
Analysing Persistent Language Applications

Dag I.K. Sjøberg
Department of Informatics, University of Oslo

Oslo, Norway. dagsj@ifi.uio.no

Quintin Cutts
Department of Mathematical and Computational Sciences, University of St Andrews

St Andrews, Scotland. quintin@dcs.st-andrews.ac.uk

Ray Welland, Malcolm P. Atkinson
Department of Computing Science, University of Glasgow

Glasgow, Scotland. {ray, mpa}@dcs.glasgow.ac.uk

Abstract

Most research into persistent programming has been directed towards the design
and implementation of languages and object stores. There are few reports on the
characteristics of systems exploiting such technology. This paper reports on a
study of the source code of 20 applications consisting of more than 108,000 lines
of persistent language code. The authors of the applications range from students
to experienced programmers. The programs have been categorised and examined
with respect to a persistent application model and the extent of inconsistencies
relative to this model is presented. The results confirm the need for and give
input to the design of programming methodologies and tools for persistent
software engineering. Measurements also include the use of names, types,
(polymorphic) procedures and persistent bindings. It is hoped that analysis of the
measurements will be used as input to the next generation of languages and
programming environments. As part of this new generation, a measurements
system is outlined operating entirely within the persistent environment, thus
simplifying access to and measurement of both static and dynamic information.

1 Introduction

This paper reports on an analysis of applications written within a persistent
programming environment. Whilst much persistence research has been directed
towards the design and implementation of persistent languages and object stores [1-
3], there are few reports on the characteristics of application systems exploiting such
technology. As the programming effort using persistent languages expands from the
current core system building domain to the wider application building domain,
results of this nature are required to ensure that the expected wide-ranging benefits of
persistent systems are realised. The analysis of persistent language applications
presented in this paper aims to inform research in the areas of persistent
programming methodology design, the design and implementation of persistent
programming environments and associated tools and the design and implementation
of persistent programming languages.

The analysed software was written in Napier88 [4], a strongly typed, higher-order
persistent programming language. The applications derive from a number of
sources, from the Napier88 programming environment software, to student programs
to the first major non-system applications written using the Napier88 system. The
measured software comes from three separate sites: University of St Andrews,
University of Glasgow and Napier University in Edinburgh.

These programs have been written over a number of years during which time
different application construction styles have evolved. Each style is termed a
programming methodology, and the adherence to and design of these methodologies
are of particular interest here. The designer of a programming methodology takes
the features of a programming language and its associated environment and generates
guidelines and constraints to aid construction of applications according to a clear,
widely used and coherent framework. Such a standardisation is intended to improve
the quality of software engineering and is particularly important in a fledgling
programming style such as persistent programming since there are few, if any, well-
founded and proven methodologies available.

The measurements collected in this study are assessed against one of the first
well-defined persistent programming methodologies, first to see to what degree the
applications adhere to the methodology and second to determine how the
methodology should best evolve to meet the requirements of application builders.
Statistics on the dependencies among the various parts of an application system
indicate the consequences of change, including the extent of necessary change
propagation [5].

As a supplement to anecdotal description of user experiences, attempts should be
made to quantify the potential benefits of new and enhanced methodologies and tools
[6, 7]. This may be achieved by measuring software before and after the
methodologies have been adhered to and the supporting tools applied. A strictly
controlled experiment was not conducted, but groups of different kinds of
programmers were compared.

The measurements are also used to indicate areas of concern in current persistent
programming languages and environments. In Napier88, for example, some
application construction styles are not efficiently supported by the current
programming environment because it is outside the persistent environment. An
integrated persistent programming environment is required to make the most of the
benefits offered by persistence.

The measurements presented here are taken from a static analysis of source code
only. Studies based on static analysis have been reported for other languages, e.g.
FORTRAN [8, 9], PL/1 [10] and APL [11], but these studies focused on other issues
than those reported in this paper. Also programs written in persistent programming
languages have been analysed by others, but only some dynamic aspects relating to
performance have been measured [12-14]. The analysis reported in this paper is
restricted to static analysis and to a particular language environment but represents a
first attempt at analysing the characteristics of persistent language applications. The
emergence of integrated persistent programming environments, e.g. [15], will allow
measurement of both static and dynamic application characteristics within a fully
persistent system. Such measurements should give a more complete analysis of
persistent applications. Although measurements from such systems are not yet
available, this paper outlines measurement techniques that exploit the power of the
new technology and will be used in the next stage of persistent language analysis.
As the size and complexity of persistent applications increase, these features will be

required to ensure that effective and enhanced measurement and analysis can be
performed.

The paper is organised as follows. Section 2 describes the apparatus used to
gather the measurements. Sections 3 reports the main results, which are analysed in
Section 4. Section 5 outlines new measurement technology. Section 6 concludes.

2 Measurement Apparatus – Methodology, Tools and
Applications

The methodologies, tools and measurements presented here are drawn from
experience using the first release of the Napier88 system. In this version, the
programming environment in which source programs are constructed and compiled
into executable programs is the Unix system [16] (Figure 1). Compiled programs
are executed against a persistent store. The internal structure of the store is not
defined by the language or the store and may consist of an arbitrary graph of
Napier88 values, both data and first-class procedures. The graph is reachable from a
single point known as the root of persistence. By convention, the graph is structured
using a Napier88 type constructor known as an environment [17], which is a
collection of name-type-value-constancy bindings [18]. A binding in an environment
is to a location containing a value of the given type that may be overwritten with
another according to the binding’s constancy. Nesting of environments allows a
typed hierarchical structure analogous to the directory structure of a file system. A
value persists beyond the invocation of the program that created it if it is within the
transitive closure of the persistent root.

Libraries of values may be constructed within the store by executing compiled
programs that create the new values and bind them to the environment structure
where they may be accessed by other programs. Bindings between values and
environments are just one example of the bindings between values that may be
created during program execution. Applications are typically made up of a number
of independently constructed values bound together in such a way that the required
task may be performed. In addition, some or all of these values may be bound to the
environment structure to allow, for example, an entry point for execution of the
application or application components to be examined and possibly updated.

The programming environment embedded within the Unix system allows source
program files to be constructed and compiled into executable program files. Where
complex type descriptions are shared by many programs, a single version of the type
descriptions may be created in a file and compiled into a type library against which
source programs may subsequently be compiled.

persistent store

libraries

Unix system

source
files

executable
files

types file

Key

compiler

types library

persistent root

environment application

component binding

Figure 1: The programming environment

Using a persistent system of this kind, the starting point for the work described here
is defined by the following components:

• the persistent programming methodology known as the Structured Persistent
Application System Model (SPASM)

• the Thesaurus-based Software Information Tool (TSIT), used to gather
information from the source programs

• EnvMake, used to assess this information against SPASM, and

• a collection of persistent applications

2.1 The SPASM Methodology

SPASM defines a programming methodology as a set of constraints to which each
suite of application software should adhere in order to help ensure correctness and
maintainability [19, 20]. Well-structured software is a requirement for easy
maintenance in the future [21, 22]. The SPASM constraints apply to the static
software characteristics determined during source code analysis. Some of the
constraints are explicit formulations of rules and conventions in a programming
culture already adhered to by experienced Napier88 programmers. Other constraints
have been defined as a result of the inconsistencies detected in this study.

As a means to improve the way applications are organised around the persistent
store, SPASM restricts each program to perform only one kind of operation on the
store. Any program should belong to exactly one of the following categories:

• Insert-program – inserts at least one binding into an environment in the persistent
store but neither updates a persistent location nor deletes any binding.

• Update-program – updates at least one persistent location but neither inserts nor
deletes any binding.

• Drop-program – deletes at least one binding but neither updates a persistent
location nor inserts any binding.1

• Startup-program – uses at least one binding but neither changes the binding to a
persistent location, nor inserts or deletes any binding. A startup-program’s
distinguishing feature is that it does not change any of the bindings in any
persistent environment; it typically invokes an interactive menu or any persistent
procedure.

• Type-program – its contents are exclusively type definitions.

Several constraints help ensure adherence to an incremental construction
methodology based on updatable persistent locations [23]. Using the methodology,
insert-programs create stub locations in environments, one for each component of the
application. For each component, an update-program finds bindings to locations of
components required by the component under construction. The update-program
creates the new component with bindings to these locations, and updates the
component’s location with the newly constructed version.

The following are examples of another category of SPASM constraints:

• all type definitions should be used within the application

• a binding inserted into the store, not intended for export, should be used
somewhere within the application

• programs and data in the persistent store should be used in at least one
application program

2.2 The TSIT and EnvMake Tools

The measurements were provided by TSIT which integrates the notions of data
dictionary in the database area and cross-referencer in the programming language
area [20, 24]. The TSIT analyser is based on the Napier88-in-Napier88 compiler
[25] and extracts a variety of information during source code analysis and inserts it
into the thesaurus, which is a fine-grained, cross-reference database containing
information about all user-introduced names occurring in the source programs of an
application and the names of the bindings to code and other data in the associated
persistent stores. A thesaurus entry holds information relevant to our study such as:
name, type, constancy of an identifier and usage and context of identifier
occurrences. Usage indicates how the identifier is being used, e.g. declaration or use
of a type identifier, or declaration, left context or right context of a value identifier.
Context indicates whether the identifier occurs in an environment operation or as a
declaration of a type parameter, procedure parameter, structure field, variant tag, etc.
or as a dereferenced structure field, projected variant, etc.

Another thesaurus-based tool, EnvMake, verifies programs against the
constraints of SPASM, using the thesaurus built up by TSIT. EnvMake gives
warnings when violations are detected and can be compared with modern grammar

1 “Delete” is called “drop” in Napier88 terminology. These terms are used synonymously in
this paper.

checkers; they check the text against some internal rules and give a warning if the
text is not compliant with those rules. EnvMake does not invalidate the program if
violations are detected; it informs the programmer about the kind and source of
violation and then checks the next constraint. EnvMake features optional selection
of the constraints; programmers may “switch off” the check of individual constraints.
For example, a programmer may know that certain constraints will not be adhered to
during periods of development (typically during initial construction) and may wish to
avoid the noise of unnecessary inconsistency messages.

2.3 The Applications

An application is a collection of related programs expected to support a task. Source
code information collected from 20 Napier88 applications developed by students and
experienced persistent programmers forms the basis for this analysis. The
application collection consists in total of 1544 programs, 108,000 lines of code and
180,000 name occurrences (which may be a better measure for the size than the
traditional lines of code). A program in this context is a unit of compilation,
typically contained in a single file.2 The analysis focuses on the use of names and
identifiers. The same name can denote different identifiers if they appear in different
scopes. In those cases there are more identifiers than names.3 In the following
program example there are one name, two identifiers and three name (or identifier)
occurrences:

let counter := 0
begin

let counter := 1
end
counter := 1

In order to investigate the potential benefits of recent innovations in programming
methodologies, the applications were divided into four groups: OLD applications
developed before the latest methodologies were developed, applications of the
STUDENTS who were taught the latest methodologies, new applications of
experienced programmers who were AWARE of those methodologies, without fully
committing to them, and finally, applications with authors who were explicitly
COMMITTED.

3 Results

Table 1 lists a sample of the measurements and summarises immediate findings.
Following the table, the measurements are described in more detail. The reader is
reminded that these are static measurements of source code.

2 In principle, a program may be represented by several files (e.g. assembled first by a pre-
processor, held in a source code control system like RCS, etc.) or may be extracted from one
file. The term module is often used in the literature synonymously with our definition of
program.
3 In the analysed applications 13% of the names denote more than one identifier.

Table 1: Summary of measurements

Measurement Immediate findings

Program categories • old programs do not adhere to the categories, the newest ones do

Inconsistencies • a relatively large proportion of the SPASM constraints are violated

Use of names • a name is used between 1 and 7124 times, 13 on average, 90% less
than 25

• significant correlation (Spearman [26] 0.88) between number of
different names and size of application; no correlation (0.14)
between application size and the number of times a name is used

• average name length 8 characters, ranging from 4 to 10 in the
respective applications; maximum 29

Use of types • identifiers: structure 21%; monomorphic procedures 18%; ADT
only 0.2%

• 52 type definitions are used on average 34 times in the applications;
average use varies significantly: from 2 to 313

• no significant correlation between the three pairs of number of type
definitions, type uses and application size

Use of procedures • procedures are the most common kind of persistent binding

• procedures are used 5 times on average; range of application
average: 3 – 9

• one quarter of all procedures are polymorphic

Constancy • 76% variables, 24% constants

Variable usage • 15 times more read than update

Store operations • 73% use, 12% insert, 8% contains check and 7% delete

3.1 Adherence to SPASM

The measurements reported in this section are intended to stimulate persistent
methodology designers and tool builders. The large number of inconsistencies and
violations of constraints drawn from the measurements justify the implementation of
the SPASM verification tool, EnvMake.

3.1.1 Program Categories

Table 2 shows the percentage of the programs belonging to the categories defined in
Section 2.3 and illustrates SPASM’s effect on the program organisation of the
applications under study. The “insert/drop” and “ins/drop/update” columns show the
percentage of programs (discouraged by SPASM) containing both insert and drop
(and update) statements. It appears that 34% of the programs in the old applications
violate the constraint that a program should belong to exactly one of the program
categories, as opposed to 6%, 10% and 0% in the other groups. The reason for the
large proportion of combined “insert/drop” and “insert/drop/update” programs in the
old applications is that many of them adhered to a pre-SPASM methodology in
which operations on the same binding were collected in one program. Note also the
extremely low proportion (4%) of pure update-programs in the old applications.

Table 2: Distribution of program categories, expressed in percentages

Application
group

insert update drop start-up type insert/
drop

ins/drop
/update

Total

OLD 19 4 3 25 15 22 12 100
STUDENT 34 22 1 29 8 6 0 100
AWARE 11 63 2 8 6 9 1 100
COMMITTED 25 28 25 21 1 0 0 100

MEAN 22 29 8 21 7 10 3 100

One of the two committed applications has one type-program and for each of the
persistent components exactly one insert, update, drop and startup program. (The
startup programs are test programs in this case.) The average program length is 35
lines in the committed group as opposed to 137 in the other groups. Keeping
programs small is in compliance with good software engineering, as maintenance
costs have been measured to be significantly affected by program size [27]. On the
other hand, there are indications that too small programs should also be avoided [27].
However, if programs have simple semantics and are as well-structured as in this
case, they may be the subject of (semi) automatic creation and maintenance [19].

3.1.2 Inconsistencies

SPASM and EnvMake were developed to support software builders in creating more
consistent and maintainable application systems. The inconsistencies enumerated in
Tables 3 and 4 are examples of inconsistencies the SPASM constraints aim to
prevent. Some constraints operate within programs only (Table 3); other operate
between programs, i.e. at the application level (Table 4). The applications were
operational at the time of the analysis. One would expect an even larger number of
inconsistencies during periods of development. A violation of a constraint could be a
logical error or could just indicate a situation that might eventually cause problems.
For example, redundant type and value declarations do not affect the functionality of
a program, but should be avoided since they may cause confusion when someone
tries to understand the program, and the programs become unnecessarily large and
complex, which in turn may impair performance and maintainability. In a study of
FORTRAN programs a correlation was found between the proportion of unused
variables and fault rate [9].

Table 3: Measurements of inconsistencies within a program

Inconsistency within a program Percentage Percentage of

Variables not updated 35 all variables

Unused value identifiers 8 all declared identifiers

Variables updated but not read 4 all updated variables

Table 4: Measurements of inconsistencies within an application

Inconsistency within an application Percentage Percentage of

Repeated type declarations 29 all type identifiers

Unused type identifiers 24 all type identifiers

Repeated drop statements 10 all drop statements

Inserted procedure variables not updated 9 all inserted procedures

Inserted bindings not used 8 all inserted bindings

Repeatedly inserted bindings 7 all inserted bindings

Inserted procedure variables updated more than
once

5 all updated procedures

More than one third of all variables are never updated and could therefore have been
declared constants (Table 3, row 1). Store managers might exploit this information,
which also indicates possible improvement in programming precision. There are
large individual variations among the applications (from 0% to 83%, the student
applications in the upper range). In addition to being updated, the value of a local
(i.e., transient) variable should also be read within the program (row 3 shows 4%
violations). A persistent variable should be assigned but not necessarily read within
the program since its value may be read in other programs.

The majority (72%) of unused value identifiers (8%, row 2) are declared in the
constructs used to access bindings in the persistent environment. There are several
reasons for why this kind of redundancy occurs: large specifications are copied
indiscriminately from other programs; too many identifiers are declared in the belief
that they would be needed later; and code using identifiers is removed without the
programmer remembering to remove the corresponding declarations. One
application has a very low value (0.6%) due to the use of EnvMake, which detects
and invites the programmers to eliminate such anomalies.

In a language allowing definition of types in different scopes, two or more types
may be defined with the same name and type (expression). In that case, according to
the model of SPASM, they should be replaced by exactly one definition in the
innermost scope covering the scope of the replaced type definitions. Also, type
definitions may have the same name, but denote different types. To avoid confusion
they should then be renamed to acquire unique names. Multiple declarations of type
names are confusing, require unnecessary compilation and are a potential problem
concerning change. Maintaining consistency requires that all declarations describing
the same concept (e.g. Person) must be changed if the intention is to modify the
implementation of the concept (e.g. add a new attribute). It is difficult to arrange that
when several programmers (responsible for several components) who require use of
a common type, each writes out equivalent type definitions (particularly if they are
complex). It is even harder to ensure that when the type is amended, the same
amendments are applied in every usage context. One concept should therefore be
represented by only one type definition. In our sample 29% of the type declarations
are re-declarations (Table 4, row 1). In the most extreme application all types are
declared within the program in which they are used. In that application there are 5.6
declarations per name. A requirement for type management is identified here.

The second row of Table 4 shows that 24% of the type identifiers are unused.
Some applications use all the type identifiers declared within the application; other

applications use only one third. In the latter extreme cases the reason is that when
libraries are used, all the types associated with the library are copied even though
only a small part of the library is actually used in the application. This
indiscriminate copying of types is indicative of a requirement for a tool to collect
required items (types or values).

Bindings inserted into a persistent store by one program should be used in some
other program (row 5). Even library components intended for export should be used
in at least one program testing the component. More than one declaration of insert
for the same binding may cause confusion and are unnecessary. Row 6 shows that
7% of all insert declarations are re-declarations. Several drop statements for the
same binding should also be avoided (row 3). Attempts to re-insert a binding already
present in a persistent store or drop a binding not present will cause run-time errors.

The fourth and seventh rows of Table 4 relate to the methodology where code
resides in updatable persistent locations in the form of procedures. Each such
procedure should have exactly one corresponding program updating it. The
measurements show that 9% of the procedures are not updated at all; 5% are updated
twice or more. Not all the applications have explicitly committed to the
methodology at the time of development. This is reflected in great individual
variations. Generally, the extent of inconsistencies is clearly smallest in the
COMMITTED group, but still not ignorable – automatic detection tools would be
useful for all the applications.

3.2 Use of Names

Names are central to system builders’ thinking and thus influence the way software is
organised. Meaningful names are important for problem solving, understanding of
semantic structure and memorisation [28-30]. Within an application people should
use names with a consistent intended meaning. The choice of names for identifiers is
crucial for the readability of programs and is particularly important when trying to
administer and manage change.

A property of a name is its length. There may be different guidelines for the
optimal length: the names should generally be long since long names can convey
more information than short ones; the less frequently an identifier is used the longer
it should be; the greater the distance between the declaration and use of an identifier
the longer it should be; etc.4 Another view is that the important thing is that the
name is carefully chosen – which is independent of the name length (e.g.
abbreviations can be very meaningful). The appropriateness of these guidelines,
which are not mutually exclusive, is not an issue of this paper. The point is,
however, that the thesaurus provides a means for testing the software against such
guidelines.

3.3 Use of Types

The language under study (Napier88) supports a rich type system, including labelled
Cartesian products (structures), labelled disjoint sums (variants), polymorphic
procedures [31] and abstract data types [32]. Knowledge of the distribution of base
types and type constructors (kinds) may be useful for language designers. The most

4 However, longer names are harder to type correctly. There is therefore a case for completers
and information retrieval tools that operate using the thesaurus.

frequently used kinds in all the applications are structures (records) and
monomorphic procedures. Some kinds vary significantly, such as polymorphic
procedures (from 0.1% to 10%). (The use of polymorphic procedures is discussed
further in Section 3.4.) The abstract data type construct is hardly used (see Section
4.3).

Studies have confirmed that type definitions undergo considerable change in
large application systems [33, 34]. Measurements on the use of type definitions are
interesting when studying the consequences of type evolution. A change to a type
definition in the applications under study would require 34 individual edits on
average. In the best (but useless) case only the definition itself needs to be changed
(no uses), while 3211 places in the worst case.

The argument above should be modified slightly. A renaming of a type
definition would require all the places where the type identifier is used to be edited.
If the expression of a type definition is changed, the places of use must be changed
depending on the context and whether the type is parameterised. If a type identifier
is used to create instances of the type denoted (16% of all uses), a change must be
propagated to all places where the identifier is used to create new instances (five
places on average in the applications). If a type identifier is used in the declaration
of another type, in the signature of a procedure parameter declaration or in the
construct used to access persistent bindings from a program (these three cases
constitute 84% of all uses), a change does not affect the code if the type is not
parameterised; only recompilation is necessary. (For the 18% of type definitions that
are parameterised, the place of use must be edited if the number of parameters is
changed.) However, in addition to the required edits on the places where a type is
used, cascades of consequential change might be necessary (e.g. the places where
instances of the types are used).

The number of programs affected by a type change may be a measure for how
modular the code is. On average a type definition is used in respectively 38%, 13%,
12% and 5% of all programs in the OLD, STUDENTS, AWARE and COMMITTED
groups, indicating that the “committed” programmers produce the most modular
code. In any case, the measurements presented above confirm that software builders
and maintainers need sophisticated change management tools and that SPASM will
make this kind of change easier to manage.

The type equivalence model of the language must be taken into account when
attempting to manage types. In a language with structural type equivalence, such as
Napier88 [35], determining the consequences of type change can be difficult. The
thesaurus information about the use of types, on which our measurements are based,
may be incomplete. Instead of the name of a type definition, anonymous types may
be used in value instantiations and other declarations. A problem occurs when an
anonymous type is semantically the same as another explicitly defined type. This
illustrates that programmers should be encouraged to use named types in order to
facilitate efficient change propagation. However, sometimes using names only may
impair readability. Change management tools could in those cases pass back
information to the programmer on an interactive basis when an anonymous type is
found that is equivalent to a changed named type. The programmer could then
specify the desired course of action.

From the point of view of language implementors, information about the types
involved in type checking would be useful to collect in a future study (Section 5).
Choosing an efficient strategy for managing representations of types depends on the
proportions of time spent on, for example, constructing the representations,

examining components of representations and testing for type equivalence over
representations. In conjunction with dynamically gathered information of this kind,
static information about the structure and use of types will help indicate the
appropriate implementation strategy.

3.4 Use of Procedures

In an orthogonally persistent language providing first-class procedures, executable
code can be contained in persistent stores in the form of procedures. Our study
shows that this feature is heavily exploited: 58% of all bindings inserted into a
persistent store are monomorphic or polymorphic procedures (as opposed to only
16% of the transient identifiers). The large proportion of procedures is primarily
caused by the kinds of the analysed applications. The infancy of our programming
environment has resulted in more tools and libraries than application systems with
huge amounts of data.

The name, type or value of a procedure may change. A change to the value
(body) will normally not require any propagation to other parts of the application.
Renaming or changing the type implies in general that all places of use must be
changed accordingly. In the analysed applications an average of five places was
measured.

Language designers should note that polymorphic procedures, a relatively new
construct, are becoming more widely used. Table 5 shows the use of polymorphic
and monomorphic procedures in proportion of all identifier occurrences.

Table 5: Use of polymorphic and monomorphic procedures

Application group Polymorphic procedures % Monomorphic procedures %

OLD 1.4 18.1
STUDENT 4.7 21.8
AWARE 5.0 17.9
COMMITTED 7.6 20.4

MEAN 4.7 19.6

Useful information for language implementors is that 86% of the polymorphic
procedures have only one quantifier, 13% have two and 1% have three. Moreover,
the most efficient implementation strategy for polymorphic procedures will depend
on the number of specialisations [25]. Procedures are specialised without call in only
four of the 20 applications, in contrast to the belief that specialisation without call is
the expected method of using polymorphic procedures [36]. This may affect the
chosen implementation of polymorphism. In the four applications, 43% of the
polymorphic procedures are involved in specialisations without calls, each procedure
being specialised, but not called, on average 4.4 times, with 2.7 different type
combinations. However, dynamic measurements of specialisations and calls are also
important to get a complete picture of what is going on (Section 5).

3.5 Constancy and Name Usage

A value identifier is declared to be either constant or variable. The proportion of
constants is between 2% and 47% in the applications and is significantly lower in the

applications of the undergraduate students than in the other applications.5 Section
3.1.2 reported measurements showing that in many cases programmers use variables
where they should have used constants.

Name usage has been divided into type declarations, type uses, value
declarations, left contexts and right contexts. Among the value identifiers
respectively 33%, 5% and 62% occur in declarations, left and right contexts,
indicating that identifiers are rarely updated compared with how often their values
are read.

3.6 Persistent Store Operations

In the applications under study, it appears that in total about 20% of all name
occurrences pertain to the access and manipulation of bindings within the persistent
store. Figure 2 shows the distribution of the operations in terms of used, inserted and
dropped bindings and a check to determine if an environment contains a certain
binding. Introducing persistent bindings in the scope of a program is the dominant
operation (73%). This is a tedious task that may impair programming efficiency –
particularly for large applications with complex type expressions and many bindings.
Furthermore, 10% of the identifiers declared in such binding specifications are
unused (see also Section 3.1.2). This may result in confusing, verbose and inefficient
programs. A binding construct represents a view of an environment (a partial
specification of the environment's contents), but the precision in the view
identification is lost if the view contains unused bindings as well. Hence, the
measurements confirm the need for tools that (partly) automate the process of
specifying bindings. Such tools are under development.

Use 73%

Insert 12%

Contains 8%

Drop 7%

Figure 2: Operations over the persistent environment

The 20% proportion concerning operations over the persistent environment may be
compared with corresponding measurements in other programming environments.
One example is the classical figure in the persistent literature that typically 30% of
all code in conventional languages is concerned with transferring data to and from
secondary storage [37]. Comparing those figures requires a closer analysis, however.
First, the current language system under test is not a complete self-contained
persistent programming environment. Source and executable exist outside the
environment, and on execution many bindings to data within the persistent

5 Probably because the languages the students used previously did not offer initialising
declarations.

environment must be made. As Figure 2 reveals, most of the 20% will be concerned
with these bindings. Once the complete programming exercise may be carried out
within the persistent environment, new technologies such as hyper-programming
[38] may be used to remove almost all of this code. Second, even in the integrated
persistent environment, such code may still be required when constructing programs
in isolation from the data over which they will operate, for example constructing
code in one store to be executed against another store [39]. However, note that
finding bindings in the store requires relatively simple specifications, which might be
(semi) automated. The literature’s 30% contains complex data translation algorithms
in addition to any binding constructs.

4 Analysis

Some of the results were discussed in the previous section. This section shows how
a deeper analysis of the results gives input to further research in persistent
methodology design, language design and programming environments.

4.1 SPASM

In the existing programming environment, where source programs are represented as
Unix files, adherence to SPASM gives more well-structured (each program performs
only one kind of operation on the persistent store, for example) and more
maintainable programs (unused identifiers and bindings are an obvious source of
confusion, for example). The results also show that there are fewer inconsistencies
in the applications that have explicitly committed to the methodology. However, the
study reveals many suggestions for improvement of SPASM.

In our study 8% of all value identifiers were unused, which is in contrast to, for
example, 28% reported in a study of production PL/1 programs [10]. As opposed to
Napier88, PL/1 does not allow declaration with initialisation, which is surely a cause
for the large proportion of unused declarations in PL/1. Three quarters of the unused
identifiers in our study were declared in binding specifications. This finding of the
paper may suggest one of the following:

i) Binding specifications should be the subject of automation, possibly with some
interaction with the programmer [19].

ii) In conjunction with new programming environments (Section 4.3), SPASM
could evolve to actively support improved ways of binding values and type
representations to programs.

Many inconsistencies relative to a methodology like SPASM might be due to poor
software development or insufficient detection tools. On the other hand,
programmers might deliberately violate the constraints due to new ways of
constructing applications. For example, in the current version of SPASM a
component should have only one update-program, but one could envisage
programming styles where one would wish several update-programs for each
component, e.g. a compiler could be implemented with different versions for
different machine architectures. Each update-program may configure the application
in a slightly different way, by inserting a component of the right type but with
differing internals. The point is that the programming methodology and supporting

tools should be easy to modify in compliance with changed working practices, which
can be detected by measurements such as those reported in this study.

4.2 Suggestions for the Language Designers

Abstract data types are hardly used in the applications under study. (It should be
noted though that many of the applications measured are system programs which
would not be expected to depend heavily on the use of abstract data types of this
kind.) Little use of a construct could indicate that it is useless, but in this case
discussion with the language designers and with programmers indicates that the low
usage is through lack of understanding of how to use them and of the extra power
they give over first-order information hiding. Better tuition is required – a
programmer’s tutorial manual in particular.

The large proportion of variables not updated (35%) might suggest that
identifiers in binding specifications, procedure headers, etc. should be declared
constant by default, instead of variable which is the default at present. This is a
borderline case, however, since given a reduction of 35% in the number of variables
there would still be as many variables as constants.

4.3 Suggestions for Programming Environments

The results show that there are two areas requiring examination in the measured
programming environment. The first involves the binding mechanism between
components. The underlying binding architecture, where a component links to the
typed locations of other components that it uses, and performs a dereference on each
access, gives the advantage of type-safe incremental linking. However, the
programming environment does not support a simple mechanism for setting up an
application in this style; indeed, the dependence on dynamic binding constructs
during application construction has been detected here as a major cause of
programming inconsistency.

The second area for examination is the management of type information. In a
persistent system, use of the type system plays a major rôle in any application for
both data modelling and protection. The measured programming environment has
very limited support for controlling type information causing essential processes
such as type evolution to be hard to support. Even with a tool such as TSIT it is
difficult to detect the manner in which types are used and related to one another.

The next generation programming environments [40] aim to overcome the
problems detected here. The principal change is that the entire application
construction process is supported within a single persistent environment. The
separate processes of program construction, compilation, linking and execution may
all be performed within the environment. The advantages of such a construction
environment are described in [25].

Of interest here is the hyper-programming concept [38], where links to values
and locations already existing in the persistent store may be included directly in
source programs under construction. By analogy with hyper-text, a hyper-program is
a structured version of the traditional flat source code representation that contains
both flat code and links to language values. Using hyper-programming, linking
between components and locations may take place during code construction,
avoiding the requirement for the error-prone dynamic binding clauses required in the
generator/update programs of the current programming environment.

Hyper-links may be used to represent the values of free variables in a source-
code representation of a procedure closure. This style of source code, known as
hyper-code, may be used to construct a source representation for any language value
[41]. Using hyper-code, the two separate entities of source and executable exist as
alternative views of a single value. A value may be analysed by directly examining
its state via the bindings contained in its hyper-code source representation.

In addition, hyper-links to type representations may be included in programs.
These may be used to form the basis of a type management system. Programs are
linked only to the types they use directly. So the spread of type information, viewed
as a problem here, is minimised.6 Engineering reverse links from types to the
programs that use them might optimise some aspects of the difficult task of type
evolution [34, 42]. In general, the features supported by hyper-programming [43]
will play a major part in the formulation of new programming methodologies in
addition to the direct knowledge gained from use of current methodologies and the
measurement results as described here.

5 The Next Generation Measurement Tools

TSIT gathers information based on a purely static analysis of the source code of the
programs making up an application. A drawback of this approach is the inability to
collect measurements on the dynamic behaviour of programs. Examples of dynamic
measurements that have been requested by the language implementors and that
cannot currently be determined using TSIT include:

• The proportions of type equivalence checks that fail and succeed. The efficiency
of type equivalence checking is significant in persistent systems [44], and a
measurement such as this would inform decisions on the appropriate
implementation for the checking algorithm.

• Specialisations of polymorphic procedures. Information about the range and
frequency of types used to specialise particular polymorphic procedures can be
used to provide optimised implementations for those procedures. Ad hoc
measurement techniques to gather this information have been used in an
optimisation of polymorphic procedures described in [25].

In addition, TSIT is not well integrated with the operation of current persistent
programming environments. Programs making up an application are passed to TSIT
in isolation from the processes of compilation and linking. Unless use of such a tool
can be simply incorporated into the programming process, it is unlikely to be used
regularly. Solutions to these two problems will be addressed separately.

5.1 Integrating TSIT into a Persistent Programming
Environment

TSIT may be integrated into a persistent programming environment by making it an
optional part of the compilation process. It has many of the features of a parser
anyway in its ability to examine code. Such features may be shared between both

6 However, this approach does not help when we consider types as descriptive meta-data to
aid program understanding. In that context identifiers are vital.

TSIT and the parser. For each application, a database of information may be built up
as the separate components are compiled.7 The TSIT part of the compiler may be
parameterised by this database before compilation begins, enabling access to meta-
data during compilation.

5.2 Measuring Dynamic Behaviour

In an integrated persistent programming environment, the compilation process may
augment programs with extra code to gather information during subsequent
execution of the compiled code. This information is cheaply retained in the
persistent environment where it can be accessed by analysis programs at a later time.
Whilst such a process is possible to achieve in a non-persistent programming
environment, it will generally be more expensive as the compilation, execution and
analysis phases are less well integrated. A full discussion of this style of
measurement, used as part of a general optimisation scheme, is described in [45].8

In this context, the new version of TSIT has access to application source code
and may add measurement code during the compilation process. The data gathered
during execution may be made available to an analysis program making up part of
the measurements suite. Linking the static and dynamic analyses is important and
not yet done.

6 Conclusions

As a means to acquire more knowledge about persistent software engineering,
relevant measurements should be obtained. Claimed problems and proposed
solutions should be quantified. The explorative study of 108,000 lines of persistent
language code in 20 applications reported in this paper is one step in that direction.
Some of the results are applicable to any programming environment, for example:

• The extent of unused types, repeatedly declared types, unused variables, variables
not updated, etc. confirm the need for automatic prevention or detection tools.

• Statistics on the use of type definitions and procedures illustrate the
consequences of change and the need for change management tools.

Other results are specific to persistent programming:

• The effect of persistent design principles applied in some applications was
measurable in terms of improved program structure and consistency.

• The study detected inconsistencies relative to a certain methodology such as
bindings inserted into a persistent store but not used, repeatedly inserted
bindings, bindings dropped more than once, etc. Automatic prevention or
detection tools are needed.

7 The disadvantage of this approach is that it slows compilation and collects “noise”. It is a
pertinent move to the design of the compiler but less to the design of the language. The
registration model with user activated and periodic scans also has advantages and can be easier
to use.
8 Also Jackson’s monitor at Glasgow allows relevant instrumentation [14].

• In the current programming environment, in which source code is contained in
Unix files, measurements show a relatively large proportion of code containing
specifications of persistent bindings to be used in a program and a high
inconsistency rate in this code. This indicates the usefulness of tools for (semi)
automatic generation of such specifications when building applications in the
current environment. In a fully integrated persistent programming environment
[40], however, the proportion is expected to be significantly reduced.

The measurements were collected by first extracting information about all the
identifier occurrences in all the software of the applications. The information was
stored in a meta-database that was then the subject of statistical analysis. This
measurement technique can be applied to any programming language. One example
is an earlier study we conducted in an industrial (C, C++, X Window System and
relational database) environment [34]. However, studying the pattern of how
programs operate on persistent data, the consequences of change, etc. are simpler in a
persistent programming environment in which only one language is used and the
application programs, database schema (set of type definitions) and extensional data
are integrated in the same store.

The results of this experiment enable us to design controlled experiments that
could, for example, test the real effect of persistent programming methodologies and
tools such as SPASM and EnvMake [19, 20]. Knowledge of the use of language
constructs (little use of abstract data types, increased use of polymorphic procedures,
etc.) is useful for language designers. The results also form a basis for further
experiments on optimisation, consequences of change, etc. by combining static and
dynamic analysis.

Acknowledgements

The St Andrews persistent programming team provided the underlying language
technology and made several useful comments on the analysis and on this paper. We
also thank the anonymous referees for their helpful suggestions for improvement.
We are grateful to Paul Philbrow and others who helped providing the software that
was analysed. Dag Sjøberg was supported by the Research Council of Norway.
Some of the reported work was also supported by a European Community ESPRIT
Basic Research Action, FIDE2, number 6309.

References

1. Dearle A, Shaw GM, Zdonik SB. Proceedings of the Fourth International Workshop on
Persistent Object Systems, Their Design, Implementation and Use. Martha's Vineyard,
USA, 23rd–27th September: Morgan Kaufmann, 1990

2. Albano A, Morrison R. Proceedings of the Fifth International Workshop on Persistent
Object Systems: Design, Implementation and Use. San Miniato, Italy, 1st–4th September:
Springer-Verlag and British Computer Society, 1992

3. Beeri C, Ohori A, Shasha DE. Proceedings of the Fourth International Workshop on
Database Programming Languages – Object Models and Languages. Manhattan, New

York City, USA, 30th August – 1st September: Springer-Verlag and British Computer
Society, 1993

4. Morrison R, Brown F, Connor R, Dearle A. The Napier88 Reference Manual. Technical
Report PPRR-77-89, Universities of Glasgow and St Andrews, 1989

5. Atkinson MP, Sjøberg DIK, Morrison R. Managing Change in Persistent Object Systems.
In: Nishio S, Yonezawa A, ed. First JSSST International Symposium on Object
Technologies for Advanced Software. Kanazawa, Japan, 4th—6th November: Lecture
Notes in Computer Science 742, Springer-Verlag, 1993, pp 315–338

6. Basili VR, Reiter RW. A Controlled Experiment Quantitatively Comparing Software
Development Approaches. IEEE Transactions on Software Engineering 1981; SE-
7(3):299–320

7. Law D, Naeem T. DESMET – Determining an Evaluation Methodology for Software
Methods and Tools. In: Spurr K, Layzell P, ed. CASE, Current Practice, Future
Prospects. J. Wiley & Sons, Chichester, England, 1992, pp 167–181

8. Knuth DE. An Empirical Study of FORTRAN Programs. Software – Practice and
Experience 1971; 1(2):105–133

9. Card DN, Church VE, Agresti WW. An Empirical Study of Software Design Practices.
IEEE Transactions on Software Engineering 1986; SE-12(2):264–270

10. Elshoff JL. An Analysis of some Commercial PL/1 Programs. IEEE Transactions on
Software Engineering 1976; SE-2(2):113–120

11. Saal HJ, Weiss Z. An Empirical Study of APL Programs. Computer Languages 1977;
2(3):47–59

12. Bailey PJ. Performance Evaluation in a Persistent Object System. In: Rosenberg J, Koch
D, ed. Third International Workshop on Persistent Object Stores. 10th–13th January
1989, Newcastle, New South Wales, Australia: Springer-Verlag and British Computer
Society, 1989, pp 289–299

13. Loboz Z. Monitoring Execution of PS-algol Programs. In: Rosenberg J, Koch D, ed.
Third International Workshop on Persistent Object Stores. 10th–13th January 1989,
Newcastle, New South Wales, Australia: Springer-Verlag and British Computer Society,
1989, pp 279–288

14. Atkinson MP, Birnie A, Jackson N, Philbrow PC. Measuring Persistent Object Systems.
In: [2], pp 63–85

15. Morrison R, Brown AL, Connor RCH, Dearle A, Kirby GNC, Cutts QI. The Napier88
Reference Manual (release 2.0). Technical Report CS/93/15, Department of Mathematical
and Computational Sciences, University of St Andrews, 1993

16. Ritchie DM, Thompson K. The UNIX Time-Sharing System. The Bell System Technical
Journal 1978; 63(6):1905–1930

17. Dearle A. Environments: A Flexible Binding Mechanism to Support System Evolution.
In: 22nd International Conference on Systems Sciences. Hawaii, January 1989, pp 46–55

18. Morrison R, Brown AL, Dearle A, Atkinson MP. On the Classification of Binding
Mechanisms. Information Processing Letters 1990; 34(1):51–55

19. Sjøberg DIK. Thesaurus-Based Methodologies and Tools for Maintaining Persistent
Application Systems. Ph.D. thesis, Department of Computing Science, University of
Glasgow, 1993

20. Sjøberg DIK, Atkinson MP, Welland R. Thesaurus-Based Software Environments.
Workshop on Software Engineering and Databases in conjunction with the 16th
International Conference on Software Engineering. Sorrento, Italy, 16th–17th May 1994

21. Lehman MM, Belady L. Program Evolution, Processes of Software Change. A.P.I.C.
Studies in Data Processing No. 27. London: Academic Press, 1985

22. Gibson VR, Senn JA. System Structure and Software Maintenance Performance.
Communications of the ACM 1989; 32(3):347–358

23. Dearle A, Cutts Q, Connor R. Using Persistence to Support Incremental System
Construction. Microprocessors and Microsystems 1993; 17(3):161–171

24. Sjøberg DIK, Atkinson MP, Lopes J, Trinder P. Building an Integrated Persistent
Application. In: [3], pp 359–375

25. Cutts QI. Delivering the Benefits of Persistence to System Construction and Execution.
Ph.D. thesis, Department of Mathematical and Computational Sciences, University of St
Andrews, 1993

26. Kendall MG. Rank Correlation Methods. (Second ed.) London: Charles Griffin, 1955

27. Banker RD, Datar SM, Kemerer CF, Zweig D. Software Complexity and Maintenance
Costs. Communications of the ACM 1993; 36(11):81–94

28. Barnard P, Hammond NV, MacLean A, Morton J. Learning and Remembering
Interactive Commands in a Text-Editing Task. Behaviour and Information Technology
1982; 1:347–358

29. Weiser M, Shneiderman B. Human Factors of Computer Programming. In: Salvendy G,
ed. Handbook of Human Factors. John Wiley & Sons, 1987, pp 1398–1415

30. Anand N. Clarify Function! ACM SIGPLAN Notices 1988; 23(6):69–79

31. Cardelli L, Wegner P. On Understanding Types, Data Abstraction, and Polymorphism.
ACM Computing Surveys 1985; 17(4):471–522

32. Mitchell JC, Plotkin GD. Abstract Types Have Existential Types. Twelfth ACM
Symposium on Principles of Programming Languages. New Orleans, 1985, pp 37–51

33. Marche S. Measuring the Stability of Data Models. European Journal on Information
Systems 1993; 2(1):37–47

34. Sjøberg DIK. Quantifying Schema Evolution. Information and Software Technology
1993; 35(1):35–44

35. Connor RCH. Types and Polymorphism in Persistent Programming Systems. Ph.D.
thesis, Department of Mathematical and Computational Sciences, University of St
Andrews, 1991

36. Morrison R, Dearle A, Connor RCH, Brown AL. An Ad Hoc Approach to the
Implementation of Polymorphism. ACM Transactions on Programming Languages and
Systems 1991; 13(3):342–371

37. Internal Report on the Contents of a Sample of Programs Surveyed. IBM Research Centre
San Jose, California, 1978

38. Kirby G, Connor R, Cutts Q, Dearle A, Farkas A, Morrison R. Persistent Hyper-
Programs. In: [2], pp 86–106

39. Atkinson MP, Buneman OP, Morrison R. Binding and Type Checking in Database
Programming Languages. The Computer Journal 1988; 31(2):99–109

40. Morrison R, Connor RCH, Cutts QI, Kirby GNC. Persistent Possibilities for Software
Environments. Workshop on Software Engineering and Databases in conjunction with the
16th International Conference on Software Engineering. Sorrento, Italy, 16th–17th May
1994

41. Connor RCH, Cutts QI, Kirby GNC, Moore VS, Morrison R. Unifying Interaction with
Persistent Data and Program. Second International Workshop on User Interfaces to
Databases, 1994

42. Connor RCH, Cutts QI, Kirby GNC, Morrison R. Using Persistence Technology to
Control Schema Evolution. In: Deaton E, Oppenheim D, Urban J, Berghel H, ed. Ninth
ACM Symposium on Applied Computing. Phoenix, Arizona: ACM Press, 1994, pp 441–
446

43. Morrison R, Baker C, Connor RCH, Cutts QI, Kirby GNC. Approaching Integration in
Software Environments. Accepted subject to revision, Computer Journal 10/93 1993

44. Connor RCH, Brown AB, Cutts QI, Dearle A, Morrison R, Rosenberg J. Type
Equivalence Checking in Persistent Object Systems. In: Dearle A, Shaw GM, Zdonik SB,
ed. Implementing Persistent Object Bases. Morgan Kaufmann, 1990, pp 151–164

45. Cutts QI, Connor RCH, Kirby GNC, Morrison R. An Execution Driven Approach to
Code Optimisation. 17th Australasian Computer Science Conference. Christchurch, New
Zealand, 1994, pp 83–92

