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Application of Beamforming in Wireless Location Estimation
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A simple technique to estimate the position of a given mobile source inside a building is based on the received signal strength.
For this methodology to have a reasonable accuracy, radio visibility of the mobile by at least three access points is required. To
reduce the number of the required access points and therefore simplify the underlying coverage design problem, we propose a
novel scheme that takes into account the distribution of RF energy around the receiver. In other words, we assume that the receiver
is equipped with a circular array antenna with beamforming capability. In this way, the spatial spectrum of the received power can
be measured by electronically rotating the main lobe around the 360-degree field of view. This spatial spectrum can be used by a
single receiver as a means for estimating the position of the mobile transmitter. In this paper, we investigate the feasibility of this
methodology, and show the improvement achieved in the positioning accuracy.
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1. INTRODUCTION

In recent years, technologies that find the location of mobile
sources inside buildings are becoming an attractive area of
research and development. A significant application of such
technologies is in emergency situations where it is important
to be able to locate or track the movements of the first re-
sponders inside closed environments. More commercial and
public safety applications are also emerging every day.

GPS provides this capability in the outdoor environment,
where the line-of-sight propagation paths to GPS satellites
exist. However, it cannot be used in the indoor environment
where ceilings obstruct the view of the corresponding satel-
lites. The problem of finding locations of mobile sources in-
side buildings presents special challenges. Obstacles such as
walls, furniture, and other objects create a much harsher ra-
dio propagation environment. A variety of ranging and po-
sitioning techniques with different technologies such as RF,
ultrasound, infrared, DC electromagnetic, and so forth, have
been proposed to solve this problem [1]. Accordingly, vari-
ous levels of localization accuracy, resolution, and complex-
ity have been reported by such methodologies.

A simple technique to estimate the position of a given
source is based on the received signal strength (RSS). RSS
is attractive because it is widely applicable to wireless sen-
sor networks and does not require sophisticated localiza-
tion hardware. The general philosophy in this approach is to

establish a one-to-one correspondence between a given po-
sition and the average received signal strength from at least
three transmitters with known locations. One such system
that has been implemented on the existing wireless local area
network infrastructure is RADAR [2].

RADAR is a software-based localization system that op-
erates by recording and processing RSS information from
multiple access points (i.e., base stations). There are two
main phases in the operation of this system: an off-line phase
(i.e., data collection or training phase) and an online phase
(i.e., mobile position estimation). In the off-line phase, a
“radio-map” of the environment is created. A “radio-map”
is a database of selected locations and their corresponding
received signal strengths from several base stations. For ex-
ample, an entry in the radio-map may look like (x, y, z,
RSSi (i=1,2,...,n)), where (x, y, z) is the physical coordinates of
the location where the signal is recorded and RSSi is the
average received signal strength of the base station “i.” In
the on-line phase, the mobile measures the received signal
strength from each of the base stations within range, and
then, searches through the radio-map database to determine
the best signal strength vector that matches the one ob-
served. The system estimates the location associated with the
best-matching signal strength vector (i.e., nearest neighbor)
to be the location of the mobile. This technique essentially
calculates the L2 distance (i.e., euclidean distance) between
the observed RSSs and the entries in the set defined by the
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Figure 1: Ambiguity in mobile position with one access point using
RSS.

radio-map. It then picks the RSS-vector that minimizes this
distance and declares the corresponding physical coordinate
as the estimate of the mobile’s location. Alternative strate-
gies such as averaging the k-nearest neighbors have also been
considered.

Another interesting RSS-based localization methodology
has been proposed in [3, 4], where a probability distribution
is constructed during the training phase. Then, a Bayesian in-
ference approach is used to estimate the mobile’s coordinates
with the highest probability.

In [5], fundamental limits of localization using RSS in in-
door environments have been characterized. It is shown that
using commodity 802.11 technology over a range of algo-
rithms, approaches, and environments, one can expect a me-
dian localization error of 3 m and 97th percentile of 9 m. It is
also argued that these limitations are fundamental and that
they are unlikely to transcend without a fundamentally more
complex environmental models, additional localization in-
frastructure, or resources.

The general assumption in all of the RSS-based position-
ing systems is that the signal strength is recorded with an
omnidirectional antenna at the receiver. In a multipath en-
vironment, such as indoor, the mobile receives the transmit-
ted signal from many directions due to possible reflections,
diffractions and scattering phenomena. An omnidirectional
antenna is not capable of obtaining any information regard-
ing the spatial (i.e., angular) distribution of the signal energy.
The thesis of this research is that any information pertaining
to the angular distribution of power can be used to increase
the accuracy of an RSS-based localization methodology. For
example, through the use of an antenna that has beamform-
ing capability, more information can be extracted by mea-
suring the signal strength in different directions; therefore,
instead of the average signal power, a more general and so-
phisticated spatial power spectrum (SPS) can be generated
and used for position estimation.

For example, in Figure 1, due to symmetry, the access
point experiences the same average received signal power
from a mobile located at position 1 or 2; therefore, with a
single access point, no RSS-based positioning system will be
capable of resolving the ambiguity between these positions.
However, as observed, the directions from which the access

(a)

(b)

Figure 2: Beam pattern of a circular array with (a) 8 elements, (b)
32 elements.

point receives most of the transmitted power from these po-
sitions are very different. If the positioning system has ac-
cess to this kind of information (i.e., received power expected
from different directions), distinction between positions 1
and 2 can be easily made.

Consequently, by using a more generalized and sophisti-
cated radio-map that contains received signal strength infor-
mation from various directions, the system would have the
capability of estimating the mobile position with fewer ac-
cess points and possibly higher accuracy.

Section 2 will describe the problem statement in more
details. Simulation platform and various proposed solutions
are investigated in Section 3. System performance is dis-
cussed in Section 4 and finally some concluding remarks are
expressed in Section 5.

2. PROBLEM STATEMENT AND MODELING

An array antenna with beamforming capability is able to
steer the direction of its main beam toward any desired angle.
In particular, a circular array, which has a 360-degree field of
view, is an appropriate candidate for two-dimensional posi-
tioning application. Sample beam pattern of such an antenna
for various array sizes (i.e., number of elements) is shown in
Figure 2.

Here, we propose to follow the same two-phase approach
as the general RSS-based localization mentioned in the pre-
vious section. However, in the training phase, instead of
recording the received signal strength, a circular array an-
tenna with beamforming capability records the spatial power
spectrum (SPS) of the received signal. The SPS is basically
a two-dimensional graph of the received power versus angle
(e.g., azimuth). Each point on this graph indicates the re-
ceived signal strength when the main beam of the antenna is
directed toward the corresponding azimuth. The beam of the
array antenna is electronically controlled to point toward a
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Figure 3: Sample output of the ray-tracing tool for (a) building 1, (b) building 2.

desired direction. Therefore, by rotating the main lobe in the
360-degree field of view and recording the received power, an
SPS graph for a given mobile position can be generated.

Now, the problem is to first form a database of the mea-
sured spectra at the points of interest (e.g., set of grid points
over the layout). This is the training phase which essentially
yields a more sophisticated radio-map of the building where
positioning is desired. Next, for any given position, the gen-
erated SPS can be compared to all the entries in this database,
and the position of the best match would be a good candidate
for the unknown position.

In this paper, we investigate the feasibility of this ap-
proach by implementing a simulation platform that matches
the condition of an indoor environment. The main difficulty
in simulating an indoor RF channel is the strong dependence
of the received signal on the layout of the building (e.g., mul-
tipath channel). In particular, all walls, windows, and other
objects that affect the propagation of RF waves will directly
impact the signal strength and more importantly the direc-
tions from which the RF signal is received. Empirical, statisti-
cal, and deterministic models have been used to describe the
behavior of such multipath channels [6–8]. In our study, we
have elected to use a sophisticated ray-tracing tool to accu-
rately predict the received signal in the indoor RF channel.
Wireless system engineering (WiSE) is a ray-tracing tool that
has been developed and verified by Bell Laboratories [9, 10].

Figure 3 shows a pictorial sample of the multipath sig-
nal for a given building layout and transmitter-receiver lo-
cation obtained through the ray-tracing tool. We realize that
even such models have limitations in their accuracy and are
also subject to errors when there are changes in the envi-
ronment such as furniture moving, or even people walking
through the building; however, this approach will give us the
opportunity to create a testbed that to the extent possible
mimics the conditions of an indoor channel in real life.

The received power in an array antenna with a direc-
tional beam is a function of the azimuth angle where the
main beam is pointing. For a given layout, building mate-
rial, transmitter-receiver location, frequency, and array size,
the spatial power spectrum (SPS) at the receiver coordinates
can be obtained by rotating the main beam around the re-
ceiver using a beamforming algorithm. In order to further
verify the accuracy of the obtained SPS, we also conducted
a simple experiment to compare sample hardware measure-
ments to the predicted values of the ray-tracing tool (see the
appendix for more details).

Once the SPS data for a set of predetermined points
is collected, the test and verification phase of the position-
ing system can begin. Essentially each SPS graph can be re-
garded as a spatial signature that signifies the position co-
ordinates of the mobile as seen by an access point. On
the contrary to the RSS-based methodology, where L2 dis-
tance is used to establish a metric between two RSS vec-
tors, the problem of finding the closest match to a given
SPS is not so evident. To further elaborate on this prob-
lem, consider the scenarios depicted in Figures 4(a) and
5(a). Here, the mobile is the transmitter (with a simple om-
nidirectional antenna) and the access point is the receiver
equipped with a circular array antenna. Figure 4(b) displays
the SPS observed by the access point when the mobile posi-
tion changes from 0 to 1. Since, the mobile distance from the
access point is increased, the SPS graph decreases in mag-
nitude (i.e., vertical shift) while generally maintaining its
shape.

Figure 5(a) shows the scenario where the mobile changes
its position from 0 to 2. In this case, the distance of the mo-
bile to the access point is almost unchanged; however, the
direction from which the access points receive the RF signal
is now changed. This translates to a horizontal shift in the
spatial signature as seen in Figure 5(b).
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Figure 4: Variation of the spatial signature.

Therefore, physical closeness or proximity in mobile po-
sitions could translate to visual similarity in the spatial signa-
tures seen by an access point. Although, it can be shown that
this is not true in all cases, the methodology outlined in this
paper is still applicable under all circumstances.

In order to measure the similarity between two signatures
(i.e., matching), a distance metric has to be chosen that is
capable of considering both of the situations above. A few
metrics with this capability will be described in Section 3.

3. SIMULATION PLATFORM

The block diagram shown in Figure 6 describes the simula-
tion system that was created to assess the performance of this
positioning technique. Performance can be obtained for var-
ious input parameters such as building layouts, radio char-
acteristics of the building materials (e.g., dielectric proper-
ties of the walls), and receiver-transmitter attributes such as
power, frequency, and antenna gain pattern. Also, various
signature-matching strategies can be implemented as search
mechanisms to identify the position estimate of the mobile.

To generate a radio-map for a given layout, we have de-
fined a grid of points as seen in Figure 7. Points that are too
close to the walls are eliminated to preserve the possibility of
future practical implementation. For each point on the grid
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Figure 5: Variation of the spatial signature.

and for each access point, a spatial signature is generated and
stored. This constitutes the radio-map. Notice that if the an-
tenna gain pattern for the receiver is taken to be omnidirec-
tional, then the system will behave similar to the RSS-based
positioning (e.g., [2]). This special case is actually used as a
benchmark to evaluate the gain associated with using spatial
spectra.

As previously mentioned, the main objective in this re-
search is to study the applicability of using spatial power
spectrum for indoor localization. In order to compare the
signature of a test point to those included in the radio-map,
an appropriate distance metric needs to be defined. We have
considered various metrics that are briefly described in the
following subsections. Performance of the system with each
metric will then be compared to the omnidirectional case un-
der various scenarios and parameters such as transmitter and
receiver locations, building layout, number of receivers (i.e.,
access points), and so forth.

3.1. Minkowski distance

Minkowski metrics are a family of distance measures, which
are generalized from the euclidean distance formula. It is of-
ten used as a similarity measure between two patterns that
could be images, graphs, signatures, or vectors. If dLr (SPS1,
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Figure 6: Block diagram of the simulation platform.
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Figure 7: Radio-map generation based on a grid overlay.

SPS2) denotes the distance between two signatures SPS1 and
SPS2, then Minkowski distance of order “r” is defined as

dLr
(

SPS1, SPS2
) =

(
∑

θ

∣
∣ SPS1(θ)− SPS2(θ)

∣
∣r
)1/r

. (1)

At r = 2, this metric is the typical Euclidean distance that has
been used for some of the RSS-based methodologies [2]. We
chose to investigate the performance of L1 and L2 distance
metrics for the spatial spectrum matching. These metrics es-
sentially perform an element-by-element similarity measure
between the two signatures SPS1 and SPS2, which might be
less accurate for signatures that are circularly shifted versions
of each other. This could be especially important when the
radio-map grid resolution is low or there exist large open
spaces in the layout (e.g., large conference rooms). An ex-
ample will be provided later in Section 4 to further elaborate
on this point.

3.2. Earth mover algorithm (EMD)

Earth mover’s distance (EMD) has been used as a distance
metric with application in content-based image retrieval
[11]. An attractive property of this metric is its capability to

match perceptual similarity better than other distance met-
rics used for image retrieval. This property is actually de-
sirable in our application as well, since in most cases per-
ceptual matching of spatial signatures (i.e., SPS) would seem
to apply in actual coordinate matching for indoor position-
ing.

The EMD is based on a solution to the transportation
problem from linear optimization. It is a useful and flexi-
ble distance metric that measures the minimal cost that must
be paid to transform one signature into the other. Signature
matching is cast as a transportation problem by defining one
signature as the supplier and the other as the consumer, and
by setting the cost for a supplier-consumer pair to equal the
ground distance between an element in the first signature
and an element in the second. Intuitively, the solution is the
minimum amount of work required to transform one signa-
ture into the other. Alternatively, given two spatial spectra,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. Then,
the EMD measures the least amount of work needed to fill
the holes with earth. A unit of work corresponds to trans-
porting a unit of earth by a unit of ground distance.

We have investigated the performance of this metric as a
similarity measure between two spatial spectra.
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3.3. Hausdorff distance (HD)

Hausdorff Distance is a measure of closeness of two sets of
geometric points P and Q [12, 13] and is defined as

HD(P,Q)

= max
(

max
a∈P

min
b∈Q

(‖a− b‖), max
a∈Q

min
b∈P

(‖a− b‖)
)
.

(2)

In this case, we would like to measure the distance be-
tween the two functions SPS1(θ), SPS2(θ). First, we define
the points aθ and bθ with the following coordinates:

a(θ) = (θ, SPS1(θ)
)
, b(θ) = (θ, SPS2(θ)

)
. (3)

Then, we customize the definition of Hausdorff distance as
follows:

HD
(

SPS1, SPS2
) = max

(
max
θ1

min
θ2

(∥∥a
(
θ1
)− b

(
θ2
)∥∥),

max
θ2

min
θ1

(∥∥a
(
θ1
)− b

(
θ2
)∥∥)
)

,

(4)

where
∥
∥a
(
θ1
)− b

(
θ2)
∥
∥

= dL2

(
a
(
θ1
)
, b
(
θ
))

=
((
θ1 − θ2

)2
c +
(

SPS1
(
θ1
)− SPS2

(
θ2
))2
)1/2

(5)

and “c” is a constant scaling factor chosen appropriately.
Hausdorff distance measures the degree of mismatch be-

tween two sets, as it reflects the distance of the points in the
first set that is furthest from any point in the second set. In-
tuitively, if the Hausdorff distance is d, then every point of
the first set must be within a distance d of some point of the
second set and vice versa. Hausdorff distance obeys the prop-
erties of identity, symmetry, and triangle inequality; there-
fore, it is a metric over the set of all closed and bounded sets.
Hausdorff distance has been used as a metric to develop fast
and reliable method for comparing binary images and locat-
ing objects within images [14, 15]. Here, we would like to
investigate its applicability to establish a similarity measure
between two spatial signatures.

3.4. Kullback-Leibler distance (KL)

The Kullback-Leibler distance (or relative entropy) is a natu-
ral distance function from a “true” probability distribution p
to a “target” probability distribution q. For discrete probabil-
ity distributions, p = {p1, p2, . . . , pn} and q = q1, q2, . . . , qn,
the KL-distance is defined to be [16]

KL(p, q) =
∑

i

log2

(
pi
qi

)

. (6)

KL distance has been used as an objective measure that is able
to predict audible discontinuities in concatenative speech
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synthesis [17]. It has also been used as a similarity measure
between images [18]. Here, we would like to investigate its ef-
fectiveness as a similarity measure between two spatial spec-
tra. Therefore, we use the following expression as a metric
that quantifies the distance between two spatial spectra:

KL
(
SPS1

∗, SPS2
∗) =

∑

θ

SPS1
∗(θ) log2

(
SPS1

∗(θ)
SPS2

∗(θ)

)

. (7)

Note that the KL-distance is not symmetric and SPS∗ is the
normalized SPS.

3.5. Peak-to-peak distance (PPD)

The direction from which a node receives most of the trans-
mitted RF energy is a function of the building layout and
the position of the node. This direction is basically the az-
imuth angle where SPS peaks. Although, this peak might not
be indicative of the transmitter’s direction, it may be used to
establish a distance metric between two spatial spectra; and
therefore, help to estimate the coordinates of the mobile by
finding the best match. Assume that θ1 and θ2 are the az-
imuth directions where SPS1 and SPS2 peak. In other words,

θ1 = arg max
θ

SPS1(θ), θ2 = arg max
θ

SPS2(θ). (8)

Then, define the peak-to-peak distance (PPD) as

PPD =
((
θ1 − θ2

)2
c +
(

SPS1
(
θ1
)− SPS2

(
θ2
))2
)1/2

, (9)

where “c” is a constant scaling factor chosen appropriately.
Figure 8 displays an example of this distance. In terms of

the complexity, this is a simple measure to implement. Since,
now (instead of the whole SPS) only the values associated to
each SPS peak can be precomputed and stored in the radio-
map.
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Table 1: Average position error (in meters) for the layout of Figure 3(a) (array size = 8, step-size = 5 degrees).

Radio map res 1× 1 Radio map res 2× 2 Radio map res 3× 3

AP = 1 AP = 2 AP = 3 AP = 1 AP = 2 AP = 3 AP = 1 AP = 2 AP = 3

SPS-L1 0.83 0.82 0.82 3.1 2.12 2.12 5.05 4.11 2.77

SPS-L2 1.03 0.86 1.06 3.2 2.46 2.34 5.07 4.58 2.9

SPS-EMD 1.05 1.04 1.02 3.22 2.28 2.25 5.95 4.49 3.07

SPS-PPD 1.90 1.50 1.45 4.97 4.10 3.31 6.88 6.03 4.41

SPS-HD 2.30 1.59 1.55 5.12 3.11 3.08 7.94 4.52 3.68

SPS-KL 2.64 1.35 1.34 5.88 4.28 3.13 7.56 5.52 4.25

RSS-L2 15.78 4.37 2.5 16.04 5.54 4.32 16.37 6.66 5.53
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Figure 9: CDF of the position error (ant. elements = 8, step-size = 5 degrees).

4. SYSTEM PERFORMANCE

Using the simulation platform discussed in the previous
section, we conducted experiments for various layouts, ar-
ray sizes (i.e., number of elements), radio-map grid resolu-
tions, antenna beam rotation step size and signature match-
ing techniques. We have chosen an ISM-band frequency of
2.4 GHz for the operation of the system in simulation.

Table 1 summarizes the average position error obtained
with different matching algorithms, number of access points,
and radio-map grid resolution for the layout shown in
Figure 3(a). When the receiver antenna is selected to be om-
nidirectional (i.e., array size is one), we will essentially have
an RSS-based system where no directional information is in-
cluded in the signatures and the radio-map. In this case, each
spatial spectrum is replaced by a scalar that represents the
total average received power. Performance of this omnidirec-
tional system with L2 distance metric has been chosen as the
benchmark for comparison purposes and it is displayed in
the last row of Table 1. As observed, all SPS-based approaches
significantly outperform the RSS method; with SPS-L1 hav-
ing the least average error for this layout.

Figure 9 also displays the cumulative distribution func-
tion (CDF) of error in the estimated position for different
radio-map resolution. For example, in Figure 9(a), the per-
formance of the SPS-L1 method with only one access point
has been compared to the performance of the RSS-based
method with one, two, and three access points. As observed,
using the SPS approach, there is a significant improvement in
accuracy when the number of access points is less than three.
Even in the case of RSS-based approach with 3 APs, the gain
associated with SPS-L1 is noticeable when radio-map resolu-
tion is high (i.e., 1× 1 m).

Figure 10 visually demonstrates the advantage of using
spatial spectrum for lower number of access points.

For the above results, we have selected the position of the
best matching point in the radio-map as the estimated posi-
tion of the mobile. Selecting the k-nearest neighbors and av-
eraging the results did not amount to significant difference;
therefore, we did not reflect those results.

The average errors reported in Table 1 have been ob-
tained by considering 400 test points uniformly distributed
throughout the layout. The signal-to-noise-ratio (SNR) for
these points varies from 15 to 75 dB. Figure 11 demonstrates
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the absolute error of each test point on a three dimensional
map over the layout. As observed, test points that are located
near the top left and bottom right corners of the building
experience higher position error. It is important to note that
mobiles located in these corners experience a lower SNR; this
in turn contributes to higher error in their estimated posi-
tion.

Another experiment was performed for the building lay-
out shown in Figure 3(b) that has a physical dimension of
15 × 21 m and a completely different wall material (i.e.,
sheetrock). The results are summarized in Table 2. A simi-
lar trend in terms of SPS advantage is also observed for this
layout.

In case where the radio-map grid resolution is low or
where there exist large open spaces in the layout (e.g., large
conference rooms), the performance of SPS-based approach
with Minkowski distance metric might be inferior to other
matching techniques such as PPD or EMD. To explain this
issue, consider a single large room with the size 16 × 16 m
and a single AP that is located in the middle of the room.
Once again, we would like to estimate the position of a mo-
bile transmitter that is moving around this room. Table 3
shows the average position error obtained by using various

SPS matching techniques. In this case, both EMD and PPD
(i.e., highlighted rows in Table 3) outperform L1 and L2.

The last row of Table 3 indicates the average distance be-
tween the sample mobile position and the closest neighbor-
ing grid point that is located on the radio-map. This is the
lowest possible error that can be achieved by any algorithm
that only considers the best matching signature. It is inter-
esting to note that the performance of PPD and EMD (i.e.,
highlighted rows) are very close to this lower bound.

A similar experiment was performed for even a larger
room (i.e., 32 × 32 m) and coarser radio-map resolutions.
The result (see Table 4) also pointed out to the same con-
clusion; both PPD and EMD provided higher accuracy com-
pared to L1 and L2.

In general, we have observed that matching techniques
such as PPD or EMD outperform Minkowski distance met-
rics in environments where angular spread of energy around
the receiver is highly nonuniform. In such environments,
these algorithms are more sensitive to horizontal shifts in SPS
(as explained in Figure 5(b)); and therefore, generate better
accuracy in response to a change in mobile position. On the
other hand, metrics such as L1 or L2 exhibit better perfor-
mance when there are no significant directions from which
the RF energy is received.

The number of antenna array elements used for the sim-
ulation results in Tables (1, 2, 3, 4) is eight. As the number of
array elements increases, the main lobe of the beam pattern
becomes narrower as seen in Figure 2. The antenna in this
case would be capable of measuring the fine-grained spatial
multipath profile of the signal at the receiver location. How-
ever, it is not clear whether such fine-grained SPS would en-
hance the achieved positioning accuracy. For this reason, we
have performed further studies to understand the effect of
the antenna size on the average positioning error. We have
observed that for a given radio-map resolution, building lay-
out, and matching algorithm; there might exist an optimal
array size that results in the minimum average position er-
ror. For the building in Figure 3(a) with a radio-map grid
resolution of 3 m × 3 m, step-size of 5 degrees, and the two
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Table 2: Average position error (in meters) for the layout of Figure 3(b) (array size = 8, step-size = 5 degrees).

Radio map res 1× 1 Radio map res 2× 2 Radio map res 3× 3

AP = 1 AP = 2 AP = 3 AP = 1 AP = 2 AP = 3 AP = 1 AP = 2 AP = 3

SPS-L1 0.73 0.54 0.53 2.45 1.52 1.40 3.45 1.78 1.64

SPS-L2 0.81 0.54 0.53 2.52 1.49 1.39 3.54 1.79 1.66

SPS-EMD 0.89 0.53 0.51 2.56 1.54 1.34 3.54 2.00 1.69

SPS-PPD 1.13 0.59 0.84 2.71 1.63 1.65 3.86 1.89 1.77

SPS-HD 1.28 0.67 0.61 2.91 1.77 1.27 4.08 2.00 1.80

SPS-KL 1.21 0.75 0.57 2.93 1.70 1.49 3.88 2.45 2.20

RSS-L2 5.87 3.87 1.86 5.95 3.95 2.37 5.98 3.97 3.00

Table 3: Average position error for a single room 16× 16 (array size = 8, step-size = 5 degrees).

Radio map Radio map Radio map

resolution 1 m× 1 m resolution 2 m× 2 m resolution 3 m× 3 m

SPS-L1 0.47 0.91 1.48

SPS-L2 0.52 0.95 1.52

SPS-EMD 0.43 0.83 1.3

SPS-PPD 0.44 0.79 1.21

SPS−HD 0.67 0.96 1.49

SPS−KL 1.34 1.78 2.30

Lower bound (m) 0.39 0.76 1.18

metrics L1 and PPD, this relationship has been displayed in
Figure 12. It should be noted that for a given radio frequency,
the radius of the circular array is proportional to the number
of array elements. Therefore, large array sizes might create
practical implementation issues.

Another issue with the SPS-based approach is the com-
plexity in terms of the amount of storage required for the
radio-map. The number of samples in one spatial spectrum
depends on the number of azimuth angles that the received
power has been measured for. This is directly controlled by
the step-size chosen to electronically rotate the main beam
of the receiver antenna. Smaller step-size amounts to large
number of samples per SPS. Consequently, large amount of
storage is required for the radio-map. In addition, the opera-
tional speed of the SPS matching process will decrease when
the step-size is small. As it is desirable to maximize the speed
and at the same time minimize the storage requirement, it
is interesting to see the effect of large step-sizes on the accu-
racy of the SPS-based system. Note that for a given number
of antenna elements, the step-size basically describes the res-
olution of an SPS. Figure 13 displays the variation in the av-
erage position error as the rotation step-size increases (i.e.,
SPS resolution decreases). Compared to a 5-degree step-size,
resolution of the spatial spectra obtained by a 40 degree ro-
tation step-size reduces by a factor of 8; however, as seen in
Figure 13, only a modest rise in average error is observed. It is
interesting to note that an 8-element circular array antenna
with beamforming capability and a rotation step size of 45
degrees is almost equivalent to a sectorized antenna with 8
sectors. Sectorized antennas are basically a special case of the
general methodology outlined so far.

Another interesting point in Figure 13 is that larger array
sizes (e.g., 12 or 16) exhibit lower average errors when the
SPS resolution is high, yet smaller array sizes (e.g., 4 or 8)
perform better at higher step-sizes.

In all the results provided so far, we have used the beam
pattern generated by a simple circular phased-array antenna
with no side-lobe suppression. It is worth noting that the
beam patterns generated in this way are not quite identical
when the main lobe is pointing at different directions. This
fact has been incorporated in our simulations to generate
proper spatial spectrum per transmitter location. We have
also performed simulations with ideal beam pattern with no
side-lobes. There was no considerable change in the overall
system performance and for this reason those results have
been omitted. In fact, using ideal beam pattern only changes
the nature of the observed spatial spectra. The SPS observed
at the receiver as well as all recorded signatures in the radio-
map will be different. However, ultimately, the performance
of the system depends on how efficiently the closest signa-
tures are selected from the radio map. Since, this process is
not changed; similar performance is obtained even if ideal
beam pattern is considered.

5. CONCLUSION

The underlying philosophy in this paper is that exploiting the
information in the spatial distribution of RF energy around a
receiver results in better estimates of the location of a mobile.
This spatial spectrum basically represents a signature that
only depends on the relative location of the transmitter with
respect to the receiver and the environment surrounding
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Table 4: Average position error for a single room 32× 32 (array size = 8, step-size = 5 degrees).

Radio map Radio map Radio map

resolution 2 m× 2 m resolution 4 m× 4 m resolution 6 m× 6 m

SPS-L1 0.99 1.81 2.79

SPS-L2 1.10 1.86 2.93

SPS-EMD 0.92 1.65 2.45

SPS-PPD 0.84 1.61 2.38

SPS-HD 1.21 1.94 2.83

SPS-KL 2.04 4.10 4.31

Lower bound (m) 0.78 1.53 2.27
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Figure 12: Average error versus antenna array size (1000 test mobile
positions).

them. It can be easily seen that in free space, there is a one-
to-one correspondence between the transmitter position and
the received SPS. If the receiver is assumed to be at the origin
of a polar coordinate system, the received spatial signature is
a function of the polar coordinate of the transmitter. If the
receiver-transmitter pair is planted inside a building, the lay-
out and the construction material of the walls dictate the flow
of energy; and therefore, the shape of the signature. However,
the uniqueness of the SPS signatures is still maintained in an
indoor environment. Therefore, if a database consisting of a
set of representative points (i.e., radio-map) in a building is
made, then, any inquiry to the whereabouts of a mobile can
be answered by comparing the received SPS with the entries
of the radio-map.

RSS-based methodologies also follow the same strategy;
however, for them to have a reasonable accuracy radio visi-
bility of the mobile by at least three access points is required.
This would create a difficult coverage design problem, which
would be eliminated if SPS signatures were used instead. In
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Figure 13: Average position error for various step-sizes (building in
Figure 3(a), radio-map 3× 3 m).

other words, an advantage of using the SPS signatures as op-
posed to RSS (i.e., pure signal strength) is that even single re-
ceiver with beamforming capability delivers good accuracy;
and as a result, complicated triple coverage by three access
points is no longer required. Theoretically speaking, if the
capability of estimating both direction and range of a mo-
bile exists, then, only one access point is enough to estimate
the position of any mobile transmitter. However, to the best
of our knowledge, no known methodology currently exists
that is capable of providing reasonable and simultaneous es-
timate of direction and range information in indoor envi-
ronments. Specifically, our previous research has shown that
the direction of a mobile can only be estimated with 40%
to 70% probability (depending on the material of the walls)
within 20 degrees of error inside buildings. Therefore, we do
not wish to rely on estimating angle-of-arrival (AOA) in our
positioning system unlike the methodology outlined in [19].

It is important to note that in practice the effec-
tive radiation pattern of the transmitter antenna is not
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Figure 15: Hardware experiment to validate the SPS generated by the ray-tracing tool.

omnidirectional. This is mostly due to hardware issues and
body absorption if a person is carrying the transmitter. This
will have an impact on the performance of any position-
ing system that relies on the signal strength. The extent of
this impact is difficult to address in simulation. As, there are
also many other factors such as movement of other people
or objects in the building that could also affect the results,
hardware implementation is the best way to characterize and
evaluate this impact. When building a radio-map, a simple
technique to reduce the body effect is to measure four spatial
spectra while the person that carries the transmitter faces 4
different directions such as north, south, west, and east. All
four spatial spectra or their average can be used per transmit-
ter location. Again, actual hardware measurements are rec-
ommended to exactly assess the performance of the system.

Throughout this paper, we have considered the case
where the stationary access point with the circular array is
the receiver and the mobile is the transmitter. If there are

many transmitters available, a multiple access scheme has
to be in place to differentiate between the signals of dif-
ferent transmitters. It is also possible to consider the case
where the mobile is the receiver capable of generating spa-
tial signatures; however, it should be noted that in this case,
the mobile requires an electronic compass (or a similar de-
vice) in order to have a reference frame for the azimuth
angle. In this way, many mobiles can estimate their loca-
tions simultaneously without the need for a multiple access
scheme.

The application of multiple-in-multiple-out (MIMO)
technology in WLAN (e.g., 802.11n) is creating the possibil-
ity to have access points that are capable of creating beam
patterns that adapts to user’s location. Access points that can
select the best directional beam pattern among a finite num-
ber of possible patterns are already making their way into the
market. It is conceivable that a simplified version of our pro-
posed approach can be build over such infrastructure.
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Finally, although we have outlined several matching tech-
niques in this paper, it should be noted that our primary ob-
jective is to show the feasibility and effectiveness of using SPS
for indoor positioning. Further studies are required to find
the optimal strategy by considering other signature matching
methodologies, operational complexity, and implementation
issues.

APPENDIX

COMPARISON OF THE SIMULATION SPS
WITH REAL MEASUREMENTS

In order to justify the use of the ray-tracing tool for perfor-
mance analyses of the SPS-based approach, verification of
the accuracy of the simulated spatial power spectrum with
real measurements was necessary. Therefore, a simple exper-
iment was set up that involved a directional antenna located
on a rotating platform. The SPS was generated by taking the
measurement of the received power when the azimuth angle
of the directional antenna was pointing at 0, 10, 20, . . . , 350
degrees. Figure 14 demonstrates the comparison made be-
tween the measured SPS and the ray-tracing estimate. The
measured SPS corresponds to a single physical coordinate;
and therefore, exhibits the effects of multipath fading. By av-
eraging the sample SPS corresponding to a few nearly co-
located positions, a closer match to the smoothed outcome of
the ray-tracing tool was observed. Averaging four such mea-
surement samples provided good match with the ray-tracing
results. Details of the hardware experiment (Figure 15) have
been omitted for brevity. The authors realize that in general
such hardware measurements should replace the results ob-
tained by the ray-tracing tool to further validate our conclu-
sions.
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