
Evaluating Steiner tree heuristics and

diameter variations for

Application Layer Multicast

Knut-Helge Vik, P̊al Halvorsen, Carsten Griwodz

Simula Research Laboratory and University of Oslo, Oslo, Norway

Abstract

Latency reduction in distributed interactive applications has been studied inten-
sively. Such applications may have stringent latency requirements and dynamic user
groups. We focus on application-layer multicast with a centralized approach to the
group management. The groups are organized in overlay networks that are created
using graph algorithms that create a tree structure for the group. A tree has no
cycles and uses a small routing table, as opposed to a connected overlay mesh.

We investigate a group of spanning tree problems that are referred to as Steiner
tree problems, and we have a particular focus on reducing the diameter of a tree,
which is the maximum pairwise latency in a tree. In addition, we focus on reducing
the time it takes to execute membership changes. In that context, we use core-
selection heuristics to find well-placed client nodes, and edge-pruning algorithms to
reduce the number of edges in an otherwise fully meshed overlay. Our edge-pruning
algorithms strongly connect well-placed client nodes to the remaining group mem-
bers, to create new and pruned group graphs. Consequently, when a tree algorithm
is applied to a pruned group graph, it is manipulated into creating trees with a
smaller diameter.

We devised new Steiner-tree heuristics that reduced the diameter, and also pro-
posed new edge-pruning algorithms to make the tree construction faster. These
heuristics and algorithms were implemented and analyzed experimentally along with
several spanning-tree and core-selection heuristics found in the literature. We found
that a full-mesh of shortest paths makes it difficult for Steiner-tree heuristics to
find better trees than spanning tree algorithms. The network seen from the ap-
plication layer is in fact a full mesh of shortest paths. In addition, we found that
faster Steiner-tree heuristics that do not explicitly optimize the diameter are able
to compete with slower heuristics that do optimize it.

Email address: knuthelv,griff,paalh@ifi.uio.no (Knut-Helge Vik, P̊al
Halvorsen, Carsten Griwodz).

Preprint submitted to Elsevier 3 March 2008

1 Introduction

In recent years, many new types of distributed application have appeared. This
is mainly due to the large improvements in computer technology, which has
resulted in more resources available over the Internet. The media types may
range from text to continuous media such as video streams. Distributed inter-
active applications, such as virtual environments and online games, currently
have millions of users and generate more money than the film industry [1,2].

Although distributed interactive applications may differ greatly, they share
many of the same requirements. Firstly, groups of users (but not necessary
all users) of the same application must be able to interact. Their interactivity
imposes restrictions on network latency, especially in highly interactive virtual
environments [3,4]. Further, because the users in virtual environments interact,
there is a need for a many-to-many communication function. Many-to-many
communication, combined with restrictions on network latency, results in re-
quirements on the latency between any pair of users (pairwise latency).

Many distributed interactive applications have highly dynamic user groups.
For example, users in online games may join and leave groups continuously
as they move around in a virtual environment. Whenever group membership
is determined anew, the many-to-many communication paths need to be up-
dated. Here, the main challenge is to design algorithms that create efficient
(low latency) event distribution paths, that take into account the physical
location of the users that are interacting.

Today, many distributed interactive applications are centrally managed. Bear-
ing this in mind, we here focus on an architecture with centralized manage-
ment. A completely centralized architecture gives the application provider full
control. However, if all the data travels through the server, the latency is po-
tentially too high for users that are located far from the server. When the
latency increases as a result of the distance of the user from the server, it
might be better to allow the data to travel between the users directly. This
will reduce both the overall latency and the pairwise latency experienced by
the users. Our goal is to identify efficient means by which data can flow among
the users while at the same time taking into account the group dynamics. It
is in this context that we are studying group communication algorithms that
organize the users in distribution patterns that have varying properties.

We use application layer multicast to achieve group communication, although
many distributed interactive applications support IPv4 multicast. Reasons
for operating at the application layer are that IPv4 multicast 1) is not sup-
ported by all Internet service providers, 2) cannot be used efficiently with
TCP, 3) does not easily support frequent membership change, 4) cannot pre-

2

vent snooping, and 5) has a rather limited address space available. To avoid
these problems, we build overlay networks. Such overlay networks are built
between the users’ computers and are (inherently) fully meshed. Techniques
for estimating link costs are often applied to overlay meshes [5], but this is
outside the scope of our paper.

We study a range of new and existing graph algorithms that organize nodes in
trees while conforming to some optimization goal. A tree is acyclic and thus
needs very small routing tables. Furthermore, a tree reduces the administra-
tion cost and bandwidth consumption compared to a connected mesh. We here
concentrate on algorithms that minimize the pairwise latency in distribution
trees. The maximum pairwise latency of a tree is known as the diameter. More
specifically, we study a class of spanning tree problems called Steiner-tree prob-
lems, and evaluate many Steiner-tree heuristics that reduce the diameter. We
used algorithm ideas from the well-known minimum-cost Steiner-tree heuris-
tics shortet-path heuristic (SPH) [6], distance-network heuristic (DNH) [7]
and average-distance heuristic (ADH) [8]. From these algorithms we devised
new Steiner-tree heuristics that reduce the diameter. The algorithms SPH
and DNH are themselves based on ideas from Prim’s minimum spanning
tree (MST) and Dijkstra’s shortest path tree (SPT), while ADH is based on
Kruskal’s MST [9]. We also used ideas from existing spanning tree algorithms
on how to keep track of the pair-wise latencies in a graph [10].

All the algorithms are implemented, and the performance is analyzed using
experiments. We found that a full-mesh of shortest paths makes it difficult for
Steiner-tree heuristics to find better trees than spanning tree algorithms. In
this case, many of the Steiner-tree heuristics only has a best-case (and worst-
case) performance equal to an MST. The network seen from the application
layer is in fact a full mesh of shortest paths. Therefore, these Steiner-tree
heuristics should not be used when a full mesh of shortest paths is the input
graph. We also reduced the full mesh using pruning algorithms and used the
pruned graph as input to the Steiner-tree heuristics. However, we still found
that faster Steiner-tree heuristics that do not use shortest path information
and do not explicitly optimize the diameter are able to compete with slower
heuristics that do.

The rest of the paper is organized as follows. In section 2 we introduce dis-
tributed interactive applications with examples and latency requirements. Fur-
thermore, in section 3 we discuss the diameter of overlay networks, group
communication in the Internet, graph algorithm requirements, and a central-
ized approach to membership management. Sections 4 and 5 introduces the
graph algorithms that we experimentally tested in this paper. Furthermore,
section 6 explains the experiments and shows the results. The related work
is given in section 7, and finally, the conclusions in section 8 summarizes our
contribution.

3

2 Distributed interactive applications

In this paper, the main application for our graph algorithms is distributed
interactive applications. These applications achieve live interaction between
multiple participants over the Internet. Recently, they have become more pop-
ular and also gained increased interest among researchers.

2.1 Application examples

Concrete examples of distributed interactive applications are multi-player on-
line games, audio/video conferences, and virtual reality applications linked to
education and entertainment.

Among these, it is the multi-player online games that has received most atten-
tion recently. They allow thousands of users to interact concurrently in a per-
sistent virtual environment. The most common categories of online games are
first-person shooter games, role playing games and real-time strategy games.
These games often cost millions to develop, but the game companies still
manage to earn the spendings back and make millions through sales and ad-
vertisements. The audio/video conference applications are used to setup meet-
ings where the participants are geographically separated. For example, many
multinational companies use video conference systems. Currently, these au-
dio/video conference systems are not readily available for the general public,
but rather needs additional equipment to work. In the virtual reality appli-
cations a participant controls an avatar (application character) that interacts
with a virtual world (hence the name, virtual reality). Examples are combat-,
flight- and boat-simulators, virtual museums, shopping malls etc. Virtual re-
ality applications and multi-player online games are now very similar. It is the
game companies and the military that are the driving forces for improving
virtual reality applications.

The common denominator among the distributed interactive applications is
the lack of solutions for easy and cheap deployment over the Internet. Cur-
rently, there are few if any peer-to-peer multi-party distributed interactive
applications. Rather, they mostly rely on a centralized (client-server) architec-
ture, where the communication flows through a server. An important challenge
is to develop systems that allows a peer-to-peer style communication, since it
will probably make the distributed interactive applications more scalable and
consequently cheaper to deploy.

4

2.2 Application requirements

In this paper, we focus on the latency requirements of distributed interactive
applications. The characteristics of game traffic have been analyzed several
times before, and in [4], the latency requirements were measured to be ap-
proximately 100 ms for first-person shooter games, 500 ms for role-playing
games and 1000 ms for real-time strategy games. In video/audio conferencing
and voice over IP (VoIP) with real-time delivery of voice data, users start to
become dissatisfied when the latency exceeds 150-200 ms, although 400 ms is
acceptable in most situations [11]. The virtual reality applications have latency
requirements that fall into one or more multi-player online game categories.

On the basis of these observations, we conclude that communication paths
(overlays) should be constructed such that the maximum pair-wise latency
(diameter) falls within the requirements of a given application. The diameter
requirements may vary from strict to loose even within one application.

3 Overlay network diameter

The diameter of an overlay network is determined by the longest shortest
path. We are investigating graph algorithms that design overlay networks in
ways that reduce the diameter, in particular Steiner tree problems found in the
literature. The main advantage of Steiner tree algorithms is that they are aware
of member-nodes and non-member-nodes, which is important when grouping
clients (see section 5). Before we introduce the algorithms, we highlight the
challenges and choices an algorithm designer must make when using group
communication in the Internet. Then, we introduce centrally managed group
communication and the specific goals.

3.1 Group communication in the Internet

Group communication in networks has been studied for quite some time al-
ready. Especially, the reduced latency and increasing bandwidth available on
the Internet has enabled many new application types that may use group com-
munication. However, we are yet to see the peak of group communication over
the Internet. Particularly, distributed interactive applications like multi-player
online games and interactive peer-to-peer applications are going to be major
applications for group communication in the years to come.

Group communication in the Internet poses challenges related to asymmetry,

5

heterogeneity, resource availability and latency. One way of modelling some
of these challenges is to apply graph theory. In graph theory, a network may
be modelled as a directed or undirected graph. Directed edges (arcs) allow
asymmetric links, while undirected edges are symmetric. Currently, asymmet-
ric links are the most common situation for clients in the Internet. However,
the symmetric link assumption of undirected graphs is only considered unre-
alistic in highly asymmetric networks, and in applications that require high
bandwidth and low latencies. Current multi-player online games support few
if any such flows of content or events, rather, the streams are very thin [12].

It is possible to use multicast to accomplish content and event distribution
through a network. And, in that respect, a connected acyclic graph (tree) has
several advantages over a connected mesh. A tree has small routing tables and
saves network bandwidth. In addition, it has low administration costs when
the membership is dynamic. However, the pair-wise latencies do increase, and
if a non-leaf node is disconnected from a tree, the tree is also disconnected
resulting in two subtrees. Generally, there are two main directions of tree
building related to group communication in networks. Trees that are built for
a single source and trees built for multiple sources.

For single source situations, a shortest-path tree (SPT) [9] is often used. An
SPT give minimum latency routes between a pre-chosen source and all desti-
nations. However, SPTs are costly because they consume much of the network
resources. Especially forwarding nodes close to the source may experience mas-
sive stress issues because they have a high degree, where the degree of a node
is the number of incident edges in a graph. Alternatively, a minimum-cost
spanning-tree (MST) [9] may be used. An MST is constructed such that the
total cost is minimized, i.e., the sum of the edge weights. However, the la-
tencies between the source node and destinations are higher than in SPTs.
Clearly, there is a tradeoff between the source destination latencies and the
total cost of a tree. Shallow-light trees [13] are trees with a single source that
simultaneously approximate well both an MST and an SPT. A shallow-light
algorithm computes a tree that is at most a constant times heavier than the
MST, and with the property that the diameter of the tree is at most a constant
times the diameter of the input graph.

For multiple source situations, it is vital to reduce the pair-wise latency, such
that every source is within a constant latency bound of every destination (see
section 2.2). That is, the eccentricity of the destinations should be minimized,
where the eccentricity is defined as the maximum pair-wise latency from a
single node. In our group communication scenario, every node in the network
is a source that distributes data. In situations where all nodes are sources, the
tree should be constructed as a shared-tree. For such a shared-tree scenario,
it is not enough to only consider a tree viewed from a single source or a set
of sources. Every node is both a source and a receiver, thus the worst case

6

Central Entity

Identification Manipulation Construction

Measure Approximate CSH Pruning Discretizing Mesh Tree

Total

Spanning Steiner Insert/Remove

Par t ial

Reconfiguration

Fig. 1. Centralized membership management and the process tree of the central
entity.

eccentricity in a shared tree equals the diameter. Therefore, in a shared tree
scenario, the diameter is a very important metric.

3.2 Graph algorithm requirements

Our goal is to identify graph algorithms that reduce or limit the diameter in
trees while being able to cope with group membership dynamics. That is, the
complexity and consequently the execution time of the algorithms should be
low, such that the reconfiguration time is swift. In addition, we want to bound
the stress, i.e., work-load, of each node in the tree, such that it falls within the
computational capacity of a given node. The stress of a given node is linked
to the number of incident edges it has in a graph, which is the degree of the
node.

3.3 Centralized membership management

Many distributed interactive applications, like online games, applies a cen-
tralized architecture, where a centralized server stores the entire game world
and its state. Similarly, our focus is on centralized membership management,
where a central entity stores information about all the users in a distributed
application. The central entity employs a process by which it identifies a fully
meshed global graph that contains properties of the nodes and links in the
overlay network, for example a coordinate discovery system [5]. The users are
dynamically grouped and the central entity stores a fully meshed group graph
for each group. A group graph is a subgraph of the global graph. The central
entity creates and manages one distribution tree for each group. A distribution
tree is built such that the data flows directly between the users in a group (see
figure 2).

A central entity employs three processes for the membership management.
The identification process identifies communication properties among users
and determines how users are grouped. The manipulation process has op-
tional techniques to reduce the time required for membership updates. The

7

control path

data path

user nodes

central entity

Fig. 2. Centralized architecture with control and data paths

techniques considered in this paper are core selection heuristics and prune al-
gorithms (sections 4.1 and 4.2). In the construction process, the latest group
graph information is used as input to a graph algorithm that creates/updates
the group distribution graph. The construction algorithms that we consider
here are tree algorithms that create distribution trees (section 5.4).

Figure 1 illustrates the central entity and its processes that together form the
centralized membership management. The tree may be viewd as a process
tree and a research area tree. The algorithms we present here are related to
manipulation and construction. Extensive research that addresses identifica-
tion may be found in [5]. Identification is independent of manipulation and
construction, and its discussion lies outside the scope of this paper.

In the following sections, we introduce algorithms for centralized group man-
agement in distributed interactive applications.

4 Manipulation algorithms

The central entity employs a manipulation process in which specialized al-
gorithms for graph manipulation are contained. These algorithms may, for
example, edit the graph layout, search for certain nodes, change some link
weights etc. The manipulation algorithms should be used such that the con-
struction process runs more smoothly. In this paper, we present some core
selection heuristics (CSHs) and pruning algorithms.

4.1 Core selection heuristics

An important group management technique is to elect one or more nodes
to administrate clients that join and leave groups. When a limited set of
nodes handles the membership management, it simplifies membership up-
dates, and applications that have highly dynamic groups require fast and
simple group management. Names given to such nodes include leaders, core
nodes or rendevouz-points. Typically, the core node of a group is contacted
for each membership change, such that it always has the up-to-date (member-
ship) information. Protocols with core nodes are often defined as core-based

8

multicast protocols.

Core-based multicast protocols work on the assumption that one or more
core nodes are selected as group management and forwarding nodes. These
protocols need some core selection heuristic to select the cores. Several core
selection heuristics have been proposed, and a comprehensive study is given
by Karaman and Hassanein [14]. An overall goal is to select cores on the basis
of certain node properties, such as, bandwidth and computational power. We
base our core selection primarily on latency, but also the degree limitations of
the available core nodes.

By applying core selection heuristics that identify well-placed nodes in a group,
we design algorithms that exploit their degree capacity and reduce the diame-
ter of the group tree. For example, degree-limited heuristics often exhaust the
degree limits on centrally located nodes in the input graph. In our scenario,
core nodes are included in the input graph to be non-member-nodes (aka.
Steiner points) for the Steiner-tree heuristics.

We consider the best location for a core to be related to the location of the
group member-nodes. The core selection heuristics presented here search for a
set of vertices beginning with the graph median [15,16]. The graph median is
the vertex (node) for which the sum of lengths of shortest paths to all other
vertices is the smallest. The heuristics are [14]:

• Topology Center: Find s nodes that are closest to the topological center of
the global graph.

• Group Center: Find s nodes that are closest to the group center of the group
graph.

4.2 Prune algorithms

The complexity of an algorithm has a major influence on the execution time,
which is important for our target applications. It is, however, difficult to re-
duce the complexity of an algorithm without greatly decreasing the quality of
the outcome. But, the execution time does also depend heavily on the input
graph. As means for modifying input graphs we apply vertex pruning and edge
pruning as such techniques.

Steiner algorithms distinguish between member-nodes and non-member-nodes.
They prune unused non-member-nodes inherently when building trees (vertex
pruning). The vertex set V in an input graph G is built from the member-nodes
in the group plus a limited set of non-member-nodes. The non-member-nodes
are selected using the core selection heuristics introduced previously. If there
are only member-nodes in the input graph, the problem reduces to finding an

9

user nodes

selected core nodes

links included if k = 0

links included if k = 1

Fig. 3. Pruned graph using add Core Links Optimized.

MST. Hence, it is only useful to apply Steiner algorithms when the input graph
includes non-member-nodes. By using group member-nodes and stronger core
nodes selected using a core selection heuristic, the number of vertices in an
input graph is bounded by the number of member-nodes, Z, and the number
of non-member-nodes, i.e., core nodes, that are included. The result is the
vertex subset VZ of G, where VZ − Z is the set of non-member-nodes.

A fully meshed overlay network makes the size of the edge set particularly
large. We investigate edge pruning algorithms that reduce the size of the edge
set from a fully meshed input graph. We have shown previously that using
a fully meshed member graph as input to a tree algorithm may double the
execution time compared to a graph with a pruned edge set [17]. The goal of
our edge-pruning algorithms is to create a new pruned graph with a smaller
edge set, where a set of core nodes (non-member-nodes) is connected to the
member-nodes. The core nodes are identified using a core selection heuristic.
In this paper we present two promising edge-pruning algorithms:

• add Core Links (aCL) (see algorithm 1) takes as input a fully meshed group
graph G and a set O ⊂ V containing group nodes (users) that was identified
by a core selection heuristic. Each node in V − O includes its k best edges
to the new pruned graph. Then, each node in O includes edges to all nodes
in V into the new pruned graph. Step 1 is k Best Links (kBL) as defined in
[18]. Step 2 was added to connect the core nodes ”strongly” to the remaining
nodes, as well as to ensure the connectedness of the new pruned graph. aCL
produces a graph with |E| = k ∗ |V − O| + |O| ∗ |V |. After applying aCL,
the new pruned graph forms, conceptually, a two-layer graph, where the
core nodes are fully meshed and the remaining nodes have a degree that is
limited by k + |O|.

• add Core Links Optimized (aCLO) (see algorithm 2) creates a new pruned
graph with an even smaller edge set. It reduces the number of edges from
the core nodes O to the remaining nodes V −O. Figure 3 illustrates a new
pruned graph after using aCLO.

Algorithm 1 add Core Links
In: A fully meshed graph G = (V,E, c), a set O ⊂ V of core nodes (selected by a

core selection heuristic), and an integer k ≥ 0.
Out: A graph GP = (VP , EP , c), where VP = V , EP ⊂ E.
1: For each node m ∈ V − O, include k edges to EP ⊂ E, where EP contains the

minimum weight edges connecting m to V − O. {kBL}
2: For each core node o ∈ O, include an edge to every node v ∈ V .

10

Algorithm 2 add Core Links Optimized

In: A fully meshed graph G = (V,E, c), a set O ⊂ V of core nodes (selected by a
core selection heuristic), and an integer k ≥ 0.

Out: A graph GP = (VP , EP , c), where VP = V , EP ⊂ E.
1: For each node m ∈ V − O, include k edges to EP ⊂ E, where EP contains the

minimum weight edges connecting m to V − O. {kBL}
2: Create |O| disjoint sets l ⊂ L of nodes from V − O, where |l| = |V − O|/|O|.

Each node o ∈ O connects to all nodes in a set l ∈ L.

5 Construction algorithms

In the central entity, the construction process uses an available group graph
which is created using the manipulation algorithms introduced above. It then
chooses a graph algorithm that creates a connected graph for the distribution
of the group events. In this paper, the construction process chooses a Steiner
tree heuristic that creates a group tree. Below, we introduce the class of Steiner
tree problems and the Steiner-tree heuristics we have used in our experiments.

5.1 Steiner tree problem

Graph algorithms that build trees (tree algorithms) have been heavily re-
searched for many decades. They compute an acyclic graph (tree) from a
connected input graph, while satisfying certain criteria for optimization.

Problem 1 Steiner minimum tree in networks (SMT): Given an undi-
rected weighted graph G = (V, E, c), where V is the set of vertices, E is the
set of edges, and c : E → R is the edge cost function, and there is a subset
Z ⊆ V of member-nodes; Find a connected undirected tree TZ = (VZ , EZ) of
G, where VZ ⊆ V , Z ⊆ VZ and EZ ⊆ E, such that there is a path between
every pair of member-nodes, and

∑
e∈EZ

c(e) is minimized.

The problem of finding a Steiner minimum tree in networks (SMT) is an NP -
complete problem that was originally formulated independently by Hakimi and
Levin [19] in 1971. Several exact algorithms and heuristic have been suggested,
implemented and compared [20].

An SMT-algorithm finds a least cost tree connecting a set of member nodes
(Z ⊆ V). The tree may contain a subset (V −Z) of non-member-nodes (Steiner
points), that reduces the cost of the tree. SMT-heuristics are often applied to
network layer multicast, where the routers are Steiner points and the clients are
member-nodes. More recently, SMT-heuristics have been used for application
layer multicast, where the Steiner points may, for example, be proxies or well-
placed clients (cores).

11

Problem 2 Degree limited Steiner minimum tree in networks (d-
SMT): Given G and Z, a degree bound d(v) ∈ N for each vertex v ∈ V ; Find
a SMT T of G and Z of minimum total cost, subject to the constraint that
dT (v) ≤ d(v).

A d-SMT-algorithm finds a least cost tree (like SMT-algorithms), where each
node obeys a given degree limit. The degree limit provides a degree or stress
control to the nodes. The d-SMT problem has been studied by, for example,
Bauer and Varma [21]. They introduced several heuristics that are directly
derived from SMT heuristics.

From these Steiner tree problems, that yield least cost trees, other Steiner tree
problems have been derived. Our focus here is on Steiner tree problems that
may reduce the diameter of T . The diameter of T is defined as the longest
of the paths in T among all the pairs of nodes in VZ . In addition, we study
algorithms that optimize for the total cost, i.e., the sum of the edge weights
in T , while obeying a given diameter bound. In the following, we introduce
problem definitions of Steiner tree problems that may reduce the diameter.
Other studies of similar problems can be found in [22–25].

5.2 Steiner tree problems and the diameter

Most Steiner tree problems are NP -complete, and such are also many of the
diameter -related Steiner problems. Algorithms that solve the exact problems
are obviously slow and therefore useless in our dynamic scenario. Instead, we
focus on polynomial time heuristics that produce close to optimal solutions.

Problem 3 Steiner minimum diameter spanning tree problem (Steiner-
MDST): Given G and Z; Find a Steiner spanning tree T of G and Z such
that the maximum weight shortest path (diameter) p ∈ T ,

∑
e∈p W (e) is mini-

mized.

A Steiner-MDST algorithm builds a tree of minimum diameter. Ho, Lee,
Chang and Wong [26] considered the case in which the graph G is a com-
plete Euclidian graph induced by a set of points in the Euclidian plane. They
call this special case the geometric Steiner-MDST problem. They prove that
there is an optimal tree in which a single Steiner-point is connected to all the
vertices in Z, and that it is solvable in polynomial time.

Hence, for a complete graph, a simple heuristic for building a close-to-optimal
Steiner-MDST is to find a single node located close to the center of the graph
that connects to the remaining nodes through shortest paths. The topology of
the resulting tree T is that of a star. Consequently, the work-load (stress) of
the center node becomes significant as the degree increases. The degree is the

12

number of incident edges a node has. Thus, a solution is not viable unless the
center node has a considerable amount of resources.

Problem 4 Bounded diameter Steiner minimum tree problem (BDSMT):
Given G and Z, and a diameter bound D ∈ R; Find a Steiner minimum tree
T on G and Z, where

∑
e∈ET

c(e) is minimized and whose diameter does not
exeed D.

A BDSMT-algorithm builds a tree of minimum total cost within a diameter
bound. An advantage of BDSMT over Steiner-MDST is that it is possible to
tune the tree diameter while minimizing the total cost. This property is vital
in cases of lighter application requirements, because the time complexity of
the BDSMT-heuristic decreases with looser diameter bounds. However, one
problem with BDSMT remains the potentially high node degree of central
nodes in the tree when the diameter bound D is stringent.

Problem 5 Steiner minimum diameter degree limited spanning tree
problem (Steiner-MDDL): Given G and Z, a degree bound d(v) ∈ N for
each vertex v ∈ V ; Find a Steiner tree T of G and Z of minimum diameter,
subject to the constraint that dT (v) ≤ d(v).

A Steiner-MDDL-algorithm builds a tree of minimum diameter while obeying
the degree limits. The Steiner-MDDL problem avoids the stress issue that
beset spanning tree problems that do not have limitations on degree. One issue
with the Steiner-MDDL problem is that it is a minimization of the maximum
diameter within a degree limit, which increases the complexity of a heuristic.

Problem 6 Bounded diameter degree limited Steiner minimum tree
problem (BDDLSMT): Given G and Z, a diameter bound D ∈ R, and a
degree bound d(v) ∈ N for each vertex v ∈ V ; Find a Steiner minimum tree
T on G and Z, where

∑
e∈ET

c(e) is minimized, subject to the constraint that
the diameter does not exeed D, and dT (v) ≤ d(v).

A BDDLSMT-algorithm builds a tree of minimum total cost within a diameter
bound, subject to a degree limit. Like the BDSMT heuristics, a BDDLSMT-
heuristic is able to produce trees with a diameter that is in accordance with
the diameter bound it received. In addition, the BDDLSMT problem solves
the stress issues of BDSMT by using degree limits for each vertex. However,
the added degree constraint makes BDDLSMT a harder problem to solve than
BDSMT.

13

5.3 Steiner tree problems and the radius

There exist related spanning tree problems that do not explicitly consider
the diameter, but are cheaper in terms of the reconfiguration time. In the
following, we introduce problems that bound the radius of T , where the radius
is defined as the longest of the paths to a pre-defined source node in V . We
believe that heuristics of the following problems combined with a well-placed
source (core) node may be able to compete with Steiner-tree problems that
explicitly consider the diameter.

Problem 7 Steiner minimum radius spanning tree problem (Steiner-
MRST): Given G and Z; Find a Steiner tree T on G and Z, starting from
a root node s ∈ V , where, for each z ∈ Z the path p = (z, . . . , s) minimizes
∑

vi∈p c(e(vi, vi+1)), where e ∈ ET .

A Steiner-MRST algorithm builds a tree of minimum radius and is solvable in
polynomial time. The optimal Steiner-MRST-algorithm is equal to connecting
the root node s ∈ V to the member-nodes in Z through shortest paths. If the
root node s ∈ Z, and the input graph is a full mesh of shortest paths, the
optimal Steiner-MRST is always Dijkstra’s SPT. In addition, if the root node
s is located close to the center of G, a Steiner-MRST heuristic and a Steiner-
MDST heuristic would produce trees with similar diameter and radius.

Problem 8 Bounded radius Steiner minimum tree problem (BRSMT):
Given G and Z, a root node s ∈ V and a radius bound R ∈ R. Find a Steiner
minimum tree T on G, where, for each z ∈ Z the path p = (z, . . . , s), with
weight

∑
pi∈p c(pi) ≤ R.

A BRSMT-algorithm builds a tree of minimum total cost within a radius
bound from a given root node s to all destinations. The BRSMT-problem is
NP -complete, and is similar to the shallow-light tree problem, introduced in
section 3.1. It is applicable to a shared-tree environment if the root node s is
close to the center of G, since it is then approximating a BDSMT.

Problem 9 Steiner minimum radius degree limited spanning tree
problem (Steiner-MRDL): Given G and Z, a degree bound d(v) ∈ N for
each vertex v ∈ V ; find a Steiner tree T on G and Z, starting from a root
node s ∈ V , where, for each z ∈ Z the path p = (z, . . . , s) has minimum cost
and is subject to the constraint that dT (v) ≤ d(v).

A Steiner-MRDL algorithm builds a Steiner tree of minimum radius in which
each vertex is subject to a degree limit. The Steiner-MRDL problem is NP -
complete. One Steiner-MRDL-heuristic is to connect the root node s ∈ V
to the member-nodes in Z through shortest paths. If the root node s is lo-
cated close to the center of G, a Steiner-MRDL heuristic and a Steiner-MDDL

14

heuristic would produce trees with similar diameter and radius.

Problem 10 Bounded radius degree limited Steiner minimum tree
problem (BRDLSMT): Given G and Z, a root node s ∈ V , a radius bound
R ∈ R. and a degree bound d(v) ∈ N for each vertex v ∈ V ; Find a Steiner
minimum tree T on G, where, for each z ∈ Z the path p = (z, . . . , s), with
weight

∑
pi∈p c(pi) ≤ R, and dT (v) ≤ d(v).

Like the BRSMT-algorithm, a BRDLSMT-algorithm builds a tree of minimum
total cost within a radius bound from a given source to all destinations. The
BRDLSM problem is NP -complete, and solves the stress issues of BRSMT by
using degree limits for each vertex. BRDLSMT is approximating a BDDLSMT
when the root node s is close to the center of G. The advantage is that a
BRDLSMT-heuristic is often less complex than a BDDLSMT-heuristic.

5.4 Steiner tree heuristics

Several Steiner tree heuristics have been developed over the years. In this
paper we shall investigate three Steiner tree heuristic classes, that was called
path-heuristics, tree-heuristics and vertex-heuristics by Winter et al [19]. From
the three heuristic classes we, respectively, studied the algorithm details of the
three SMT-heuristics shortest path heuristic (SPH), distance network heuristic
(DNH) and average distance heuristic (ADH). From these SMT-heuristics, we
have deviced new Steiner tree heuristic variations that address the diameter
and reconfiguration time issues we face in distributed interactive applications.

A Steiner tree path-heuristic starts from a pre-chosen source and includes the
member-nodes one by one, until the tree spans all member-nodes. Typically,
the tree grows based on the addition of (shortest) paths between member-
nodes in the tree and member-nodes not yet in the tree. SPH is an SMT
path-heuristic and was suggested by Takahashi and Matsuyama [6]. SPH runs
an SPT algorithm |Z| = p times (once for each member-node), and stores the
shortest path information. Next, it builds the tree starting from a given source,
and for each iteration, it connects a member-node through the minimum cost
path to the tree. SPH is implemented by a straight forward modification of
Prim’s MST algorithm [9]. We can see that the bottleneck of SPH is the deter-
mination of the shortest paths. Consequently, the SPH has a time complexity
of O(pn2) (|V | = n) since shortest paths from each member-node can be deter-
mined by for example Dijkstra’s SPT algorithm [9] in O(n2). SPH is sensitive
to the choice of the source node from which the tree is constructed. Variations
include running SPH more than once, each time from a different source. These
repetetive SPH variations yield better solutions, but the execution time is in-
creased. In this paper we select the source using the group center heuristic,

15

and run every SPH variation only once.

The Steiner tree tree-heuristics are based on the idea of constructing an initial
tree that spans all member-nodes, and then optimize it towards a close-to-
optimal SMT. Commonly, a minimum spanning tree variant is used to obtain
the initial tree. DNH is an SMT tree-heuristic and was suggested, among
others, by Kou, Markowsky and Berman [7]. DNH (like SPH) runs an SPT
algorithm for each member node, and stores the shortest path information.
Then, it builds a distance network graph using only the member nodes, that
is, a complete graph with |Z| = p vertices and edge weights equal to the
shortest path lengths. It then replaces the individual edges in the distance
network graph with the original paths in the input graph. Finally, an MST is
run from a given source to find the SMT. As in SPH, the bottleneck of DNH
is the determination of the shortest paths. Consequently, the time complexity
of DNH is also O(pn2). The error bound for DNH is the same as SPH, but,
SPH often produces better solutions [27]. Moreover, it has been shown that
the time complexity of DNH can be reduced by growing shortest path trees
from each member-node simultaneously. However, the cost is more complex
data structures. In this paper we do not use an optimized DNH.

The general idea behind Steiner tree vertex-heuristics is to identify ”good”
non-member-nodes (Steiner points). It has been shown [19] that one big diffi-
culty of the SMT problem is to identify non-member-nodes that belong to an
SMT. Once the Steiner points are given, the SMT is an MST for the subnet-
work induced by the member-nodes and selected Steiner points [19]. ADH is
an SMT vertex-heuristic and was suggested by Rayward-Smith [8]. It is based
on Kruskal’s MST algorithm [9]. The idea is to connect already constructed
subtrees of a solution by shortest paths through some centrally located ver-
tex. ADH computes the shortest paths between all pairs of vertices, which is
O(n3) (for example, Floyd Warshall’s algorithm [9]), and stores the shortest
path information. ADH starts with a forest of trees, where each tree contains
only a single member-node. A value f(v) is determined for each v ∈ V , and
the vertex m with the smallest f -value is chosen. The m vertex connects a
number r of trees that are closest to m, where r is decided when comput-
ing the f -value. The worst-case time complexity of ADH is dominated by the
computation of all-pairs shortest paths and is O(n3). On average, ADH does
perform better than SPH and DNH in terms of total cost, but at the expence
of increased worst-case time complexity.

5.5 Variations of the shortest path heuristic

The path-heuristic variations we have implemented and tested are described
below and listed in Table 1. Every heuristic builds the tree incrementally, and

16

is based on SPH with added functionality such that the diameter is reduced.

• Minimum diameter shortest path heuristic (md-SPH) is a heuristic of the
Steiner-MDST-problem. In each round, a node is added to the tree that min-
imizes its eccentricity. md-SPH keeps track of the eccentricities like one-time
tree-construction (OTTC) spanning tree algorithm [10]. A similar heuristic
was proposed by Brosh et al. [25].

• Bounded diameter optimized shortest path heuristic (bdo-SPH) is a heuristic
of the Steiner-BDSMT-problem. Each round adds the node that minimizes
the total cost of the tree, within a given diameter bound. bdo-SPH keeps
track of the eccentricities like OTTC [10]. A similar heuristic was proposed
by Aggarwal et al. [23].

• Bounded diameter randomized shortest path heuristic (bdr-SPH) is a heuris-
tic of the Steiner-BDSMT-problem. In each round, a member-node is ran-
domly selected and added to the tree through the minimum cost edge within
a given diameter bound. bdr-SPH is an adaptation of randomized greedy
heuristic (RGH) [10] to the Steiner-BDSMT-problem.

• Minimum diameter degree limited shortest path heuristic (mddl-SPH) is a
heuristic of the Steiner-MDDL-problem. mddl-SPH is identical to md-SPH
but obeys the degree limits on each node much like mddl-OTTC [28].

• Bounded diameter degree limited optimized shortest path heuristic (bddlo-
SPH) is a heuristic of the Steiner-BDDLSMT-problem. bddlo-SPH is iden-
tical to bdo-SPH but obeys the degree limits on each node much like dl-
OTTC [28].

• Bounded diameter degree limited randomized shortest path heuristic (bddlr-
SPH) is a heuristic of the Steiner-BDDLSMT-problem. bddlr-SPH is iden-
tical to bdr-SPH but obeys the degree limits on each node much like dl-
RGH [28].

5.6 Variations of the distance network heuristic

The tree-heuristics we implemented and tested are described below and listed
in Table 1. Every heuristic is based on the idea of DNH, and the only difference
is the spanning tree algorithm used to create the final tree on the distance
network graph. DNH uses MST, but we test many different spanning tree
algorithms found in the literature.

• Minimum diameter distance network heuristic (md-DNH) uses md-OTTC [28]
to create the final tree on the distance network graph.

• Bounded diameter optimized distance network heuristic (bdo-DNH) uses
OTTC [10] to create the final tree on the distance network graph.

• Bounded diameter randomized distance network heuristic (bdr-DNH) uses
RGH [10] to create the final tree on the distance network graph.

17

• Minimum diameter degree limited distance network heuristic (mddl-DNH)
uses mddl-OTTC [28] to create the final tree on the distance network graph.

• Bounded diameter degree limited optimized distance network heuristic (bddlo-
DNH) uses dl-OTTC [28] to create the final tree on the distance network
graph.

• Bounded diameter degree limited randomized distance network heuristic (bddlr-
DNH) uses dl-RGH [10] to create the final tree on the distance network
graph.

• Degree-limited distance network heuristic (dl-DNH) uses dl-MST to create
the final tree on the distance network graph.

5.7 Variations of spanning tree algorithms

A spanning tree algorithm spans every node in the input graph in its tree.
Every spanning tree algorithm introduced below have been experimentally
tested by the authors in [28]. In which they were found to be the best among
12 different spanning tree algorithms that optimize the diameter. We apply
these degree limited spanning tree algorithms to see the effect of adding Steiner
points to the input graph.

• Steiner degree limited one-time tree construction (sdl-OTTC) is a spanning
tree heuristic that addresses the BDDLSMT problem in this paper. sdl-
OTTC is exactly dl-OTTC presented in [28] which is a modified OTTC [10].

• Steiner degree limited randomized greedy heuristic (sdl-RGH) is a spanning
tree heuristic that addresses the BDDLSMT problem in this paper. sdl-RGH
is exactly dl-RGH prestended in [28] which is a modifified RGH [30].

• Steiner minimum diameter degree-limited one-time tree construction (smddl-
OTTC) is a spanning tree heuristic that addresses the Steiner-MDDL prob-
lem in this paper. smddl-OTTC is exactly mddl-OTTC presented in [28]
which is a modified OTTC [10].

• Steiner degree-limited shortest-path tree (sdl-SPT) [29] is a spanning tree
heuristic that addresses the Steiner-MRDL problem in this paper.

18

A
lg
o
ri

th
m

M
N

1
-

A
lg
o
ri

th
m

M
ea

n
in

g
O

p
ti
m

iz
e

ba
si
c
s

a
w
a
re

C
o
n
st

ra
in

t
C
o
m

p
le
x
.

P
ro

b
le
m

R
e
f.

S
P

H
S
h
o
rt

es
t

P
a
th

h
eu

ri
st

ic
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
-

O
(p

n
2
)

1
)

S
M

T
[6

]

D
N

H
D

is
ta

n
ce

n
et

w
o
rk

h
eu

ri
st

ic
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
-

O
(p

n
2
)

1
)

S
M

T
[7

]

A
D

H
A

v
er

a
g
e

d
is

ta
n
ce

h
eu

ri
st

ic
to

ta
l
co

st
K

ru
sk

a
l’
s

M
S
T

3
-

O
(n

3
)

1
)

S
M

T
[8

]

d
l-
S
P

H
D

eg
re

e
li
m

it
ed

S
P

H
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
d
eg

re
e

O
(p

n
2
)

2
)

d
-S

M
T

-

d
l-
D

N
H

D
eg

re
e

li
m

it
ed

D
N

H
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
d
eg

re
e

O
(p

n
2
)

2
)

d
-S

M
T

-

m
d
-S

P
H

M
in

im
u
m

d
ia

m
et

er
S
P

H
d
ia

m
et

er
m

d
-O

T
T

C
3

-
O

(n
3
)

3
)

S
te

in
er

-M
D

S
T

-

m
d
-D

N
H

M
in

im
u
m

d
ia

m
et

er
D

N
H

d
ia

m
et

er
m

d
-O

T
T

C
3

-
O

(n
3
)

3
)

S
te

in
er

-M
D

S
T

-

b
d
o
-S

P
H

B
o
u
n
d
ed

d
ia

m
et

er
o
p
ti
m

iz
ed

S
P

H
to

ta
l
co

st
O

T
T

C
3

d
ia

m
et

er
O

(n
3
)

4
)

B
D

S
M

T
-

b
d
o
-D

N
H

B
o
u
n
d
ed

d
ia

m
et

er
o
p
ti
m

iz
ed

D
N

H
to

ta
l
co

st
O

T
T

C
3

d
ia

m
et

er
O

(n
3
)

4
)

B
D

S
M

T
-

b
d
r-

S
P

H
B

o
u
n
d
ed

d
ia

m
et

er
ra

n
d
o
m

iz
ed

S
P

H
to

ta
l
co

st
R

G
H

3
d
ia

m
et

er
O

(p
n

2
)

4
)

B
D

S
M

T
-

b
d
r-

D
N

H
B

o
u
n
d
ed

d
ia

m
et

er
ra

n
d
o
m

iz
ed

D
N

H
to

ta
l
co

st
R

G
H

3
d
ia

m
et

er
O

(p
n

2
)

4
)

B
D

S
M

T
-

m
d
d
l-
S
P

H
M

in
im

u
m

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

S
P

H
d
ia

m
et

er
m

d
d
l-
O

T
T

C
3

d
eg

re
e

O
(n

3
)

5
)

S
te

in
er

-M
D

D
L

-

m
d
d
l-
D

N
H

M
in

im
u
m

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

D
N

H
d
ia

m
et

er
m

d
d
l-
O

T
T

C
3

d
eg

re
e

O
(n

3
)

5
)

S
te

in
er

-M
D

D
L

-

sm
d
d
l-
O

T
T

C
S
te

in
er

m
in

im
u
m

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

O
T

T
C

d
ia

m
et

er
P

ri
m

’s
M

S
T

5
d
eg

re
e

O
(n

3
)

5
)

S
te

in
er

-M
D

D
L

[2
8
]

b
d
d
lo

-S
P

H
B

o
u
n
d
ed

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

o
p
ti
m

iz
ed

S
P

H
to

ta
l
co

st
d
l-
O

T
T

C
3

d
ia

m
./

d
eg

re
e

O
(n

3
)

6
)

B
D

D
L
S
M

T
-

b
d
d
lo

-D
N

H
B

o
u
n
d
ed

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

o
p
ti
m

iz
ed

D
N

H
to

ta
l
co

st
d
l-
O

T
T

C
3

d
ia

m
./

d
eg

re
e

O
(n

3
)

6
)

B
D

D
L
S
M

T
-

b
d
d
lr

-S
P

H
B

o
u
n
d
ed

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

ra
n
d
o
m

iz
ed

S
P

H
to

ta
l
co

st
d
l-
R

G
H

3
d
ia

m
./

d
eg

re
e

O
(p

n
2
)

6
)

B
D

D
L
S
M

T
-

b
d
d
lr

-D
N

H
B

o
u
n
d
ed

d
ia

m
et

er
d
eg

re
e-

li
m

it
ed

ra
n
d
o
m

iz
ed

D
N

H
to

ta
l
co

st
d
l-
R

G
H

3
d
ia

m
./

d
eg

re
e

O
(n

3
)

6
)

B
D

D
L
S
M

T
-

sd
l-
O

T
T

C
S
te

in
er

d
eg

re
e-

li
m

it
ed

O
T

T
C

to
ta

l
co

st
P

ri
m

’s
M

S
T

5
d
ia

m
./

d
eg

re
e

O
(n

3
)

6
)

B
D

D
L
S
M

T
[2

8
]

sd
l-
R

G
H

S
te

in
er

d
eg

re
e-

li
m

it
ed

R
G

H
to

ta
l
co

st
P

ri
m

’s
M

S
T

5
d
ia

m
./

d
eg

re
e

O
(n

2
)

6
)

B
D

D
L
S
M

T
[2

8
]

s-
S
P

T
S
te

in
er

D
ij
k
st

ra
’s

S
P

T
sr

c
ec

ce
n
tr

.
D

ij
k
st

ra
’s

S
P

T
5

-
O

(n
2
)

7
)

S
te

in
er

-M
R

S
T

[9
]

b
r-

S
P

H
B

o
u
n
d
ed

ra
d
iu

s
S
P

H
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
ra

d
iu

s
O

(n
3
)

8
)

B
R

S
M

T
-

sd
l-
S
P

T
S
te

in
er

d
eg

re
e-

li
m

it
ed

D
ij
k
st

ra
’s

S
P

T
sr

c
ec

ce
n
tr

.
D

ij
k
st

ra
’s

S
P

T
5

d
eg

re
e

O
(n

2
)

9
)

S
te

in
er

-M
R

D
L
S
T

[2
9
]

b
rd

l-
S
P

H
B

o
u
n
d
ed

ra
d
iu

s
d
eg

re
e-

li
m

it
ed

S
P

H
to

ta
l
co

st
P

ri
m

’s
M

S
T

3
ra

d
iu

s/
d
eg

re
e

O
(n

3
)

1
0
)

B
R

D
L
S
M

T
-

1
S
te

in
er

tr
ee

h
eu

ri
st

ic
s

a
re

m
em

b
er

n
o
d
e

(M
N

)
aw

a
re

.

T
ab

le
1.

T
re

e
al

go
ri

th
m

s.

19

6 Experiments

The observations made in the previous sections form the foundation of our
experiments using graph algorithms to reduce the diameter.

6.1 Simulator

We implemented all algorithms presented in sections 4 and 5 in a simula-
tor for application layer multicast. It mimics group communication in a dis-
tributed interactive application using a preselected central entity to handle
the membership management. The central entity is always selected using the
topological center heuristic.

In our experiments, we assume that some identification process in the cen-
tral entity identifies a fully meshed graph where all edges have an associ-
ated weight. For this, we used the BRITE [31] topology generator to generate
Internet-like router networks. We simulated an application layer overlay net-
work, so the network graph was translated into an undirected fully-meshed
shortest-path graph, where each router had one client associated to it. Fur-
thermore, the central entity dynamically divides the users into groups such
that each group has a fully meshed group graph. We here present results from
simulations using networks with 1000 nodes. The network layout is a square
world with sides equal to 100 milli-seconds.

The optional manipulation techniques (core-selection heuristics and edge-pruning
algorithms) use the fully meshed group graph as input and create a new group
graph. All the nodes join and leave groups throughout the simulation, causing
group membership to be dynamic. When a join or leave request is received by
the central entity, the construction process chooses a tree algorithm, and with
the latest available group graph given as input, it constructs a new group tree.
The tree algorithms that are considered in this paper rebuild the entire tree for
every join and leave request. The group popularity is distributed according to
a Zipf distribution. We assume that the central entity has the latest member
view, and that it has full knowledge of the network. Furthermore, every tree
algorithm starts building the tree from a source node. If not otherwise noted,
we use the group center heuristic to select a source node. Further experiment
parameters are listed in table 2.

20

Description Parameter

Placement grid 100x100 milli-seconds

Number of nodes in the network 1000

Number of core nodes 100

Degree limits 3,5 and 10

Degree limits core nodes degree limit ∗ 2

Diameter bound 250 milli-seconds

Core node set size group size/degree limit ∗ 2

Table 2
Experiment configuration.

6.2 Target metrics

It is widely acknowledged that tree structures are suitable for event and con-
tent distribution. The main advantage of tree structures is that network re-
sources are saved, the main disadvantage is that the pair-wise latency between
clients does increase. We investigate the diameter, which expresses the worst-
case latency between any pair of group members. The reconfiguration time
of an algorithm is the time that is required to execute a group membership
change. It must be low such that a centralized group manager can handle
group dynamics and reconfigure a group tree quickly. In addition, we address
client side stress issues, which in our graph theory approach is the degree in
a constructed tree. We investigate graph algorithms that can limit the degree
of clients in a tree structure.

6.3 Algorithm constraints

Algorithms that take several target metrics into account often do this by
choosing one metric as its optimization goal, and then address the remaining
metricis by adding constraints. In general, adding constraints to an algorithm
increases the algorithm complexity if an optimal solution is targeted. Many
constrained tree heuristics cannot guarantee that a constrained tree is found.
That is also the case with the constrained tree heuristics in this paper. The
success rate of an algorithm depends on the constraint and the input graph.
For example, it is more difficult to find a degree limited tree in a sparse graph
than in a dense one.

Figure 4 plots the success rates of selected Steiner tree heuristics given a fully
meshed graph. The heuristics are subject to varying degree limits (dl) and
diameter bounds (db). Heuristics with degree limits as only constraint, always
find a tree when given a fully meshed graph and a degree limit > 1. A tree has
a minimum of two leaf nodes at all times, in case of the tree being a snake.
Therefore, in a fully meshed graph, the leaf node always has an available degree

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

su
cc

es
s

ra
te

Number of Nodes

dl 3 / db N/A - mddl-SPH
dl N/A / db 0.75 - bdo-SPH
dl N/A / db 0.50 - bdo-SPH
dl 10 / db 0.50 - bddlo-SPH
dl 5 / db 0.50 - bddlo-SPH
dl 3 / db 0.50 - bddlo-SPH

dl N/A / db 0.25 - bdo-SPH
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

su
cc

es
s

ra
te

Number of Nodes

dl 3 / db N/A - mddl-SPH
dl N/A / db 0.75 - bdo-SPH
dl N/A / db 0.50 - bdo-SPH
dl 10 / db 0.50 - bddlo-SPH
dl 5 / db 0.50 - bddlo-SPH
dl 3 / db 0.50 - bddlo-SPH

dl N/A / db 0.25 - bdo-SPH

Fig. 4. Success rate of constrained algorithms subject to varying degree limits and
diameter bounds.

and a link to all other member-nodes, such that it can continue building the
tree. As expected, we see that the success rate for the Steiner-MDDL heuristic
mddl-SPH is 100 % for degree limit 3.

Heuristics with diameter bounds do face situations in which it is impossible to
find a tree within the diameter bound, even when given a fully meshed graph.
The worst-case edge in a fully meshed graph is an approximation to the lowest
diameter bound possible for any diameter bounded heuristic. We can see from
figure 4 that when the diameter bound is 0.250 second the success rate of
the BDSMT heuristic bdo-SPH is pretty much 0 % for group sizes above 40.
While, a diameter bound of 0.750 gives a success rate of 100 % for the same
heuristic. When degree limits are added to the diameter bounds, we expect
the success rate to drop. We see that for the BDDLSMT heuristic bddlo-SPH,
a degree limit of 10 and a diameter bound of 0.750 still gives a success rate of
100 %. However, when the diameter bound is dropped to 0.500 second failures
do occur, and the success rate is on average 95 %. When degree limits are
added the success rate continues to drop.

To summarize, the Steiner-MDDL heuristics always find a tree when given a
full mesh. But, the diameter bounded heuristics fail when given a diameter
bound that is less than the worst-case edge in the input graph. For diame-
ter bounded and degree limited heuristics it is even more difficult to find a
constrained tree. When a heuristic fails to find a constrained tree, the options
are to i) rebuild the tree from scratch with relaxed constraints, ii) abandon
the constraints and add the remaining member-nodes through some shortest
paths, or iii) relax the constraints dynamically while building the tree.

In our application scenario it is not an option to rebuild the tree from scratch,
as it may potentially take a very long time. Furthermore, we do not want
to completely abandon the constraints, because they are among our target
metrics. Rather, we relax the constraints dynamically whenever a heuristic
cannot continue the tree construction process. A low diameter is a target

22

metric, such that in our simulations we use a strict diameter bound of 0.250
to the diameter bounded algorithms. The heuristics are then frequently forced
to relax the bound.

When a degree unlimited Steiner-MDST algorithm is applied to a full mesh
made of shortest paths, the algorithm includes at most one Steiner point in
the Steiner-tree, i.e., the Steiner point that is closest to the center. However,
for a Steiner-MDDL algorithm the number of Steiner points added to the tree
depend on the degree limits. Hence, given a full mesh of shortest paths, it
is enough for a Steiner-MDST algorithm to find the one node that is closest
to the center and connect it to the remaining member-nodes. While, for a
Steiner-MDDL algorithm the number of Steiner points that is included in the
input graph is a function of the degree limits.

The aCL and aCLO algorithms use a core node set O of Steiner points. They
are added to the input graph to force the Steiner tree algorithms to reduce
the diameter. We calculate the size of the core node set (O) using the degree
limit d in the current experiment: |O| = |V |/d ∗ 2. The function approximates
the number of core nodes that is needed to ensure that the degree-limited tree
algorithms are able to build a tree.

6.4 Steiner tree heuristic limitations on a full mesh

In a full mesh that is built as a shortest path graph, the shortest paths in the
graph are all direct links. Running SPH and DNH on a full mesh of shortest
paths has a major impact on their performance. Both heuristics run Dijkstra’s
SPT for each member node (z ∈ Z) and use the shortest path information
when they build a tree. The only way of including a Steiner point is if the
shortest path information contains one. In a full mesh built of shortest paths
it is impossible for the shortest path information to contain anything other
than a single hop, as long as ties are broken to the smaller number of hops.
Therefore, SPH and DNH fail as Steiner tree heuristics when the input graph is
a full mesh built of shortest paths. The shortest path information is available
in O(1), and removes the p SPT computations in SPH and DNH. Further,
the final trees in both SPH and DNH are built exactly like Prim’s MST,
which is O(n2). Hence, in a full mesh SPH and DNH are reduced to an MST
algorithm. In fact, any Steiner tree path-heuristic and tree-heuristic that solely
uses shortest path information fails to be Steiner point aware when the input
graph is a full mesh built of shortest paths.

From these observation we can deduce that it is incomplete to only consider
shortest paths in a fully meshed shortest path graph. Rather, a Steiner tree
heuristic must consider triangulation properties when building the Steiner

23

2

2

2

1 1

1

Full mesh

2 2

2

DNH

1 1

1

ADH

Client node

Link w/weight

Steiner point

2

SPH

Fig. 5. Full mesh as input to SPH, DNH and ADH.

tree, such that it is possible to add a Steiner point. The vertex-heuristics,
for example ADH, typically consider the location of each node in the graph,
including the Steiner points, in relation to other member-nodes. That way,
centrally located Steiner points may be included in a tree. When ADH is run
on a full mesh built of shortest paths the computation of all-pairs shortest
paths (O(n3)) is avoided. Therefore, the worst-case time complexity of ADH
is reduced to O(n2 ∗ log(n)). Figure 5 illustrates an example in which SPH
and DNH find the MST and ADH the SMT.

Figure 6 plots the average number of Steiner points in the group trees when a
fully meshed graph is input. We found that no Steiner tree heuristic derived
from SPH and DNH finds a Steiner point to include in the tree. We can
conclude that our previous observations are correct, and that it is useless to
apply Steiner tree heuristics derived from SPH and DNH to a fully meshed
graph built from shortest paths. The only Steiner tree heuristic that finds
Steiner points is ADH. As previously described, ADH optimizes for the total
cost and is based on Kruskal’s MST algorithm. Tree algorithms that are based
on Kruskal’s MST start with a forest of trees and connect them until there
is only one left. For algorithms that aim at a low or bounded diameter it is
not possible to use algorithms based on Kruskal’s MST unless there is some
global knowledge, or some reference points between the subtrees while they are
built. Every diameter algorithm the authors of this paper are aware of starts
from a given source and builds one tree sequentially using data structures
that update the current diameter, radius and/or eccentricities. Based on these
observations we conclude that ADH can not be adapted to reduce the diameter
in its current form. The other algorithm that includes Steiner points to the tree
is sdl-SPT, which is merely a dl-SPT algorithm that uses an input graph that
includes Steiner points. Therefore, one approach may be to use conventional
spanning tree algorithms, add Steiner points to the input graph and remove
the Steiner points with degree one (leaves) from the tree. Table 3 summarizes
our performance observations regarding SPH, DNH and ADH on a full mesh
built of shortest paths compared to a reduced mesh.

6.5 Fully meshed results

We have seen that the diameter heuristics derived from SPH and DNH cannot
include Steiner points, hence they cannot perform better than the spanning

24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

st
ei

ne
r p

oi
nt

s

Number of Nodes

sdl-SPT
ADH

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

st
ei

ne
r p

oi
nt

s

Number of Nodes

sdl-SPT
ADH

Fig. 6. Average number of Steiner points in the group trees when a fully meshed
graph is input (degree limit=10).

Full mesh Reduced mesh

Algorithm Complexity Performance Complexity Performance

SPH O(n2) Ω(MST) O(pn2) Ω(SMT)

DNH O(n2) Ω(MST) O(pn2) Ω(SMT)

ADH O(n2
∗ log(n)) Ω(SMT) O(n3) Ω(SMT)

Table 3
Algorithm performance.

tree algorithms they use as algorithm base. In the following, we present results
from some selected spanning tree algorithms that are given a fully meshed in-
put graph. Figure 7 plots the diameter of trees using sdl-SPT and dl-SPT with
varying degree limits. The only difference is the input graphs, where sdl-SPT
was given a number of Steiner points. We can see that sdl-SPT performs better
than dl-SPT. The reasons are that, first of all, in our experiments the Steiner
points that are added to the input graph are selected using the group center
heuristic. Hence, if a Steiner point is added to the tree it is most likely located
somewhere in the group center. Secondly, the added Steiner points increases
the degree capacity centrally. Finally, the combination of Steiner point loca-
tion and capacity helps sdl-SPT to create trees with lower diameter than the
dl-SPT with no Steiner points. The remaining spanning tree algorithms are
plotted in figure 8. We observe the same tendency for all of the spanning tree
algorithms. Figure 9 plots the hop-diameter, and we can see that the number
of hops does increase slightly as a result of adding Steiner points to the input
graph. This is to be expected when more nodes are included in a tree. Fig-
ure 10 plots the average number of Steiner points in the trees for sdl-SPT and
smddl-OTTC and varying degree limits. The number of Steiner points is quite
high when the degree limit is 3, but, as we saw above, is actually reducing the
diameter.

The main observation is that the spanning tree algorithms produce trees with
lower diameter (seconds) when given a set of Steiner points in the input graph,
while the hop-diameter increases slightly. It follows from the geometric version

25

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (s
ec

on
ds

)

Number of Nodes

dl-SPT=3
sdl-SPT=3
dl-SPT=5

sdl-SPT=5
dl-SPT=10

sdl-SPT=10

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (s
ec

on
ds

)

Number of Nodes

dl-SPT=3
sdl-SPT=3
dl-SPT=5

sdl-SPT=5
dl-SPT=10

sdl-SPT=10

Fig. 7. Diameter (seconds) of sdl-spt and dl-spt.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (s
ec

on
ds

)

Number of Nodes

dl-RGH=10
sdl-RGH=10
dl-OTTC=10

mddl-OTTC=10
sdl-OTTC=10

smddl-OTTC=10
 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (s
ec

on
ds

)

Number of Nodes

dl-RGH=10
sdl-RGH=10
dl-OTTC=10

mddl-OTTC=10
sdl-OTTC=10

smddl-OTTC=10

Fig. 8. Diameter (seconds) of spanning tree algorithms with and without Steiner
points (degree limit 10).

of the Steiner-MDDL and Steiner-MDST, that if we had an infinite amount
of Steiner points located close to the group center the degree-limited heuris-
tics would perform as well as their degree-unlimited versions. In fact, as long
as the diameter among the Steiner points is less than the diameter among
the member-nodes, new Steiner points can be added without increasing the
member-node diameter. Of course, we can not assume that we have that many
Steiner points available. It is inevitable that new Steiner tree heuristics must
be designed for the degree-limited diameter- and radius-related Steiner tree
problems listed in section 5.

Figure 12 plots the reconfiguration time of the selected algorithms. The execu-
tion times are lowest for sdl-SPT and highest for smddl-OTTC. However, they
are all faster than 10 milli-seconds for group sizes up to 120 member-nodes
(see figure 11). The added Steiner points do not significantly increase the ex-
ecution times of the algorithms. Hence, we can add Steiner points without
noticable penalties to our target metrics.

To summarize, the Steiner tree heuristics derived from SPH and DNH should
not be used on a full mesh of shortest paths because they do not perform better
than any given spanning tree algorithm. The spanning tree algorithms we

26

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (h
op

s)

Number of Nodes

dl-SPT=3
sdl-SPT=3
dl-SPT=5

sdl-SPT=5
dl-SPT=10

sdl-SPT=10

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160

di
am

et
er

 (h
op

s)

Number of Nodes

dl-SPT=3
sdl-SPT=3
dl-SPT=5

sdl-SPT=5
dl-SPT=10

sdl-SPT=10

Fig. 9. Diameter (hops) of sdl-spt and dl-spt.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

st
ei

ne
r p

oi
nt

s

Number of Nodes

sdl-SPT=3
smddl-OTTC=3

sdl-SPT=5
smddl-OTTC=5

sdl-SPT=10
smddl-OTTC=10

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

st
ei

ne
r p

oi
nt

s

Number of Nodes

sdl-SPT=3
smddl-OTTC=3

sdl-SPT=5
smddl-OTTC=5

sdl-SPT=10
smddl-OTTC=10

Fig. 10. Average number of Steiner points in trees (degree limits 3, 5 and 10).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160

C
PU

 c
yc

le
s

/ 1
00

00
00

Number of Nodes

smddl-OTTC=3
smddl-OTTC=5

smddl-OTTC=10
sdl-SPT=3
sdl-SPT=5

sdl-SPT=10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160

C
PU

 c
yc

le
s

/ 1
00

00
00

Number of Nodes

smddl-OTTC=3
smddl-OTTC=5

smddl-OTTC=10
sdl-SPT=3
sdl-SPT=5

sdl-SPT=10

Fig. 11. Execution time of sdl-spt, dl-spt and mddl-OTTC (group size 120).

tested instead achieve smaller diameters with slightly increased hop-diameters
when Steiner points are added to the input graph. The main reasons for this
improvement are that Steiner points are found using the group center heuristic
and that they increase the degree capacity centrally. We also observed that
the reconfiguration time does not suffer noticably when the number of edges
and nodes in the input graph is increased.

27

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

sd
l-R

G
H

sd
l-O

TT
C

sm
dd

l-O
TT

C

sd
l-S

PT

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

di
am

et
er

 (s
ec

on
ds

)

dl=10
dl=5
dl=3

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

di
am

et
er

 (s
ec

on
ds

)

dl=10
dl=5
dl=3

Fig. 12. Diameter and execution time with degree limits 3, 5 and 10.

6.6 Discussions for fully meshed results

The spanning tree algorithms that we tested are evaluated with respect to our
target metrics in table 4. sdl-RGH is the fastest algorithm, but produces trees
with the highest diameter. smddl-OTTC and sdl-OTTC are similar to each
other, but smddl-OTTC is slightly slower and does not have the flexibility of
a bounded-diameter algorithm. sdl-SPT was a surprisingly good alternative.
It is a good algorithm for a source-based tree, and when the source is located
in the group center sdl-SPT builds good shared trees as well.

Algorithm Diameter Time Degree Rank

sdl-OTTC +++ ++ + ++++

sdl-SPT ++ +++ + +++

smddl-OTTC ++++ + + ++

sdl-RGH + ++++ + +

Table 4
Tree algorithm characteristics using full mesh.

Our ranking is subjective and not related to specific application needs. All the
algorithms fit different needs, and figure 12 shows that they vary in perfor-
mance between diameter and reconfiguration time. sdl-RGH is a fast O(n2)-
heuristic. When extending the tree, it chooses the next vertex at random and
connects it via the lowest-weight edge that maintains the diameter constraint.
The diameter constraint is only maintained towards the source, and is actu-
ally the radius. The algorithm works surprisingly well to produce trees with a
relatively small diameter. sdl-OTTC extends the tree through the minimum-
weight edge that obeys the diameter bound. It is slower than sdl-RGH be-
cause it performs a more time consuming maintenance of the diameter, but
it produces trees with smaller diameter. smddl-OTTC always minimizes the
maximum diameter, and is therefore even slower. sdl-SPT avoids diameter
bounds and doesn’t minimize the diameter, either. For many applications a
bound may not be known, and minimization may not be necessary. sdl-SPT

28

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

bd
r-

D
N

H

bd
r-

SP
H

bd
o-

D
N

H

bd
o-

SP
H

dl
-D

N
H

dl
-S

PH

D
N

H

SP
H

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

bd
r-

D
N

H

bd
r-

SP
H

bd
o-

D
N

H

bd
o-

SP
H

dl
-D

N
H

dl
-S

PH

D
N

H

SP
H

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

Fig. 13. Diameter (seconds) for aCL.

rather searches for source destination shortest paths, which is often desired by
streaming applications.

6.7 Reduced graphs results

We pointed out in section 4 that graph manipulation can save time in the
construction. In the following, we present results from combining a core se-
lection heuristic and edge-pruning with tree algorithms. In this section, we
use aCL and aCLO (k=2,1,0) to reduce the input graph size, and the group
center heuristic to find the core nodes, i.e., Steiner points. All the plots use
a group size of 120 nodes with a degree limit of 10. We have included results
from using a full mesh as a reference point. s-SPT and sdl-SPT are used as
the representative spanning tree algorithms.

Figure 14 compares the diameter achieved, as applied to a fully meshed graph
and aCL. As expected, SPH, DNH, dl-SPH and dl-DNH all produce trees with
high diameter because they optimize the total cost. However, we see that for
aCL with k = 0 all the algorithms produce trees with a lower diameter, and
the total cost algorithms are down to a diameter of around 0.500 seconds. The
algorithms that produce the lowest diameter are the degree-unlimited algo-
rithms bdo-DNH, md-DNH and s-SPT. Among the degree-limited algorithms
bddlo-DNH, bddlr-SPH, mddl-DNH and sdl-SPT produce the lowest diame-
ter trees. Overall, the diameter related heuristics produce the lowest diameter
when using a fully meshed input graph. However, when aCL is used, the diam-
eter suffers on average only 15% even when k = 0, and the edge set is reduced
with 80%, compared to the fully meshed graph.

Figure 14 plots the maximum degree in the trees when using aCL to reduce
the graph. We observe that the algorithms with a high maximum degree do
all produce trees with very low diameter. s-SPT constructs the trees with
the lowest diameter. We observe that it consistently constructs trees that re-

29

 0

 20

 40

 60

 80

 100

 120

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

bd
r-

D
N

H

bd
r-

SP
H

bd
o-

D
N

H

bd
o-

SP
H

dl
-D

N
H

dl
-S

PH

D
N

H

SP
H

de
gr

ee

full mesh
aCL=2
aCL=1
aCL=0

 0

 20

 40

 60

 80

 100

 120

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

bd
r-

D
N

H

bd
r-

SP
H

bd
o-

D
N

H

bd
o-

SP
H

dl
-D

N
H

dl
-S

PH

D
N

H

SP
H

de
gr

ee

full mesh
aCL=2
aCL=1
aCL=0

Fig. 14. Maximum degree when using full mesh and aCL.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

le
af

 n
od

es

full mesh
aCL=2
aCL=1
aCL=0

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

le
af

 n
od

es

full mesh
aCL=2
aCL=1
aCL=0

Fig. 15. Average number of leaves (member-nodes) when using aCL.

semble a star because the maximum degree is approximately the group size.
Furthermore, the degree-limited algorithms do all construct trees within the
maximum degree limit of the core nodes (Steiner points). From these observa-
tions, we deduce that a Steiner tree heuristic that optimizes the diameter must
be able to exploit the degree capacity of centrally located nodes. However, in
our application scenario the degree capacity is often limited, such that the
degree-unlimited algorithms with low diameter and high maximum degree are
not really an alternative. From figure 15 we see the average number of leaf
nodes when using aCL. We observe that that when k = 0 every member-node
is forced to be a leaf node, regardless of location. Hence, the degree of the
member nodes is one, and the stronger core nodes (Steiner points) is higher.

Figure 16 plots the diameter for aCLO as well. We observe that the diameter
suffers on average just below 20% when aCLO is used, instead of the full
mesh. aCLO with k = 0 reduces the edge set by 95 %, and the construction
results are still competitive. Furthermore, figure 17 shows the hop-diameter.
It is interesting that the hop-diameter is, on average, reduced when aCLO
is applied. A low hop-diameter is often desirable in peer-to-peer file sharing
applications.

The diameter and the reconfiguration times of the construction algorithms

30

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Fig. 16. Diameter (seconds) for aCL and aCLO.

 2

 4

 6

 8

 10

 12

 14

 16

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

di
am

et
er

 (h
op

s)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 2

 4

 6

 8

 10

 12

 14

 16

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

di
am

et
er

 (h
op

s)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Fig. 17. Diameter (hops) for aCL and aCLO.

applied to aCL and aCLO graphs are plotted in figure 18. The time that is
consumed by the p SPT computations are highlighted in grey scale for each
execution time bar. Generally, the pruning algorithms have a marginally pos-
itive effect on the reconfiguration time. As expected, the fastest algorithms
are the spanning tree algorithms, here represented by s-SPT and sdl-SPT,
both of which execute in O(n2). Among the Steiner heuristics, the fastest are
the randomized heuristics bddlr-SPH and bddlr-DNH that both use dl-RGH
as their algorithm base. The reconfiguration times for these randomized SPH
and DNH variations are overshadowed by the computation of the p SPTs. The
remaining algorithms are comparatively quite slow and all have a complexity
of O(n3). It is intersting that there is no clear correlation between high re-
configuration time and low diameter. However, mddl-DNH does produce the
lowest diameter at the price of high execution time.

We expect the maximum degree to decrease for the algorithms without de-
gree limits when applying aCL and aCLO. In figure 19 we observe that the
maximum degree is reduced to about 20 when aCLO is used. Hence, degree-
unlimited algorithms are an option for very low bandwidth streams, but only if
aCLO and the group-center heuristic are used to manipulate the input graph.
However, for all of the degree-unlimited algorithms there are (almost) equally
fast algorithm versions with degree limits.

31

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Fig. 18. Diameter and execution time with the overhead of computing the shortest
paths (grey scale), for full mesh, aCL and aCLO.

 0

 20

 40

 60

 80

 100

 120

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

de
gr

ee

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 0

 20

 40

 60

 80

 100

 120

sd
l-S

PT

s-
SP

T

m
dd

l-D
N

H

m
dd

l-S
PH

m
d-

D
N

H

m
d-

SP
H

br
dl

-S
PH

br
-S

PH

bd
dl

r-
D

N
H

bd
dl

r-
SP

H

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

de
gr

ee

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Fig. 19. Maximum degree for full mesh, aCL and aCLO.

6.8 Discussions for reduced graphs results

The Steiner tree heuristics are applied to reduced graphs because we want to
see the effect on the diameter and reconfiguration time. The reduced graphs
are built by combining the group center heuristic, which found the Steiner
points, and the pruning algorithms aCL and aCLO , which created a re-
duced group graph. The results from the reduced graphs showed that the
SPH and DNH based Steiner tree heuristics cannot outperform the naive
approach of running a spanning tree algorithm on the same input graphs
(with Steiner points). Among the degree-unlimited algorithms, s-SPT outper-
formed the minimum-diameter algorithms (md-DNH and md-SPH) both in
terms of diameter achieved and reconfiguration time. Furthermore, among the
degree-limited algorithms, the sdl-SPT algorithm performed similarly to the
minimum-diameter degree-limited algorithm (mddl-DNH and mddl-SPH) but
sdl-SPT is much faster.

We expected the reconfiguration times to decrease when aCL and aCLO were
used, but the reduction was limited to about 30%. However, if the shortest

32

paths are precomputed the randomized algorithms based on RGH proved to be
very fast. Table 5 gives an overview of the Steiner tree heuristics performances
when the shortest path information is available.

Algorithm Diameter Time Degree Rank

md-SPH + − + −

bdo-SPH + − + −

bdr-SPH + + + +

br-SPH + − + −

mddl-SPH + − + −

bddlo-SPH + − + −

bddlr-SPH + + + +

brdl-SPH + − + −

md-DNH + − + −

bdo-DNH + − + −

bdr-DNH + + + +

br-DNH + − + −

mddl-DNH + − + −

bddlo-DNH + − + −

bddlr-DNH + + + +

Table 5
Steiner tree heuristic characteristics assuming shortest path information.

aCLO reduced the maximum degree and allowed thereby the feasible use of
the degree-unlimited algorithms. Table 6 gives an overview. The pruning al-
gorithms bound the stress on the member-nodes. For example, when k = 0
for aCL and aCLO, every group member is a leaf node (degree one), and all
the stress is put on the core nodes (Steiner points) that are assumed to have
a higher capacity.

6.9 Discussions for all results

A tree algorithm for our construction process should produce trees with low
diameter, keep the reconfiguration time fast and be able to obey degree limits.
We have seen that the mddl-DNH algorithm produces trees with low diam-
eter within the degree limits. However, the reconfiguration time is very high
compared to the simple but efficient sdl-SPT algorithm. Remember, low recon-
figuration time is particularly desirable during frequent tree updates, which is
often the case for our target applications.

The common denominator for every SPH and DNH based Steiner tree heuristic
we tested is the high reconfiguration time, which is largely due to their shortest
path computations and the increased complexity of the data structures. For
the full mesh, the shortest paths are given but the Steiner tree heuristics
failed to include any Steiner points. The Steiner tree heuristics did work when

33

Algorithm Diameter Time Degree Rank

md-SPH + − + −

bdo-SPH + − + −

bdr-SPH + + + +

br-SPH + − + −

mddl-SPH + − + −

bddlo-SPH + − + −

bddlr-SPH + + + +

brdl-SPH + − + −

md-DNH + − + −

bdo-DNH + − + −

bdr-DNH + + + +

mddl-DNH + − + −

bddlo-DNH + − + −

bddlr-DNH + + + +

s-SPT + + + +

sdl-SPT + + + +

sdl-OTTC + + + +

sdl-RGH + + + +

smddl-OTTC + + + +

Table 6
Tree algorithm characteristics assuming shortest path information and using aCLO.

applied to reduced graphs, but then the shortest paths must be computed. In
a centralized approach to group membership management the central entity
has access to the global graph and every group graph. It is therefore possible
for the central entity to pre-compute the shortest paths, which would reduce
the reconfiguration time for the Steiner tree heuristics quite significantly.

The Steiner tree heuristics in this paper have been derived from the SPH path-
heuristic or the DNH tree-heuristic. Similar algorithms addressing the same
Steiner tree problems have been derived from both heuristics. Overall, we saw
a tendency favoring DNH as the most suitable algorithm base of the two.
The DNH-based heuristics produced trees with a lower diameter, whereas the
degree and reconfiguration time are all similar to the SPH-based heuristics.

To summarize our observations, none of the SPH and DNH based Steiner
tree heuristics in this paper work as Steiner tree heuristics on fully meshed
shortest path graphs. We saw that the spanning tree algorithms sdl-SPT and
smddl-OTTC are very good alternatives when applied to a full mesh. When
the input graphs are reduced using aCL and aCLO, the DNH-based heuris-
tics performed better than the SPH-based heuristics. Overall, we deduce that
DNH is better suited for adaptation to reduce the diameter than SPH. The
main drawback of every SPH and DNH based Steiner tree heuristic on a re-
duced mesh is the necessity of computing the shortest paths and the increased
complexity of the data structures that this implies. The shortest path com-

34

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

sd
l-O

TT
C

sm
dd

l-O
TT

C

sd
l-S

PT

m
dd

l-D
N

H

m
dd

l-S
PH

bd
dl

o-
D

N
H

bd
dl

o-
SP

H

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

di
am

et
er

 (s
ec

on
ds

)

full mesh
aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Fig. 20. Diameter and execution time with the overhead of computing the shortest
paths (grey scale), for full mesh, aCL and aCLO.

putation is time-consuming and increases the reconfiguration time. Figure 20
shows the diameter (seconds) and execution time (seconds) for selected Steiner
tree heuristics and spanning tree algorithms. We observe that their diameter is
similar, however, the execution times of the Steiner tree heuristics are clearly
higher. Our main conclusion is that the Steiner tree heuristics based on SPH
and DNH are only suited for our application scenario if the membership dy-
namics is medium to low, and if the shortest path information is pre-computed
and available on the server.

7 Related work

Considerable attention has been given to latency reduction in distributed in-
teractive applications. Research areas such as graph theory (network layout),
protocol optimizations (on all layers), group management (distributed and
centralized), and multicast protocols are all necessary for the further enhance-
ment of distributed interactive applications. In this paper, our focus has been
on using application layer multicast with a centralized approach to group man-
agement. The groups are organized in overlay networks that are created using
graph algorithms.

Currently, two general approaches are used to accomplish overlay multicast.
One is peer-2-peer (P2P) networks that are designed for file and information
sharing in highly dynamic networks, for example, BitTorrent and Gnutella [32].
Most P2P applications build overlay networks that ignore the underlying phys-
ical topology, which affects the service because the latency can become very
high. The second approach focuses on improving overlay multicast protocols
and offers more robust group communication. There exist overlay multicast
protocols that are topology-aware and are designed to achieve lower latencies
and better bandwidth usage [33]. Many overlay multicast protocols have been
proposed, but there remains room for improvement, especially regarding the

35

construction of overlay networks.

Overlay protocols that use distributed hash tables (DHTs) are appropriate
for file sharing applications. However, DHT protocols do not fit to event shar-
ing applications because they do not consider pair-wise latency requirements.
Hence, we do not regard DHT protocols to be appropriate for distributed
interactive applications.

The Yoid project [34] provides an architecture for both space- and time-based
multicast, and NICE [35] arranges group members into a hierarchy of layers
and proposes arrangement and data-forwarding schemes. In Narada [36], end
systems organize themselves into an overlay structure using a fully distributed
protocol. ALMI [37] is centrally managed application-level group communi-
cation middleware, tailored toward the support of relatively small multicast
groups with many-to-many semantics.

These proposed protocols are starting points, but they use overlay network
construction algorithms that are either shortest-path or minimum-spanning
trees. Hence, it is not sufficient to address the latency demands in distributed
interactive applications. An exception is AMcast [38], which uses a set of
distributed multicast service nodes (MSN). The authors focus on optimizing
the access bandwidth of the MSN’s interfaces and end-to-end delay, and pro-
pose several new tree algorithms, for example, the compact-tree and bounded
compact-tree algorithm. We tested both of these algorithms, but found them
to be too slow for our applications. Furthermore, the MSN placement problem
is strongly linked to selecting core nodes using a core selection heuristic.

Furthermore, few, if any, protocols are able to maintain subsets of a larger set
of nodes. An approach that looks at the maintenance of subgroups within a
larger set of overlay nodes is PartyPeer [39]. This system creates subgroups by
forming overlay multicast groups as subtrees of a tree that covers the entire set.
However, the approach taken results in poorer performance, because subgroups
are always created as subtrees of a single tree for the entire application.

In summary, there is a considerable body of work on overlay multicast pro-
tocols and efficient tree construction and maintenance. However, current ap-
proaches do not address frequent group membership changes and resource
limitations of a node (degree) while at the same time minimizing the diameter
for latency-bound communication.

36

8 Conclusions and future work

We have investigated group communication in relation to distributed interac-
tive applications. Our investigation involved experiments with many Steiner
tree heuristics, where our main target metric was a low tree diameter. We ap-
plied the heuristics to an application layer overlay network where the network
is always a full mesh. This should give a tree algorithm the optimal conditions
for finding the best tree. However, we observed that the Steiner tree heuristics
that should be aware of Steiner points and add the ones that help optimize
the tree, failed to do so on a full mesh made of shortest paths. We then
tested the spanning tree algorithms sdl-RGH, sdl-OTTC, smddl-OTTC and
sdl-SPT using input graphs that included Steiner points. The results showed
that these algorithms produced trees with a smaller diameter when Steiner
points were included. Moreover, the heuristics are fast, which is important
in highly dynamic distributed applications. However, a Steiner-heuristic that
uses a spanning tree algorithm and then prunes leaf Steiner points is a naive
heuristic and a simplistic approach to addressing the diameter related Steiner
tree problems. Better Steiner tree heuristics should be designed that work on
fully meshed graphs.

In addition, we investigated algorithms for reducing the time it takes to exe-
cute membership changes. We found that the group center heuristic, and the
edge-pruning algorithms aCL and aCLO are powerful means to manipulate
the input graph. However, the Steiner tree heuristics only reduced their exe-
cution time slightly even though the edge set was reduced by 95 % in the most
extreme case. But, every Steiner tree heuristic and spanning tree algorithm
still performed comparatively well in terms of the diameter.

In our simulations, the node layout was a square world with sides equal to
100 milli-seconds (approximately Europe). The diameter that the best Steiner-
tree heuristics yielded was below 400 milli-seconds for tree sizes up to 160 and
a degree-limit of 10. This is outside the requirements for first-person shooter
games, but is just inside for most distributed interactive applications (see
section 2.2). When the degree limit is less than or equal to 5 the latency
requirements are not met. A degree limit above 5 is not a problem for multi-
player online games, because the data streams are very thin [12]. However, for
video/audio conferences it may be an issue due to somewhat limited band-
width capacity on average clients in the Internet.

Currently, we are investigating dynamic tree algorithms that insert and remove
single nodes to reduce the reconfiguration time further [40]. In that respect, we
plan to test our algorithms in a network simulator that we have implemented.
Finally, we intend to test distributed alternatives to the centralized algorithms.

37

References

[1] The Entertainment Software Association, ESAs 2006 essential facts about the
computer and video game industry (January 2008).
URL http://www.theesa.com/

[2] B. S. Woodcock, An analysis of mmog subscription growth (January 2008).
URL http://www.mmogchart.com

[3] M. Claypool, The effect of latency on user performance in real-time strategy
games, Elsevier Computer Networks 49 (1) (2005) 52–70.

[4] M. Claypool, K. Claypool, Latency and player actions in online games,
Communications of the ACM 49 (11) (2005) 40–45.

[5] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a decentralized
network coordinate system, in: ACM International Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), 2004, pp. 15–26.

[6] H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem
in graphs, Math. Japonica 24 24 (6) 573–577.

[7] L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta
Informatica 15 (1981) 141–145.

[8] V. Rayward-Smith, A. Clare, The computation of nearly minimal Steiner trees
in graphs, International Journal of Mathematical Education in Science and
Technology 14 (1) (1983) 8pp.

[9] M. Goodrich, R. Tamassia, Algorithm Design: Foundations, Analysis and
Internet Examples, John Wiley and Sons, 2002.

[10] A. Abdalla, N. Deo, P. Gupta, Random-tree diameter and the diameter-
constrained MST, Tech. Rep. CS-TR-00-02, University of Central Florida,
Orlando, FL, USA (2000).
URL http://citeseer.ist.psu.edu/abdalla00randomtree.html

[11] International Telecommunication Union (ITU-T), One-way Transmission Time,
ITU-T Recommendation G.114 (2003).

[12] C. Griwodz, P. Halvorsen, The fun of using TCP for an MMORPG, in:
International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), ACM Press, 2006, pp. 1–7.

[13] G. Kortsarz, D. Peleg, Approximating shallow-light trees, in: SODA ’97:
Proceedings of the eighth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1997, pp. 103–110.

[14] A. Karaman, H. S. Hassanein, Core-selection algorithms in multicast routing -
comparative and complexity analysis., Computer Communications 29 (8) (2006)
998–1014.

38

[15] B. Y. Wu, K.-M. Chao, Spanning Trees and Opitmization Problems, Chapman
and Hall/CRC, 2004.

[16] O. R. Oellermann, On steiner centers and steiner medians of graphs, Networks
34 (4) (1999) 258–263.

[17] K.-H. Vik, C. Griwodz, P. Halvorsen, Applicability of group communication for
increased scalability in MMOGs, in: Workshop on Network and System Support
for Games (NETGAMES), ACM Press, Singapore, 2006.

[18] A. Young, C. Jiang, M. Zheng, A. Krishnamurthy, L. Peterson, R. Wang,
Overlay mesh construction using interleaved spanning trees (Mar. 2004).

[19] P. Winter, Steiner problem in networks: a survey, Netw. 17 (2) (1987) 129–167.

[20] S. Voss;, Steiner’s problem in graphs: heuristic methods, Discrete Appl. Math.
40 (1) (1992) 45–72.

[21] F. Bauer, A. Varma, ARIES: A rearrangeable inexpensive edge-based on-
line Steiner algorithm, in: Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 1996.

[22] R. Hassin, A. Levin, Minimum restricted diameter spanning trees, Discrete
Appl. Math. 137 (3) (2004) 343–357.

[23] S. Aggarwal, M. Limaye, A. Netravali, K. Sabnani, Constrained diameter steiner
trees for multicast conferences in overlay networks, in: QSHINE ’04: Proceedings
of the First International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QSHINE’04), IEEE Computer Society, Washington,
DC, USA, 2004, pp. 262–271.

[24] Q. Zhu, W. Dai, Delay bounded minimum steiner tree algorithms for
performance-driven routing (1993).
URL citeseer.ist.psu.edu/zhu93delay.html

[25] E. Brosh, Approximation and heuristic algorithms for minimum delay
application-layer multicast trees (2003).
URL citeseer.ist.psu.edu/article/brosh04approximation.html

[26] J. M. Ho, D. T. Lee, C. H. Chang, C. K. Wong, Bounded diameter minimum
spanning trees and related problems, in: SCG ’89: Proceedings of the fifth annual
symposium on Computational geometry, ACM Press, New York, NY, USA,
1989, pp. 276–282.

[27] B. M. Waxman, Dynamic Steiner tree problem, SIAM J. Discrete Math. 4 (1991)
364–384.

[28] K.-H. Vik, P. Halvorsen, C. Griwodz, Multicast tree diameter for dynamic
distributed interactive applications, in: To appear in INFOCOM, 2008.

[29] S. C. Narula, C. A. Ho, Degree-constrained minimum spanning trees,
Computers and Operations Research 7 (1980) 239–249.

39

[30] G. R. Raidl, B. A. Julstrom, Greedy heuristics and an evolutionary algorithm
for the bounded-diameter minimum spanning tree problem, in: SAC ’03:
Proceedings of the 2003 ACM symposium on Applied computing, 2003, pp.
747–752.

[31] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE: Universal topology
generation from a user’s perspective, Tech. Rep. BUCS-TR-2001-003, Computer
Science Department, Boston University (Apr. 2001).
URL citeseer.ist.psu.edu/article/medina01brite.html

[32] Peer to peer information from wikipedia.
URL http://en.wikipedia.org/wiki/Peer-to-peer

[33] M. Kwon, S. Fahmy, Topology-aware overlay networks for group communication
(2002).
URL citeseer.ist.psu.edu/kwon02topologyaware.html

[34] P. Francis, S. Ratnasamy, R. Govindan, C. Alaettinoglu, Yoid project (2000).
URL www.icir.org/yoid/

[35] S. Banerjee, B. Bhattacharjee, Analysis of the NICE application layer multicast
protocol, Tech. Rep. UMIACSTR 2002-60 and CS-TR 4380, Department of
Computer Science, University of Maryland, College Park (Jun. 2002).

[36] G. Fox, S. Pallickara, The Narada event brokering system: Overview and
extensions, in: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), 2002, pp. 353–
359.

[37] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, ALMI: An application level
multicast infrastructure, in: Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS), 2001, pp. 49–60.
URL citeseer.ist.psu.edu/pendarakis00almi.html

[38] S. Y. Shi, J. Turner, M. Waldvogel, Dimensioning server access bandwidth and
multicast routing in overlay networks, in: International Workshop on Network
and Operating System Support for Digital Audio and Video (NOSSDAV), 2001,
pp. 83–92.

[39] L. S. Liu, R. Zimmermann, Immersive peer-to-peer audio streaming platform
for massive online games, in: International Conference (NIME), 2006.

[40] K.-H. Vik, C. Griwodz, P. Halvorsen, Dynamic group membership management
for distributed interactive applications, in: 32nd IEEE Conference on Local
Computer Networks (LCN), 2007, pp. 141–148.

40

