
Evaluation of Multi-Core Scheduling Mechanisms for
Heterogeneous Processing Architectures

Håkon Kvale Stensland1, Carsten Griwodz1,2, Pål Halvorsen1,2

1Simula Research Laboratory, Norway
2Department of Informatics, University of Oslo, Norway

{haakonks, griff, paalh}@simula.no

ABSTRACT

General-purpose CPUs with multiple cores are established
products, and new heterogeneous technology like the Cell
broadband engine and general-purpose GPUs bring an even
higher degree of true multi-processing into the market. How-
ever, means for utilizing the processing power is immature.
Current tools typically assume that exclusive use of these
resources is sufficient, but this assumption will soon be in-
valid because the interest in using their processing power
for general-purpose tasks. Among the applications that can
benefit from such technology is transcoding support for dis-
tributed media applications, where remote participants join
and leave dynamically. Transcoding consists of several clearly
separated processing operations that consume a lot of re-
sources, such that individual processing units are unable to
handle all operations of a session of arbitrary size. The
individual operations can then be distributed over several
processing units, and data must be moved between them
according to the dependencies between operations. Many
multi-processor scheduling approaches exist, but to the best
of our knowledge, a challenge is still to find mechanisms that
can schedule dynamic workloads of communicating opera-
tions while taking both the processing and communication
requirements into account. For such applications, we believe
that feasible scheduling can be performed in two levels, i.e.,
divided into the task of placing a job onto a processing unit
and the task of multitasking time-slices within a single pro-
cessing unit. We have implemented some simple high-level
scheduling mechanisms and simulated a video conferencing
scenario running on topologies inspired by existing systems
from Intel, AMD, IBM and nVidia. Our results show the
importance of using an efficient high-level scheduler.

1. INTRODUCTION
Multi-processor and multi-core systems are quickly be-

coming mainstream computing resources. Dual-core general-
purpose CPUs are established products, but systems includ-
ing the Cell broadband engine (BE) and general-purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’08 Braunschweig, Germany
Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

GPUs bring an even higher degree of true multi-processing
into the market. Making use of this parallel processing ca-
pacity, however, is still in the earlier stages. Current tools
that assist in developing for many-core systems like the Cell
and GPUs assume typically that the parallel computing re-
sources can be used exclusively for a single task. We ex-
pect that this will become an invalid assumption because the
increasing commoditization of parallel processing hardware
and an increasing interest in using it for general-purpose
tasks. Among the applications that can benefit strongly
from this hardware are computing-heavy media processing
applications.

Examples of this are multi-party video conferences where
participants dynamically join and leave the session, per-
sonalized video streaming services and free-viewpoint 3D
environments. In the video conferencing scenario, multi-
ple streams have to be merged, adapted, and so on. Con-
tributors and consumers join and leave conferences at ar-
bitrary times and use heterogeneous devices. The neces-
sary media processing operations can then consume much
processing and bandwidth resources. Each individual oper-
ation can possibly be handled by an individual core with-
out missing any deadlines. However, individual processing
units are unable to handle the operations that are neces-
sary for a conference of arbitrary size. Operations must
then be distributed over several processing units, and data
must be moved between them, all while staying within the
application-defined deadlines. The media processing appli-
cations are time-dependent and cyclic depending on indi-
vidual contributors’ frame and sampling rates. Because the
increasing heterogeneity of end systems, the resource con-
sumption of media processing operations varies widely, as
does the amount of data that is needed for communication
between processing steps. The challenge is to then find a
system scheduler for such dynamically changing workloads
that fulfills the processing requirements of the application
and at the same time avoids congestion on the intercon-
nects between the processing units. Many multi-processor
scheduling approaches exist, but we are not aware of efforts
that address the dependencies of long-lived, cyclic, inter-job
dependent processing operations that require time-critical
communication with neighboring processing units. Our en-
visioned applications require that a feasible scheduler takes
both capacity of processing units and the bandwidth of in-
terconnects between them into account. We believe that fea-
sible scheduling can be performed in two levels, i.e., divided
into the task of placing a job onto a processing unit and
the task of multitasking time-slices within a single process-

ing unit. Our application provides a considerable amount of
long-term knowledge for the long time-scale that can be fed
to a high-level scheduler that can reserve resources within
each timeslice, while the low-level scheduler for processing
units and interconnects can act independently.

In this paper, we look at the interaction between intercon-
nection topology and workload patterns using simple high-
level scheduling mechanisms. The topologies are inspired
by the interconnection topologies of the Opteron, the Core
2, the Cell BE and nVIDIA’s latest GPUs. The workloads
are modeled to reflect a video conferencing scenario where
the size of each job is varied under the capacity limit of the
single cores and links. Our results show the importance of
using an efficient high-level scheduler in order to reduce the
overall resource consumption. In particular, means to clus-
ter jobs on cores in close proximity are promising because
the bandwidth consumption is usually reduced.

The rest of this paper is organized as follows. The next
section describes our example scenario. In section 3, we
look at our hierarchical scheduling approach. We describe
our simulator in section 4 and present some results in sec-
tion 5. In section 6, we present some related work before we
summarize and conclude in section 7.

2. EXAMPLE SCENARIO
Large-scale media processing applications are coming, and

we use here video conferencing systems as a motivating ex-
ample. Such conferences have multiple senders and receivers
as for example possible today using equipment from vendors
like Polycom, Tandberg or Lifesize. In this scenario, every
conference participant should be able to receive A/V con-
tent from all the other participants. Only active participants
will produce A/V data that must be processed, merged and
sent to all the others. The setup allows a large degree of
sharing in the processing graph, but requires expensive in-
dividual processing as well. Furthermore, depending on the
equipment used by each participant, each stream may have
different characteristics. Thus, we end up with a scenario
similar to the one as depicted in figure 1 where we cannot
assume equally sized jobs.

Figure 1: Example scenario: video conferencing

In the example in figure 1, the conference has three par-
ticipants. The first (A) has equipment that produce and
receive HD data. The second user (B) produce and receive
SD data whereas the last participant (C) is only following
(listening) the conference using a mobile phone displaying
only video in CIF resolution. In this situation, each stream
could be processed according to the layers in figure 1: 1)
decompression, 2) decoding, 3) branching (e.g., to filter and

adapt the data to the available resources and the receiving
devices), 4) encoding and 5) compression. In addition, the
system must handle dynamics in terms of users joining or
leaving the session, users becoming active and oscillating
resource availability in other parts of the system. Finally,
each system often manages many concurrent sessions further
complicating the task of finding available resources.

The processing resources required for handling these real-
time tasks often (at least when the conferences are large)
exceed the processing capacity provided by a single process-
ing unit. Consequently, the imposed workload must be dis-
tributed to a number of processing units for parallel exe-
cution, for example using multi-core processors, multi-chip
computers, processing clusters or distributed nodes over the
Internet. However, parallel processing of a large number of
real-time tasks introduces challenges related to orchestrating
and multiplexing the resource usage in a timely manner. We
are therefore addressing the challenge of finding feasible dy-
namic schedulers for a given set of (possibly heterogeneous)
processing units and their corresponding links (like busses
or network links).

3. TWO-LEVEL SCHEDULING
In the application scenarios that we imagine here, long-

lived dynamic sessions of media operations must be mapped
to resources of interconnected processing units. The data
flows that are processed are sent from remote machines and
are subject to packet loss and jitter. We can therefore not
assume that a fine-grained, detailed reservation mechanism
at cycle granularity is reasonable for the scheduled process-
ing units. Rather, long-term, high-level decisions must be
made to allocate resources of processing units, such that
they are available for arriving data with high likelihood. To
separate this from accurate low-level scheduling that is con-
cerned with the allocation of resource shares, we consider
two-level scheduling as a reasonable option.

First, a high-level scheduler acting on the timescale of
signaling protocols must select processing units for tasks in
such a way that each task has its required resources and that
it can communicate with those jobs from which it receives
streaming data and with those to which it forwards stream-
ing data. This scheduler must know profiling information
of processing stages and know approximately the process-
ing demands of the expected workload. It must then choose
processing units taking both remaining processing capacity
and remaining interconnect bandwidth into account. When
the jobs have been placed on a processing unit with available
capacity, a low-level algorithm working on the timescale of
operating system time slices must handle the individual jobs
on this unit in order to find a schedule where each job meets
its deadline.

3.1 Mapping media operations
The first step of the scheduler in our scenario is to perform

the mapping of media operations to the processing units.
Here, a decision is necessary for every join and leave op-
eration, i.e., every change in the workload. We approach
this as a timeless problem. At this level, we ignore the ne-
cessity to schedule units, and instead reason about capac-
ities. Future work must also take the difference between
timeslice cycle length and preemptable workload blocks into
account. For each media operation, only the resource con-
sumption is considered, resulting in a timeless flow model.

Likewise, the load that can be handled by a processing unit,
the bandwidth between processing units and the communi-
cation requirements between operations are expressed by a
single capacity value. The high level scheduler’s task is then
to find a mapping that neither violates the capacity limits
of any processing unit nor any communication channel.

Migration of media operations between processing units is
in principle possible in our scenario. However, we consider
migration highly undesirable. There is no particular need
for avoiding it in symmetric multiprocessing systems; how-
ever, most of the topologies that we investigate are either
NUMA or non-shared memory architectures that would re-
quire active movement of the operations’ state between the
processing units. This would be very costly in terms of the
interconnection bandwidth that is required for moving the
complete processing state that is stored in one processing
unit to the new processing unit. Additionally, migration
takes time and may cause disruption of streams, and in a
worst case, break the dependency if interconnection band-
width is exhausted during migration, resulting in a com-
plete rescheduling. Consequently, media operations are here
mapped and pinned to processing units by the high level
scheduler.

3.2 Managing timeslices
The scheduling of tasks at a particular processing unit

is handled by a low level scheduler. The low level sched-
uler must support the flow abstraction, and the worst case
performance and overhead must be known. This provides
the capacity value available to the high level scheduler. For
the low-level scheduler, media operations are independent
of each other. This implies, that communication between
tasks and the resources consumed for inter-task communi-
cation are not considered. Each task has a period and in
every period a certain amount of resources is consumed.

Nevertheless, at this level, old basic schedulers such as
Rate Monotonic, Earliest Deadline First, Heits, AQUA, RT
Upcalls, SMART, etc. are useful schedulers, and earlier work
(e.g., [7]) has shown that these schedulers are able to find a
schedule for each individual processing unit as long as there
in total is enough available resources (which is an admittance
check performed by the high-level scheduler). We are there-
fore currently planning for independent single-core real-time
schedulers to solve our need for low-level scheduling, but do
not consider it any further in this paper.

4. SIMULATOR
To understand the interaction between interconnection

topologies, different workload patterns and high-level schedul-
ing algorithms, we have written a simulator to evaluate the
schedulability of dynamic workloads. It allows us to look at
metrics like bandwidth consumption and scheduling failure
rates in a controlled environment, and we here introduce the
topologies, workloads and algorithms that we have used.

4.1 Topologies
Current multi-core architectures take a variety of approaches

for memory handling and interconnection between cores. We
are currently not considering memory at all, but assume
the need for data forwarding from one processing node the
next. This is an approach that is not typically used in the
current Intel architecture, but rather typical for specialized
media processors, and also applicable for NUMA architec-

tures. Interconnects come as switch, bus, or point-to-point
approaches. We model all of them as switches and point-
to-point links at this time. Furthermore, the architectures
that we use in the simulations in this paper are inspired by
the topologies of the Intel Core 2, AMD’s Opteron, the STI
Cell BE and nVIDIA’s GPUs (see figure 2). Since we in-
tend to examine the effects of topologies and not real-world
processor capabilities, we have provide all models with the
same total processing capacity. The processing capacity is
however, distributed over different numbers of processing
units (heterogeneous in case of the Cell-inspired topology).
Similarly, the bandwidth of interconnects is modeled in ab-
stract performance numbers according to their role in the
multi-core architecture that inspired each topology.

4.2 Workloads
The workload is specified as graphs of interconnected me-

dia processing operations which represent the need for pro-
cessing capacity. Bandwidth requirements between media
processing operations represent the consumed interconnect
bandwidth that is required when neighboring processing stages
in the graph are not processed by the same processing unit.
Figure 1 shows a very simple example for such a processing
graph, and where for example the initial conference mem-
bers are users (A) and (B), and the conference is later dy-
namically extended to accommodate user (C). Moreover, to
test various scenarios, we used a workload generator with
the ability to create dynamically changing media processing
demands with well-known parameters. The workload gen-
erator creates conferences with negative exponentially dis-
tributed duration, and with either Poisson-distributed inter-
arrival times or at a constant number of concurrent confer-
ences. Within each conference, uniformly distributed sets of
participants arrive and depart according to a Poisson pro-
cess, where each of the media operations claims a processing
power and bandwidth from a uniform distribution up to a
given maximum value.

4.3 Scheduling Algorithms
Developing high-level scheduling algorithms for arbitrary

inter-dependent workloads is a future goal, along with real-
world implementations. A one-for-all algorithm appear to
be out of the question, and there is no reason why a real-
world implementation should be able to adapt dynamically
to wide ranges of different hardware. In any case, this is
out of the scope of this paper. Here, we use strategies that
are inspired by packing strategies for passive operating sys-
tem resources, but extended with functionality to check link
availability. The selected results use the following strategies:
First Fit (FF): Assign every processing unit an index. For
every media operation that requires a certain amount of pro-
cessing capacity, start searching at the processing unit with
index 0 for available processing capacity. If the unit with in-
dex 0 does not have sufficient resources, use a breadth-first-
search (BFS) approach through the topological neighbors of
the unit, until a unit with sufficient capacity is found, or
until the scheduling fails.
Next Fit (NF): Similar to FF, but instead of starting at
index 0 (first processing unit) for every new job, NF starts
its search (in BFS order) from the node where the previous
media operation was successfully scheduled. If subsequent
media operations are interconnected, this can achieve a high
degree of packing and saves interconnection bandwidth.

(a) Dual Core2 (b) Dual Opteron (c) Cell BE (d) nVidia G84

Figure 2: Tested processor topologies

Random Start (RS): In contrast to NF, RS keeps sepa-
rate indices for each conference to start the search for ap-
propriate processing units for newly arriving media opera-
tions belonging to that conference. This is meant to achieve
better clustering and thus, less interconnection bandwidth
consumption than NF. For a newly starting conference, a
random processing unit is chosen.
Worst Start (WS): WS is similar to RS, but instead of
randomly finding a processing unit for a newly starting con-
ference, WS starts at the processing unit with the highest
remaining free capacity (thus the name worst fit). This is
done in the hope that the highest initial packing can be
achieved for the new session.
We have also tested several others like plain first-, best-,
worst-fit, etc., known from old memory management sys-
tems placing data elements in memory, but they do not take
bandwidth into account so we have only used these as basis
and benchmarks.

5. RESULTS
This section presents the results from our simulations in-

cluding some selected plots and our main findings. Using
the workload generator mentioned above, we have gener-
ated several workloads over the same set of parameters to
be able to extract statistics. We have varied the core and
link load and the number of concurrent conference sessions
and participants. The same workloads have been used for
all algorithms on all topologies.

5.1 Scheduling Ability
We first look at how well different means help to find a

schedule. As expected, the failure rates increase for all al-
gorithms if either of the processing or communication cost
increase (see figure 3 for a representative example). Further-
more, in figure 4, we compare the tested algorithms with re-
spect to the failure rate. If we do not use BFS but a random
ordering of the processing unit, and apply FF and NF as
they are known from memory management systems that are
not concerned with bandwidth, the performance drops sig-
nificantly. There is usually also a failure rate reduction if we
try to place related and dependent jobs in close proximity in
order to minimize communication, as done by NF in contrast
to only finding the first available as in FF. However, in our
set of algorithms, we see the largest performance gain if we
search for a suitable place (least loaded node) to start a new
session like in RS and WS. These approaches are beneficial
because they allow dynamically joining media operations to
be packed on processing units that are topologically close to

 0
 5
 10
 15
 20
 25
 30

high

low

 high

 low

 0
 5

 10
 15
 20
 25
 30

Failure rate (percent)

Processing load
per job

Bandwidth
requirement

per job

Failure rate (percent)

Figure 3: Failure rate versus processing and com-
munication costs (FF on nVidia G84)

other jobs in the same session. When resource fragmentation
grows, this saves considerable interconnect bandwidth.

5.2 Bandwidth Consumption
One other important metric in finding a good schedule is a

measure for the communication required between processing
units. Such communication both takes time and consumes
bandwidth. A good schedule for a time-dependent scenario
should often try to pack jobs on a cluster of processing cores
to minimize communication. To see the bandwidth required
for the found schedules, we monitored the communication
needs during all the simulations. Figures 5 and 6 show rep-
resentative examples where the workload is executed on Cell-
and DualOpteron-based topologies. The plots show the con-
sumed bandwidth on the time line and also a plot on which
times the algorithm failed to find a schedule for a new job.

In general, always starting a search on the same node (as
FF) effectively packs data on a small area of the topology.
This is fine as long as there is enough processing power,
but as the load increases, the system benefits from a more
distributed clustering between sessions, i.e., packing each
session on different places. A better approach is therefore to
start every new jobs where the last job in the same session
was placed (as NF). Furthermore, if the starting point is
varied for each new session the results are increased further,
where the best results are achieved by searching for the least
loaded node with WS. As a consequence of a reduced band-
width consumption, we see again that the number of failed

 0

 2

 4

 6

 8

 10

 12

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
u
m

b
e
r

o
f
fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(a) Core: low, Link: high

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
u
m

b
e
r

o
f
fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(b) Core: medium, Link: low

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
u
m

b
e
r

o
f
fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(c) Core: high, Link: high

Figure 4: Scheduling failure rate for different algorithms on different topologies when varying the load

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(a) FF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(b) NF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(c) RS

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(d) WS

Figure 5: Consumed bandwidth resources on a Cell topology.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(a) FF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(b) NF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(c) RS

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
o

n
s
u

m
e

d
 b

a
n

d
w

id
th

 (
p

e
rc

e
n

t)

time

consumed bandwidth
time of failure

(d) WS

Figure 6: Consumed bandwidth resources on a DualOpteron topology.

schedules are reduced using RS and WS.

5.3 Discussion
There are several metrics that are important with respect

to resource scheduling. In order to scale and support as
many inter-dependent jobs (conference participants) as pos-
sible, important metrics include scheduling ability and effi-
cient resource utilization. We have here shown that there
are large differences for different kind of scheduling means,
and there are also some differences based on the topology
characteristics they are used on. In this respect, our results
show that mechanisms like performing job clustering, using
BFS and finding a high capacity place to start a new ses-
sion, are promising because the bandwidth consumption is
usually reduced. This is especially important if bandwidth
is a scarce resource or the workload is time-critical due to
added communication delay.

Other interesting approaches in terms of compacting the
workload is to analyze the workload and try to make larger
computing blocks ahead of running the scheduler and then
recursively split on the cheapest link is no schedule is found.
This is efficient as long as there are much available pro-
cessing capacity, but when the load increase and the large

blocks must be re-divided, this approach increase the prob-
ability that large blocks will be placed further from each
other, i.e., consuming bandwidth on several links. Thus, in
our test, the failure rate on a loaded system is greatly in-
creased meaning that more logic must catch and avoid the
long-distance placement of neighboring jobs.

In this preliminary study, we have focused on scheduling
ability and bandwidth consumption only. However, there
are other metrics that are relevant. For example, the time to
find a schedule or scheduling overhead will in some scenarios
be important, but they will be implementation and architec-
ture dependent and are thus not considered in the simulator.
Load-balancing properties of the algorithm is also in some
cases important, but in the conferencing scenario discussed
here, the reduction of bandwidth consumption and load bal-
ancing is contradictory in terms of link overhead, and we
therefore here look at the ability to compact the workload
to save bandwidth.

In our work on efficient scheduling algorithms for inter-job
dependent workloads, we aim for a Linux implementation.
Here, it will be important to also integrate the low- and
high-level schedulers for example to exchange information
about available resources. However, as a first step, we look

at what kind of means are most promising based on tests in
our scheduling evaluation framework.

6. RELATED WORK
Multi-core scheduling attracts a considerable amount of

research that aims at load-balancing, cache coherency, and
the like. Approaches found in the literature that combine
mapping to processing units and scheduling of tasks on the
processing nodes in one stage, such as PFair [6], can sched-
ule based on processing capacity alone, since they rely on a
unified shared memory architecture. Our problem requires
a coordinated scheduling of processing capacity and inter-
connection bandwidth that is due to a lack of a shared
memory-assumption. Perfect scheduling under these con-
ditions is NP-hard, and alternative heuristics must be ex-
plored. One of the classical scheduling methods are greedy
algorithms. An example of a greedy algorithm can be found
in [1]. Here, the tasks of a parallel application are mapped
onto different processors based on a the expected run-time of
the job. This algorithm does not take job dependencies into
account. Another approach is based on the representation
of dependent parts of an application as a directed acyclic
graph (DAG). DAG can represent both processing and com-
munication demands. Kwok et al. [5] have made a survey of
several classes of scheduling algorithms for allocating work-
load DAGs to a network of processors, e.g., highest level
first with estimated times, linear clustering, task duplica-
tion and mapping heuristic. DAG-algorithms are also often
used to schedule workloads in Grids and several approaches
have been suggested in [2]. These solutions are not directly
applicable to our case because the do not handle dynamic
workloads without full reconfiguration. Another type of al-
gorithms are genetic algorithms [4]. These algorithms are
focused around deterministic scheduling problems, meaning
that all information about the task and their relations to
each other are known in advance. On asymmetric multi-
core processors there have been several approaches for soft
real-time scheduling. In [3], a soft real-time scheduler for
Linux has been implemented. Dependencies and commu-
nication between the real-time jobs have however not been
considered.

7. CONCLUSION
As a step towards better scheduling support in the op-

erating system for inter-dependent jobs on possibly hetero-
geneous multi-processors without uniform shared memory,
we have examined the effects of topologies on the schedula-
bility of dynamic workloads that consist of interdependent
long-lived media operations.

We have motivated the distinction between high-level sched-
ulers that act on the timescale of application scheduling and
assign processing resources to long-living media operations,
and low-level schedulers that managed computing cycles on
processing units locally based on assignments of the high-
level scheduler and otherwise without global knowledge.

We found that high-level schedulers that try to achieve
compact assignment of operations that belong to the same
media session to processing units is generally beneficial (as
expected), but we have observed extremely strong improve-
ments in topologies that rely on a bandwidth-constraint
switched architecture such as the Core 2 or nVidia-GPU
inspired topologies. These effects appear to be fairly inde-

pendent of whether the switches connect few high-capacity
processing units or many low-capacity units. On the other
hand, we can observe that even the simplest tested schedul-
ing algorithm (first fit) performs quite efficiently on the Cell-
inspired ring topology with asymmetric nodes.

In various other tests, we observed also a variety of other
effects of scheduler features. One of the more interesting
observations was that it is not generally feasible to schedule
media operations of a session in larger blocks. This forces
the scheduler in many cases to place the block rather far
away from earlier parts of the session, consuming excessive
interconnection bandwidth and finally, exhausting it. We
could also observe that choosing a suitable first node for
newly starting sessions has a major effect on performance.
An alternative scheduler might generally optimize for min-
imal bandwidth consumption and processing capacity only
as a computational bound.

After these initial observations, we will use our simulator
to evaluate a variety of high-level schedulers. Concurrently,
we are working on programming tools for Cell and nVidia
that circumvent the provided frameworks, which are unable
to schedule non-exclusive workloads, as well as porting of
media operations to these environments. Given such tools,
we will be able to investigate the interaction of high and low-
level schedulers experimentally. We find that a final step in
this development must integrate this scheduling with the
operating system scheduler.

8. REFERENCES
[1] Armstrong, R., Hensgen, D., and Kidd, T. The

relative performance of various mapping algorithms is
independent of sizable variances in run-time
predictions. In Heterogeneous Computing Workshop
(HCW) (Mar. 1998), pp. 79–87.

[2] Batista, D. M., da Fonseca, N. L. S., and

Miyazawa, F. K. A set of schedulers for grid networks.
In ACM Symposium on Applied Computing (SAC)
(New York, NY, USA, 2007), ACM, pp. 209–213.

[3] Calandrino, J. M., Baumberger, D., Li, T., Hahn,

S., and Anderson, J. H. Soft real-time scheduling on
performance asymmetric multicore platforms. In IEEE
Real Time and Embedded Technology and Applications
Symposium (RTAS) (2007), pp. 101–112.

[4] Chockalingam, T., and Arunkumar, S. Genetic
algorithm based heuristics for the mapping problem.
Comput. Oper. Res. 22, 1 (1995), 55–64.

[5] Kwok, Y.-K., and Ahmad, I. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31, 4 (1999),
406–471.

[6] Moir, M., and Ramamurthy, S. Pfair scheduling of
fixed and migrating periodic tasks on multiple
resources. In IEEE Real-Time Systems Symposium
(RTSS) (1999), pp. 294–303.

[7] Wolf, L. C., Burke, W., and Vogt, C. Evaluation
of a cpu scheduling mechanism for multimedia systems.
Software - Practice and Experience 26, 4 (april 1996),
375–398.

