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Abstract 
 

An important goal of most empirical software engineering 
research is the transfer of research results to industrial 
applications. Two important obstacles for this transfer 
are the lack of control of variables of case studies, i.e., 
the lack of explanatory power, and the lack of realism of 
controlled experiments. While it may be difficult to 
increase the explanatory power of case studies, there is a 
large potential for increasing the realism of controlled 
software engineering experiments. To convince industry 
about the validity and applicability of the experimental 
results, the tasks, subjects and the environments of the 
experiments should be as realistic as practically possible. 
Such experiments are, however, more expensive than 
experiments involving students, small tasks and pen-and-
paper environments. Consequently, a change towards 
more realistic experiments requires a change in the 
amount of resources spent on software engineering 
experiments.  

This paper argues that software engineering 
researchers should apply for resources enabling 
expensive and realistic software engineering experiments 
similar to how other researchers apply for resources for 
expensive software and hardware that are necessary for 
their research. The paper describes experiences from 
recent experiments that varied in size from involving one 
software professional for 5 days to 130 software profes-
sionals, from 9 consultancy companies, for one day each. 
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1. Introduction 

 
There is an increasing understanding in the software 
engineering (SE) community that empirical studies are 
needed to develop or improve processes, methods and 
tools for software development and maintenance (Basili et 
al. 1986, Basili et al. 1993, Rombach et al. 1993, Basili 
1996, Tichy 1998, Zelkowitz & Wallace 1998). The 

classical method for identifying cause-effect relationships 
is to conduct controlled experiments where only a few 
variables vary. Controlled experiments in software 
engineering often involve students solving small pen and 
paper tasks in a classroom setting. A major criticism of 
such experiments is their lack of realism (Potts 1993, 
Glass 1994), which may deter technology transfer from 
the research community to industry. The experiments 
would be more realistic if they are run on real tasks on 
real systems with professionals using their usual 
development technology in their usual working 
environment. Note, however, keeping control is a 
challenge when the realism is increased.  

A prerequisite for the discussion on realism is that we 
are conscious about the population we wish to make 
claims about. Implicit in our discussion is that the 
interesting population is “representative” software 
builders doing “representative” tasks in “representative” 
industrial environments. However, it is far from trivial 
what “representative” means. Generally, a weakness of 
most software engineering research is that one is rarely 
explicit about the target population regarding tasks, 
subjects and environments.  

The purpose of this paper is to describe (1) why we 
need more realistic experiments and (2) some experiences 
on how to run more realistic experiments. During the last 
couple of years the authors of this paper have conducted 
12 controlled experiments with a total of 750 students and 
300 professionals as subjects.1 Additionally, the authors 
of this paper have during the last 6 years conducted about 
30 case studies as part of two major Norwegian Software 
Process Improvement projects (SPIQ, PROFIT).  

The remainder of this paper is organised as follows. 
Section 2 discusses the notion of realism in SE 
experiments. Partly based on our experiences on 
conducting controlled SE experiments, Sections 3, 4 and 5 
discuss in more details the realism of respectively tasks, 
subjects and environment. Section 6 concludes. 

                                                 
1 Information about most of these experiments can be found at 

http://www.ifi.uio.no/forskning/grupper/isu/forskerbasen. 



2. Realism in Software Engineering 
Experiments  

 
The ultimate criterion for success in an applied discipline 
such as software engineering research is the widespread 
adoption of research results into everyday industrial 
practice. To achieve this, diffusion of innovation models 
emphasizes the importance of homophily, which Rogers 
(1995) defines as the degree to which the innovator and 
the potential adopter are similar in certain attributes such 
as objectives, beliefs, norms, experience and culture. 
Heterophily is the opposite of homophily, and, according 
to Rogers (1995), “one of the most distinctive problems in 
the diffusion of innovations is that the participants are 
usually quite heterophilous” (ibid., p. 19, italics in 
original). This means that evidential credibility of 
software experiments depends on both the producer and 
the receiver of the results. Hence, without a close tie 
between the experimental situation and the “real”, 
industrial situation, practitioners will tend to perceive the 
experiment as irrelevant and ignore the results. 

According to the Merriam-Webster dictionary, realism 
can be defined as a “concern for fact or reality and 
rejection of the impractical and visionary” and to 
“accurate representation without idealization.” Similarly, 
the Oxford dictionary defines realism as a “close 
resemblance to what is real; fidelity of representation, 
rendering the precise details of the real thing or scene.” 

Most of the studies in software engineering that have 
emphasized realism are so far case studies. However, a 
major deficiency of case studies is that many variables 
vary from one case study to another so that comparing the 
results to detect cause-effect relationships is difficult. 
Therefore, controlled experiments should be conducted to 
complement case studies in empirical software engineer-
ing. For example, we know that evolving software is likely 
to decay regarding, e.g., changeability (Arisholm & 
Sjøberg 2000, Arisholm et al. 2001). The reasons for this 
decay, however, cannot always be analyzed in a case 
study. Instead, we need to isolate and analyze a few vari-
ables at a time in controlled experiments. For example, if 
the purpose of a study is to determine how design princi-
ples affect changeability, a case study would be unable to 
separate the effect of developer skill and design princi-
ples. A controlled experiment, on the other hand, would 
permit the same changes to be implemented by similarly 
skilled developers applying alternative design principles.  

So, while the raison d’être for experimental research is 
to establish evidence for causality through internal logical 
rigor and control, this is not enough. It is also important to 
ensure external validity. If an experiment lacks external 
validity, its findings hold true only in experimental 
situations, making them useless to both basic and applied 

research. An important issue, therefore, is whether the 
particular features of formal SE experiments are realistic.  

There are two types of realism to consider (Aronson & 
Carlsmith 1968). One is experimental realism, which 
refers to the impact of an experimental treatment on 
subjects. It occurs when the experiment appears real and 
meaningful to the subjects and when the experiences 
encountered in the experiment will occur in the real world. 
In other words, if an experiment has impact upon a 
participant, forces the participant to take the matter 
seriously and involves the participant in the procedures, 
then we say the procedure is high on experimental realism.  

The other type of realism, which is of most concern to 
us in this paper, is mundane realism. Mundane realism 
refers to the resemblance of an experiment with real world 
situations and, therefore, with our ability to generalize the 
results of the experiment to industrial practice. In this 
sense, an experiment is realistic if the situation presented 
to the subjects is realistic and the subjects react to the 
situation in the same way as they would do in their usual 
work environment. In particular, it is a challenge to 
achieve realism regarding experimental tasks, subjects and 
environment (Harrison 2000): 

 
•  Realistic tasks. This challenge is concerned with the 

size, complexity and duration of the involved tasks. 
Most experiments in software engineering seem 
simplified and short-term in which “the experimental 
variable must yield an observable effect in a matter of 
hours rather than six months or a year” (Harrison 
2000). Such experiments are hardly realistic given the 
tasks of building and maintaining real, industrial 
software, particularly since many of the factors we wish 
to study require significant time before we can obtain 
meaningful results. 

•  Realistic subjects. This challenge is concerned with the 
selection of subjects to perform the experimental tasks, 
that is, to what extent do the selected subjects represent 
the population that we wish to make claims about? 
Even though there are some preliminary indications 
that students can be used for certain tasks instead of 
professionals under certain conditions (Höst et al. 
2000), it is still unclear how well results from student-
based experiments generalize to professional software 
engineers (Harrison 2000). It is worrying, therefore, 
that most of these studies attempt to generalize their 
results to an industrial environment.  

•  Realistic environment. Even when realistic subjects 
perform realistic tasks, the tasks may be carried out in 
an unrealistic manner. The challenge is to configure the 
experimental environment with an infrastructure of 
supporting technology (processes, methods, tools, etc.) 
that resembles an industrial development environment. 
Traditional pen and paper based exercises used in a 



classroom setting are hardly realistic for dealing with 
relevant problems of the size and complexity of most 
contemporary software systems. 
 

While our focus is on controlled experiments, this does 
not mean that we are only concerned with laboratory, or in 
vitro, experiments. Controlled experiments can also be 
conducted in vivo, in a more realistic environment than is 
possible in the artificial, sanitized laboratory situation 
(Basili 1996). However, the realistic environment can also 
be a weakness, because it may be too costly or impossible 
to manipulate an independent variable or to randomize 
treatments in real life. Thus, the amount of control varies 
on a continuum, and prioritizing between the validity 
types is an optimization problem, given the purpose of the 
experiment. Nevertheless, external validity is always of 
extreme importance whenever we wish to generalize from 
behaviour observed in the laboratory to behaviour outside 
the laboratory, or when we wish to generalize from one 
non-laboratory situation to another non-laboratory 
situation. 

In the remainder of this paper, we will show how we 
have dealt with these challenges of conducting realistic 
experiments in SE, by substituting students with 
professionals, toy tasks with relevant problems, pen and 
paper with commercial tools, and the classroom setting 
with a real industrial environment. 

 
3. Realistic Tasks 

 
When conducting controlled experiments in software 
engineering, one should consider the realism and repre-
sentativeness of the tasks regarding the size, complexity 
and duration of the involved tasks. Of course, the world is 
diverse, so the realism of a task must be considered 
relative to a certain part or aspect of the world. Some 
experimental tasks bear in our opinion little resemblance 
to actual tasks in software engineering; others are very 
similar to actual tasks. In between there is a continuum. 
Larger development tasks may take months, while many 
maintenance tasks may take only a couple of hours.  

A systematic way to define realistic tasks according to 
a given application area in a given context, is to collect 
information about the kinds and frequencies of tasks in the 
actual environment and then create “benchmark tasks”, 
i.e., a set of tasks that is a representative sample of tasks 
from the population of all tasks. An example use of such 
benchmark tasks is described in (Jørgensen & Bygdås 
1999). In that study, the maintenance benchmark tasks 
were derived from another study of 109 randomly 
sampled maintenance tasks (Jørgensen 1995).  

In yet another study, we collected information about all 
the maintenance tasks in a tool vendor company through a 

Web interface during a period of six months (Arisholm & 
Sjøberg 2000). 

Generally, to increase the realism of SE experiments, 
the duration of the studied tasks should be increased. As 
far as we have observed, the tasks carried out in most 
student experiments take only up to one hour (a few of 
them two hours) – to fit with the time schedule of a 
university class. In an experiment on object-oriented (OO) 
design principles, however, 60 students and 130 
professionals (junior, intermediate and senior consultants 
from the companies Accenture, Cap Gemini Ernst & 
Young, TietoEnator, Ementor, Software Innovation, 
Genera, Ementa and ObjectNet) spent one day each on the 
five experimental tasks. 

In an experiment on design patterns that took place in 
May 2002, 44 professionals from 12 companies spent 3 
days (including a course on design patterns the second 
day). This experiment was a replication of a former 
experiment in which only pen and paper were used 
(Prechelt et al. 2000); this time the programming tasks 
were actually carried out using real development tools 
(see also Section 5). 

We have conducted one longer-term, one-subject 
explorative study (35 hours), that is, an “N=1 
Experiment” (Harrison 2000), which is not a controlled 
experiment since only one subject takes part 
(Karahasanovic 2002). However, the longer duration of 
this study allowed a wider spectrum of tasks to be carried 
out. The system being subject of the tasks was also larger 
in size and complexity than usual in most experiments. 
Another positive effect of the longer duration was that the 
pressure put on the subject was less, that is, more realistic, 
than what we have experienced in the controlled 
experiments we have run. In the student experiments, most 
students felt as if they were in an exam situation. “How 
did it go?”, they asked after the experiment.  

Another example of an experiment with high realism of 
tasks is our ongoing study on uncertainty in the estimation 
of development effort. In that experiment we pay an 
organization to evaluate three estimation processes. The 
organization now estimates one third of their incoming 
projects respectively according to the first, second and 
third estimation process. 

Increasing the duration of the experiments enables 
more realistic tasks to be carried out. We have tried 
several means to achieve longer experiments, some of 
them with success (see Section 4.2). Of course, our tasks 
may still be small compared with many actual tasks. We 
are therefore considering an experiment where an 
application system that is actually requested by Simula 
Research Laboratory, will be developed by 4 different 
project teams (each consisting of 4 persons) from 4 
different consultancy companies. It should be possible to 
develop the system in approximately 1 month. This would 



then be a very realistic development task. Of course, the 
number of subjects (here teams) is too small to conduct 
hypothesis testing, but we still have some control. 
Nevertheless, there are many challenges to such an 
experiment; we are only in the brainstorming phase. 

 
4. Realistic Subjects 

 
The similarity of the subjects of an experiment to the 
people who will use the technology impacts the ease of the 
technology transfer (Rogers 1995). A common criticism 
of experiments in software engineering is that most of the 
subjects are students, which might make it difficult to 
generalise the results to settings with professionals. We 
will emphasise, though, that there are sub-areas of soft-
ware engineering where the proportion of professionals 
versus students is relatively high. For example, experi-
ments on inspections have traditions for using 
professionals, e.g., (Seaman & Basili 1997, Zhang et al. 
1998, Porter & Votta 1998, Laitenberger et al. 2000), and 
about 50% of the reported software effort estimation 
experiments use software professionals as subjects 
(Jørgensen 2002).2 Section 4.1 discusses differences 
between students and professionals. Section 4.2 discusses 
how to get professionals to take part in experiments. 

 
4.1. Students versus Professionals 

 
Most subjects in software engineering experiments are 
students. The main reason is that they are more accessible 
and easier to organise, and hiring them is generally 
inexpensive. Consequently, it is easier to run an 
experiment with students than with professionals and the 
risks are lower. Nevertheless, one should also use 
professionals in experiments because there may be many 
differences between students and professionals, for 
example regarding: 

 
•  experience and skill level, 
•  use of professional methods and tools, and 
•  team work versus individual work. 

 
However, the discussion in the SE community about 
students versus professionals seems over-simplified. What 
do we mean by “student” and “professional”? For 
example, in two of our experiments, 40% of the students 
were either working part time during their study or had 
previously been working full time in industry before they 
                                                 
2 Interestingly, studies on estimation in forecasting and human 

judgement research journals seem to have a lower proportion of 
experiments with professionals as subjects than the software 
development effort research studies (Jørgensen 2002). Increasing the 
realism of experiments is, therefore, probably not only an important 
issue in software engineering. 

started the current study (Anda & Sjøberg 2002). Should 
these students be classified as “semi-professionals”? More 
importantly, the variations among students and variations 
among professionals may be so large that whether the 
person is a student or a professional, may just be one of 
many characteristics of a software engineer. This is also 
indicated by most software effort estimation models, e.g. 
COCOMO, the members of a software development 
project are categorised according to several parameters. 

The experiments we have conducted indicate that the 
variations among professionals are higher than the 
variations among students. For example, many 
professionals were employed in times were there was an 
extreme shortage of IT personnel. Consequently, some of 
them may have less formal qualifications than what is 
normally expected for software engineers. However, this 
indication of larger variations among professionals than 
among students may simply be a consequence of the fact 
that our student subjects are taken from a very 
homogenous group of students, that is, they belong to the 
same class or a couple of classes, which means that the 
topic studied and the year they study are basically the 
same for all the students. In the case of postgraduate 
students, they are at least from the same university. 
Generally, we expect more variation among professionals 
than among students due to more varied educational 
background, working experience, etc.  

Generally, SE experiments that involve professionals 
seldom characterise the professionals’ competence, 
experience and educational background, and the authors 
seldom justify to what extent their subjects are 
representative of the software engineers who usually 
perform such tasks. This leads to several problems: 

 
•  The results may not be trustworthy, that is, the profes-

sionals may not be realistic for the actual experimental 
tasks. The sample recruited may be biased in some 
way, for example, a company may only be willing to let 
their least experienced or least demanded software 
engineers take part in an experiment. 

•  Comparing results from the original with replicated 
studies is difficult. 

•  Successful transfer of the results into industrial practice 
is less likely. 
 

To generalise from experiments with a given group of 
subjects, we would need information about the ability and 
the variations among the subjects and the group of people 
to which the results will be generalised. For professionals, 
depending on what we wish to study, it would be relevant 
to know the variations regarding competence, education, 
experience, age, nationality (?), etc. (Some of this 
information may be highly controversial.) In the OO 
design experiment we conducted, we collected detailed 
information about:  



•  age, 
•  education (number of credits in general, number of 

credits in computer science), 
•  general work experience, 
•  programming experience (OO in general, particular 

programming languages (Java, C++, etc.), 
•  knowledge of systems developments methods and 

tools, and 
•  subjective description of their own programming skills. 

 
This background information can be used in several ways, 
for example, to determine 

 
•  the target population for which the results are valid, 

and 
•  to what extent the results of the treatments depend on 

the collected background information, e.g., that certain 
design principles might be easier to understand for 
experienced professionals than for novices. 
 

In the OO design experiment, a representative sample of 
the population of programmers in the Norwegian IT 
industry (130 professionals from 9 consultancy 
companies) carried out exactly the same tasks. The back-
ground information collected, combined with the results 
of the experiment, will thus indicate the distribution of 
these variables for Norwegian programmers. This 
distribution can be used to create smaller, but still 
representative, samples in future experiments. Given that 
we know the proportion of programmers in various 
categories, we can stratify the sampling process. One of 
the main advantages of hiring consultants as subjects is 
that we then can specify the kinds of subjects we want to 
ensure representativeness (see Section 4.2). 

It will be interesting to compare the individual 
variations in programming skills in our data with similar 
data collected by others. It would also be interesting to 
identify the variations within the same company versus 
between companies, variations between in-house profes-
sionals versus consultants, etc. For example, in-house 
software development in Nokia, Ericsson, Bosch, etc. may 
differ from development projects run by consultancy 
companies. Nevertheless, knowledge about the effect of a 
certain technology among consultants or even students 
may still be useful in the lack of knowledge of the effect 
of the technology in a company’s own environment.  

Regarding background information of students, it 
would be relevant to know the variations regarding level 
(undergraduate, postgraduate), subject, age, nationality 
(?), etc. It would also be interesting to identify the 
variations within the same university versus between 
universities. (Some of this information may also be highly 
controversial.) 

Related to the student-professional discussion, is the 
degree of competence, i.e., novice versus expert, in the 

studied topic. For example, in a study on risk assessments, 
we found that if there is a lack of feedback on such 
assessments, even experienced software professionals may 
be at a novice level (Jørgensen 1995). Consequently, a 
naïve study of software professionals, without knowing 
about their competence level, makes it hard to generalize 
to other organizations.  

A non-controversial use of student experiments is to 
use them to test experimental design and initial 
hypotheses, before conducting experiments with 
professionals, as recommended in (Tichy 2000). However, 
to get more knowledge about under what circumstances 
and to what degree students can be expected to perform 
similarly to software professionals, we plan to compare 
the performance of students with professionals in most of 
our experiments.  

In particular, it would be interesting to compare 
students with professionals in both absolute and relative 
terms. The applicability of a technology may depend one 
the absolute performance, e.g., the size of the effect may 
be unsatisfactory among students but satisfactory among 
professionals. However, in some cases (when the size 
effect is considered unimportant) it may be sufficient to 
compare technologies on a relative basis, that is, one can 
use student experiments if the relative difference between 
two or more technologies will be the same independently 
of whether the subjects are students or professionals. In 
summary, more research is needed to find the appropriate 
balance between using students and professionals in 
experiments.  

 
4.2. How to get Subjects? 

 
Most university researchers also teach. They can then 
relatively easy use students as subjects in experiments. 
One can organise an experiment as follows: 

 
1. The experiment is considered a compulsory part of a 

course, either as part of the teaching or as an exercise 
(Anda et al. 2001, Jørgensen et al. 2002). 

2. The experiment is not compulsory; it is voluntary, but 
is still regarded relevant for the exam (Jørgensen & 
Sjøberg 2001). (In practice, students may feel obliged 
to take part to show their teacher that they are 
enthusiastic students.) 

3. The students are paid, that is, the experiment is not 
considered as part of the course (but it may still be 
relevant) (Anda & Sjøberg 2001, Arisholm et al. 
2001, Karahasanovic & Sjøberg 2001). 

 
In our research group, we have experienced that alterna-
tive (3) is easiest to organise. One then does not have the 
time constraint of the ordinary classes, the students are 
motivated and there are no ethical problems regarding the 
difference in the technology being exposed to the 



students. (One might argue that it is unethical if some 
students have been using a technology that proved better 
than the technologies being used by others students, that 
is, some students have learned better technologies than 
other students.) We usually pay the students a fixed rate 
per hour (15 US$). We then get about 50% of the students 
of a class or group of students (e.g., MSc students). In the 
cases where we want a higher proportion or we need 
subjects on a short notice, we increase the honorarium. 

One should be aware that it may be a methodological 
problem that the teacher is also the researcher, that is, the 
technology being subject of an experiment run by a given 
researcher is also being taught by the same researcher. 
Consequently, the students might be biased. This is 
avoided if professionals are used as subjects (unless the 
professionals happen to be the former students of the 
actual researcher). 

The lack of professionals in software engineering 
experiments is due to the conception of high costs and 
large organisational effort. Warren Harrison (2000) puts it 
this way: 

 
Professional programmers are hard to come by and are 
very expensive. Thus, any study that uses more than a 
few professional programmers must be very well funded. 
Further, it is difficult to come by an adequate pool of 
professional developers in locations that do not have a 
significant software development industrial base. Even if 
we can somehow gather a sufficiently large group of 
professionals, the logistics of organizing the group into a 
set of experimental subjects can be daunting due to 
schedule and location issues.  
 

To alleviate these problems, we have applied alternative 
incentives to conduct experiments with professionals: 

 
•  Offer the organisation tailored, internal courses and, 

for example, use the course exercises as experiments. 
•  Have a part time job in the company and advocate the 

experiment as useful for the company (Anda 2002). 
•  Involve some of the employees in the research and 

offer them co-authorship of the resulting research 
paper. 

•  Offer the organisation a network of people from other 
organisations with relevant experience. 

•  Pay the company directly for the hours spent on the 
experiment (Jørgensen & Sjøberg 2002). 

 
The first and the last alternative have proved most 
successful. Regarding the last alternative, we thought that 
it would be most effective to use our personal network to 
get people to take part in our experiments on their spare 
time and pay them individually. However, it turned out 
that a much better approach is to ring the switchboard of a 
major consultancy company and request a specific service. 
For example, we contacted Accenture, Cap Gemini Ernst 
& Young, TietoEnator and six other consultancy compa-

nies in Norway and Sweden, and asked for 8-30 Java 
programmers for one day and one internal project leader 
to take part in our OO design experiment. We offered pay-
ment in the lower range of the current market price. (The 
fee per hour varied depending on whether the consultant 
was junior, intermediate or senior.) All the companies 
were positive. Some of them requested that as part of the 
deal, we should give an in-house seminar on the results 
after the experiment, which showed that they were also 
interested in the experiment itself, not only the money. 

Note that this experiment was carried out in November 
and December 2002, which generally was a difficult time 
for IT consultancy companies. Our future experiments will 
show whether they will be as positive in periods with 
higher demand on their services. One should also note that 
it was considerably more difficult to get subjects to take 
part in the design pattern experiment (held in May 2002, 
which was also a difficult time for the software industry) 
because it was held for a period of three given days, 
whereas the length of the OO design experiment was only 
one day, and the day was chosen by the actual company 
itself (within a certain interval). 

When we hire people from consultancy companies to 
take part in our experiments, we are treated much more 
professionally than when we work as Software Process 
Improvement researchers. We are like any ordinary 
customer (although several consultants have said that they 
find our projects more exciting than most other projects). 
We agree on a contract and they internally define a project 
with project leader, budget, etc. Of course, one must have 
the resources to do research this way. We therefore 
believe that empirical SE research departments should 
have particular budgets for paying students and software 
professionals for taking part in experiments. 

 
5. Realistic Environment 

 
A challenge when configuring an experimental 
environment is to provide an infrastructure of supporting 
technology (processes, methods, tools, etc.) that resembles 
an industrial development environment.  

 
5.1. Experimental Procedure in a Realistic 
Environment 

 
Many threats to external validity are caused by an 
artificial setting of the experiment. For example, because 
the logistics is simpler, a classroom is used instead of a 
usual work place. Conducting an experiment on the usual 
work site with professional development tools implies less 
control of the experiment than we would have in a 
classroom setting with pen and paper. Nevertheless, there 
are many challenges when conducting experiments with 



professionals in industry. From the OO design experiment, 
we learned the following lessons: 

 
•  Ask for a local project manager of the company who 

should select subjects according to the specification of 
the researchers, ensure that the subjects actually turn 
up, ensure that the necessary tools are installed on the 
PCs, and carry out all other logistics, accounting, etc. 

•  Motivate the experiment up-front: inform the subjects 
about the purpose of the experiment (at a general level) 
and the procedure (when to take lunch or breaks, that 
phone calls and other interruptions should be avoided, 
etc.). 

•  Ensure that the subjects do not talk with one another in 
breaks, lunch, etc. 

•  Ensure the subjects that the information about their 
performance is kept confidential (both within company 
and outside).  

•  Ensure the company that its general performance is 
kept confidential. 

•  Monitor the experiment, that is, be visible and 
accessible for questions. 

•  Give all the subjects a small training exercise to ensure 
that the PC and tool environment are working properly. 

•  Ensure the company and subjects that they will be in-
formed about the results of the experiment (and do it). 

•  Provide a proper experiment support environment to 
help set up and monitor the experiment, and collect and 
manage the experimental data (see Section 5.2). 

 
5.2. Experiment Supporting Technology 

 
Our experience from the experiments we have run with 
both students and professionals is that the all the logistics 
around the experiments is work intensive and error prone: 
General information and specific task documents must be 
printed and distributed, personal information (bank 
account, etc.) and background information must be col-
lected, all solution documents must be collected and then 
punched into an electronic form, etc. This may in turn lead 
to typing errors, lost data (Briand et al. 2001), etc.  

We realised that if we were to scale up our experiments 
and particularly run experiments with professionals in 
industry using professional development tools, that is, 
make our experiments more realistic, we would need 
electronic tool support. Hence, we searched for suitable 
tools and found several Web tools developed to support 
surveys, most of them designed by psychologists (e-
Experiment3, PsychExperiments4, Survey Pro 35, S-Ware 

                                                 
3 http://www-personal.umich.edu/~ederosia/e-exp/ 
4 http://www.olemiss.edu/PsychExps/ 
5 http://apian.com/survey/spspec.htm 

WWW Survey Assistant6, Wextor7). Those tools basically 
distribute questionnaires to the respondents who fill them 
in online. Then the results are stored in a local database or 
sent via emails to the researchers. However, to conduct 
the kind of experiments that we were interested in, we 
needed a more sophisticated tool. Therefore, in 
collaboration with a software company that develops 
solutions for Human Resource Management, we 
developed (and are still extending and improving) the 
Web-based Simula Experiment Support Environment 
(SESE). SESE is built on top of the company’s standard 
commercial human resource management system. Figure 1 
illustrates the way SESE supports an experiment: 

 
Step 1: The researcher defines a new experiment (SESE 

can manage an arbitrary number of experiments 
simultaneously) with the required questionnaires, 
task descriptions, files to be down-loaded etc. 

Step 2: The administrator creates a user-id and password 
for each person that will take part in the 
experiment, and emails that information to the 
person. 

Step 3: The user (subject) fills in questionnaires 
(personal and background information) and 
downloads task descriptions and other required 
documents (design models, source code, etc.). 

Step 4: The user carries out the tasks, answers questions 
along the way and uploads the finished 
documents. Timestamping is done continuously 
(when were the task descriptions downloaded and 
task solutions uploaded, when did a break start 
and stop, etc.). 

Step 5:  When a subject has finished the tasks, his or her 
results are stored in the (relational) database of 
SESE. When all the subjects have finished, the 
researcher can start analyse the data. 

 
The OO design experiment was run at 10 different sites 
using SESE via Web. The experiences from using SESE 
are positive. SESE enables us to run distributed 
experiments – both in location and time – instead of only 
“big-bang” experiments. If acceptable from a 
methodological point of view, one should avoid “big-
bang” experiments to reduce risks. For example, in our 
design pattern experiment, a fibre cable breakdown far 
beyond our control forced us to send 44 consultants home 
and defer the experiment to start on the next day. This 
accident caused a lot of frustration and a direct loss of 
20 000 US$. 

Moreover, the initial subjects participating in an 
experiment may be used to improve the formulation of the 

                                                 
6 http://or.psychology.dal.ca/~wcs/hidden/home.html 
7 http://www.genpsylab.unizh.ch/wextor/index.html 



hypotheses and decide the number of subjects needed. As 
such, the initial phase of the experiment may serve as a 
flexible pilot study – its extent and kind may be decided 
on the fly.  

Future extensions of SESE may include detailed 
logging of the way a task is performed or a technology is 
used. This may include window operations, keystrokes, 
mouse operations and movements logged with 
timestamps. SESE and the experiences from using it are 
more fully described in (Arisholm et al. 2002). 

 
6. Conclusions 

 
This paper focused on the need for conducting more 
realistic experiments in software engineering. Using a 
large experiment on OO design alternatives and other 
experiments conducted by our research group as 
examples, we described how increased realism can be 
achieved, particularly along the dimensions tasks, subjects 
and environment. A Web-based experiment supporting 
tool was also described. 

Increasing the realism of SE experiments also requires 
an increase in the resources needed to conduct such 
experiments. Using professionals as subjects usually 
means that they must be paid. Development of necessary 
supporting tools is costly. Attracting experts to take part 
in the design, management and data analysis of realistic 
experiments also requires resources.  

However, our experience is that compared with 
personnel costs a relatively small amount of money may 
fund relatively large experiments. Even our OO design 
experiment with 130 professionals did not cost more than 
70 000 US$, which is less than the cost of one post-doc 
for one year (including overhead). In the SE department 
of Simula Research Laboratory we are to a major extent 
allowed ourselves to prioritise how we spend our money. 
We have argued that we would rather spend money on 
experiments than employing the 10th person in the group. 
This may be more difficult in a university setting.  

Nevertheless, we believe that few university research 
groups in empirical SE actually apply research funding 
bodies for money for carrying out experiments. (Neither 
did we when we were at the university.) Why should not 
empirical SE groups get funding to hire professionals to 
take part in experiments like other research groups get 
funding for buying super-computers, Linux clusters, etc.? 
Given the importance and challenges of the software 
industry (PITAC 1999), the empirical SE community 
should apply national and multi-national (e.g. EC) 
research bodies to fund realistic experiments. 
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