
1

Thesaurus-Based Software Environments

Dag I.K. Sjøberg,
Department of Informatics, University of Oslo,

N-0316 Oslo, Norway. dagsj@ifi.uio.no

Malcolm P. Atkinson and Ray Welland,
Computing Science Department, University of Glasgow,

Glasgow G12 8QQ, Scotland. {mpa,ray}@dcs.glasgow.ac.uk

1 Introduction
Software environments support the process of constructing and maintaining application
systems. This paper describes the idea of a thesaurus1 as a viable foundation for software
environments. A thesaurus contains information about the names and identifiers in all the
software written in all the languages of an application. Information about extensional data
in a database or persistent store is also included. The comprehensiveness of the thesaurus
is in contrast to most commercially available tools which focus either on the source code
only (source code analysers) or on database-specific information (data dictionaries). A few
data dictionary tools also include source code information, but relationships between names
and identifiers in the software written in the various languages are not recorded
automatically. All the contents of the thesaurus are automatically maintained. The whole
application system is analysed, and the thesaurus updated, regularly at times specified by
the user, for example daily at 02:00. A full analysis and update can also be initiated at any
time.

Two thesaurus tools have been built. The HMS thesaurus tool was developed for a
health management system (HMS) in an industrial (C, C++, X Window System and
relational database) environment [13]. Another thesaurus tool was thereafter built in the
context of the strongly typed, persistent programming language Napier88 [12]. The
software environments that have been built around the thesauri focus on change
management and include tools that display structures and dependencies and provide impact
analysis. In the persistent case, automatic build management is supported, including
installation, smart recompilation [15] and re-execution according to a persistent
programming methodology. To prevent deteriorating structure and improve
maintainability, a set of application independent constraints have been defined [14]. The
programming environment automatically verifies these constraints.

The present tools focus on the implementation phase (initial construction and
maintenance). However, automatically maintained thesauri with extended information may
form a basis for tools supporting other phases of the life cycle as well.

2 The HMS Thesaurus Tool
The HMS thesaurus tool was developed in an industrial environment in order to identify
and help solve real-world problems of maintenance. The analysed software includes

1 The term thesaurus generally denotes “a ‘treasury’ or ‘storehouse’ of knowledge, as a dictionary,
encyclopædia, or the like” [1]. In this context the “knowledge” is information about names and identifiers
such as where they are defined and used, what kinds they are, in which contexts they occur, etc.

2

programs written in a screen definition language, a procedural language for defining
actions, a query dictionary language and a schema definition language. The tool stores
information about name occurrences, like type and container, and records dependencies
between occurrences in all the software (including between software written in different
languages). An interface provides, among other things, some consistency checking and
impact analysis which localises the effects of change within the system. The impact
analysis of schema changes has proved particularly useful since software written in all the
languages is affected by such changes [13].

3 Thesauri in Persistent Programming Environments
The idea of thesaurus-based software environments is applicable whether the environment
is in the context of an industrial relational database with conventional programming
languages or an experimental object-oriented database with more modern programming
languages, etc. The experiences with the HMS thesaurus tool in an industrial context were
valuable, but the provision for integration and longevity makes persistent programming
technology a more suitable platform for research into software environments. The concept
of persistence tackles the mismatch between database systems and programming languages
[2]; a uniform model for representations and operations on persistent and transient data is
provided. Tools, programs and data may reside in the same store. Many of the benefits of
persistent language technology have been described in the literature [4, 5, 3]. In particular,
it has been argued that a transactional, structured and typed persistent store may be an
appropriate technology for implementing software environments [6, 11]. Our research
supports this view.

The persistent thesaurus is a fine-grained meta-database containing information about
all user-introduced names occurring in the source programs of an application and the names
of the bindings to programs and other data in the associated persistent store. A thesaurus
entry holds information such as: name of an identifier, date and time of when the entry was
inserted and container, kind, constancy, usage and context of the entry.

In a persistent programming environment, the database schema (set of type
definitions), application programs and extensional data are integrated in the same store.
This is reflected in the thesaurus in its provision of information about database operations
(insert, use update and delete), use of libraries, instances of type definitions, etc. In
particular, the thesaurus’ description of dependencies between database schemata,
application programs and extensional data support maintenance; it is simpler to track down
the consequences of change, e.g. schema evolution [13].

Figure 1 illustrates how the notion of persistent programming language (PPL)
integrates the notion of database systems and conventional programming languages.
Analogous to, and enabled by, this integration is the notion of thesaurus which integrates
the notions of data dictionary in the database area and cross-referencer in the programming
language area. Traditionally, the integration has been poor.

database systems + programming languages PPL

data dictionary + cross-reference databases thesaurus

Language level:

Meta level:

Integration

Figure 1: Integration at the language level and meta-data level

3

4 A Persistent Thesaurus-Based Software Environment
A prototype software environment that utilises database or persistent programming
technology has been built around the thesaurus. The provision of persistence has made it
easy to build tools working on top of the thesaurus. Some examples follow.

4 . 1 Interface to the Thesaurus
In addition to a simple textual query interface to the thesaurus implemented by the first
author, Lopes has developed a sophisticated window-based interface with enhanced query
possibilities [9]. It provides a graphical interface to one or more thesauri and includes a
simple query language, a subset of a generalised relational algebra. Complex queries
(involving recursion), however, cannot be expressed. To meet this deficiency, the Ringad
comprehension query language was constructed by Trinder [16].

EnvMake [14] is another thesaurus-based tool that provides programmers and tool
components with dependency tables which, among other things, are particularly useful for
determining the consequences of change. For example, one kind of table shows
dependencies between programs that insert persistent code (and other data) and those that
update them – a so-called “insert/update dependency table”. There are similar dependency
tables for insert/use, update/use, type definition/type use, etc. Another form of
presentation is matrices showing which programs perform which operations on which
parts of the database.

4 . 2 Build Management
At present, many persistent programmers use Make [7] to install software and to help
rebuild applications after change. When using Make, the programmers have to manually
work out the order of installing components into the persistent store. This may be a
difficult task for non-trivial applications. A component must be inserted into the store
before it can be used by another component. EnvMake determines the correct installation
order by topological sorting [8]. EnvMake automatically infers the necessary dependencies
from the thesaurus to initiate (re)compilation and (re-)execution.2 Hence, there is no
notion of an (Env)Makefile which has to be created and maintained manually.

In large application systems, recompilations represent a significant part of the
maintenance costs and may thus be a hindrance for required system evolution. Make is not
particularly helpful in avoiding unnecessary recompilations; it is unlikely that any language
independent tool can be smart in that respect. Using the dependency tables (Section 4.1),
EnvMake features smart recompilation. The L-value binding model embodied in the
methodology [14] significantly reduces the need for cascades of recompilations.

4 .3 Constraint Verification
The compiler of a programming language already performs many forms of consistency
checks such as type checking, ensuring declaration and unique naming of identifiers, etc.
EnvMake is concerned with complementary checks such as those between programs and
those between programs and data in a persistent store.3 Being specific, EnvMake verifies4

a Structured Persistent Application System Model (SPASM) [14] which is a collection of
24 constraints like the following: “all type definitions should be used within the

2 Re-execution is used to replace one version of some data or code with a new version.
3 Similar work has been reported in the context of conventional programming languages [10], but in those
cases the constraints involve source code only. The persistent language technology and the thesaurus
information enable formulation and verification of constraints concerning the whole processing
environment.
4 At the time of writing, some of the checks still have to be implemented.

4

application”, “a binding inserted into the store, not intended for export, should be used
somewhere within the application”, “programs and data in the persistent store should be
used in at least one application program”, etc. A violation of a constraint could be a logical
error, or it may just indicate a situation that might eventually cause problems. Inconsistent
states might be the normal case, particularly during the initial development. Programmers
may find it helpful to be able to request that certain subsets of these inconsistencies be
enumerated.

Programmers who share a common view of how to develop applications in their
environment form a particular programming culture. Such cultures may differ considerably
from group to group even though the programming language is the same. The rules and
conventions of a programming culture implicitly express application models and
programming methodologies adhered to within that culture. SPASM is an explicit
formulation of such a model and methodology in a database programming environment.
Several of the constraints are based on a categorisation of programs according to their
semantics. On the criteria of how they operate on the persistent store and where types are
defined the programs are divided into five categories. The categorisation, which is
performed automatically by EnvMake, is also the basis for the build management features
described in Section 4.2.

EnvMake also assists in other aspects of construction and maintenance such as
organising the structure of environments in the persistent store and directories in the file
system. The tool ensures isomorphism and adherence to naming conventions by actively
taking part in the creation and maintenance of files and environments.

5 Status and Future Work
The focus on names, one of the characteristics of this work, is justified by the observation
that within a context (e.g. an application) people tend to use the names to have a consistent
intended meaning. Thus names are interesting markers when trying to administer and
manage change. Another novel feature of this work is the architecture of the thesaurus
tools. Unlike many CASE tools the thesaurus approach does not utilise a strongly-coupled
architecture. In those systems, the compilers and other software production tools have to
be modified to update a data repository. This has two serious costs: an impact on tool
performance and a need to modify or complicate the tools. In contrast the thesaurus system
adopts a different strategy. It scans and analyses the data (database, files, persistent store)
associated with the evolving application and derives the relevant data. This has the
advantage of accuracy, of allowing independent development of construction tools and of
improved performance when programmers are busy.

The idea of automatically generated and updated thesauri, containing information about
all user-introduced names in an application, has proved computationally feasible and
extremely useful both in an open, industrial environment and in a closed, research
environment. Persistent language technology, because it enables applications and tools to
be contained in the same coherent, transactional, structured and typed persistent store,
creates new possibilities for enhanced and more integrated software engineering support
environments. A prototype of such an environment has been designed, and partly
implemented, around the thesaurus as illustrated in Figure 2.5 For example, a tool called
EnvMake supports build management such as installation, recompilation, relinking and re-
execution. EnvMake automatically tracks down dependencies and initiates the appropriate
actions. The tool also supports a persistent programming methodology, including
adherence to a collection of application independent constraints. It is a particular concern
of this methodology to ensure that the application is and remains amenable to change.

5 At present, tools operate directly at the data structures of the thesaurus. Defining a general, more abstract
interface is a major issue for future work.

5

Thesaurus

 Window-based
 Interface

 Enhanced Interface

 Recursive
 Queries

 Impact
 Analyser

 Thesaurus Interface Tools

 Cross
 Referencer

 Build
 Manager

 Methodology
 Supporter

 Consistency
 Checker

 EnvMake

 Measurement
 Tool

 Schema
 Managers

 Data Modelling
 Tools

 Program
 Generators

 Diagram
 Generators

 Enhanced
 Measurement
 Tools

Future tools

Existing tools

Figure 2: A thesaurus-based software environment

A whole class of tools that could utilise the thesaurus information to support change and
build management, incremental schema design, visualisation, schema evolution, etc. can be
envisaged in a persistent software engineering environment. Future research will
emphasise change management. Supporting tools can operate at two levels [6]. First,
informative systems like the thesaurus interfaces and parts of EnvMake provide application
developers and maintainers with data about the existing system, its present representation
and some of its dependencies. Second, more challenging to build are automatic systems
that directly implement some of the steps necessary to deal with the consequences of
change. Further work on automation requires more knowledge about which changes
should be propagated and which absorbed. Notations to describe propagation
requirements are being developed.

Our position statement is that thesauri that collect and correlate information about all
names used in the whole processing environment of an application system form a useful
platform for software development environments. For reliability and efficiency reasons,
we require that all the information is automatically maintained. (Information that relies on

6

manual update is usually out of date.) A consequence of this requirement, at least at
present, is that most of the thesaurus information relates to the implementation and
operational phases since information related to earlier phases is harder to collect and
analyse automatically. Ultimately, however, information related to all phases of the life
cycle should be collected, e.g. the analysis tool should scan design structures.

Most of our research has been performed in the context of a persistent programming
language with a sophisticated, polymorphic type system, enabling arbitrary complex and
generic structures to be contained in the thesaurus. Even though our tools have been built
in a closed (language dependent) environment, the ideas are generally applicable. For
example: the loosely-coupled background analysis architecture, the automation of all data
acquisition, the various kinds of dependency information, impact analysis, categorisation
of programs according to their semantics, most of the SPASM constraints, etc. could be
applied to other environments (e.g. object-oriented database applications) with only minor
adaptations.

References
[1] The Oxford English Dictionary. Oxford University Press, London, 1961.

[2] M.P. Atkinson. “Programming Languages and Databases”. In Proceedings of the Fourth
International Conference on Very Large Data Bases (Berlin, West Germany, 13th–15th September
1978), S.B. Yao (editors), pp. 408–419, IEEE and ACM, 1978.

[3] M.P. Atkinson and O.P. Buneman. “Types and Persistence in Database Programming Languages”.
ACM Computing Surveys, Vol. 19, No. 2, pp. 105–190, 1987.

[4] M.P. Atkinson, K.J. Chisholm and W.P. Cockshott. “PS-algol: An Algol with a Persistent Heap”.
ACM SIGPLAN Notices, Vol. 17, No. 7, pp. 24–31, July 1982.

[5] M.P. Atkinson and R. Morrison. “ Procedures as Persistent Data Objects”. ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 4, pp. 539–559, 1985.

[6] M.P. Atkinson, D.I.K. Sjøberg and R. Morrison. “Managing Change in Persistent Object
Systems”. In Proceedings of the JSSST International Symposium on Object Technologies for
Advanced Software, Kanazawa, Japan, November 1993.

[7] S.I. Feldman. “Make – A Program for Maintaining Computer Programs”. Software – Practice and
Experience, Vol. 9, No. 4, pp. 255–265, April 1979.

[8] D.E. Knuth. Fundamental Algorithms. In Series The Art of Computer Programming, Addison-
Wesley, Vol. 1, January 1973.

[9] J.C. Lopes. ShTh – Show Thesaurus User Interface. Technical report FIDE/93/76, ESPRIT Basic
Research Action, Project Number 6309 – FIDE2, Computing Science Department, University of
Glasgow, 1993.

[10] S. Meyers, C.K. Duby and S.P. Reiss. “Constraining the Structure and Style of Object-Oriented
Programs”. In Proceedings of the First Workshop on Principles and Practice of Constraint
Programming (PPCP93) , April 1993.

[11] R. Morrison, C. Baker, R.C.H. Connor, Q.I. Cutts and G.N.C. Kirby. “Approaching Integration in
Software Environments”. Submitted for publication. (Available as University of St Andrews
Technical Report CS/93/10, 1993.)

[12] R. Morrison, F. Brown, R. Connor and A. Dearle. The Napier88 Reference Manual. Technical
Report PPRR-77-89, Universities of Glasgow and St Andrews, 1989.

[13] D.I.K. Sjøberg. “Quantifying Schema Evolution”. Information and Software Technology, Vol. 35,
No. 1, pp. 35–44, January 1993.

[14] D.I.K. Sjøberg. Thesaurus-Based Methodologies and Tools for Maintaining Persistent Application
Systems. PhD Thesis, University of Glasgow, July 1993.

[15] W. Tichy. “Smart Recompilation”. ACM Transactions on Programming Languages and Systems,
Vol. 8, No. 3, pp. 273–291, July 1986.

[16] P.W. Trinder. “Comprehensions, a Query Notation for DBPLs”. In Proceedings of the Third
International Workshop on Database Programming Language (Nafplion, Greece, 27th–30th August
1991), P. Kanellakis and J.W. Schmidt (editors), pp. 55–70, Morgan Kaufmann Publishers, San
Mateo, CA, 1991.

