table 1). In fact, we would hazard a guess
that at least part of the attraction that evidence-based
medicine has for other disciplines is the ease with which
the basic steps can be adapted to other fields. However, it
is important to remember that even if high-level process
steps for evidence-based practice appear to be similar for
medicine and software engineering, this does not
guarantee that the underlying scientific, technological and
organisational mechanisms that support evidence-based
medicine apply to evidence-based software engineering.
For this reason we consider each step in more detail
below.

The first point to note is that Sackett et al. [14]
consider EBM from the viewpoint of an individual
medical practitioner who needs to decide how to treat a
particular patient exhibiting a particular set of symptoms.
For EBSE our viewpoint is likely to be somewhat
different. In software engineering organizations,
individual developers seldom have the option to pick and
choose the technologies they are going to use.
Technology adoption is often decided either by project
managers on a project by project basis, or by senior
managers on a departmental or organizational basis.
Furthermore, in software engineering, our concern is not
usually the specific task to which the technology is
applied but the outcome of the project of which the task is
a part.

Table 1. Five steps used in Evidence-based Medicine and (by analogy) in Evidence-based Software
Engineering.

Ste
p

Evidence-based Medicine Evidence-based Software Engineering

1 Converting the need for information (about
prevention, diagnosis, prognosis, therapy, causation,
etc) into an answerable question.

Converting the need for information (about
development and maintenance methods, management
procedures etc.) into an answerable question.

2 Tracking down the best evidence with which to
answer that question.

Tracking down the best evidence with which to
answer that question.

3 Critically appraising that evidence for its validity
(closeness to the truth), impact (size of the effect), and
applicability (usefulness in our clinical practice).

Critically appraising that evidence for its validity
(closeness to the truth), impact (size of the effect), and
applicability (usefulness in software development
practice).

4 Integrating the critical appraisal with our clinical
expertise and with our patient's unique biology, values
and circumstances.

Integrating the critical appraisal with our software
engineering expertise and with our stakeholders’
values and circumstances.

5 Evaluating our effectiveness and efficiency in
executing Steps 1-4 and seeking ways to improve
them both for next time.

Evaluating our effectiveness and efficiency in
executing Steps 1-4 and seeking ways to improve
them both for next time.

Thus, in addition to the viewpoint of the individual

practitioner, there are two other viewpoints that are
important for EBSE in practice:

1. That of a project manager who wants to achieve a
favourable outcome for a particular project.

2. That of a senior manager who wants to improve the
performance of a department or organization as a
whole.

In addition, we believe EBSE (and indeed EBM) place
requirements on researchers:

• To improve the standard of individual empirical
studies and systematic reviews of such studies.

• To identify outcome measures that are meaningful to
practitioners.

• To report their results in a manner that is accessible
to practitioners.

• To perform and report replication studies.

4.1. Defining an answerable question

Sackett et al. [14] suggests that a well-formulated
question has three parts:

1. The study factor (e.g. the intervention, diagnostic
test or exposure).

2. The population (the disease group or spectrum of the
well population).

3. The outcomes.

Medical practitioners are usually interested in all forms
of outcomes, so they usually concentrate on the first two
parts. This would be the same for EBSE.

EBM researchers point out that it is important that the
question is broad enough to allow examination of
variation in the study factor and across populations. In
EBSE, the study factor would be the technology of
interest. The technology should not be specified at too
high a level of abstraction e.g. design methods, software
lifecycles, or management methods, but must be general
enough to identify the majority of relevant empirical
studies, for example OO methods, Agile methods, or Cost
estimation methods. For some questions it may be
necessary to be even more precise e.g. Contract-based
specifications, Pair-programming, or Statistically-derived
estimation models. It is even more difficult to determine
the correct level of abstraction for specifying the
population of interest. The population of interest may be
categorised in many dimensions based on experience of
technology users, types of problem addressed by the
technology, application area. However, even fairly broad
categories may be counter-productive if useful empirical
evidence is lost by restrictions imposed by such
categorisation.

4.2. Finding the best evidence

One of the reasons for formulating the question
precisely is to help researchers and practitioners to find
all relevant studies. According to the Australian National
Health and Medical Research Council, there are over
20,000 journals in the biomedical field. A major problem
for EBM is finding relevant papers from the massive
amount of published work. Medical researchers and
practitioners use a two-stage process:

1. They look for already published systematic reviews,
i.e. papers that have already assembled all relevant
reports on a particular topic.

2. They use the question of interest to construct search
strings aimed at finding relevant individual studies.

However, they have a large amount of technological
and scientific infrastructure to support them:

• There are several organisations (in particular the
international Cochrane Collaboration, see
www.cochrane.com) that assemble systematic
reviews of studies of drug and medical procedures.
To provide a central information source for
evidence, the Cochrane Collaboration publishes
systematic reviews in successive issues of The
Cochrane Database of Systematic Reviews. These
reviews are continually revised both as new
experimental results become available and as a
result of valid criticisms of the reports. The
Cochrane Collaboration actively solicits comments
on their reports (subject to published house rules).

• Some countries have established central abstracting
services for medical research papers. The largest and
most well-known is the Medline data base
(www.nlm.nih.gov), which provides references and
abstracts from 4600 biomedical journals.

• To reduce the problem of “publication bias”, the
Cochrane Collaboration provides a database for
researchers to register that they are intending to
perform a controlled trial. Publication bias is the
phenomena that more “positive” results are
published than “negative” results. This can lead to
an overestimation of the effect size in systematic
reviews and an under-reporting of risks. The
Cochrane Collaboration Groups use the register to
follow up all trials whether or not they are
published.

Although we have no equivalent to the Cochrane
Collaboration, there are many abstracting services that
provide access to software engineering articles.
Organizations such as the IEEE, with its database IEEE
Xplore, and the ACM, with its Digital Library provide
access to databases of articles. The articles are indexed by
author names, and keywords and usually have links to
abstracts and sometimes access to the original articles.
Such indexing makes it easier to search for information
regarding a problem area or find an answer to a specific
question.

4.3. Critically appraising the evidence

The work of the Cochrane Collaboration and other
national medical organisations (e.g. the Australian
National Health and Medical Research Council) has

radically changed the nature of medical research. Medical
research has recognised that single studies (even the most
rigorous double-blinded randomised controlled trials,
RCTs) are insufficient to properly qualify a medical
treatment. The emphasis now is on the accumulation of
evidence from many independent experiments.

Critical appraisal in EBM has been supported by
improved methodology both for systematic reviews and
individual studies:

• Several organisations have produced guidelines for
systematic reviews and evaluating evidence. The
Cochrane collaboration publishes a handbook (The
Cochrane Reviewers Handbook, March 2003). The
Australian National Health and Medical Research
Council publish a series of more general handbooks
that consider experimental methods other than just
RCTs (see www.health.gov.au/mrc). Importantly the
Australian NHMRC makes a distinction between
collating experimental evidence and packaging the
evidence into tailored guidelines for various
stakeholders.

• Medical journals have pressed for improvements in
the conduct and reporting of individual experiments.
A particular example is the CONSORT statement,
which defines the standards for randomised,
controlled trials (RCTs), see [13]. This statement has
been adopted as the standard for reporting RCTs by
all the most important medical journals.

This can be contrasted with the situation in empirical
software engineering. Currently evidence related to
software engineering technologies that is available is:

• Fragmented and limited. Many individual research
groups undertake valuable empirical studies.
However, because the goal of such work is either
individual publications and/or post-graduate theses,
there is sometimes little sense of overall purpose to
such studies. Without having a research culture that
strongly advocates systematic reviews and
replication, it is easy for researchers to undertake
research in their own areas of interest rather than
contribute to a wider research agenda.

• Not properly integrated. Currently, there are no
agreed standards for systematic reviews. Thus,
although most PhD students undertake reviews of
the “State of the Art” in their topic of interest, the
quality of such reviews is variable, and they do not
as a rule lead to published papers. There is little
appreciation of the value of systematic reviews, for
example, there is only one Computing journal that
solicits reviews (ACM Surveys). Furthermore, if we
consider “meta-analysis”, which is a more
statistically rigorous form of systematic review,
there have been few attempts to apply meta-analytic

techniques to software engineering not least because
of the limited number of replications. In general
there are few incentives to undertake replication
studies in spite of their importance in terms of the
scientific method [11].

• Without agreed standards. There are no generally
accepted guidelines or standard protocols for
conducting individual experiments. The recent
dispute between Berry and Tichy [4] and Sobel and
Clarkson [17] over the conduct of an experiment
into formal methods [16] makes it clear that
empirical software engineering is badly in need of
guidelines and protocols. Kitchenham et al. [9]
proposed some preliminary guidelines for formal
experiments and surveys. However, they do not
address observational, and investigatory studies.
Furthermore, because they attempt to address
several different types of empirical study, the
guidelines are not as specific, nor as detailed as the
CONSORT statement.

4.4. Integrating the critical appraisal with
software engineering expertise

In EBM, a doctor is expected to relate evidence to the
needs of the specific patient. For example, the advice
given to a patient with a particular disease may differ
according to his/her age and gender and the severity of
the symptoms he/she displays. Although there are
opportunities for individual software engineers and
managers to adopt EBSE principles, the decision to adopt
a technology is often an organisational issue that is
influenced by factors such as the organizational culture,
the experience and skill of the individual software
developers, the requirements of clients, project
constraints, and the extent of training required. Thus, to
use EBSE in practice may be more demanding than EBM
because the decision-making structure and adoption
process is often more complex.

We believe that EBSE would work well in an
organization that has a strong commitment to process
improvement, e.g. based on the recommendations in [3].
However, currently this does not appear to be happening.
Research results are:

• Not in wide-spread use in industry. In our opinion,
researchers often address issues that are not
perceived to be of relevance to industry or present
their results in a way that is virtually
incomprehensible to decision makers in industry.

• Not of perceived value to stakeholders. Certification
bodies, public purchasing bodies, and consumer
groups should all be concerned about the quality of
the techniques used to build software products. It is
likely that any trust such groups have in the quality

of software intensive products would be
substantially undermined if they were aware that the
choice of development techniques is based on
fashion and hype rather than scientific evidence.

4.5. Evaluation of the process

Sackett et al. [14] recommend that individual doctors
review the way in which they practice and teach EBM in
order to improve their individual performance. For EBSE,
this would involve propagating successful technologies
throughout a company and preventing the spread of
technologies that are unsuccessful. This concept fits well
with the goals of software process improvement.

However, there is a broader level of feedback in
medicine. For example, individual doctors are responsible
for reporting unanticipated side-effects of drugs. This
contributes to the evidence associated with a particular
treatment and may lead to further basic research. It would
be useful if this model could be applied in software
engineering. However, in a competitive industry, there is
little incentive for individual companies to assist their
competitors by reporting good and bad experiences with
new technologies. In addition, it is difficult for
experiences with a technology to be disentangled from
the particular context in which it was used.

4.6. Implications for EBSE

It is clear that a full-scale implementation of EBSE is
an extremely ambitious goal. It cannot be achieved
without extensive collaboration and long-term
commitment among individual research groups world-
wide, and active support from other stakeholders such as
practitioners in industry, certification bodies etc.
Furthermore it cannot be achieved without initial
financial support from research funding agencies to
enable the basic technological and methodological
infrastructure to be established.

It is clear that individual practitioners and researchers
can use some of the ideas of EBSE without extensive
technical support. However, Sackett et al. suggest that the
support infrastructure is a major reason for the
widespread adoption of the evidence-based paradigm in
medicine [14].

5. Scientific foundations

With enough resources, technological and
organisational support for evidence-based software
engineering could be put in place. However, such support
would be of little value if there were fundamental
differences between medicine and software engineering

that would make evidence-based software engineering
difficult or impossible.

5.1. The skill factor

One area where there is a major difference between
medicine and software engineering is that most software
engineering methods and techniques must be performed
by skilled software practitioners. In contrast, although
medical practitioners are skilled individuals, the
treatments they prescribe (e.g. medicines and other
therapeutic remedies) do not usually require skill to
administer or to receive. Furthermore, it is noticeable that
evidence-based surgery, which is far more analogous to
software engineering than other types of medical practice,
is far less advanced than evidence-based medicine [18].

The reason why skill presents a problem is because it
prevents adequate blinding. In medical experiments
(particularly drug-based experiments), the gold standard
experiment is a double-blind randomised controlled trial
(RCT). In a double-blind experimental trial neither the
doctor nor the patient knows which treatment the patient
is receiving. The reason double-blinded trials are required
is to prevent patient and doctors expectations biasing the
results. Such experimental protocols are impossible in
software engineering experiments that rely on a subject
performing a human-intensive task.

There are two complementary approaches we can
adopt to address this issue:

1. We can develop and adopt experimental protocols
that reduce experimenter and subject bias.

2. We can accept that our experiments are bound to be
less rigorous than medical trials and attempt to
qualify our experiments appropriately.

5.1.1. Experimental protocols. Although we cannot
usually blind experimenters or subjects, we can use
blinding in a number of ways to reduce the opportunity
for bias by reducing the direct interaction between
subjects and experimenters during the course of an
experiment [8]:

• Blind allocation to treatment groups. When we run
experiments to compare different techniques,
computerised methods can be used to automate the
random allocation of subjects to each technique..

• Blind distribution of material. Linked to blind
allocation, computers can be used to distribute
experimental materials to subjects.

• Blind or automated marking. If the task results
cannot be linked directly to the treatment e.g. where
the subjects are asked to answer some questions that
test their understanding of a software document, the
marker(s) should be blind to which treatment was
used by the subjects (i.e. the task response should

not identify the subject or the treatment to the
marker). Occasionally marking can be computerised.

• Blind analysis. The results should be coded so the
analyst does not know which treatment group is
which.

• Blind data collection. Computerised systems can be
used when information is required from subjects.
This can also improve the accuracy of such data.
Subjects will usually be more accurate in reporting
information to a computer system, particularly if
they are guaranteed anonymity.

In addition, we need to ensure that experimental
designs allow for systematic subject difference due to
skill, gender, and race by blocking, covariate analysis, or
cross-over designs (where each subject acts as their own
control).

Last but not least, we should encourage replication
studies by experimenters who have no vested interest in
the outcome of the study. However, we need to make sure
replications are not too similar. It is important to vary
experimental designs and experimental materials to avoid
the risk of any common cause bias in replications [8].

5.1.2. Evaluating experiment quality. Even in EBM, it
is recognised that it is sometimes impossible to perform
randomised trials and evidence from other types of
experiment may need to be considered. The Australian
National Health and Medical Research Council have
published guidelines for evaluating the quality of
evidence [2]. They consider:

• The strength of the evidence. This has three
elements: Level, Quality, and Statistical Precision.
Level relates to the choice of study design and is
used as an indicator to which bias has been
eliminated by design. Quality refers to the methods
used by the investigators to minimize bias within the
study design. Statistical Precision refers to the P-
value or the confidence interval.

• Size of effect. The distance of the estimated
treatment effect from the null value and the
inclusion of clinically important effects in the
confidence interval.

• Relevance of evidence. The usefulness of the
evidence in clinical practice, particularly the
appropriateness of the outcome measures used.

These criteria appear to be equally valid for software
engineering evidence.

5.2. The lifecycle issue

The other major difference between software
engineering and medicine is that most software
engineering techniques impact a part of the lifecycle in a

way that makes the individual effect of a technique
difficult to isolate:

• They interact with many other development
techniques and procedures. For example a design
method depends on a preceding requirements
analysis. It must consider constraints imposed by the
software and hardware platform and programming
languages, timescales, and budget. It must be
integrated with appropriate coding and testing
techniques. Thus, it would be difficult to confirm
that a design technique had a significant impact on
final product reliability. In general, it is difficult to
determine a causal link between a particular
technique and a desired project outcome when the
application of the technique and the final outcome
are temporally removed from one another, and there
are many other tasks and activities that could also
affect the final outcome.

• The immediate outcomes of a software engineering
technique will not necessarily have a strong
relationship with final project outcomes. E.g. if you
are interested in the effect design techniques have on
application reliability (i.e. probability of failure in a
given time period under defined operational
conditions), measures of the design product (or
design process) have no obvious relationship with
the desired outcome. There are no good surrogate
measures of product reliability that can be measured
at the end of the design process.

There seem to be two major approaches to this issue:

1. We can experiment with individual techniques
isolated from other techniques.

2. We can undertake large-scale empirical studies.

5.2.1. Experimenting with individual techniques. One
approach is to experiment with individual techniques
isolated from other techniques. However, this does not
address the problem that the outcomes may be poor
surrogates for the project outcomes practitioners are
interested in. Furthermore, it leaves open the issue of how
the technique will behave when it is integrated into a full
development process.

5.2.2. Large-scale empirical studies. Another approach
is to undertake large-scale empirical studies for example
industrial case studies. The problem with case studies is
that they cannot be performed with the rigor of proper
experiments e.g. there will be limited opportunities for
replication. Furthermore industrial studies suffer from the
problem that case studies are performed within the
context of a particular company. This means they are
affected by the specific process standards, application
area, staffing practices, software tools and other context

specific factors. Thus, results from case studies cannot
usually be generalised outside their specific context. This
makes it difficult to extract meaningful evidence. One
approach is to attempt to categorise context factors better
[7]. However, this can lead to a combinatorial explosion
of contextual information and the conclusion that each
project is unique and non-comparable.

An alternative approach is to conduct a field (or quasi-
) experiment. Such experiments lack random assignment
of units to conditions but otherwise have similar purposes
and structural attributes as randomised experiments [15].
Like all empirical studies, a causal inference from a
quasi-experiment must meet the basic requirements for
causal relationships: that cause precedes effect, that cause
covaries with effect and that alternative explanations for
the causal relationship are implausible. The first two of
these are easily accomplished in all experiments. In
randomised experiments, the third requirement is met by
ensuring that alternative explanations are randomly
distributed over the experimental conditions. Since quasi-
experiments lack randomisation, the third requirement
must be met by alternative principles, such as the
identification and study of plausible threats to internal
validity, by design controls, or by coherent pattern
matching [15].

Another approach is to assemble data sets of project
information, either from a single company or from many
different companies in order to establish benchmarks for
quality or productivity. In theory, such data sets could be
used to assess the impact of software engineering
technologies on quality or productivity. The major
problem with this approach is the difficulty of obtaining a
valid sample of project. In order to draw valid
conclusions projects should be a random sample from a
defined population. However, both definition of the
population and obtaining a random sample are
problematic for software projects [7].

6. Discussion and conclusions

We have suggested that evidence-based software
engineering might deliver a variety of benefits to software
practitioners and their clients and users. In particular, the
adoption and use of techniques supported by evidence
should both improve the quality of software-intensive
systems, and reassure stakeholder groups that
practitioners are using best practice.

However, there are a number of problems associated
with EBSE. In order to be effective in terms of
influencing software practitioners, EBSE needs
substantial infrastructure support, particularly with
respect to making systematic reviews available to
practitioners. For example, an initiative similar to the
Cochrane Collaboration would require an international

collaboration with funding from national and multi-
national agencies.

However, there are also scientific problems that may
be more difficult to address. The problem of evaluating
technologies that rely on human skill means that our
experiments will always be vulnerable to subject and
experimenter bias. There are approaches that can be used
to reduce the scale of the problem. More difficult to
resolve is the problem of the complexity of the software
lifecycle. It will always be difficult to obtain reliable
evidence about the behaviour of technologies in large-
scale projects.

In our view, evidence-based software engineering is a
worthy goal for researchers interested in empirical
software engineering and practitioners faced with
decisions about the adoption of new software engineering
technologies. However, there are undoubtedly problems
associated with EBSE that arise from the nature of
software engineering and that require the development of
new procedures and practices for empirical studies.

There are some types of study, particularly those
related to software testing that appear to be promising
candidates for EBSE. It is likely to be more difficult to
apply EBSE to the software construction technologies
(i.e. analysis and design technologies).

Furthermore, some aspects of EBSE are essentially
low risk and should be adopted as soon as possible such
as the development and adoption of guidelines for
systematic reviews. For example, Jasperson et al. [11]
provide a very good example of a systematic review in
Information Systems research. Their paper was not aimed
at gathering evidence. It was aimed at gaining an
understanding of research area, and identifying topics for
further research. Nonetheless, it illustrates the rigour
required of any systematic review. For example, an
important issue for any systematic review is to use an
appropriate search methodology with the aim of
achieving as complete (and, therefore, unbiased) a survey
as possible. Furthermore, it is an important part of a
systematic review to describe the search method.
Jasperson et al. describe the method of search they used
(i.e. hand search of 12 named journals between 1980 and
1999), justifying the method of search, the choice of
journals, the selection of papers, and discussing the risks
associated with their search method. Furthermore, they
describe how they synthesised the individual studies, and
provide an annotated summary of each paper they
reviewed. We would like to see this type of rigour more
often in software engineering survey articles and PhD
theses.

Thus, our recommendation is for researchers to adopt
as much of the evidence-based approach as is possible, to
target systematic reviews (or summaries of such reviews)
at practitioner publications, and to treat initial attempts at

using EBSE as a means of further assessing the viability
of the evidence-based approach.

7. References

[1] ANTMAN EM, LAU J, KUPELNICK B, MOSTELLER F,

CHALMERS TC. A comparison of results of meta-analysis of
randomized controlled trials and recommendations of
clinical experts, JAMA-Journal of the American Medical
Association, 268(2):240-248, July 1992.

[2] AUSTRALIAN NATIONAL HEALTH AND MEDICAL RESEARCH
COUNCIL, How to use the evidence: assessment and
application of scientific evidence, Handbook Series on
Preparing Clinical Practice Guidelines, NHMRC:
Canberra, February 2000.

[3] BASILI, V.R. AND CALDIERA, G. Improve Software Quality
by Reusing Knowledge and Experience, Sloan
Management Review, 37(1):55-64, Fall 1995.

[4] BERRY, D.M. AND TICHY, W.F. Comments on “Formal
Methods Application: An Empirical Tale of Software
Development”, IEEE Transactions on Software
Engineering, 29(6):567-571, June 2003.

[5] COCHRANE, AL. In Chalmers I, Enkin M, Keirse MJNC,
eds. Effective care in pregnancy and childbirth. Oxford
University Press, Oxford, 1989.

[6] HAMMERSLEY M. Some questions about evidence-based
practice in education. Paper presented at the symposium on
"Evidence-based practice in education" at the Annual
Conference of the British Educational Research
Association, University of Leeds, September 13-15, 2001.
www.leeds.ac.uk/educol/documents/00001819.htm
(accessed 16 September 2003)

[7] KITCHENHAM, B.A., The Case Against Software
Benchmarking, Keynote Lecture, Proceedings of The
European Software Measurement Conference FESMA-
DASMA 2001, May 2001.

[8] KITCHENHAM, B.A, LINKMAN, S.G., AND FRY, J.S.
Experimenter induced distortions in empirical software
engineering. in Jedlitschka, A. & Ciolkowski, M. (Eds),
"The Future of Empirical Studies in Software
Engineering", Proc. of 2nd International Workshop on
Empirical Software Engineering, WSESE 2003, Roman
Castles, Italy, September 2003.

[9] KITCHENHAM, B.A., PLEEGER, S.L., PICKARD, L., JONES, P.,
HOAGLIN, D., EL EMAM, K., AND ROSENBERG, J. Preliminary
Guidelines for Empirical Research in Software
Engineering, IEEE Transactions on Software Engineering,
28(8):721-734, 2002.

[10] KITCHENHAM, B.A., TRAVASSOS, G.H., VON MAYRHAUSER,
A., NIESSINK, F., SCHNIEDEWIND, N.F., SINGER, J., TAKADO,
S., VEHVILAINEN, R., AND YANG, H. Towards an Ontology
of Software Maintenance, Journal of Software
Maintenance: Research and Practice, 11(6):365-389, 1999.

[11] JASPERSON, JON (SEAN), BUTLER, BRIAN S., CARTE, TRACI,
A., CROES, HENRY J.P., SAUNDERS, CAROL, S., AND ZHEMG,
WEIJUN. Review: Power and Information Technology
Research: A Metatriangulation Review. MIS Quarterly,
26(4): 397-459, December 2002.

[12] LINDSAY, R.M. AND EHRENBERG, A.S.C., The Design of
Replicated Studies, The American Statistician, 47(3):217-
228, August 1993.

[13] MOHER D., SCHULZ K.F., ALTMAN D.G. The CONSORT
Statement: Revised Recommendations for Improving the
Quality of Reports of Parallel-Group Randomised Trials,
The CONSORT Group, Annals of Internal Medicine,
134(8):657-662, April 2001.

[14] SACKETT, D.L., STRAUS, S.E., RICHARDSON, W.S.,
ROSENBERG, W., AND HAYNES, R.B. Evidence-Based
Medicine: How to Practice and Teach EBM, Second
Edition, Churchill Livingstone: Edinburgh, 2000.

[15] SHADISH, W.R., COOK, T.D, AND CAMPBELL, D.T.
Experimental and Quasi-Experimental Designs for
Generalized Causal Inference, Houghton Mifflin
Company: Boston, 2002.

[16] SOBEL, A.E.K. AND CLARKSON, M.R. Formal Methods
Application: An Empirical Tale of Software Development,
IEEE Transactions on Software Engineering, 28(3):157-
161, March 2002.

[17] SOBEL, A.E.K. AND CLARKSON, M.R. Response to
“Comments on ‘Formal Methods Application: An
Empirical Tale of Software Development’”, IEEE
Transactions on Software Engineering, 29(6):572-575,
June 2003.

[18] WENTE, M.N., SEILER, C.M., UHL, W., AND BÜCHLER, M.W.
Perspectives of Evidence-based Surgery, Digestive
Surgery, 20(4):263-269, 2003.

