
Conducting Realistic Experiments in Software Engineering

Dag I.K. Sjøberg, Bente Anda, Erik Arisholm, Tore Dybå, Magne Jørgensen,
Amela Karahasanovic, Espen F. Koren and Marek Vokác

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Email: Dag.Sjoberg@simula.no, Telephone: +47 67 82 83 00

Abstract

An important goal of most empirical software engineering
research is the transfer of research results to industrial
applications. Two important obstacles for this transfer
are the lack of control of variables of case studies, i.e.,
the lack of explanatory power, and the lack of realism of
controlled experiments. While it may be difficult to
increase the explanatory power of case studies, there is a
large potential for increasing the realism of controlled
software engineering experiments. To convince industry
about the validity and applicability of the experimental
results, the tasks, subjects and the environments of the
experiments should be as realistic as practically possible.
Such experiments are, however, more expensive than
experiments involving students, small tasks and pen-and-
paper environments. Consequently, a change towards
more realistic experiments requires a change in the
amount of resources spent on software engineering
experiments.

This paper argues that software engineering
researchers should apply for resources enabling
expensive and realistic software engineering experiments
similar to how other researchers apply for resources for
expensive software and hardware that are necessary for
their research. The paper describes experiences from
recent experiments that varied in size from involving one
software professional for 5 days to 130 software profes-
sionals, from 9 consultancy companies, for one day each.

Keywords: Empirical software engineering, technology
transfer, experiments, professionals

1. Introduction

There is an increasing understanding in the software
engineering (SE) community that empirical studies are
needed to develop or improve processes, methods and
tools for software development and maintenance (Basili et
al. 1986, Basili et al. 1993, Rombach et al. 1993, Basili
1996, Tichy 1998, Zelkowitz & Wallace 1998). The

classical method for identifying cause-effect relationships
is to conduct controlled experiments where only a few
variables vary. Controlled experiments in software
engineering often involve students solving small pen and
paper tasks in a classroom setting. A major criticism of
such experiments is their lack of realism (Potts 1993,
Glass 1994), which may deter technology transfer from
the research community to industry. The experiments
would be more realistic if they are run on real tasks on
real systems with professionals using their usual
development technology in their usual working
environment. Note, however, keeping control is a
challenge when the realism is increased.

A prerequisite for the discussion on realism is that we
are conscious about the population we wish to make
claims about. Implicit in our discussion is that the
interesting population is “representative” software
builders doing “representative” tasks in “representative”
industrial environments. However, it is far from trivial
what “representative” means. Generally, a weakness of
most software engineering research is that one is rarely
explicit about the target population regarding tasks,
subjects and environments.

The purpose of this paper is to describe (1) why we
need more realistic experiments and (2) some experiences
on how to run more realistic experiments. During the last
couple of years the authors of this paper have conducted
12 controlled experiments with a total of 750 students and
300 professionals as subjects.1 Additionally, the authors
of this paper have during the last 6 years conducted about
30 case studies as part of two major Norwegian Software
Process Improvement projects (SPIQ, PROFIT).

The remainder of this paper is organised as follows.
Section 2 discusses the notion of realism in SE
experiments. Partly based on our experiences on
conducting controlled SE experiments, Sections 3, 4 and 5
discuss in more details the realism of respectively tasks,
subjects and environment. Section 6 concludes.

1 Information about most of these experiments can be found at

http://www.ifi.uio.no/forskning/grupper/isu/forskerbasen.

2. Realism in Software Engineering
Experiments

The ultimate criterion for success in an applied discipline
such as software engineering research is the widespread
adoption of research results into everyday industrial
practice. To achieve this, diffusion of innovation models
emphasizes the importance of homophily, which Rogers
(1995) defines as the degree to which the innovator and
the potential adopter are similar in certain attributes such
as objectives, beliefs, norms, experience and culture.
Heterophily is the opposite of homophily, and, according
to Rogers (1995), “one of the most distinctive problems in
the diffusion of innovations is that the participants are
usually quite heterophilous” (ibid., p. 19, italics in
original). This means that evidential credibility of
software experiments depends on both the producer and
the receiver of the results. Hence, without a close tie
between the experimental situation and the “real”,
industrial situation, practitioners will tend to perceive the
experiment as irrelevant and ignore the results.

According to the Merriam-Webster dictionary, realism
can be defined as a “concern for fact or reality and
rejection of the impractical and visionary” and to
“accurate representation without idealization.” Similarly,
the Oxford dictionary defines realism as a “close
resemblance to what is real; fidelity of representation,
rendering the precise details of the real thing or scene.”

Most of the studies in software engineering that have
emphasized realism are so far case studies. However, a
major deficiency of case studies is that many variables
vary from one case study to another so that comparing the
results to detect cause-effect relationships is difficult.
Therefore, controlled experiments should be conducted to
complement case studies in empirical software engineer-
ing. For example, we know that evolving software is likely
to decay regarding, e.g., changeability (Arisholm &
Sjøberg 2000, Arisholm et al. 2001). The reasons for this
decay, however, cannot always be analyzed in a case
study. Instead, we need to isolate and analyze a few vari-
ables at a time in controlled experiments. For example, if
the purpose of a study is to determine how design princi-
ples affect changeability, a case study would be unable to
separate the effect of developer skill and design princi-
ples. A controlled experiment, on the other hand, would
permit the same changes to be implemented by similarly
skilled developers applying alternative design principles.

So, while the raison d’être for experimental research is
to establish evidence for causality through internal logical
rigor and control, this is not enough. It is also important to
ensure external validity. If an experiment lacks external
validity, its findings hold true only in experimental
situations, making them useless to both basic and applied

research. An important issue, therefore, is whether the
particular features of formal SE experiments are realistic.

There are two types of realism to consider (Aronson &
Carlsmith 1968). One is experimental realism, which
refers to the impact of an experimental treatment on
subjects. It occurs when the experiment appears real and
meaningful to the subjects and when the experiences
encountered in the experiment will occur in the real world.
In other words, if an experiment has impact upon a
participant, forces the participant to take the matter
seriously and involves the participant in the procedures,
then we say the procedure is high on experimental realism.

The other type of realism, which is of most concern to
us in this paper, is mundane realism. Mundane realism
refers to the resemblance of an experiment with real world
situations and, therefore, with our ability to generalize the
results of the experiment to industrial practice. In this
sense, an experiment is realistic if the situation presented
to the subjects is realistic and the subjects react to the
situation in the same way as they would do in their usual
work environment. In particular, it is a challenge to
achieve realism regarding experimental tasks, subjects and
environment (Harrison 2000):

• Realistic tasks. This challenge is concerned with the

size, complexity and duration of the involved tasks.
Most experiments in software engineering seem
simplified and short-term in which “the experimental
variable must yield an observable effect in a matter of
hours rather than six months or a year” (Harrison
2000). Such experiments are hardly realistic given the
tasks of building and maintaining real, industrial
software, particularly since many of the factors we wish
to study require significant time before we can obtain
meaningful results.

• Realistic subjects. This challenge is concerned with the
selection of subjects to perform the experimental tasks,
that is, to what extent do the selected subjects represent
the population that we wish to make claims about?
Even though there are some preliminary indications
that students can be used for certain tasks instead of
professionals under certain conditions (Höst et al.
2000), it is still unclear how well results from student-
based experiments generalize to professional software
engineers (Harrison 2000). It is worrying, therefore,
that most of these studies attempt to generalize their
results to an industrial environment.

• Realistic environment. Even when realistic subjects
perform realistic tasks, the tasks may be carried out in
an unrealistic manner. The challenge is to configure the
experimental environment with an infrastructure of
supporting technology (processes, methods, tools, etc.)
that resembles an industrial development environment.
Traditional pen and paper based exercises used in a

classroom setting are hardly realistic for dealing with
relevant problems of the size and complexity of most
contemporary software systems.

While our focus is on controlled experiments, this does
not mean that we are only concerned with laboratory, or in
vitro, experiments. Controlled experiments can also be
conducted in vivo, in a more realistic environment than is
possible in the artificial, sanitized laboratory situation
(Basili 1996). However, the realistic environment can also
be a weakness, because it may be too costly or impossible
to manipulate an independent variable or to randomize
treatments in real life. Thus, the amount of control varies
on a continuum, and prioritizing between the validity
types is an optimization problem, given the purpose of the
experiment. Nevertheless, external validity is always of
extreme importance whenever we wish to generalize from
behaviour observed in the laboratory to behaviour outside
the laboratory, or when we wish to generalize from one
non-laboratory situation to another non-laboratory
situation.

In the remainder of this paper, we will show how we
have dealt with these challenges of conducting realistic
experiments in SE, by substituting students with
professionals, toy tasks with relevant problems, pen and
paper with commercial tools, and the classroom setting
with a real industrial environment.

3. Realistic Tasks

When conducting controlled experiments in software
engineering, one should consider the realism and repre-
sentativeness of the tasks regarding the size, complexity
and duration of the involved tasks. Of course, the world is
diverse, so the realism of a task must be considered
relative to a certain part or aspect of the world. Some
experimental tasks bear in our opinion little resemblance
to actual tasks in software engineering; others are very
similar to actual tasks. In between there is a continuum.
Larger development tasks may take months, while many
maintenance tasks may take only a couple of hours.

A systematic way to define realistic tasks according to
a given application area in a given context, is to collect
information about the kinds and frequencies of tasks in the
actual environment and then create “benchmark tasks”,
i.e., a set of tasks that is a representative sample of tasks
from the population of all tasks. An example use of such
benchmark tasks is described in (Jørgensen & Bygdås
1999). In that study, the maintenance benchmark tasks
were derived from another study of 109 randomly
sampled maintenance tasks (Jørgensen 1995).

In yet another study, we collected information about all
the maintenance tasks in a tool vendor company through a

Web interface during a period of six months (Arisholm &
Sjøberg 2000).

Generally, to increase the realism of SE experiments,
the duration of the studied tasks should be increased. As
far as we have observed, the tasks carried out in most
student experiments take only up to one hour (a few of
them two hours) – to fit with the time schedule of a
university class. In an experiment on object-oriented (OO)
design principles, however, 60 students and 130
professionals (junior, intermediate and senior consultants
from the companies Accenture, Cap Gemini Ernst &
Young, TietoEnator, Ementor, Software Innovation,
Genera, Ementa and ObjectNet) spent one day each on the
five experimental tasks.

In an experiment on design patterns that took place in
May 2002, 44 professionals from 12 companies spent 3
days (including a course on design patterns the second
day). This experiment was a replication of a former
experiment in which only pen and paper were used
(Prechelt et al. 2000); this time the programming tasks
were actually carried out using real development tools
(see also Section 5).

We have conducted one longer-term, one-subject
explorative study (35 hours), that is, an “N=1
Experiment” (Harrison 2000), which is not a controlled
experiment since only one subject takes part
(Karahasanovic 2002). However, the longer duration of
this study allowed a wider spectrum of tasks to be carried
out. The system being subject of the tasks was also larger
in size and complexity than usual in most experiments.
Another positive effect of the longer duration was that the
pressure put on the subject was less, that is, more realistic,
than what we have experienced in the controlled
experiments we have run. In the student experiments, most
students felt as if they were in an exam situation. “How
did it go?”, they asked after the experiment.

Another example of an experiment with high realism of
tasks is our ongoing study on uncertainty in the estimation
of development effort. In that experiment we pay an
organization to evaluate three estimation processes. The
organization now estimates one third of their incoming
projects respectively according to the first, second and
third estimation process.

Increasing the duration of the experiments enables
more realistic tasks to be carried out. We have tried
several means to achieve longer experiments, some of
them with success (see Section 4.2). Of course, our tasks
may still be small compared with many actual tasks. We
are therefore considering an experiment where an
application system that is actually requested by Simula
Research Laboratory, will be developed by 4 different
project teams (each consisting of 4 persons) from 4
different consultancy companies. It should be possible to
develop the system in approximately 1 month. This would

then be a very realistic development task. Of course, the
number of subjects (here teams) is too small to conduct
hypothesis testing, but we still have some control.
Nevertheless, there are many challenges to such an
experiment; we are only in the brainstorming phase.

4. Realistic Subjects

The similarity of the subjects of an experiment to the
people who will use the technology impacts the ease of the
technology transfer (Rogers 1995). A common criticism
of experiments in software engineering is that most of the
subjects are students, which might make it difficult to
generalise the results to settings with professionals. We
will emphasise, though, that there are sub-areas of soft-
ware engineering where the proportion of professionals
versus students is relatively high. For example, experi-
ments on inspections have traditions for using
professionals, e.g., (Seaman & Basili 1997, Zhang et al.
1998, Porter & Votta 1998, Laitenberger et al. 2000), and
about 50% of the reported software effort estimation
experiments use software professionals as subjects
(Jørgensen 2002).2 Section 4.1 discusses differences
between students and professionals. Section 4.2 discusses
how to get professionals to take part in experiments.

4.1. Students versus Professionals

Most subjects in software engineering experiments are
students. The main reason is that they are more accessible
and easier to organise, and hiring them is generally
inexpensive. Consequently, it is easier to run an
experiment with students than with professionals and the
risks are lower. Nevertheless, one should also use
professionals in experiments because there may be many
differences between students and professionals, for
example regarding:

• experience and skill level,
• use of professional methods and tools, and
• team work versus individual work.

However, the discussion in the SE community about
students versus professionals seems over-simplified. What
do we mean by “student” and “professional”? For
example, in two of our experiments, 40% of the students
were either working part time during their study or had
previously been working full time in industry before they

2 Interestingly, studies on estimation in forecasting and human

judgement research journals seem to have a lower proportion of
experiments with professionals as subjects than the software
development effort research studies (Jørgensen 2002). Increasing the
realism of experiments is, therefore, probably not only an important
issue in software engineering.

started the current study (Anda & Sjøberg 2002). Should
these students be classified as “semi-professionals”? More
importantly, the variations among students and variations
among professionals may be so large that whether the
person is a student or a professional, may just be one of
many characteristics of a software engineer. This is also
indicated by most software effort estimation models, e.g.
COCOMO, the members of a software development
project are categorised according to several parameters.

The experiments we have conducted indicate that the
variations among professionals are higher than the
variations among students. For example, many
professionals were employed in times were there was an
extreme shortage of IT personnel. Consequently, some of
them may have less formal qualifications than what is
normally expected for software engineers. However, this
indication of larger variations among professionals than
among students may simply be a consequence of the fact
that our student subjects are taken from a very
homogenous group of students, that is, they belong to the
same class or a couple of classes, which means that the
topic studied and the year they study are basically the
same for all the students. In the case of postgraduate
students, they are at least from the same university.
Generally, we expect more variation among professionals
than among students due to more varied educational
background, working experience, etc.

Generally, SE experiments that involve professionals
seldom characterise the professionals’ competence,
experience and educational background, and the authors
seldom justify to what extent their subjects are
representative of the software engineers who usually
perform such tasks. This leads to several problems:

• The results may not be trustworthy, that is, the profes-

sionals may not be realistic for the actual experimental
tasks. The sample recruited may be biased in some
way, for example, a company may only be willing to let
their least experienced or least demanded software
engineers take part in an experiment.

• Comparing results from the original with replicated
studies is difficult.

• Successful transfer of the results into industrial practice
is less likely.

To generalise from experiments with a given group of
subjects, we would need information about the ability and
the variations among the subjects and the group of people
to which the results will be generalised. For professionals,
depending on what we wish to study, it would be relevant
to know the variations regarding competence, education,
experience, age, nationality (?), etc. (Some of this
information may be highly controversial.) In the OO
design experiment we conducted, we collected detailed
information about:

• age,
• education (number of credits in general, number of

credits in computer science),
• general work experience,
• programming experience (OO in general, particular

programming languages (Java, C++, etc.),
• knowledge of systems developments methods and

tools, and
• subjective description of their own programming skills.

This background information can be used in several ways,
for example, to determine

• the target population for which the results are valid,

and
• to what extent the results of the treatments depend on

the collected background information, e.g., that certain
design principles might be easier to understand for
experienced professionals than for novices.

In the OO design experiment, a representative sample of
the population of programmers in the Norwegian IT
industry (130 professionals from 9 consultancy
companies) carried out exactly the same tasks. The back-
ground information collected, combined with the results
of the experiment, will thus indicate the distribution of
these variables for Norwegian programmers. This
distribution can be used to create smaller, but still
representative, samples in future experiments. Given that
we know the proportion of programmers in various
categories, we can stratify the sampling process. One of
the main advantages of hiring consultants as subjects is
that we then can specify the kinds of subjects we want to
ensure representativeness (see Section 4.2).

It will be interesting to compare the individual
variations in programming skills in our data with similar
data collected by others. It would also be interesting to
identify the variations within the same company versus
between companies, variations between in-house profes-
sionals versus consultants, etc. For example, in-house
software development in Nokia, Ericsson, Bosch, etc. may
differ from development projects run by consultancy
companies. Nevertheless, knowledge about the effect of a
certain technology among consultants or even students
may still be useful in the lack of knowledge of the effect
of the technology in a company’s own environment.

Regarding background information of students, it
would be relevant to know the variations regarding level
(undergraduate, postgraduate), subject, age, nationality
(?), etc. It would also be interesting to identify the
variations within the same university versus between
universities. (Some of this information may also be highly
controversial.)

Related to the student-professional discussion, is the
degree of competence, i.e., novice versus expert, in the

studied topic. For example, in a study on risk assessments,
we found that if there is a lack of feedback on such
assessments, even experienced software professionals may
be at a novice level (Jørgensen 1995). Consequently, a
naïve study of software professionals, without knowing
about their competence level, makes it hard to generalize
to other organizations.

A non-controversial use of student experiments is to
use them to test experimental design and initial
hypotheses, before conducting experiments with
professionals, as recommended in (Tichy 2000). However,
to get more knowledge about under what circumstances
and to what degree students can be expected to perform
similarly to software professionals, we plan to compare
the performance of students with professionals in most of
our experiments.

In particular, it would be interesting to compare
students with professionals in both absolute and relative
terms. The applicability of a technology may depend one
the absolute performance, e.g., the size of the effect may
be unsatisfactory among students but satisfactory among
professionals. However, in some cases (when the size
effect is considered unimportant) it may be sufficient to
compare technologies on a relative basis, that is, one can
use student experiments if the relative difference between
two or more technologies will be the same independently
of whether the subjects are students or professionals. In
summary, more research is needed to find the appropriate
balance between using students and professionals in
experiments.

4.2. How to get Subjects?

Most university researchers also teach. They can then
relatively easy use students as subjects in experiments.
One can organise an experiment as follows:

1. The experiment is considered a compulsory part of a

course, either as part of the teaching or as an exercise
(Anda et al. 2001, Jørgensen et al. 2002).

2. The experiment is not compulsory; it is voluntary, but
is still regarded relevant for the exam (Jørgensen &
Sjøberg 2001). (In practice, students may feel obliged
to take part to show their teacher that they are
enthusiastic students.)

3. The students are paid, that is, the experiment is not
considered as part of the course (but it may still be
relevant) (Anda & Sjøberg 2001, Arisholm et al.
2001, Karahasanovic & Sjøberg 2001).

In our research group, we have experienced that alterna-
tive (3) is easiest to organise. One then does not have the
time constraint of the ordinary classes, the students are
motivated and there are no ethical problems regarding the
difference in the technology being exposed to the

students. (One might argue that it is unethical if some
students have been using a technology that proved better
than the technologies being used by others students, that
is, some students have learned better technologies than
other students.) We usually pay the students a fixed rate
per hour (15 US$). We then get about 50% of the students
of a class or group of students (e.g., MSc students). In the
cases where we want a higher proportion or we need
subjects on a short notice, we increase the honorarium.

One should be aware that it may be a methodological
problem that the teacher is also the researcher, that is, the
technology being subject of an experiment run by a given
researcher is also being taught by the same researcher.
Consequently, the students might be biased. This is
avoided if professionals are used as subjects (unless the
professionals happen to be the former students of the
actual researcher).

The lack of professionals in software engineering
experiments is due to the conception of high costs and
large organisational effort. Warren Harrison (2000) puts it
this way:

Professional programmers are hard to come by and are
very expensive. Thus, any study that uses more than a
few professional programmers must be very well funded.
Further, it is difficult to come by an adequate pool of
professional developers in locations that do not have a
significant software development industrial base. Even if
we can somehow gather a sufficiently large group of
professionals, the logistics of organizing the group into a
set of experimental subjects can be daunting due to
schedule and location issues.

To alleviate these problems, we have applied alternative
incentives to conduct experiments with professionals:

• Offer the organisation tailored, internal courses and,

for example, use the course exercises as experiments.
• Have a part time job in the company and advocate the

experiment as useful for the company (Anda 2002).
• Involve some of the employees in the research and

offer them co-authorship of the resulting research
paper.

• Offer the organisation a network of people from other
organisations with relevant experience.

• Pay the company directly for the hours spent on the
experiment (Jørgensen & Sjøberg 2002).

The first and the last alternative have proved most
successful. Regarding the last alternative, we thought that
it would be most effective to use our personal network to
get people to take part in our experiments on their spare
time and pay them individually. However, it turned out
that a much better approach is to ring the switchboard of a
major consultancy company and request a specific service.
For example, we contacted Accenture, Cap Gemini Ernst
& Young, TietoEnator and six other consultancy compa-

nies in Norway and Sweden, and asked for 8-30 Java
programmers for one day and one internal project leader
to take part in our OO design experiment. We offered pay-
ment in the lower range of the current market price. (The
fee per hour varied depending on whether the consultant
was junior, intermediate or senior.) All the companies
were positive. Some of them requested that as part of the
deal, we should give an in-house seminar on the results
after the experiment, which showed that they were also
interested in the experiment itself, not only the money.

Note that this experiment was carried out in November
and December 2002, which generally was a difficult time
for IT consultancy companies. Our future experiments will
show whether they will be as positive in periods with
higher demand on their services. One should also note that
it was considerably more difficult to get subjects to take
part in the design pattern experiment (held in May 2002,
which was also a difficult time for the software industry)
because it was held for a period of three given days,
whereas the length of the OO design experiment was only
one day, and the day was chosen by the actual company
itself (within a certain interval).

When we hire people from consultancy companies to
take part in our experiments, we are treated much more
professionally than when we work as Software Process
Improvement researchers. We are like any ordinary
customer (although several consultants have said that they
find our projects more exciting than most other projects).
We agree on a contract and they internally define a project
with project leader, budget, etc. Of course, one must have
the resources to do research this way. We therefore
believe that empirical SE research departments should
have particular budgets for paying students and software
professionals for taking part in experiments.

5. Realistic Environment

A challenge when configuring an experimental
environment is to provide an infrastructure of supporting
technology (processes, methods, tools, etc.) that resembles
an industrial development environment.

5.1. Experimental Procedure in a Realistic
Environment

Many threats to external validity are caused by an
artificial setting of the experiment. For example, because
the logistics is simpler, a classroom is used instead of a
usual work place. Conducting an experiment on the usual
work site with professional development tools implies less
control of the experiment than we would have in a
classroom setting with pen and paper. Nevertheless, there
are many challenges when conducting experiments with

professionals in industry. From the OO design experiment,
we learned the following lessons:

• Ask for a local project manager of the company who

should select subjects according to the specification of
the researchers, ensure that the subjects actually turn
up, ensure that the necessary tools are installed on the
PCs, and carry out all other logistics, accounting, etc.

• Motivate the experiment up-front: inform the subjects
about the purpose of the experiment (at a general level)
and the procedure (when to take lunch or breaks, that
phone calls and other interruptions should be avoided,
etc.).

• Ensure that the subjects do not talk with one another in
breaks, lunch, etc.

• Ensure the subjects that the information about their
performance is kept confidential (both within company
and outside).

• Ensure the company that its general performance is
kept confidential.

• Monitor the experiment, that is, be visible and
accessible for questions.

• Give all the subjects a small training exercise to ensure
that the PC and tool environment are working properly.

• Ensure the company and subjects that they will be in-
formed about the results of the experiment (and do it).

• Provide a proper experiment support environment to
help set up and monitor the experiment, and collect and
manage the experimental data (see Section 5.2).

5.2. Experiment Supporting Technology

Our experience from the experiments we have run with
both students and professionals is that the all the logistics
around the experiments is work intensive and error prone:
General information and specific task documents must be
printed and distributed, personal information (bank
account, etc.) and background information must be col-
lected, all solution documents must be collected and then
punched into an electronic form, etc. This may in turn lead
to typing errors, lost data (Briand et al. 2001), etc.

We realised that if we were to scale up our experiments
and particularly run experiments with professionals in
industry using professional development tools, that is,
make our experiments more realistic, we would need
electronic tool support. Hence, we searched for suitable
tools and found several Web tools developed to support
surveys, most of them designed by psychologists (e-
Experiment3, PsychExperiments4, Survey Pro 35, S-Ware

3 http://www-personal.umich.edu/~ederosia/e-exp/
4 http://www.olemiss.edu/PsychExps/
5 http://apian.com/survey/spspec.htm

WWW Survey Assistant6, Wextor7). Those tools basically
distribute questionnaires to the respondents who fill them
in online. Then the results are stored in a local database or
sent via emails to the researchers. However, to conduct
the kind of experiments that we were interested in, we
needed a more sophisticated tool. Therefore, in
collaboration with a software company that develops
solutions for Human Resource Management, we
developed (and are still extending and improving) the
Web-based Simula Experiment Support Environment
(SESE). SESE is built on top of the company’s standard
commercial human resource management system. Figure 1
illustrates the way SESE supports an experiment:

Step 1: The researcher defines a new experiment (SESE

can manage an arbitrary number of experiments
simultaneously) with the required questionnaires,
task descriptions, files to be down-loaded etc.

Step 2: The administrator creates a user-id and password
for each person that will take part in the
experiment, and emails that information to the
person.

Step 3: The user (subject) fills in questionnaires
(personal and background information) and
downloads task descriptions and other required
documents (design models, source code, etc.).

Step 4: The user carries out the tasks, answers questions
along the way and uploads the finished
documents. Timestamping is done continuously
(when were the task descriptions downloaded and
task solutions uploaded, when did a break start
and stop, etc.).

Step 5: When a subject has finished the tasks, his or her
results are stored in the (relational) database of
SESE. When all the subjects have finished, the
researcher can start analyse the data.

The OO design experiment was run at 10 different sites
using SESE via Web. The experiences from using SESE
are positive. SESE enables us to run distributed
experiments – both in location and time – instead of only
“big-bang” experiments. If acceptable from a
methodological point of view, one should avoid “big-
bang” experiments to reduce risks. For example, in our
design pattern experiment, a fibre cable breakdown far
beyond our control forced us to send 44 consultants home
and defer the experiment to start on the next day. This
accident caused a lot of frustration and a direct loss of
20 000 US$.

Moreover, the initial subjects participating in an
experiment may be used to improve the formulation of the

6 http://or.psychology.dal.ca/~wcs/hidden/home.html
7 http://www.genpsylab.unizh.ch/wextor/index.html

hypotheses and decide the number of subjects needed. As
such, the initial phase of the experiment may serve as a
flexible pilot study – its extent and kind may be decided
on the fly.

Future extensions of SESE may include detailed
logging of the way a task is performed or a technology is
used. This may include window operations, keystrokes,
mouse operations and movements logged with
timestamps. SESE and the experiences from using it are
more fully described in (Arisholm et al. 2002).

6. Conclusions

This paper focused on the need for conducting more
realistic experiments in software engineering. Using a
large experiment on OO design alternatives and other
experiments conducted by our research group as
examples, we described how increased realism can be
achieved, particularly along the dimensions tasks, subjects
and environment. A Web-based experiment supporting
tool was also described.

Increasing the realism of SE experiments also requires
an increase in the resources needed to conduct such
experiments. Using professionals as subjects usually
means that they must be paid. Development of necessary
supporting tools is costly. Attracting experts to take part
in the design, management and data analysis of realistic
experiments also requires resources.

However, our experience is that compared with
personnel costs a relatively small amount of money may
fund relatively large experiments. Even our OO design
experiment with 130 professionals did not cost more than
70 000 US$, which is less than the cost of one post-doc
for one year (including overhead). In the SE department
of Simula Research Laboratory we are to a major extent
allowed ourselves to prioritise how we spend our money.
We have argued that we would rather spend money on
experiments than employing the 10th person in the group.
This may be more difficult in a university setting.

Nevertheless, we believe that few university research
groups in empirical SE actually apply research funding
bodies for money for carrying out experiments. (Neither
did we when we were at the university.) Why should not
empirical SE groups get funding to hire professionals to
take part in experiments like other research groups get
funding for buying super-computers, Linux clusters, etc.?
Given the importance and challenges of the software
industry (PITAC 1999), the empirical SE community
should apply national and multi-national (e.g. EC)
research bodies to fund realistic experiments.

Acknowledgements

We thank the anonymous referees for their constructive
comments.

Simula Experiment Support Environment

Researcher

Subjects:
Professional developers,
at usual work place using
normal development tools

Administrator

1: Define experiment

5: Analyze results 2: Define users

3:
Questionnaires
Task descriptions
Source code

4:
Answer questions
Task solutions
Source code

Figure 1. Web-based experiment support environment

References

Anda, B. & Sjøberg, D.I.K. Towards an Inspection Technique
for Use Case Models, SEKE’2002 (Fourteenth International
Conference on Software Engineering and Knowledge
Engineering), Ischia, Italy, July 15-19, 2002.

Anda, B. Comparing Effort Estimates Based on Use Case Points
with Expert Estimates. In Empirical Assessment in Software
Engineering (EASE 2002), Keele, UK, April 8-10, 2002.

Anda, B., Sjøberg, D.I.K. & Jørgensen, M. Quality and
Understandability in Use Case Models. In J. Lindskov
Knudsen (Ed.): ECOOP’2001 (Object-Oriented
Programming, 15th European Conference), Budapest,
Hungary, June 18-22, 2001, LNCS 2072 Springer-Verlag,
pp. 402-428.

Arisholm, E. & Sjøberg, D. Towards a Framework for Empirical
Assessment of Changeability Decay. Journal of Systems and
Software, Vol. 53, pp. 3–14, Sep. 2000.

Arisholm, Erik, Sjøberg, Dag I.K., Carelius, Gunnar J. and
Lindsjørn, Yngve. SESE – an Experiment Support
Environment for Evaluating Software Engineering
Technologies, NWPER’2000 (Tenth Nordic Workshop on
Programming and Software Development Tools and
Techniques), Copenhagen, Denmark, 18-20 August, 2002.

Arisholm, E., Sjøberg, D.I.K. & Jørgensen, M. Assessing the
Changeability of two Object-Oriented Design Alternatives –
a Controlled Experiment. Empirical Software Engineering,
(6):231–277, Sep. 2001.

Aronson, E. & Carlsmith, J.M. Experimentation in Social
Psychology. In G. Lindzey & E. Aronson (eds.), The
Handbook of Social Psychology, Third Edition, Vol. 2,
Reading Mass.: Addison-Wesley, pp. 1-79, 1968.

Basili, V.R. The Role of Experimentation in Software
Engineering: Past, Current, and Future, Proceedings of the
18th International Conference on Software Engineering,
Berlin, Germany, March 25-29, pp. 442-449, 1996.

Basili, Victor R., Rombach, Dieter & Selby, Richard. The
Experimental Paradigm in Software Engineering.
Experimental Engineering Issues: Critical Assessment and
Future Directions, International Workshop, Dagstuhl,
Germany, 1992, Springer Verlag, LNCS, No. 706, 1993.

Basili, Victor R., Selby, Richard & Hutchens, David.
Experimentation in Software Engineering. IEEE
Transactions on Software Engineering (invited paper), July
1986.

Briand, L.C., Bunse, C. & Daly, J.W. A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs, IEEE Transactions on Software
Engineering, Vol. 27, No. 6, pp. 513–530, 2001.

Glass, R.L. The Software-Research Crisis, IEEE Software, Vol.
11, No. 6, pp. 42-47, 1994.

Harrison, W. N = 1: An Alternative for Software Engineering
Research?, Beg, Borrow, or Steal: Using Multidisciplinary

Approaches in Empirical Software Engineering Research,
Workshop, 5 June, 2000 at 22nd International Conference on
Software Engineering (ICSE), Limerick, Ireland, 2000.

Höst, M., Regnell, B., & Wohlin, C. Using Students as Subjects
– A Comparative Study of Students and Professionals in
Lead-Time Impact Assessment. Empirical Software
Engineering, Vol. 5, No. 3, pp. 201-214, 2000.

Jørgensen, M. An Empirical Study of Software Maintenance
Tasks. Journal of Software Maintenance, Vol. 7, pp. 27-48,
1995.

Jørgensen, M. and D. I. K. Sjøberg. Impact of software effort
estimation on software work. Journal of Information and
Software Technology. Vol. 43, pp. 939-948, 2001.

Jørgensen, M. and D. I. K. Sjøberg. The Impact of Customer
Expectation on Software Development Effort Estimates.
Submitted to Journal of Empirical Software Engineering.
2002.

Jørgensen, M. Cost and Effort Estimation of Software
Development Work: A Review and an Annotated
Bibliography, 2002 (submitted for publication).

Jørgensen, M., U. Indahl and D. Sjøberg. Software effort
estimation and regression toward the mean. Accepted for
publication in Journal of Systems and Software, 2002.

Jørgensen, M; Bygdås, S. An Empirical Study of the Correlation
between Development Efficiency and Software Development
Tools. Technical Journal of Norwegian Telecom, Vol. 11,
pp. 54-62, 1999.

Karahasanovic, A. Supporting Application Consistency in
Evolving Object-Oriented Systems by Impact Analysis and
Visualisation, PhD Thesis, Department of Informatics,
University of Oslo, 2002.

Karahasanovic, A., Sjøberg, D. Visualizing Impacts of Database
Schema Changes – A Controlled Experiment, In 2001 IEEE
Symposium on Visual/Multimedia Approaches to
Programming and Software Engineering, Stresa, Italy,
September 5-7, 2001, pp 358-365, IEEE Computer Society.

Laitenberger, O., Atkinson, C., Schlich, M. & El Emam, K. An
experimental comparison of reading techniques for defect
detection in UML design documents. Journal of Systems and
Software, Vol. 53(2), pp. 183-204, 2000.

PITAC report, http://www.ccic.gov/ac/report/, 1999.

Porter, A. & Votta, L. Comparing Detection Methods for
Software Requirements Inspections: A Replication Using
Professional Subjects. Empirical Software Engineering, Vol.
3, No. 4, pp. 355-379. 1998.

Potts, C. Software-Engineering Research Revisited, IEEE
Software, Vol. 10, No. 5, pp. 19-28, 1993.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P. &Votta, L. G.
A Controlled Experiment in Maintenance Comparing Design
Patterns to Simpler Solutions. Accepted for IEEE
Transactions on Software Engineering in September 2000,
to appear.

Rogers, E.M. Diffusion of Innovations, Fourth Edition, New
York: The Free Press, 1995.

Rombach et al. Experimental Software Engineering Issues:
Critical Assessment and Future Directions, Dagstuhl
Workshop, Germany, September, 1992, LNCS 706, Springer
Verlag, 1993.

Seaman, C. & Basili, V. An Empirical Study of Communication
in Code Inspection, Proceedings of the 19th International
Conference on Software Engineering (ICSE-19), May 17–24,
1997.

Tichy, W.F. Should Computer Scientists Experiment More? 16
Reasons to Avoid Experimentation, IEEE Computer Vol. 31,
No. 5, pp. 32-40, May 1998.

Tichy, W.F. Hints for Reviewing Empirical Work in Software
Engineering. Empirical Software Engineering, Vol. 5, No. 4,
pp. 309–312, 2000.

Zelkowitz, M.V. & Wallace, D.R. Experimental Models for
Validating Technology, IEEE Computer, Vol. 31, No. 5; pp.
23-31, May 1998.

Zhang, Z., Basili, V. & Shneiderman, B. An Empirical Study of
Perspective-based Usability Inspection. Human Factors and
Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

